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Invariant states in inclined layer convection.
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Thermal convection in an inclined layer between two parallel walls kept at different
fixed temperatures is studied for fixed Prandtl number Pr = 1.07. Depending on
the angle of inclination and the imposed temperature difference, the flow exhibits
a large variety of self-organized spatio-temporal convection patterns. Close to onset,
these patterns have been explained in terms of linear stability analysis of primary
and secondary flow states. At a larger temperature difference, far beyond onset,
experiments and simulations show complex, dynamically evolving patterns that are
not described by stability analysis and remain to be explained. Here we employ a
dynamical systems approach. We construct stable and unstable exact invariant states,
including equilibria and periodic orbits of the fully nonlinear three-dimensional
Oberbeck–Boussinesq equations. These invariant states underlie the observed
convection patterns beyond their onset. We identify state space trajectories that,
starting from the unstable laminar flow, follow a sequence of dynamical connections
between unstable invariant states until the dynamics approaches a stable attractor.
Together, the network of dynamically connected invariant states mediates temporal
transitions between coexisting invariant states and thereby supports the observed
complex time-dependent dynamics in inclined layer convection.

Key words: pattern formation, nonlinear instability

1. Introduction

Fluids in spatially extended wall-bounded domains can form regular flow patterns
when driven by external forces (Cross & Hohenberg 1993). Even when the flow
exhibits spatio-temporal chaos or is weakly turbulent, regular patterns may form.
Prominent examples are chaotic spirals in thermal convection (Morris et al. 1993),
or oblique turbulent-laminar stripes in shear flows (Prigent et al. 2002). These
patterns emerge in dissipative systems that are not in thermodynamic equilibrium.
Consequently, the formation of sustained patterns depends crucially on the strength
and nature of the energy supplying external driving forces.
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A fluid system where not only the strength but also the nature of the driving force
can be controlled and changed smoothly is inclined layer convection (ILC), the flow
between two parallel walls maintained at different temperatures and inclined against
gravity. Here, the angle of inclination defines the ratio between the wall-normal and
the wall-parallel buoyancy force. The former drives a lift-up mechanism, by which
buoyancy may directly destabilize the flow as in the non-inclined Rayleigh–Bénard
system. The latter generates shear forces between upward and downward driven flow,
leading to shear instabilities. Many different convection patterns have been observed
in ILC by systematically changing the angle of inclination from horizontal layer
convection to vertical layer convection and beyond (Daniels, Plapp & Bodenschatz
2000). These observations also reveal complex spatio-temporal dynamics of convection
patterns, such as intermittent bursting (Busse & Clever 2000; Daniels, Wiener &
Bodenschatz 2003) or spatial competition between patterns (Daniels & Bodenschatz
2002; Daniels et al. 2008). While the onset of several convection patterns has been
explained using stability analysis, the mechanisms underlying the complex dynamics
far above onset are not well understood.

First experiments on ILC focused on heat transfer properties in an inclined layer
of air at Prandtl number Pr ≈ 0.7 (Nusselt 1908; de Graaf & van der Held 1953;
Hollands & Konicek 1973; Ruth, Raithby & Hollands 1980). Qualitative changes in
the heat transfer were related to instabilities in the flow. Early linear stability analysis
of laminar ILC at different Pr found two different primary instabilities (Gershuni &
Zhukhovitskii 1969; Chen & Pearlstein 1989). Depending on the angle of inclination,
laminar flow becomes unstable to convection rolls with either longitudinal orientation,
at small inclinations, or with transverse orientation, at large inclinations. This result
was confirmed by systematic experimental surveys using water at Pr ≈ 7 (Hart
1971a) as well as experiments using liquid crystals at high Pr (Shadid & Goldstein
1990). Observations of modulated longitudinal rolls (Hart 1971a,b) were compared
and related to secondary instabilities of longitudinal rolls calculated using stability
analysis (Clever & Busse 1977). Similar primary and secondary instabilities have
also been found in other shear flows with imposed temperature gradients (see Kelly
(1994) for a review).

Systematic experimental explorations of self-organized patterns in large aspect ratio
domains of ILC under changing control parameters report on ten different convection
patterns in compressed CO2 at Pr= 1.07 (Daniels et al. 2000; Daniels & Bodenschatz
2002; Daniels et al. 2003, 2008). While some of the observed patterns are sufficiently
regular to resemble patterns linked to instabilities that had been described previously
for other Pr, most observations indicate complex dynamics including spatio-temporal
chaos. Exploring the same parameter space studied by Daniels, Bodenschatz, Pesch
and collaborators, Subramanian et al. (2016) identified five secondary instabilities
using Floquet analysis. These instabilities were calculated at the critical values of the
control parameters for the onset of the pattern and related to the dynamics observed in
experiments and numerical simulations above these critical parameters using Galerkin
methods (Subramanian et al. 2016). In summary, pattern formation in ILC has been
studied extensively at different control parameter values using experiments, numerical
simulations and stability analysis.

Relating a pattern forming instability identified by stability analysis at a critical
value of the control parameter to experimental or numerical observations above the
critical value requires a particular underlying bifurcation structure: at a critical value
of the control parameter, an attracting state A loses stability to a forward bifurcating
stable branch B. Above the critical control parameter value, the unstable pattern A
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has lost dynamical relevance and the dynamics approaches the attracting state B
that has emerged at the critical control parameter value. Attracting state B remains
observable in the flow until it undergoes another bifurcation and itself loses stability.
Explaining the succession of patterns observed in ILC and other flows based on
stability analysis thus relies on two conditions: first, a forward bifurcating stable
branch continues to values of the control parameters where the pattern is observed
without undergoing another bifurcation; second, both stable states, the one existing
before and the one emerging in the bifurcation, are attracting the long-term dynamics
at the respective values of the control parameter. This way, the states involved in
the bifurcation control the observed dynamics. Under these conditions, a sequence
of patterns can be described by a succession of single-state attractors arranged in a
forward bifurcation sequence. However, such a ‘sequence of bifurcations’ approach
(Busse & Clever 1996), envisioning a forward bifurcating scenario, is not applicable
a priori. Rather, in order to describe observed patterns via sequences of forward
bifurcations, the bifurcation structure needs to be confirmed by following the fully
nonlinear bifurcation branches. Moreover, there might not be a single attracting state
as evidenced by observations of complex non-saturated temporally evolving dynamics
in large domains. The time-dependent, complex dynamics was speculated to be a
consequence of experimental imperfections (Clever & Busse 1995; Busse & Clever
1996) but have also been observed in direct numerical simulations in the absence of
such imperfections (Subramanian et al. 2016). Consequently, an alternative approach
is required to explain those complex patterns beyond onset.

Recent studies of subcritical shear flows have demonstrated the dynamical relevance
of unstable exact invariant states, also called exact coherent states (Kawahara,
Uhlmann & van Veen (2012), and references therein). Invariant states are numerically
fully resolved exact solutions of the governing nonlinear Navier–Stokes equations
representing non-trivial flow structures or patterns in the flow as either steady
equilibrium states or exact periodic orbits. The dynamical relevance of weakly
unstable invariant states follows from their ability to transiently attract and repel the
dynamics along their stable and unstable manifolds (Gibson, Halcrow & Cvitanović
2008; Halcrow et al. 2009; Chandler & Kerswell 2013; Suri et al. 2017; Farano
et al. 2019). Whenever invariant states are transiently approached by the dynamics,
they become transiently observable in the flow (Hof 2004). These results support a
dynamical systems description of turbulent flow where invariant states and their stable
and unstable manifolds form a dynamical network embedded in the ‘strange’ state
space attractor generating the complex turbulent dynamics (Lanford 1982). Likewise,
within this nonlinear dynamical systems approach, we expect unstable invariant states
in ILC representing pattern motifs to support the complex pattern dynamics observed
in experiments and simulations.

Shortly after the discovery of the first unstable invariant state in Couette flow
(Nagata 1990; Clever & Busse 1992; Waleffe 1998), invariant states were also
identified in ILC. Busse & Clever (1992) revisited their analysis of the wavy
instability of longitudinal rolls (Clever & Busse 1977), and constructed stable and
unstable finite amplitude states corresponding to wavy rolls combining a Galerkin
method with Newton–Raphson iteration. Clever & Busse (1995) applied the same
approach to tertiary and quaternary states for convection in a vertical layer, where
shear forces dominate over buoyancy. Since then, invariant states have not been
studied in ILC. In pure shear flows, however, the significance of invariant states for
the temporal transition between subcritical laminar and turbulent shear flows was
extensively investigated (Kerswell 2005; Eckhardt et al. 2007; Kawahara et al. 2012).
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In linearly stable shear flows, the transition to turbulence requires finite amplitude
perturbations of the stable laminar flow that cross the edge of chaos between laminar
and turbulent attractors in state space. This edge is spanned by the stable manifold
of invariant states with a single unstable direction, a so-called edge state (Skufca,
Yorke & Eckhardt 2006; Schneider, Eckhardt & Yorke 2007), such that the edge
separates the coexisting attractors of turbulent and laminar flow (Schneider et al.
2008). Consequently, invariant edge states guide the transition to turbulence for
linearly stable flows. In contrast to canonical subcritical shear flows, the laminar flow
in ILC undergoes a linear instability so that infinitesimal perturbations are sufficient
to trigger temporal transitions away from laminar flow. The role of invariant states
for the dynamics leaving the unstable laminar flow and their significance for the
observed complex dynamics has not been investigated in ILC. They may act as
transiently visited unstable states or serve as asymptotic attractors.

In the present article we numerically study three-dimensional ILC at Pr = 1.07 in
minimal doubly periodic domains and identify stable and unstable invariant states
underlying different convection patterns at selected values of the control parameters
where these basic convection patterns are observed in simulations and experiments.
Temporal transitions from unstable laminar flow are characterized using a phase
portrait analysis of the state space trajectories describing the temporal evolution.
For seven different combinations of inclination angle and imposed temperature
difference, transient visits to unstable invariant states are observed before the dynamics
approaches attracting stable invariant states.

Depending on the inclination angle, the instability of the laminar flow is either
driven by buoyancy or shear (Chen & Pearlstein 1989; Daniels et al. 2000). At small
inclinations, shear forces are negligible in the laminar state so that the emerging
longitudinal convection rolls are associated with a buoyancy driven instability. At
large inclinations, the wall-normal lift-up mechanism due to buoyancy is negligible
so that the instability giving rise to transverse convection rolls is shear driven.
Disentangling the role of buoyancy and shear for higher-order instabilities driving
the dynamics away from non-trivial unstable states is not straightforward as even at
low inclinations, the flow field of any type of convection roll will produce significant
shear, and at any inclination, temperature gradients aligned with gravity will lead
to buoyant forcing. We demonstrate that phase portraits based on energy transport
rates provide a systematic approach for clearly characterising any instability of an
equilibrium state as either shear or buoyancy driven.

The article has the following structure. Section 2 introduces the governing equations
for ILC, symmetries of the system and equations for energy transfer. Numerical
methods for a dynamical systems description are introduced in § 3. Temporal
transitions between invariant states are presented in seven phase portraits in § 4
and discussed in § 5.

2. Oberbeck–Boussinesq equations for inclined layers

We consider thermal convection of a Newtonian fluid in an infinite layer of
thickness H confined between a hot and a cold wall at prescribed temperatures T1

and T2, respectively. The fluid layer is inclined against the vector of gravitational
acceleration g by angle γ (figure 1). The dynamics of the incompressible flow with
velocity vector U = [U, V, W](x, y, z, t), temperature T = T (x, y, z, t) and pressure
p = p(x, y, z, t) relative to the hydrostatic pressure P = P(x, y, z, t), where ∇P = ĝ,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.317


Invariant states in inclined layer convection. Part 1 898 A22-5

0.5

0

-0.5

x

t2

t0(z)

U0(z)ex

t1
g

©

H

Hot wall

Cold wall

y

z

FIGURE 1. Schematic of inclined layer convection. Streamwise, spanwise and wall-normal
dimensions are indicated by x, y and z, respectively. A layer of an incompressible
Newtonian fluid is confined between a lower hot and an upper cold wall. The layer
is inclined against gravity g at angle γ . Hot fluid flows up the hot wall while cold
fluid descends along the cold wall generating a laminar base flow (2.6)–(2.8) with linear
temperature profile T0(z) and cubic velocity profile U0(z), as outlined by grey lines. The
competition of buoyancy and shear gives rise to a variety of intricate convection patterns
when the three control parameters, inclination γ , thermal driving Ra and Prandtl number
Pr are varied.

is given by the non-dimensionalized Oberbeck–Boussinesq equations

∂U
∂t
+ (U · ∇)U=−∇p+ ν̃∇2U− ĝ T , (2.1)

∂T
∂t
+ (U · ∇)T = κ̃∇2T , (2.2)

∇ ·U= 0, (2.3)

with ν̃ = (Pr/Ra)1/2 and κ̃ = (Pr Ra)−1/2. This set of nonlinear partial differential
equations has three control parameters: the angle of inclination γ against the
gravitational unit vector ĝ = − sin(γ )êx − cos(γ )êz, the Prandtl number Pr = ν/κ ,
the ratio between kinematic viscosity ν and thermal diffusivity κ , and the Rayleigh
number Ra = gα1T H3/(νκ) where 1T = T1 − T2 and α is the thermal expansion
coefficient.

In the non-dimensionalized equations (2.1)–(2.3), temperature is measured in units
of 1T and lengths in units of H. To describe convective fluid motion with an
appropriate scale, we choose to measure velocity in units of the free-fall velocity
Uf = (gα1T H)1/2 that has also been used in previous studies of Rayleigh–Bénard
convection at values of the control parameters above convection onset (e.g. Gray &
Giorgini 1976; Chillà & Schumacher 2012). The free-fall velocity scale implies a
free-fall time unit Tf = (H/gα1T )1/2. Note that an alternative non-dimensionalization
using the heat diffusion time scale Td =H2/κ is also common in thermal convection
studies (e.g. Subramanian et al. 2016). The conversion factor is Tf = Td/

√
RaPr.

The non-dimensionalized boundary conditions at the walls are

U(z=±0.5)= 0, (2.4)
T (z=±0.5)=∓0.5. (2.5)
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2.1. Laminar base flow
Equations (2.1)–(2.3) with boundary conditions (2.4)–(2.5) admit a laminar solution
that only depends on the wall-normal coordinate z and is spatially uniform in x
and y

U0(z)=
sin(γ )

6ν̃

(
z3
−

1
4

z
)

ex, (2.6)

T0(z)=−z, (2.7)
p0(z)=Π − cos(γ )z2/2, (2.8)

with arbitrary pressure constant Π . The linear temperature profile and the cubic
velocity profile of this laminar base flow are sketched in figure 1 (grey lines). Within
the laminar solution, buoyancy forces caused by the linear temperature profile as well
as shear forces due to the velocity gradients in the buoyancy driven cubic velocity
profile are present. The former is destabilizing for −90◦ < γ < 90◦ while shear can
lead to instabilities at all non-zero inclination angles. At sufficiently strong driving,
instabilities create overturning convective motion so that the laminar solution is no
longer observed and the symmetries of ILC are broken.

2.2. Symmetries
Inclined layer convection at zero inclination (γ = 0◦) corresponds to Rayleigh–Bénard
convection with isotropy and homogeneity in the x–y plane. At all inclinations 0◦ 6=
γ 6=180◦, the isotropy of the horizontal layer is broken by the wall-parallel component
of gravity, driving the laminar flow along the x dimension. The laminar flow in ILC
is still homogeneous and thereby invariant under continuous translations

τ ′(1x, 1y)[U, V,W, T ](x, y, z)≡ [U, V,W, T ](x+1x, y+1y, z). (2.9)

Moreover, ILC is invariant under discrete reflections

πy[U, V,W, T ](x, y, z)≡ [U,−V,W, T ](x,−y, z), (2.10)
πxz[U, V,W, T ](x, y, z)≡ [−U, V,−W,−T ](−x, y,−z). (2.11)

The symmetry group of ILC consists of all products of the generators
{πy, πxz, τ

′(1x, 1y)}. We indicate this group by SILC = 〈πy, πxz, τ
′(1x, 1y)〉, where

angle brackets 〈〉 imply all products of elements given in the brackets. Inclined layer
convection has the same symmetries as plane Couette flow where analogous notation
is commonly used (e.g Gibson & Brand 2014).

Instead of considering an infinite fluid layer, we consider a finite periodic fluid
layer by imposing periodic boundary conditions in x and in y, [U,V,W, T ](x, y, z)=
[U, V, W, T ](x + Lx, y, z) and [U, V, W, T ](x, y, z) = [U, V, W, T ](x, y + Ly, z),
respectively. Due to the periodic boundary conditions, we express continuous
translations as

τ(ax, ay)[U, V,W, T ](x, y, z)≡ [U, V,W, T ](x+ axLx, y+ ayLy, z), (2.12)

with shift factors ax, ay ∈ [0, 1) scaling the spatial periods Lx and Ly of the periodic
domain. Continuous translations in periodic domains are cyclic and shifts by Lx or
Ly correspond to the identity operator τ(0, 0). Since the streamwise direction x and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.317


Invariant states in inclined layer convection. Part 1 898 A22-7

the spanwise direction y of ILC can be rotated and reflected, the symmetry group of
ILC in x–y-periodic domains is isomorphic to the direct product of two copies of the
orthogonal group in two dimensions, O(2), that is O(2)× O(2). In the product, one
term refers to the x dimension, the other to the y dimension.

The relevance of the system’s symmetries for the dynamics is that once a
state is invariant under a symmetry transformation of the equivariance group SILC,
[U, T ] = σ [U, T ] with σ ∈ SILC, the evolution under the full nonlinear governing
equations (2.1)–(2.3) will preserve the symmetry and the evolving trajectory will
remain in the symmetry subspace of all possible states invariant under σ (e.g.
Cvitanović et al. 2017). Consequently, trajectories and invariant states of the infinitely
extended system without any symmetry constraints can be computed in symmetry
subspaces, including those defined by the discrete translation symmetries imposed by
periodic boundary conditions. To compute states in symmetry subspaces defined by
a discrete symmetry σ ∈ SILC satisfying σ 2

= 1, we impose σ using a projection
([U, T ] + σ [U, T ])/2 during simulations. Any exact solution in a symmetry
subspace remains a valid solution of the full unconstrained infinite system. Imposing
symmetries does not affect the state but may disallow instabilities breaking the
imposed symmetries and thereby simplifies numerical access to invariant states with
symmetries.

All invariant states discussed in the present article are invariant under transforma-
tions of subgroups of SILC = 〈πy, πxz, τ (ax, ay)〉. We will specify the generators of
the symmetry group S of invariant states in terms of the combinations of πy, πxz
and τ(ax, ay). The choice of generators is not unique because translations τ(ax, ay)
define conjugacy classes of group elements, corresponding to the free choice of the
spatial phase of invariant states in x and y. We choose the spatial phase such that
three-dimensional inversion πxyz = πyπxz, where applicable to invariant states, applies
with respect to the domain origin at (x, y, z)= (0, 0, 0).

2.3. Energy transfer
Inclined layer convection is a thermally driven dissipative system. The externally
imposed temperature difference results in the thermal energy flux that is required
to sustain temperature gradients. These gradients, together with gravity, generate
buoyancy forces that drive the fluid flow. Thereby thermal energy is converted to
kinetic energy that is eventually dissipated by conversion into heat through internal
viscous friction. The kinetic energy balance is obtained by multiplying (2.1) with U
and space averaging equation (2.1) over the entire domain volume Ω , denoted by 〈〉Ω ,

1
2
∂

∂t
〈U2
〉Ω = 〈ĝUT 〉Ω − ν̃〈(∇×U)2〉Ω = I −D. (2.13)

The rate of change of kinetic energy in Ω is given by the difference between energy
input I, the work due to buoyancy forces and viscous dissipation D (Malkus 1964).
These rates may be normalized by the laminar transfer rate

I0 =D0 = sin2(γ )/(720 ν̃) (2.14)

for non-zero inclination, γ 6= 0◦.
Since the kinetic energy of all equilibrium states remains constant, energy transfer

rates need to be balanced, implying I = D. A periodic orbit will be characterized
by instantaneously unbalanced rates but the net energy transfer integrated over one
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period T of the orbit vanishes,
∫ T

0 (I−D) dt=0. For equilibria with relative dissipation
D/I = 1, equation (2.13) allows to distinguish two destabilising mechanisms. When
buoyancy forces drive an instability of an equilibrium state, I increases over D
implying D/I < 1 for the initial dynamics triggered by the instability. A shear driven
instability of an equilibrium leads initially to D/I > 1 because rising shear increases
D over I. Local oscillatory instabilities of equilibrium states discussed in the present
paper cause oscillation amplitudes to grow symmetrically around D/I = 1 with an
exponential growth rate. The symmetry around D/I = 1 suggests that buoyancy
and shear forces contribute equally to the destabilising mechanism underlying an
oscillatory instability. We will characterize all invariant states and their instabilities in
terms of energy transfer.

On average, the thermal heat flux through any plane parallel to the walls is
independent of the height z. At the walls, the transport is purely diffusive but in the
centre of the domain convective heat transport can be significant. To quantify the
instantaneous, time-dependent, heat transport due to convective effects, we formulate
the energy balance equation for heat not averaged over the full but over the lower
half of the domain. This generates boundary flux terms at the midplane between the
walls, where convective transport is expected to be largest. The volume average of
(2.2) over the lower half of the domain volume Ω/2, yields

∂

∂t
〈T 〉Ω/2 =

〈
−κ̃

∂

∂z
T
〉

A(−0.5)

−

〈
WT − κ̃

∂

∂z
T
〉

A(0)

= J −Nu. (2.15)

Here 〈〉A(z) denote averages over planes at height z parallel to the walls. The rate of
change of thermal energy averaged over the lower half of the domain Ω/2 is given
by the diffusive boundary heat flux J at the lower wall and the instantaneous Nusselt
number Nu at the midplane. The laminar diffusive heat flux is

J0 =Nu0 = κ̃ . (2.16)

As for the kinetic energy balance, equilibrium states imply J = Nu. Periodic orbits
will have unbalanced instantaneous fluxes that average to vanishing net thermal energy
change over one period.

3. Numerical approach

We perform direct numerical simulations of (2.1)–(2.3) in x–y-periodic domains
and compute invariant states using matrix-free Newton methods. The evolution of
simulated state trajectories is studied relative to invariant states in ‘phase portraits’
defined by the net kinetic energy transfer rates in (2.13). The technical details are
introduced in the following sections, and the approach is demonstrated by explaining
the transition dynamics from laminar flow to straight convection rolls.

3.1. Direct numerical simulations
The Oberbeck–Boussinesq equations for inclined layers (2.1)–(2.3) in a x–y-periodic
domain are solved in direct numerical simulations (DNS) using a pseudo-spectral
method (Canuto et al. 2006, p. 133ff). After substituting the base-fluctuation
decomposition [U, T ] = [U0, T0] + [u, θ] into (2.1)–(2.3), the continuous field
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variables of the fluctuations [u, θ ](x, y, z, t) are numerically approximated by Fourier
and Chebyshev expansions of the form

[u, θ ](x, t)=
Kx∑

kx=−Kx

Ky∑
ky=−Ky

Nz−1∑
j=0

[ũ, θ̃ ]kx,ky,j(t)Cj(z)e2πi(kxx/Lx+kyy/Ly), (3.1)

where Cj(z) is the jth Chebyshev polynomial of the first kind, linearly rescaled
to the interval z ∈ [−0.5, 0.5]. Velocity and temperature are fixed at the walls
of the domain at u(z = ±0.5) = 0 and θ(z = ±0.5) = 0, as the inhomogeneous
boundary conditions are absorbed in T0(z). Owing to incompressibility, the pressure
p is a dependent variable and fully determined by u. The pressure is obtained by
solving a Tau problem with the influence matrix method (Kleiser & Schumann
1980; Canuto & Landriani 1986). To completely specify the problem with periodic
boundary conditions, an integral constraint on either pressure gradient or mean flux
is required. We keep the mean-pressure gradient along the x and the y direction
constant, specifically

∫ Ly

0

∫ Lx

0 ∇p dx dy = 0. Technically, we modify pressure as
p = p′ + U2/2 which allows expressing the nonlinear term in (2.1) in rotational
form U × (∇ × U) = (U · ∇)U − U2/2. After evaluation of the nonlinear terms
in (2.1) and (2.2) in physical space, the products are transformed to a spectral
representation using the ‘fastest Fourier transform in the West’ (known as FFTW)
library (Frigo & Johnson 2005) and dealiased using the 2/3 rule (Canuto et al.
2006, p. 133f). Due to dealiasing, a grid of size Nx × Ny × Nz in physical space
implies spectral summation bounds of Kx =Nx/3− 1 and Ky =Ny/3− 1 in (3.1). We
use e.g. [Nx, Ny, Nz] = [32, 32, 25] to resolve a single pair of convection rolls in a
domain of extent [Lx, Ly] = [2.2211, 2.0162]. This choice is discussed in § 3.3. For
time-marching, an implicit–explicit multistep algorithm of third-order is implemented
solving the diffusion terms and the pressure term fully implicitly, and the nonlinear
terms and the buoyancy term explicitly. See appendix A for the details of the
time-stepping algorithm. The code is written in C++ as an extension module to the
MPI-parallel software Channelflow 2.0 (Gibson et al. 2019).

The numerical implementation of the extension module Channelflow-ILC (publically
available at channelflow.ch) has been validated by reproducing three key results with
different levels of importance of nonlinear effects. First, a highly resolved critical
threshold for the linear onset of convection in Subramanian et al. (2016) is accurately
reproduced (see § 3.3). Second, numerical continuations in γ and Ra of invariant states
underlying longitudinal convection rolls reproduce an analytic scaling invariance of
the nonlinear Oberbeck–Boussinesq equations (2.1)–(2.3), as discussed in § 3 of the
accompanying article (Reetz, Subramanian & Schneider 2020). Third, the statistics of
fully turbulent Rayleigh–Bénard convection match previous results on the scaling of
Nu∼ Ra (appendix B).

3.2. Computation of invariant states
We not only simulate the time evolution of ILC but also compute invariant states. Any
state of ILC can be expressed as a state vector x(t)= [u, θ ](x, y, z, t) in a state space
of ILC for given boundary conditions. The unique time evolution of state vectors x(t)
is computed using DNS. Invariant states are defined as particular state vectors x∗ such
that

G(x∗)= σFT(x∗)− x∗ = 0, (3.2)
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where FT is the evolution operator for (2.1)–(2.3) over a finite time period T defining
a dynamical system for ILC. Operator σ is an element of the symmetry group SILC

and applies a discrete coordinate transformation in terms of (2.10)–(2.12). Since
(2.1)–(2.3) are partial differential equations, the state space of this dynamical system
is of infinite dimension. The numerical representation of ILC discussed in § 3.1
renders the state space dimension finite. The spatially discretized partial differential
equations correspond to a set of coupled ordinary differential equations, one for each
of the four fields [u, v, w, θ ] at each spatial collocation point. Thus, the dynamical
system has a state space with N = 4×Nx×Ny×Nz× 4/9 dimensions. The factor 4/9
accounts for the cutoff wavenumbers due to dealiasing. To solve (3.2) efficiently in an
N-dimensional state space, Channelflow-ILC employs a matrix-free Newton–Raphson
iteration, based on the generalized minimal residual method (known as GMRES)
to construct a Krylov subspace, together with a hookstep trust region optimization
(Viswanath 2007). The trust region optimization increases the radius of convergence.
To be within a radius of convergence of the Newton–Raphson method, the initial
state of the iteration must be close to an invariant state. Full convergence within
double-precision arithmetic requires the residual of (3.2) to be ‖G(x)‖2 = O(10−16).
Here, we define the normalized L2 norm of state vectors as

‖x‖2 =

(
1

LxLy

∫ Lx

0

∫ Ly

0

∫ 0.5

−0.5
u2
+ v2
+w2

+ θ 2 dx dy dz
)1/2

. (3.3)

Once invariant states have converged in a Newton iteration, their spectrum of
eigenvalues can be computed using Arnoldi iteration (Viswanath 2007) and bifurcation
branches can be computed using continuation methods (see Dijkstra et al. (2014) for
a review).

We distinguish two types of invariant states, namely equilibrium states (EQs) and
periodic orbits (POs). If the period T in (3.2) can be arbitrarily chosen a priori, then
invariant states are steady states or EQs. We use T=20 to compute an EQ. If invariant
states require T to match a specific time period, the state is unsteady but exactly
recurrent over T and the invariant state is a PO. The period T of a PO is determined in
the Newton iteration. There are additional classifications of EQs and POs. If σ ∈ SILC

in (3.2) with σ 6= 1, the invariant state is a relative invariant state. Relative EQs are
travelling wave states (known as TWs) that are steady states in a co-moving frame of
reference. Travelling wave states satisfy (3.2) with σ = τ(ax, ay), where shift factors ax

and ay must be determined in the Newton iteration. A relative PO might also travel
over its period T requiring a specific σ = τ(ax, ay). Some periodic orbits that have
σ = 1 after a full period T still may exploit a discrete symmetry operation σ 6= 1
after a relative period T ′= T/n with n∈N. This type of relative PO is a ‘pre-periodic
orbit’ (see e.g. Budanur & Cvitanović 2017).

Where possible, we name invariant states according to the existing names of
observed convection patterns and instabilities in Subramanian et al. (2016). We will
show that specific nonlinear invariant states underlie specific convection patterns and
that the specific states can be linked, in most cases, to bifurcation points corresponding
to specific instabilities. To reflect the link between observed patterns, invariant states
and instabilities but also to clearly distinguish between the three distinct objects, we
use different symbols/fonts to indicate: an observed ‘pattern X’ as PX , instabilities
linked to this pattern as PXi, and exact invariant states underlying the pattern as PX.
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FIGURE 2. (a) Critical thresholds Rac(γ ) for the instabilities to longitudinal rolls (LRi)
and transverse rolls (TRi) from linear stability analysis of B at Pr = 1.07 (Subramanian
et al. 2016). (b) Bifurcation branches of invariant states LR and TR at γc2 bifurcate
together from B at Rac2 = 8053.1. When computing LR and TR in a minimal domain
of size [Lx, Ly] = [λx, λy], LR is stable (solid line) and TR is unstable (dotted line).

3.3. Straight convection rolls as equilibrium states
The simplest invariant state in ILC is the laminar base flow (2.6)–(2.8), denoted
as B and representing a zero-state for the fluctuations [u, θ ] = 0. When B becomes
dynamically unstable, straight convection rolls may form. In ILC at γ = 0◦, the
case corresponding to Rayleigh–Bénard convection, the critical threshold for the
onset of convection is Rac(γ = 0◦) = 1707.76 (Busse 1978). In ILC at γ 6= 0◦,
two types of straight roll patterns can emerge from a primary instability, either
longitudinal rolls (LR), with orientation along x, or transverse rolls (T R), with
orientation along y. The type of rolls to which B becomes first unstable when Pr
is fixed and Ra is increased depends on γ (Gershuni & Zhukhovitskii 1969; Hart
1971a). Figure 2(a) shows the curves for critical thresholds Rac(γ ) at Pr = 1.07.
The point in the γ –Ra plane where LRi and TRi have the same critical threshold
is a codimension-2 point. We reproduce this point at γ = 77.7567◦ ≡ γc2 and
Rac(γc2) = 8053.1 ≡ Rac2 via numerical continuation of equilibrium states LR and
TR down in Ra to their exact bifurcation point from B (figure 2b). Here, LR is
invariant under the symmetry group SLR = 〈πxzτ(0, 0.5), πyτ(0, 0.5), τ (ax, 0)〉 and
TR is invariant under STR = 〈πxz, πy, τ (0, ay)〉. Both equilibrium states, LR and TR,
are numerically fully converged to satisfy (3.2). Useful initial states for the Newton
iteration are obtained from a ‘phase portrait’ analysis as explained in the following
section.

Linear stability analysis suggests streamwise and spanwise wavelengths for the
primary instability to longitudinal and transverse rolls at the codimension-2 point
(Subramanian et al. 2016). Accordingly we choose the periodic domain to match
wavelengths λx = 2.2211 and λy = 2.0162 of instabilities TRi and LRi, respectively.
For the domain size [Lx, Ly] = [λx, λy], we have reproduced the codimension-2 point
at [γc2, Rac2] = [77.7567◦, 8053.1]. We confirmed that all given digits are significant.
The step size of the continuation was chosen sufficiently small to indicate the
bifurcation point at this accuracy. Moreover, increasing the grid resolution beyond
[nx, ny, nz] = [32, 32, 25] does not change the result. We fix λx = 2.2211 and
λy= 2.0162 as constants in this paper, and choose all periodic domains to be periodic
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over [Lx, Ly] = [l λx,m λy] and to be discretized with [Nx,Ny,Nz] = [l nx,m ny, nz] with
l,m∈N. Thus, the invariant states discussed here have prescribed pattern wavelengths,
unlike pattern forming instabilities calculated using a Floquet analysis (Subramanian
et al. 2016).

3.4. Phase portrait analysis
Temporal transitions from laminar flow to longitudinal or transverse rolls are studied
by initialising a simulation with small perturbations around the dynamically unstable
base state B and visualizing the time evolution in a state space projection representing
a ‘phase portrait’. Two state vector trajectories x(t) are simulated just above the
codimension-2 point, at γc2 and Ra = 8500 > Rac2. Each trajectory starts from B
perturbed by small amplitude noise of O(10−5). The evolution of x(t) is simulated in
the symmetry subspace of [λx, λy]-periodicity, corresponding to the domain size, and
either SLR or STR. Imposing either SLR or STR causes x(t) to remain in the symmetry
subspace since (2.1)–(2.3) are equivariant under SLR and STR. Each symmetry subspace
contains only one type of straight convection rolls. Thus, the choice of either SLR or
STR selects whether longitudinal or transverse rolls emerge.

The longitudinal and the transverse state trajectories are analysed in a ‘phase plane’
spanned by kinetic energy input I and relative viscous dissipation D/I defined in
(2.13). The D/I-axis allows to distinguish two types of instabilities of equilibrium
states in ILC satisfying D= I. The transition towards LR is triggered by a buoyancy
driven instability of B that initially increases I over D. The transition towards TR
is triggered by a shear driven instability of B that initially increases D over I. The
phase portrait illustrates that the state LR is reached via a temporal transition from a
buoyancy driven instability of B, and TR is reached via a temporal transition from a
shear driven instability of B (figure 3a).

The phase portrait analysis not only characterizes the forces driving an instability
but also helps to identify good initial guesses for Newton iterations that may converge
to invariant states. After a stage of exponential growth in the transition from B, the
two state trajectories saturate and the dynamics slows down exponentially (figure 3a).
Exponential slowdown near D/I = 1 suggests the presence of an equilibrium state,
and indeed, the two final state vectors x(t = 1000) are close to invariant states and
good initial guesses for a Newton iteration. They converge to LR and TR, respectively,
and provide the starting point for the numerical continuation shown in figure 2(b).
Consequently, the phase portrait analysis is useful for finding invariant states during
temporal transitions. Moreover, the phase portrait clearly illustrates how the dynamics
follow dynamical connections between invariant states, in this case B→ LR and B→
TR. We use the term ‘dynamical connection’ for state trajectories connecting the state
space neighbourhood of two invariant states in a finite time. Dynamical connections
indicate the existence of a nearby heteroclinic connection requiring infinite time to be
traversed (e.g. Farano et al. 2019).

The dynamical stability of LR and TR at γc2 and Ra= 8500 is characterized using
Arnoldi iteration in the symmetry subspace of the [λx, λy]-periodic domain. Here,
LR is stable and TR is weakly unstable with respect to two shift-symmetry related
three-dimensional, longitudinally oriented, eigenmodes with linear growth rate of
ωr = 0.044. These unstable eigenmodes of TR do not exist in the symmetry subspace
defined by STR where the temporal transition to stable TR was simulated. However, the
simulated dynamical connection B→ TR also exists in the larger subspace where STR

is not imposed and B→ TR connects two unstable invariant states. When perturbing
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FIGURE 3. (a) Simulated state trajectories (grey dots) evolving from noise around the
unstable laminar base flow B at γc2 and Ra= 8500 over time t (left), and plotted as phase
portraits in a plane of normalized kinetic energy input I/I0 and relative dissipation D/I
(right). The DNS is confined to either SLR and STR, allowing either a buoyancy driven
instability to initiate a temporal transition to LR or a shear driven instability to initiate a
temporal transition to TR. Arrows indicate the direction of the evolution. Exact equilibrium
states LR and TR are visualized by three-dimensional contours at 1/3[min(θ), max(θ)]
and the in-plane components of u at the domain sides. (b) Without imposing discrete
symmetries, TR is dynamically unstable. Perturbing TR initiates a dynamical connection
to LR with fast dynamics near the unstable manifold of TR and slow dynamics near the
stable manifold of LR.

unstable TR, a buoyancy driven instability triggers a dynamical connection TR→ LR.
Along this connection the dynamics undergo a rapid slowdown suggesting a transition
from the fast unstable manifold of TR to the slow stable manifold of LR whose
leading eigenvalue is ωr =−0.016 (figure 3b).

In summary, the phase portrait analysis serves three purposes. First, high-
dimensional state space trajectories can be visualized in a two-dimensional projection.
Second, close approaches to invariant states and a slowdown of the dynamics provide
useful initial guesses for Newton iterations to converge. Thus, the phase portrait
analysis gives access to invariant states. Third, the type of instability triggering a
transition from an equilibrium state can be characterized as either buoyancy driven
or shear driven via the departure from the D/I = 1 line in the phase portrait.

4. Transitions to tertiary states
On increasing Ra, secondary patterns of regular straight convection rolls give way

to five different tertiary convection patterns (Daniels et al. 2000). These patterns
have been associated with five different secondary instabilities (Subramanian et al.
2016). The type of convection pattern emerging when increasing Ra depends on the
inclination angle γ . Following the cited work, we study the five tertiary convection
patterns in ILC at Pr = 1.07. In the parameter space γ ∈ [0◦, 120◦) and ε ∈ [0, 2],
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FIGURE 4. (a) State trajectory evolution from the unstable base state B at γ = 40◦ and
Ra= 2385 (ε = 0.07). After a transient in the vicinity of LR, the shear driven instability
WRi of LR makes the trajectory follow a stable spiral towards equilibrium state WR.
(b) Flow structure of WR in a periodic domain of size [Lx, Ly] = [2λx, λy].

where ε = (Ra − Rac)/Rac is a normalized Rayleigh number relative to the critical
threshold Rac(γ ) for convection onset (figure 2a). We select specific values of the
control parameters where the patterns have been observed.

The following sections apply the phase portrait analysis outlined in § 3.4 to each
convection pattern individually. Instead of discussing the five patterns in order of
increasing angle of inclination γ , we choose to order the patterns in terms of the
complexity of the transition dynamics towards the attractive invariant state underlying
the pattern: first, transitions to equilibrium states (§ 4.1); second, transitions to periodic
orbits (§ 4.2); and third, transition dynamics in the absence of an attractive tertiary
state (§ 4.3).

4.1. Transitions with equilibrium state attractor
4.1.1. Wavy rolls

The convection pattern of wavy rolls (WR) has been observed in early experiments
(Hart 1971a) and associated with the wavy instability WRi of LR (Clever & Busse
1977), also found for longitudinal rolls in Bénard–Couette flow (Clever, Busse &
Kelly 1977). Hart (1971b) already hypothesized a relation between WR and wavy
vortex flow in Taylor–Couette experiments (Coles 1965). Such a relation was later
found to exist, and exploited in the first constructions of invariant states underlying
wavy velocity streaks in subcritical shear flows (Nagata 1990; Clever & Busse 1992).
The convection pattern of wavy rolls is observed in ILC at control parameter values
[γ , ε, Pr] = [40◦, 0.07, 1.07] (Daniels et al. 2000). We simulate a temporal transition
starting from small-amplitude noise around the unstable base flow at these values of
the control parameters. The size of the periodic domain is [Lx, Ly] = [2λx, λy] and no
additional discrete symmetries are imposed.

The phase portrait reveals a two-stage transition from the base flow B to wavy rolls.
First, a buoyancy driven instability of B leads to a slow transient over 700< t< 1400
in the vicinity of LR. Second, a shear driven instability of LR leads to a spiralling
trajectory on which the dynamics approach the equilibrium state WR (figure 4a). The
spectrum of eigenvalues of WR has the complex pair (ωr, ±ωi) = (−0.007, ±0.039)
closest to the imaginary axis. The imaginary part suggests an oscillation period on the
spiralling trajectory of T = 2π/ωi = 161. The decaying oscillations of the trajectory
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FIGURE 5. (a) Spectrum of leading eigenvalues of LR explains exponential approach and
escape rates relative to LR. (b) L2-distance between LR and the state trajectory shown
in figure 4(a) illustrates exponential approach and escape dynamics in the state space
neighbourhood of LR. The dotted line marks the exponential rates given by the leading
stable and unstable eigenvalues of LR.

for t> 1500 match this period. The flow structure of equilibrium state WR shows the
characteristic wavy modulations observed in experiments and simulations (figure 4b).
The invariant state WR is invariant under shift-reflect and shift-rotate symmetries
SWR = 〈πyτ(0.5, 0.5), πxzτ(0.5, 0.5)〉. These symmetries are analogous to the
symmetries of wavy velocity streaks in plane Couette flow (e.g. Gibson et al. 2008).

The state trajectory follows a sequence of dynamical connections B→ LR→ WR.
The transient close to LR, a saddle point with stable and unstable eigendirections,
follows exponential dynamics. The leading eigenvalues of LR are real, [ω1,2, ω3, ω4]=

[0.038, 10−9,−0.039], and define the exponential rate of approach, ∼eω4t, and escape,
∼eω1,2t (figure 5). The double multiplicity of the positive eigenvalue is a result of the
continuous translation symmetry τ(ax, 0) of LR allowing two orthonormal eigenmodes
of arbitrary x phase. Continuous translations τ(0, ay) are not an invariance of LR but
change the y phase of LR and generate a continuum of equivalent states. The
Goldstone mode corresponding to the translation invariance of LR is the marginally
stable eigenmode with eigenvalue ω3. Therefore, the pitchfork bifurcation creating
LR is a circle pitchfork bifurcation (Crawford & Knobloch 1991). The non-zero
finite value of ω3 is a measure for the accuracy of the Arnoldi iteration. The
minimal distance of the state trajectory to LR is ‖x(t = 1050)− LR‖2/‖LR‖2 ≈ 10−8.
Consequently, the transition dynamics from B generate a trajectory transiently visiting
the state space neighbourhood of the unstable equilibrium state LR, as already
suggested by the phase portrait.

When increasing thermal driving, the WR pattern is succeeded by weakly turbulent
wavy rolls, also called ‘crawling rolls’ (Daniels et al. 2000). A DNS at ε = 0.5 leads
to a much more complicated phase portrait than at ε = 0.07. At these control
parameter values, the state trajectory initially still undergoes the transition sequence
B→ LR→WR. However, WR is now unstable. After a transient visit close to WR at
t= 500, a buoyancy driven instability of WR leads to a sequence of large-amplitude,
fast oscillations before the state trajectory is attracted to a small-amplitude, slow
bursting cycle (figure 6). The fast transient oscillations have clockwise revolving
trajectories in the D/I–I plane and dominate the phase portrait. We suspect the
existence of an unstable periodic orbit with similar shaped phase portrait underlying
the transient oscillations. Finding and analysing this periodic orbit is beyond the scope
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FIGURE 6. State trajectory evolution from the unstable base state B at γ = 40◦ and
Ra = 3344 (ε = 0.5). The trajectory visits unstable LR, followed by a transient visit of
WR (inset c). Subsequently, the trajectory undergoes a sequence of rapid oscillations and
is finally attracted to a heteroclinic cycle between equilibrium state OWR and a symmetry
related equilibrium. The time series for 2000 < t < 10 000 in inset (a) indicates the
increasing time spent near the equilibrium states. The phase portrait of the heteroclinic
cycle is magnified in inset (b). Since the energy transfer rates do not differ for symmetry
related states, the heteroclinic cycle appears as a homoclinic cycle. See figure 7(a) for a
projection that distinguishes the two equilibrium states.

of this work but will be discussed elsewhere (authors’ unpublished observations). Here,
we discuss the slow dynamical attractor at these values of the control parameters.

The temporal dynamics of ILC at [γ , ε, Pr] = [40◦, 0.5, 1.07] in a periodic domain
of size [2λx, λy] is attracted to a heteroclinic cycle. The cycle dynamically connects
an equilibrium state, which we name oblique wavy rolls (OWR), with a symmetry
related equilibrium state τxyOWR (figure 7). Here, τxy = τ(0.25, 0.25) is a shift
operator translating the wavy flow structure by half a pattern wavelength in the
direction of the domain diagonal along which the wavy convection rolls of OWR
are aligned. The invariant states OWR and τxyOWR show two spatial periods of the
wavy pattern along the domain diagonal and both are invariant under transformations
of SOWR = 〈πxyz, τ (0.5, 0.5)〉. Without imposing the symmetries in SOWR, OWR and
τxyOWR have each a single purely real unstable eigenmode, denoted as state vector
eu and τxyeu, respectively, that breaks the τ(0.5, 0.5)-symmetry by having only one
spatial period along the domain diagonal (figure 7c). Perturbing OWR with eu initiates
the temporal transition OWR→ τxyOWR. Perturbing τxyOWR with τxyeu initiates the
temporal transition τxyOWR→ OWR. Together, the two dynamical connections form
a heteroclinic cycle. The two involved unstable eigenmodes eu and τxyeu preserve
the symmetries πxyz and πxyzτ(0.5, 0.5), respectively. Thus, they are analogous
to sine- and cosine-eigenmodes in that they, first, are orthogonal such that the
L2 inner product is 〈eu, τxyeu

〉 = 0, and, second, have a reflection symmetry with
respect to different reflection points, namely πxyz and πxyzτ(0.5, 0.5) (figure 7c).
When imposing πxyz-symmetry, the unstable eigenmode τxyeu is disallowed, τxyOWR
becomes dynamically stable, and the associated symmetry subspace Σ1 contains only
the dynamical connection OWR→ τxyOWR. When imposing πxyzτ(0.5, 0.5)-symmetry,
the unstable eigenmode eu is disallowed, OWR becomes dynamically stable, and
the associated symmetry subspace Στ contains only the dynamical connection
τxyOWR→ OWR. Hence, the heteroclinic cycle satisfies all three conditions for the
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FIGURE 7. Robust heteroclinic cycle between two symmetry related equilibrium states at
γ = 40◦ and Ra = 3344 (ε = 0.5). (a) L2-distance relative to the two symmetry related
equilibrium states, OWR and τxyOWR, visualizes how the simulated state trajectory (grey
dots) approaches the heteroclinic cycle (black line). The direction of the dynamics is
indicated by black arrows. (b) Flow structure of OWR in a periodic domain of size
[2λx, λy]. (c) Temperature contours at midplane illustrate the spatial phase of OWR,
τxyOWR, and their unstable eigenmodes eu and τxyeu, respectively, along the diagonal of
the domain (dotted line). The pattern wavenumbers of equilibria and unstable eigenmodes
along the domain diagonals suggest a nearby 1 : 2 resonance.

existence of a robust heteroclinic cycle between two symmetry related equilibrium
states (Krupa 1997):

(i) OWR is a saddle and τxyOWR is an attractor (or sink) in a symmetry subspace
Σ1 of the entire state space of the [2λx, λy]-periodic domain.

(ii) There is a saddle-attractor connection OWR→ τxyOWR in Σ1.
(iii) There is a symmetry relation between the two equilibrium states, mediated by

τxy ∈ SILC.

Robust heteroclinic cycles of this type have been previously described in systems
with O(2)-symmetry that are near a codimension-2 point where bifurcating eigenmodes
show a spatial 1 : 2 resonance (Armbruster, Guckenheimer & Holmes 1988; Proctor &
Jones 1988; Mercader, Prat & Knobloch 2002; Nore et al. 2003). In the present case,
the existence of OWR with wavenumber m= 2 along the domain diagonal and with an
instability of wavenumber m= 1 suggests a nearby codimension-2 point where oblique
straight rolls become simultaneously unstable to m= 1 and m= 2 wavy modulations.
Oblique straight rolls are not discussed here but are a known instability of laminar
ILC (Gershuni & Zhukhovitskii 1969). Reetz et al. (2020) demonstrate that OWR of
both wavenumbers, m = 1 and m = 2, indeed bifurcate off oblique straight rolls in
two pitchfork bifurcations at only slightly different values of the control parameters,
suggesting a 1 : 2 resonance.

The robust heteroclinic cycle is numerically identified as an attractor of the
dynamics suggesting its dynamical stability. The stability of robust heteroclinic
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FIGURE 8. (a) State trajectory evolution from the unstable base state B at γ =80◦ and ε=
0.05 (Ra= 8525). After a transient in the vicinity of TR, the buoyancy driven instability
KNi causes the trajectory to follow a stable spiral towards equilibrium state KN. (b) Flow
structure of KN in a periodic domain of size [Lx, Ly] = [λx, λy].

cycles depends on the leading eigenvalues of the involved equilibrium states (Krupa
& Melbourne 1995). The leading eigenvalues of OWR without imposing additional
discrete symmetries are [ω1, ω2, ω3,4] = [0.016, −0.023, −0.037 ± 0.050]. When
imposing πxyz, the contracting eigenvalue ω2 vanishes. When imposing πxyzτ(0.5, 0.5),
the expanding eigenvalue ω1 vanishes. Thus, the leading expanding and contracting
eigenvalues belong to two different symmetry subspaces. The complex eigenvalue
ω3,4 is radial as it belongs to both subspaces and does not influence the stability of
the cycle. Since |ω1|/|ω2|< 1, the heteroclinic cycle is dynamically stable (Krupa &
Melbourne 1995).

We do not expect this heteroclinic cycle to be stable in larger domains. However,
oblique wavy rolls are observed to evolve slowly in experiments and simulations at
lower thermal driving (Daniels et al. 2008). At the control parameter values selected
here, observations in larger domains indicate chaotic dynamics on a faster time scale
than the time scale of the approach to the heteroclinic cycle (authors’ unpublished
observations). The time period 1t over which the state trajectory remains close
to an equilibrium increases with time (figure 6a). It should eventually diverge
but here saturates at 1t ≈ O(103). This saturation effect is due to the numerical
double-precision of the DNS. The unstable eigenvalue ω1 = 0.016 of OWR amplifies
the numerical noise on a time scale of log(1016)/ω1 =O(103).

4.1.2. Knots
The convection pattern of knots (KN ) is experimentally observed as ‘knotted’

superposition of T R and LR just above inclination γc2 (Daniels et al. 2000).
Stability analysis confirms the existence of a KNi instability of TR (Fujimura
& Kelly 1993). We refer to experimental and numerical observations of KN at
[γ , ε, Pr] = [80◦, 0.05, 1.07] (Subramanian et al. 2016). At these control parameter
values, a temporal transition from the noise-perturbed unstable base flow is simulated
in a periodic domain of size [Lx, Ly] = [λx, λy]. No additional discrete symmetries are
imposed.

After the initial shear driven transition B → TR, the buoyancy driven instability
KNi of TR leads to a stable spiral approaching KN, an equilibrium state underlying
the observed KN pattern (figure 8). The spectrum of eigenvalues of stable KN has
a complex pair (ωr, ωi) = (−0.0085, ±0.0304) closest to the imaginary axis. The
linear period of T = 2π/ωi = 207 matches the simulated oscillations on the stable
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FIGURE 9. (a) State trajectory evolution from the unstable base state B at γ = 80◦, as in
figure 8, but at increased ε = 0.15 (Ra= 9338). Instead of terminating in a stable spiral,
the trajectory returns to laminar flow from where it approaches the stable periodic orbit
BKN along which knots emerge as bursts. The inset magnifies the phase portrait close to
the laminar base state B. (b) Flow structure of an instance along the periodic orbit BKN
illustrates decaying longitudinal plumes that bring the state trajectory close to laminar flow.

spiral trajectory. The flow structure of KN shows the characteristic bimodal mix
of longitudinal and transverse modes, here, with a stronger transverse contribution
(figure 8b). Here, KN is invariant under symmetries SKN = 〈πyτ(0, 0.5),πxyz〉.

Close to the values of the control parameters where stationary KN are observed,
Daniels et al. (2000) report on bursting dynamics. When simulating a transition at
increased ε = 0.15 (Ra= 9338), the state trajectory, after transiently visiting TR, does
not approach KN that has become unstable. Instead, the trajectory visits again the
laminar base flow (TR→ B) from where it approaches a stable periodic orbit with
period T = 251 and SKN symmetries. We call this orbit bursting knots (BKN). The
BKN orbit describes a bursting cycle with slow dynamics near B and fast dynamics
along a clockwise revolving trajectory in the D/I plane (figure 9). The fast stage
shows growth of a transient KN pattern that ultimately forms decaying longitudinal
plumes (figure 9b). Longitudinal modes decay because LRi exists only at higher ε
at γ = 80◦. During the slow stage, the phase portrait of the orbit shows sharp turns
near B suggesting an influence of the stable and unstable manifold of B on the orbit
(inset in figure 9). The bursting dynamics of this specific periodic orbit appears similar
to a nonlinear limit cycle found in natural doubly diffusive convection (Bergeon &
Knobloch 2002) but does not match the travelling dynamics of the longitudinal bursts
observed in ILC at these control parameter values Daniels et al. (2000). The next
section discusses two periodic orbits clearly underlying experimental observations.

4.2. Transitions with periodic attractors
4.2.1. Subharmonic oscillations

An oscillatory instability of LR at small inclinations gives rise to a convection
pattern of spatially subharmonic oscillations observed in experiments at Pr = 1.07
(Daniels et al. 2000) and studied using Floquet analysis at Pr= 0.71 (Busse & Clever
2000). Here, we depart from our convention to follow the naming of Subramanian
et al. (2016) and name this pattern subharmonic standing wave (SSW) instead of
longitudinal subharmonic oscillations to stress the standing wave nature of the pattern.
We refer to observations of SSW at [γ , ε,Pr] = [17◦, 1.5, 1.07] (Daniels et al. 2000;
Subramanian et al. 2016). A temporal transition is simulated in a periodic domain
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FIGURE 10. State trajectory evolution from the unstable base state B at γ = 15◦ and
ε = 1.5 (Ra = 4420). The phase portrait illustrates how the instability SSWi leads to an
oscillatory transition LR→ SSW along a symmetric unstable spiral approaching periodic
orbit SSW (red solid line). The inset magnifies the phase portrait of the transition LR→
SSW.

of size [Lx, Ly] = [2λx, 2λy], closely matching the results of the Floquet analysis in
Subramanian et al. (2016). Unexpectedly, the dynamics transiently exhibits spatially
subharmonic oscillations but does not saturate at a stable oscillatory pattern at these
values of the control parameters. Therefore, we reduce the angle of inclinations to
γ = 15◦. No additional discrete symmetries are imposed.

After a rapid transient visit near LR, the dynamics along a drifting spiral trajectory
is attracted to a stable limit cycle, a periodic orbit named SSW (figure 10). The initial
part of the transition LR→SSW is symmetric around D/I=1 indicating that buoyancy
and shear forces equally drive this instability. The periodic orbit SSW revolves
clockwise in the D/I plane. SSW is also a pre-periodic orbit satisfying condition (3.2)
with σSSW = πyτ(0.25, 0.25) and a pre-period of T ′SSW = 12.03. The local oscillatory
instability of LR suggests T = 2π/ωi = 45.11, close to the observed full orbit period
of TSSW = 4T ′SSW = 48.12. After 2T ′SSW , condition (3.2) requires σ = τ(0.5, 0). The
orbit is invariant under inversion and half-box shifts SSSW = 〈πxyz, τ (0.5, 0.5)〉.

Periodic orbits in ILC must exactly balance net transfer of kinetic energy and heat
over one period

∫ T ′SSW
0 (I −D) dt= 0. The terms in the energy equations (2.13)–(2.15)

oscillate approximately harmonically with one relative period of SSW. Instances of
I − D = 0 or J − Nu = 0 correspond to local extrema of 〈U2/2〉Ω and 〈T〉Ω/2,
respectively. The phase lag between kinetic energy and heat phase is 0.37T ′SSW
(figure 11). The Nusselt number varies between 1.88 6 Nu 6 1.90, close but below
the convective heat transfer of LR with Nu=1.98. The pattern of SSW over one period
can be described as standing wave modulation (panels in figure 11), a consequence
of counter-propagating travelling waves along the hot and cold plumes of LR (Busse
& Clever 2000).

4.2.2. Transverse oscillations
Transverse oscillations (T O) are observed experimentally as chaotic bending

modulations of T R, a pattern also named ‘switching diamond panes’ (Daniels et al.
2000). An oscillatory TOi instability is found as a secondary instability of TR in
the interval 83.2◦ < γ 6 120◦ for Pr = 1.07 (Subramanian et al. 2016). We refer to
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FIGURE 11. Transfer rates of kinetic energy (solid) and thermal energy (dashed) over one
pre-period T ′SSW = 12.03 of the SSW orbit at γ = 15◦ and ε= 1.5 (Ra= 4420). Temperature
contours at midplane show instances of kinetic energy balance I−D= 0 (b,d) or thermal
energy balance J−Nu= 0 (a,c,a’) along the orbit. States a and a′ are related by symmetry
transformation σ =πyτ(0.25, 0.25).

observations of T O at [γ , ε,Pr]= [100◦, 0.1, 1.07] (Daniels et al. 2000; Subramanian
et al. 2016), and simulate a temporal transition at these control parameter values in
a periodic domain of size [Lx, Ly] = [12λx, 6λy], close to the pattern wavelengths used
to simulate TO in Subramanian et al. (2016). Without imposing additional discrete
symmetries, no stable periodic orbit is found. Therefore, a transition is simulated in
a symmetry subspace defined by STO = 〈πy,πxz, τ (0.5, 0.5)〉.

The transition B → TR gives rise to 12 pairs of straight transverse rolls before
slow and weak bending modulations set in. Like SSWi, the instability TOi of TR
generates a state trajectory that is initially symmetric around D/I = 1 suggesting that
buoyancy and shear forces drive this instability equally. The state trajectory from TR
approaches the stable periodic orbit TO within a few oscillation periods (figure 12).
Here, TO is a pre-periodic orbit solving condition (3.2) with σTO = τ(0.5, 0) and a
pre-period of T ′TO = 122.1, i.e. half of the full period. As observed experimentally
(Daniels et al. 2000), the oscillation period is on the order of one diffusion time
scale O(Td)=O(

√
RaPrTf ). Without the imposed discrete symmetries STO, TO has six

eigenvalues with positive real part at the given parameters. The associated eigenmodes
break all symmetries in STO.

Heat and kinetic energy oscillate non-harmonically and almost in phase over a
relative period of TO at these control parameter values. The pattern of TO resembles
TR at the kinetic energy minimum. Near the energy maximum, the transverse rolls are
maximally bent (figure 13). The weak subharmonic varicose oscillations have a much
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FIGURE 12. State trajectory evolution from the unstable base state B at γ = 100◦ and
ε = 0.1 (Ra = 10050). The phase portrait illustrates how the TO instability leads to an
oscillatory transition LR→TO along an unstable spiral approaching periodic orbit TO (red
solid line). Initial oscillations triggered by TOi are symmetric with respect to D/I= 1. The
inset magnifies the initial symmetric trajectory from TR.
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FIGURE 13. Transfer rates of kinetic (solid) and thermal energy (dashed) over one pre-
period T ′TO = 122.1 of the TO orbit at γ = 100◦ and ε = 0.1 (Ra= 10050). Temperature
contours at midplane show instances of thermal energy balance J −Nu= 0. States a and
a′ are related by symmetry transformation σ = τ(0.5, 0).

larger pattern wavelength than all other invariant states discussed in the present work.
In very large domains, observations show spatial-temporal chaos at these control
parameter values (Daniels et al. 2000; Subramanian et al. 2016), suggesting that the
periodic orbit TO in larger domains is embedded in a chaotic attractor.
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4.3. Transient skewed varicose pattern in Rayleigh–Bénard convection
Various secondary instabilities are known in Rayleigh–Bénard convection, namely
Eckhaus, zigzag, knot, skewed varicose, cross-rolls and oscillatory instability (Busse
1978). At Pr = 1.07, the skewed varicose instability SVi is the first to destabilize
convection rolls as demonstrated by experiments (Bodenschatz, Pesch & Ahlers 2000)
and stability analysis (Subramanian et al. 2016). We refer to observations of the
skewed varicose pattern (SV) at [γ , ε, Pr] = [0◦, 2.26, 1.07] (Bodenschatz et al.
2000, figure 7). A normalized Rayleigh number of ε = 2.26 is far above the critical
threshold for SVi. Here, we simulate a temporal transition at ε = 1.05, much closer
to threshold. The periodic domain is of size [Lx, Ly] = [4λx, 4λy], and no additional
discrete symmetries are imposed.

The conducting state of the Rayleigh–Bénard system before convection onset is
isotropic in the x–y plane and rolls have no preferred orientation in the infinite
system. Therefore, we denote straight convection rolls in the isotropic system as
Rλ with a subscript indicating the approximate pattern wavelength λ if γ = 0◦.
The attributes ‘longitudinal’ and ‘transverse’ relate to the direction of rolls relative
to the base flow and are only used in the inclined case. At control parameters
[γ , ε, Pr] = [0◦, 1.05, 1.07], rolls of various wavelengths are unstable. To promote
the growth of rolls at λy, we perturb the base state with small-amplitude rolls at
λy and aligned with the x dimension. In addition, we add small-amplitude noise to
break the translational symmetries. This perturbation of B triggers the growth of
four pairs of convection rolls Rλ2, comparable to the pattern of LR at γ 6= 0◦ in
the present study. After a rapid transition B→ Rλ2 over 1t = 40, the shear driven
instability SVi generates a slow departure from Rλ2 over 1t = 20 000. The shear
forces that drive SVi are generated solely by the convective motion of the secondary
state, Rλ2, as the primary base state, B, does not generate shear at γ = 0◦. The
exponential escape rate from Rλ2 is given by the only positive real eigenvalue of
Rλ2, ωr = 3.8 × 10−4, with quadruple multiplicity. The associated eigenmodes show
the characteristic three-dimensional oblique pattern of the skewed varicose instability
(Busse & Clever 1979). While escaping from Rλ2, the convection rolls Rλ2 start
tilting and form a thin skewed region along the domain diagonal where rolls become
strongly sheared (t1 = 20 680), pinch off (t2 = 20 782), reconnect and form rolls Rλ3
at increased wavelength λ = 2.5731 and rotated by 16.8◦ against the x direction
(figure 14). Rλ3 are linearly stable at these control parameter values.

The simulated sequence of dynamical connections B → Rλ2 → Rλ3 is invariant
under SSV = 〈πxyz, τ (0.25, 0.25)〉 and at t2, resembles the experimentally observed
SV pattern (figure 7 in Bodenschatz et al. (2000)). However, the phase portrait does
not indicate a transiently visited invariant state. The state trajectory crosses D/I = 1
without slowdown (figure 14). Simulating the instability SVi at other values of the
control parameters does not change this observation. Thus, the transient dynamics of
the SV pattern seems to occur in the absence of an underlying invariant state.

5. Discussion and conclusions

In this study, we identify exact invariant states of the fully nonlinear three-
dimensional Oberbeck–Boussinesq equations that underlie the various convection
patterns observed in ILC. At control parameter values where tertiary convection
patterns have been observed in experiments and simulations, we numerically study
the temporal dynamics from a perturbed unstable base flow. Table 1 summarizes all
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FIGURE 14. State trajectory evolution from the unstable base state B at γ = 0◦ and ε =
1.05 (Ra = 3500). Initially for 0 < t < 40, a fast transition along B→ Rλ2 gives rise to
straight convection rolls at wavelength λy (not shown). After a very long transient close
to Rλ2, the shear driven instability SVi of straight convection rolls Rλ2 leads to rolls Rλ3 at
increased wavelength. The inset magnifies the phase portrait of the transition Rλ2→ Rλ3.
During the transition Rλ2 → Rλ3 around t1 = 20 680, a skewed varicose pattern emerges
transiently. The midplane temperature contours (b) illustrate different instances along the
state trajectory (cross markers). Unlike in previous figures, the kinetic energy input I is
not normalized by the laminar input I0 since I0 = 0 at γ = 0◦ (see (2.14)).

γ Ra ε Temporal transition sequence Driving forces Figures

0◦ 3500 1.05 B→ Rλ2→ Rλ3 B, S 14
15◦ 4420 1.5 B→ LR→ SSW B, E 10
40◦ 2385 0.07 B→ LR→WR B, S 4
40◦ 3344 0.5 B→ LR→WR→OWR→ τxyOWR→· · · B, S, B, S, S, . . . 6
80◦ 8525 0.05 B→ TR→KN S, B 8
80◦ 9338 0.15 B→ TR→ B→ BKN S, B, S 9
100◦ 10 050 0.1 B→ TR→ TO S, E 12

TABLE 1. Summary of temporal transition sequences identified at selected values of the
control parameters where complex convection patterns are observed. For each transition
along a dynamical connection, denoted by →, we list the initial driving force of the
instability (B, buoyancy; S, shear; E, equally).

cases studied. Except for the transient skewed varicose pattern at γ = 0◦, the dynamics
asymptotically approach stable invariant states underlying observed convection patterns.
Temporal dynamics approaching attractive invariant states have been suggested by
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earlier works (Daniels et al. 2008; Subramanian et al. 2016). In these previous
studies, numerical simulations close to known secondary instabilities, and in parts
constrained to specific modal interactions, are found to approach nonlinear states
emerging from the instabilities. Here, we find both stable and unstable invariant
states as fixed points of a Newton iteration, numerically fully resolved and converged
to machine precision. Details of the transition from the laminar state to transiently
visited unstable invariant states are discussed.

State trajectories are never found to directly approach a stable tertiary or
higher-order state, but the dynamics first transiently visits unstable invariant states
underlying the secondary convection pattern of straight convection rolls, as shown in
table 1. Approach to and escape from unstable invariant states follow the exponential
dynamics along their stable and unstable manifolds, well described by the eigenvalues
of the invariant states. This observation strongly suggests the existence of nearby
heteroclinic connections between invariant states, located within the intersection of
the unstable manifold of the initial state and the stable manifold of the final state.
In one case at γ = 40◦, a robust heteroclinic cycle between two symmetry-related
unstable equilibrium states underlying oblique wavy rolls has been found (§ 4.1.1).
Thus, the present results demonstrate the dynamical relevance not only of stable
but also of coexisting unstable invariant states and their dynamical connections. The
network of dynamically connected invariant states clearly supports complex temporal
dynamics in ILC.

Invariant states and their dynamical connections have been computed in minimal
periodic domains matching single pattern wavelengths but they also exist in larger
domains. The size of the domain does, however, change the stability properties
of the invariant states. States that are stable in small domains can be unstable in
larger domains (Ahlers & Behringer 1978; Melnikov, Kreilos & Eckhardt 2014).
Consequently, the sequences of temporal transitions between invariant states observed
here may also be observed in larger domains, but not necessarily with the same
stable terminal state as in the present study. In the small domains, most transitions
are unidirectional, from the base state B, via a secondary roll (LR, TR) to a
tertiary state (table 1). In larger domains, unstable tertiary states are expected to
allow dynamical cycles that visit the same states multiple times. Examples of
such cycles observed in the small domains include the robust heteroclinic cycle
(OWR → τxyOWR → OWR → · · · ) and the dynamics leading to the periodic orbit
of bursting knots (BKN): after escaping from unstable laminar flow and transiently
visiting TR, the state trajectory returns to the state space neighbourhood of laminar
flow B (figure 9). Together, the connections may form a dynamical network supporting
the spatio-temporally chaotic dynamics observed in experiments and large-domain
simulations.

We characterize the instabilities of equilibrium states that trigger temporal
transitions as buoyancy driven, shear driven or equally buoyancy-shear driven, by
analysing the temporal transitions in ‘phase portraits’ defined by kinetic energy
input and dissipation. We thereby confirmed that LR emerge from a buoyancy driven
instability and T R emerge from a shear driven instability of the base state. Secondary
instabilities are never found to be driven by the same force as the associated primary
instability. If the primary instability is buoyancy dominated, the secondary one will
involve shear and vice versa (table 1). Consequently, the temporal dynamics in ILC
at all angles of inclinations may involve instabilities driven by buoyancy and shear.

We find seven invariant states that participate in sequences of temporal transitions
that may be described as primary state → secondary state → tertiary state. Here,
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Convection pattern Invariant state Type Domain Symmetry group generators

Laminar flow B EQ — πy, πxz, τ(ax, ay)

Isotropic rolls Rλ EQ [4λx, 4λy] πy, πxz, τ(ax, ay(ax))

Long. rolls LR EQ [1λx, 1λy] πy, πxz, τ(ax, 0)
Trans. rolls TR EQ [1λx, 1λy] πy, πxz, τ(0, ay)

Skewed varicose — — [4λx, 4λy] πxyz, τ(0.25, 0.25)
Subharmonic standing wave SSW PPO [2λx, 2λy] πxyz, τ(0.5, 0.5)
Wavy rolls WR EQ [2λx, 1λy] πyτ(0.5, 0.5), πxzτ(0.5, 0.5)
Oblique wavy rolls OWR EQ [2λx, 1λy] πxyz, τ(0.5, 0.5)
Knots KN EQ [1λx, 1λy] πyτ(0, 0.5), πxzτ(0, 0.5)
Trans. oscillations TO PPO [12λx, 6λy] πy, πxz, τ(0.5, 0.5)

TABLE 2. Summary of invariant states underlying observed convection patterns (EQ,
equilibrium; PPO, pre-periodic orbit). The symmetries of the invariant states are given by
the size of the periodic domain, where λx = 2.2211 and λy = 2.0162, and the generators
of the symmetry group (cf. (2.10)–(2.12)).

the terminology refers to the order of states visited in transition sequences such that
primary transitions to secondary, secondary transitions to tertiary. We expect that this
order reflects the order of bifurcations that create these invariant states. However,
generically the sequence of bifurcations will not prescribe the order in which states,
coexisting at the same values of the control parameters, are visited during temporal
evolution. An example for this is the temporal evolution triggered by the skewed
varicose instability of straight convection rolls. The transition Rλ2→Rλ3 cannot result
from bifurcations of Rλ3 from Rλ2 because both types of straight convection rolls
must bifurcate from B. To understand the relation between the complex temporal
dynamics reported here and the corresponding bifurcation structure, the bifurcations
of the invariant states visited by the dynamics must be computed. We list all invariant
states found to underlie observed convection patterns in the present study in table 2.
This collection represents the starting point for subsequent work where invariant states
are numerically continued under changing control parameters to compute bifurcation
diagrams in ILC (Reetz et al. 2020).

In conclusion, temporal transitions from unstable laminar flow in ILC are found
to follow sequences of dynamical connections between unstable invariant states until
the dynamics approaches a stable invariant state. The stable invariant state underlies
the basic pattern observed in experiments and simulations. Existence and dynamical
influence of the dynamical connections between unstable invariant states support the
complex dynamics observed in large domains.
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Appendix A. Time-stepping algorithm
Inserting the two-dimensional Fourier mode expansion

[u, θ ](x, y, z, t)=
Kx∑

kx=−Kx

Ky∑
ky=−Ky

[ū, θ̄ ]kx,ky(z, t)e2πi(kxx/Lx+kyy/Ly) (A 1)

together with the base-fluctuation decomposition [U, T ] = [U0, T0] + [u, θ] into (2.1)–
(2.3) allows writing the governing equations in the form

∂

∂t
x̄(z, t)=Lx̄(z, t)−Nx(x̄(z, t)), (A 2)

with x̄ = [ū, θ̄ ]. Quantities with an overbar, x̄, denote Fourier-transformed fields
along the x and y dimension, with the z dimension remaining in physical space.
The time stepper operates on this mixed representation of velocity and temperature.
Note that the fully spectral representation, denoted by x̃ in (3.1), is composed of
spectral Fourier–Fourier–Chebyshev coefficients in all three space dimensions. Using
the mixed operator

∇̄=

(
2πi

(
kx

Lx
êx +

ky

Ly
êy

)
+
∂

∂z
êz

)
, (A 3)

the linear terms for velocity and temperature fields are defined as

Lū= ν̃(∇̄ · ∇̄)ū− ∇̄p̄, (A 4)
Lθ̄ = κ̃(∇̄ · ∇̄)θ̄ , (A 5)

and the nonlinear terms are defined as

Nu(x̄)= f ( f−1(Ū) · f−1(∇̄Ū))+Cu − sin(γ )θ̄ êx − cos(γ )θ̄ êz, (A 6)
Nθ(x̄)= f ( f−1(Ū) · f−1(∇̄T̄))+Cθ , (A 7)

with f () and f−1() being the direct and inverse two-dimensional Fourier transform,
respectively. In this form the nonlinear terms in (A 6) and (A 7) are evaluated
as pointwise products in physical space. This leads to the reduced computational
complexity of this ‘pseudo-spectral’ method when compared to fully spectral methods
(Canuto et al. (2006), p. 133ff). The constants Cu,θ are zero in the present study
but allow to consider additional body forces. Different algorithms are implemented
in Channelflow-ILC to advance x̄n at time step n over 1t. For this study we treat
the linear term Lx̄ in (A 2) fully implicitly by using an implicit–explicit multi-step
algorithm of third order (Peyret 2002, p. 130). The field at time step n+ 1 is given
by

a0

1t
x̄n+1
−Lx̄n+1

=

k∑
j=1

−aj

1t
x̄n+1−j

− bj−1N (x̄n+1−j), (A 8)

with k = 3 and coefficients [a0, a1, a2, a3] = [11/6,−3, 3/2,−1/3] and [b0, b1, b2] =

[3, −3, 1]. Since the right-hand side is known, equation (A 8) defines a Helmholtz
problem along the z dimension that is solved implicitly using a Chebyshev Tau method
(Canuto et al. 2006, p. 173ff).
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101

105

 -  Nu = 0.186Ra0.276

107106

Ra

Nu

(a)

(b)

FIGURE 15. Direct numerical simulations of turbulent convection in Rayleigh–Bénard
convection at Pr= 0.7 using Channelflow-ILC. (a) Volumetric rendered temperature field
of positive temperature fluctuations around the laminar solution at Ra = 107 illustrates
range of scales of turbulent convection plumes. (b) Scaling of Nusselt number Nu with
Rayleigh number Ra of the present DNS statistics (×) compare well to the DNS statistics
of Kerr (1996) (E) which fit to Nu = 0.186 Ra0.276 (——). Error bars indicate three
standard deviations around the mean of Nu(t), averaged over T = 2500 free-fall time units.

Appendix B. Rayleigh number scaling of heat transfer
The intention of this article is to numerically study temporal dynamics in ILC

at small Ra to explain the dynamics of weakly turbulent patterns. This requires
a numerical implementation of ILC to correctly handle the nonlinearities of the
governing equations. In order to demonstrate highly nonlinear behaviour, we perform
DNS of Rayleigh–Bénard convection to compare the Ra-scaling of Nusselt number
Nu for turbulent convection with Kerr (1996) where the same type of pseudo-spectral
DNS is used as here. The DNS are for Pr = 0.7 and Ra ∈ [5 × 104, 2 × 107

]

in a doubly periodic domain of lateral extent [Lx, Ly] = [6, 6], discretized by
[Nx, Ny, Nz] = [288, 288, 96] grid points (figure 15a). Here, Nu is calculated at
the midplane and averaged over T = 2500 free-fall time units. The present simulated
data follows the scaling of Kerr (1996) (figure 15b). The DNS at Ra= 2× 107 used
11.6 × 103 CPUh requiring a runtime of approximately one week using 64 cores in
parallel.
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