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We consider the following question: in the simply-typed λ-calculus with algebraic

operations, is the set of equations valid in a particular model exactly those provable from

(β), (η) and the set of algebraic equations, E, that are valid in the model? We find

conditions for determining whether βηE-equational reasoning is complete. We demonstrate

the utility of the results by presenting a number of simple corollaries for particular models.

1. Introduction

The two axioms of the λ-calculus,

(β) ((λx. M) N) = M[x := N]

(η) (λx. M x) = M, if x not free in M

lie at the heart of reasoning about functional programs: (β) explains function application

syntactically, and (η) states that the meaning of functions can be based solely on their

meaning under application. The (β) and (η) axioms turn out to be fundamental: not

only are they sound, they also are complete for proving equations that hold in all models

of the simply-typed λ-calculus (Friedman, 1975). In other words, an equation between

simply-typed λ-terms is valid in all models if and only if it is provable from (β) and (η).

These axioms can also be complete for particular models. Friedman, for example, shows

that an equation is valid in the full set-theoretic model – i.e., one with all total functions

at function types, defined precisely in Section 2.2 below – over an infinite base type iff it

is provable from (β) and (η) (Friedman, 1975). The completeness theorem holds for other
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Twentieth ACM Conference on Principles of Programming Languages, pages 185–195, ACM Press, 1993.
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models as well, including ones based on continuous functions (Plotkin, 1982; Statman,

1982; Statman, 1985a; Riecke, 1995).

These theorems say nothing, however, about extensions of the λ-calculus involving

constants. For instance, suppose we add the constants 0, succ, and + to the simply-typed

λ-calculus, where succ is a unary function and + is a binary function. Suppose we interpret

the constants in the standard way – with succ as the function that adds one, and + as the

function that adds its arguments – in the model M with the natural numbers as the base

type, and all total functions at higher type. Then the equation

(succ (x+ 0)) = (succ x)

is valid in the model. Nevertheless, the fact is not provable from (β) and (η) alone: some

form of algebraic reasoning must be used.

This paper explores the consequences of adding equations for algebraic constants to (β)

and (η). The obvious algebraic equations are usually sound; our goal is to discover when

such equational systems are complete for proving all equations in a particular model. We

give conditions when the ‘obvious’ approach to achieving completeness works, but we

also show when that approach fails to achieve completeness. Both positive and negative

results have implications for reasoning about programs.

The ‘obvious’ approach to achieving completeness between terms with algebraic con-

stants is simple: combine a complete set of algebraic equations with (β) and (η). Often the

approach yields a completeness theorem. For example, consider reasoning about terms

with 0, succ, and + in the model mentioned above. The axioms of (β) and (η), together

with the equations

(Z) x+ 0 = x

(C) x+ y = y + x

(A) x+ (y + z) = (x+ y) + z

(S) x+ (succ y) = succ (x+ y)

are sound and complete for proving all valid equations in the model. More precisely, we

have the following theorem.

Theorem 1.1. Suppose M,N are simply-typed λ-terms involving only the constants 0, succ,

and +. Then M = N is valid in M iff M and N are provably equivalent using (β), (η),

(Z), (C), (A), and (S). Moreover, since this set of equations forms a decidable equational

theory, the set of valid equations in M is also decidable.

Theorem 1.1 follows as a corollary of Theorem 5.10 below, but relies crucially upon the

fact that (Z), (C), (A), and (S) are complete for proving equations (containing variables)

in the natural numbers with the operations of 0, succ, and +.

Theorem 1.1 may not be all that surprising. Indeed, we might suspect that if a set E of

algebraic equations is complete for proving all valid algebraic equations in a particular

model, the equational theory of E, (β), and (η) is complete for proving the valid equations.

But this does not hold – the resulting equational system may be incomplete. Said slightly

differently, reasoning with algebraic constants cannot always be decomposed neatly into

reasoning about functions and reasoning about the algebraic constants. For instance,
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Table 1. Syntax and equational rules for the simply-typed λ-calculus.

Variables xσ : σ, xσ ∈ Var Constants cσ : σ, cσ ∈ Σ

Abstraction
M : ν

(λxτ. M) : (τ→ ν)
Application

M : (τ→ ν) N : τ

(M N) : ν

(β) ((λx. M) N) = M[x := N]

(η) (λx. M x) = M, if x 6∈ FV (M)

(refl) M = M

(symm)
M = N

N = M
(trans)

M = N N = P

M = P

(cong)
M = N P = Q

(M P ) = (N Q)
(ξ)

M = N

(λx. M) = (λx. N)

consider the simply-typed λ-calculus with constants 0, iszero, and min, and a model in

which the base type is the natural numbers, min is interpreted as the minimum function,

and iszero is interpreted as the function that returns one if its argument is zero, and zero

otherwise. Suppose f is a unary function variable. Then the equation

(min (f 0) (iszero (f (iszero (f 0))))) = 0

is valid in the model, using a case analysis on whether (f 0) = 0 or (f 0) 6= 0. Nevertheless,

the equation is not provable from (β), (η) and the algebraic equations that are valid in

the model. Intuitively, the free function variable f acts as a barrier, so that algebraic

reasoning can only happen under an f or by treating an expression (f M) as a unit. One

can turn this intuition into a proof; we give the details in Section 3.

This example shows that reasoning by cases, or some other method of extending

equational reasoning to terms with free function variables, is essential in arriving at a

general completeness theorem. In this paper we consider only the question of when the

combination of algebraic equations E and (β) and (η) are complete for proving equations.

Algebraic reasoning is a well-studied field replete with meta-theoretic results, and hence

forms an important subcase to the full problem. Also, proving completeness for algebraic

systems turns out to be a complex problem in and of itself, and we currently do not have

a means of generalizing our methods.

Section 2 briefly reviews the syntax and definition of models for the simply-typed λ-

calculus and extensions of the simply-typed λ-calculus to include algebraic constants and

equations. Section 4 gives a generalization of the main lemma used in proving Statman’s 1-

Section Theorem (Statman, 1982; Statman, 1985a; Riecke, 1995). This theorem shows how

to reduce checking the completeness of (β), (η) and algebraic equations E to checking the

completeness of E. The theorem precisely characterizes when βηE-reasoning is complete,

but it is a syntactic theorem that can be difficult to apply to specific models. Sections 5

and 6 give four general corollaries of Theorem 4.10 that are easier to apply. These

corollaries are then used to deduce new completeness and decidability theorems. Section 7

concludes with a discussion of open problems.
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2. Algebra and the simply-typed λ-calculus

We now briefly review the syntax and Henkin semantics of the simply-typed λ-calculus,

and how algebras fit into the framework.

2.1. Simply-typed λ-calculus

Each term in the simply-typed λ-calculus comes with a simple type generated by the

grammar

σ ::= ι | (σ → σ)

Parentheses are often dropped with the assumption that → associates to the right, for

example, (ι → ι → ι) denotes (ι → (ι → ι)). A first-order type is a type of the form

(ι→ . . .→ ι); we often use Tn to stand for

(ι→ . . .→ ι︸ ︷︷ ︸
n+1

).

Typically, the base type ι is chosen to be the natural numbers, as in PCF (Plotkin, 1977),

but nothing in the syntax forces this choice; some of the theorems below are for models

in which the base type is interpreted to be lists or sets of natural numbers.

To construct terms, assume that Σ is a signature, i.e., a countable set of typed constants,

and that Var is a countable set of typed variables. The set of simply-typed terms over Σ

is given by the formation rules of Table 1. To simplify the notation, we often drop types

from variables and constants when the context is clear, and drop parentheses with the

assumption that application associates to the left. The usual definitions of free and bound

variables apply to this set of terms, and terms are identified up to renaming of bound

variables (Barendregt, 1981). The set of simply-typed terms containing constants Σ and

free variables X is denoted termsΣ,X .

The equational axioms and rules of the simply-typed λ-calculus also appear in Table 1;

we write (M =βη N) if M and N are provably equivalent in this system. A Σ, λ-theory

is a set of equations between terms in termsΣ,X of the same type, where X is the set

of all variables, that is closed under the axioms and rules of Table 1. In the axioms,

M[x := N] denotes substitution of N for x in M, where the bound variables of M are

renamed to avoid the capture of the free variables of N (Barendregt, 1981). We will also

use the notation Mθ, where θ = [x1 := N1, . . . , xn := Nn] is a substitution, to denote a

simultaneous substitution of Ni for xi.

Two special forms of terms are useful in the following sections. If a term P has no

subterms of the form ((λx. M) N) or (λy. M y) with y not free in M, we say that

P is in βη-normal form. Any term P is equivalent to a unique term Q in βη-normal

form (Barendregt, 1981); we use βη-nf(P ) to denote the βη-normal form of P . Long

βη-normal forms are slightly different: they have no subterms of the form ((λx. M) N)

(and hence are β-normal forms), but may have subterms of the form (λy. M y). Long

βη-normal forms are terms of the form

λxσ1

1 . . . . λx
σn
n . ` M1 . . . Mk
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where k, n > 0, ` is a constant or variable of type (τ1 → . . . → τk → ι), and M1, . . . ,Mk

are long βη-normal forms. Any term is βη-equivalent to a unique long βη-normal form –

see Jensen and Pietrzykowski (1976). These terms are useful because the body has type ι,

making certain inductions simpler to perform.

2.2. Models

We use the notion of environment models to give meaning to simply-typed terms (Fried-

man, 1975; Meyer, 1982).

Definition 2.1. A frame is a pair ({Mσ}, {apσ,τ}), where each Mσ is a nonempty set, and

each apσ,τ is an ‘application’ function with apσ,τ : Mσ→τ × Mσ → Mτ. (We omit the

types from ap when they are clear from context.) The functions apσ,τ must satisfy the

extensionality property, i.e., for any f, g ∈ Mσ→τ, f = g iff for all d ∈ Mσ , apσ,τ(f, d) =

apσ,τ(g, d). An environment ρ is a type-respecting map from variables to (
⋃
σ Mσ). A

Σ-model M is a tuple ({Mσ}, {apσ,τ},I), where the first two components form a frame

and I is a type-respecting map from Σ to (
⋃
σ Mσ). Furthermore, there must be a

well-defined meaning function M[[·]] satisfying the equations

M[[xσ]]ρ = ρ(xσ)

M[[cσ]]ρ = I(cσ)

M[[M N]]ρ = ap(M[[M]]ρ,M[[N]]ρ)

M[[λxτ. M]]ρ = f,where ap(f, d) =M[[M]]ρ[xτ 7→ d].

For example, the full set-theoretic model S over a base set X, defined by

Sι = X

Sσ→τ = [Sσ →Sτ]

ap(f, d) = f(d),

where [A → B] is the set of all total functions from σ to τ, is a model for the empty

signature: the meanings of every λ-abstraction exist because the frame contains all

functions. Another example is the full continuous model over a complete partial order

(cpo) X, defined by

Cι = X

Cσ→τ = [Cσ →c Cτ]
ap(f, d) = f(d),

where [A →c B] is the cpo of continuous functions from cpo A to cpo B ordered

pointwise. Full continuous models are important because they can be used to obtain

models of programming languages that are fully abstract, i.e., models in which equality

coincides with operational notions of equivalence, cf., Sazonov (1976), Plotkin (1977) and

Cosmadakis (1989).
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An equation M = N is valid in a modelM, writtenM |= M = N, if for all environments

ρ, M[[M]]ρ = M[[N]]ρ. Note that a model M generates a Σ, λ-theory, denoted Th(M),

namely the set {(M = N) | M |= M = N}.

2.3. Algebraic terms and equations

Recall that a (single-sorted) algebraic signature is a pair (Σalg, r), where Σalg is a set of

constants and r is a function mapping Σalg to the natural numbers. For any c ∈ Σalg , r(c)

is called the arity of c. In writing algebraic signatures, one usually leaves the function r to

be deduced from the context. For example, the algebraic signature (0,+) is an algebraic

signature with two constants, the first of arity zero and the second of arity two. The set

of algebraic terms over the algebraic signature Σalg is given by the grammar

A ::= x | c0 (A, . . . , A︸ ︷︷ ︸
n0

) | c1 (A, . . . , A︸ ︷︷ ︸
n1

) | . . . ,

where x ranges over an infinite set of variables and each ci has arity ni.

To add algebraic terms to the simply-typed λ-calculus, we must first assign a type to

the sort of the algebraic signature; the base type ι serves as the interpretation of the

sort. Second, we must add the constants in some form to the simply-typed λ-calculus.

The nullary constants all have type ι, for example, for the algebraic signature (0,+), the

nullary algebraic constant 0 is a constant of type ι. However, the function constants in

an algebraic signature may be added in a variety of ways. The usual interpretation of

the function constant +, for instance, is a function from (ι × ι) to ι; to interpret this

directly in the λ-calculus would require us to add product types. While adding products

to the λ-calculus is not difficult, there is another way to add algebraic constants without

changing the type structure of the language. Recall that for any number n, the type Tn is

defined to be

(ι→ . . .→ ι︸ ︷︷ ︸
n

→ ι).

Given a function constant ci of arity n in the algebraic signature Σalg , we introduce a

constant ci : Tn in the λ-calculus. The λ-calculus signature consisting of these newly

introduced constants is denoted Σ. The algebraic terms over Σalg built by the grammar

A ::= x | c0 (A, . . . , A︸ ︷︷ ︸
n0

) | c1 (A, . . . , A︸ ︷︷ ︸
n1

) | . . .

thus correspond to the λ-terms in the grammar

B ::= xι | (c0 B . . . B︸ ︷︷ ︸
n0

) | (c1 B . . . B︸ ︷︷ ︸
n1

) | . . . ,

which are terms in the simply-typed λ-calculus over the signature Σ. In this paper, we

identify Σalg with Σ, and identify the two sets of terms above. From now on, when we

write algebraic terms we write terms generated by the second grammar above. We let

algtermsΣ,X be the set of algebraic terms over the signature Σ containing variables drawn

https://doi.org/10.1017/S0960129599002807 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002807


Completeness of functional and algebraic reasoning 657

Table 2. Algebraic provability from a set of equations E, where F ranges over

constants in the algebraic signature.

(refl ) s = s (axiom)
(s = t) ∈ E
s = t

(symm)
s = t

t = s
(trans)

s = t t = u

s = u

(cong)
s1 = t1 . . . sn = tn

(F s1 . . . sn) = (F t1 . . . tn)
(sub)

s = t

s[x := u] = t[x := u]

from the set X of base type variables, and use the letters s, t, u to denote elements in this

set.

An algebraic equation t = t′ is just an equation between algebraic terms t and t′. Since

we identify algebraic terms with their λ-term counterparts by the correspondence above,

these equations may be easily added to the equational theory of the λ-calculus by adding

these equations to the axioms of Table 1. Given a set of algebraic equations E and

algebraic terms t and t′, we say that t =E t
′ if the equation is derived using the rules of

Table 2. It is important to note that any algebraic equation provable in this system is

provable in the simply-typed λ-calculus from the equations E and the axioms and rules

of Table 1: all but (sub) appears in Table 1, and the (sub) rule can be derived from (ξ),

(β) and (trans).

A Σ-theory is a set of equations between terms in the set algtermsΣ,X that is closed

under the rules of Table 2. We will use the symbol E to denote algebraic theories.

We also consider terms of base type that are built from algebraic constants Σ and a set

of first-order variables FO with no λ-abstractions. Strictly speaking, such terms are not

algebraic terms, since the first-order variables are not constants. The set of such terms is

denoted algtermsΣ,FO,X , and the terms are called extended algebraic terms. If E is a set of

algebraic equations over Σ, and t1, t2 ∈ algtermsΣ,FO,X , we write t1 =E+FO t2 if the equation

is derivable from the rules in Table 2 and the rule

(extCong)
M1 = N1 . . . Mk = Nk

(f M1 . . .Mk) = (f N1 . . . Nk)

where f ranges over FO. An extended Σ-theory is a set of equations between terms in the

set algtermsΣ,FO,X that is closed under the rules of Table 2 and the rule (extCong) above.

Simply-typed terms containing the algebraic constants are called mixed terms. If M,N

are mixed terms, we write M =βηE N if M and N are provably equal using the rules in

Tables 1 and 2. On terms of base type, βη-reasoning and E reasoning can be separated,

as in the following lemma.

Lemma 2.2. Let M,N ∈ termsΣ,FO be terms of type ι. Then we have that M =βηE N iff

βη-nf(M) =E+FO βη-nf(N).

Proof. Note that βη-nf(M) and βη-nf(N) are (typable) terms in the grammar

S ::= (f S . . . S) | (c S . . . S)
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where f is drawn from FO and c is drawn from Σ. Hence, βη-nf(M), βη-nf(N) ∈
algtermsΣ,FO,X . Thus,

M =βηE N iff βη-nf(M) =βηE βη-nf(N)

iff βη-nf(M) =E+FO βη-nf(N)

where the last line follows by invoking the fact that the simply-typed λ-calculus conser-

vatively extends algebraic reasoning (Breazu-Tannen, 1987; Breazu-Tannen and Meyer,

1987).

This fact will be used frequently in the proofs.

2.4. Algebras in simply-typed models

Recall that a Σ-algebra A, where Σ is an algebraic signature, is a tuple (A,K), where A

is the (nonempty) carrier set of the algebra andK is a function with domain Σ such that

for all cT
n ∈ Σ,

K(cT
n

) ∈ [A→ . . .→ A︸ ︷︷ ︸
n

→ A]

(the usual set-theoretic function space). For instance, the {0,+}-algebra (N,K) is the

algebra with the set of natural numbers as the carrier set, and where the number zero

serves as the interpretation of the constant 0 and the usual addition function serves as the

interpretation of the constant +. Given a Σ-algebra (A,K), the meaning of an algebraic

term is also standard, as given by the following definition.

Definition 2.3. An algebraic environment ρ is a map from variables of type ι to A. The

meaning of a term t ∈ algtermsΣ,X is defined by induction on the structure of t:

A[[xι]]ρ = ρ(xι)

A[[cσ t1 . . . tn]]ρ = (K(cσ)A[[t1]]ρ . . .A[[tn]]ρ)

We often write A[[cσ]] for K(cσ).

As with environment models, an equation t1 = t2 is valid in an algebra A, written

A |= t1 = t2, if for all environments ρ, A[[t1]]ρ = A[[t2]]ρ. The theory of A, written

Th(A) with an abuse of notation, is the set {(s = t) | A |= s = t}.
Algebras appear naturally in models of the simply-typed λ-calculus (with constants).

Suppose Σ is an algebraic signature, and M = ({Mσ}, {apσ,τ},I) is a Σ-model. Then the

Σ-algebra induced by M is the algebra (Mι,K) with operations given by

(K(cσ) a1 . . . an) = ap(. . . ap(ap(I(cσ), a1), . . . ), an)

for every constant cσ ∈ Σ. The other part of the Σ-model gives meaning to λ-definable

functions over the algebra. Thus, when Σ is an algebraic signature, a Σ-model contains

two parts: an algebra for giving meaning to algebraic terms, and an environment model

for giving meaning to simply-typed terms. The meaning function then shows how to

give meaning to terms involving both λ-calculus and algebraic constructions. Algebraic
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equations also have an interpretation in Σ-models: saying that a Σ-model validates an

equation is exactly the same as saying that the algebra induced by the model validates

the equation.

3. Incompleteness of combined theories

Since Σ-models ‘contain’ a Σ-algebra and an environment model, one might wonder

whether reasoning about mixed-term equalities may be performed by combining a proof

system for algebraic equational reasoning with a proof system for higher-order equational

reasoning. There are instances in which the combination of algebraic equations and

βη-equality, while complete for proving equations between algebraic and pure λ-terms,

respectively, may not be complete for reasoning about mixed terms. Such an example is

illuminating for describing when two complete theories do lead to a complete theory for

reasoning about mixed terms.

LetA = (N,K) be the {0,min, iszero}-algebra from the introduction. Let f be a variable

of type (ι→ ι). We claim that the equation

(min (f 0) (iszero (f (iszero (f 0))))) = 0

is valid in the full type hierarchy over A, but is not provable using (β), (η) and the

equational theory of A. In rough outline, the proof proceeds by showing that algebraic

reasoning cannot cross the ‘boundaries’ of the free variable f. More precisely, in each

proof step, a subterm of the form (f M) must be treated as one unit, or M must be

proved equal to some other term M ′ by an algebraic step.

Instead of proving that the specific equation above is not provable, we develop some

more general machinery that is also useful in the next section. Suppose Σ is an algebraic

signature, E is a set of algebraic equations over Σ, X and Y are infinite sets of variables

of type ι, and FO is a finite set of variables of first-order types; also assume that Σ, X, Y

and FO are pairwise disjoint. We define a means of eliminating subterms beginning with

symbols in FO as follows.

Definition 3.1. Let RepΣ,FO,E : algtermsΣ,FO,X → Y be a function such that

RepΣ,FO,E(s) = RepΣ,FO,E(s′) iff s =E+FO s
′.

Define topΣ,FO,E(s) : algtermsΣ,FO,X → algtermsΣ,X∪Y by

topΣ,FO,E(s) =


x if s = x and x ∈ X
RepΣ,FO,E(f s1 . . . sn) if s = (f s1 . . . sn), n > 0,

and f ∈ FO
(c topΣ,FO,E(s1) . . . topΣ,FO,E(sn)) if s = (c s1 . . . sn), n > 0,

and c ∈ Σ.

The function topΣ,FO,E prunes its argument s by replacing each maximal subterm

containing a symbol from FO at its head by the variable in Y . The result is an algebraic

term built from the symbols in Σ and the variables in X ∪ Y . In the rest of this section

the subscripts on Rep and top are omitted, and should be taken to be Σ, FO, E.
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We want to show that a proof of t =E+FO t
′ yields a proof of top(t) =E top(t′). Before

we can prove this statement, we need a technical lemma.

Lemma 3.2. Suppose s, t ∈ algtermsΣ,FO,X and x ∈ X. Let θ : Y → Y be a map such

that if Rep(u) = y, then θ(y) = Rep(u[x := t]). Then we have that top(s[x := t]) =

top(s)θ[x := top(t)].

Proof. To simplify notation, let θ′ = θ[x := top(t)]. We proceed by induction on s.

— s = x: Then top(x[x := t]) = top(t) = x[x := top(t)] = top(x)θ′.
— s = x′ ∈ X and x′ 6= x: Trivial.

— s = (f s1 . . . sn), where f ∈ FO: Then

top(s[x := t]) = Rep(s[x := t]) = y

top(s)θ′ = Rep(s)θ′ = θ(Rep(s)) = θ(y′)

for some y, y′ ∈ Y . Suppose u is the term such that y′ = Rep(u) and θ(y′) =

Rep(u[x := t]). By the properties of Rep, it follows that u =E+FO s. Thus, since

u[x := t] =E+FO s[x := t],

Rep(u[x := t]) = Rep(s[x := t])

and hence θ(y′) = y, which proves the claim.

— s = (c s1 . . . sn) where c ∈ Σ: Follows easily by the induction hypothesis.

This completes the induction and hence the proof.

Lemma 3.3. Suppose E is a set of algebraic equations over the algebraic signature Σ. Let

t, t′ ∈ algtermsΣ,FO,X such that t =E+FO t
′. Then top(t) =E top(t′).

Proof. By induction on the derivation of t =E+FO t
′. The base case, when (t = t′) ∈ E

follows because top is the identity on algtermsΣ,X . The other base case, namely when t

and t′ are identical, is trivial. Consider the induction case. There are five cases to check;

we only illustrate the cases where (extCong), (cong) and (sub) are the last rules in the

derivation.

When (extCong) is the last rule, we have t = (f t1 . . . tn), t
′ = (f t′1 . . . t′n), and f ∈ FO.

Then top(t) = Rep(t) and top(t) = Rep(t′); since t =E+FO t
′, we have Rep(t) = Rep(t′).

When (cong) is the last rule, t = (c t1 . . . tn), t
′ = (c t′1 . . . t′n), and c ∈ Σ, so

top(t) =E (c top(t1) . . . top(tn))

=E (c top(t′1) . . . top(t′n))

=E top(t′)

where the second line follows by the induction hypothesis.

When (sub) is the last rule, we have t = s[x := u] and t′ = s′[x := u]. By the induction
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hypothesis, top(s) =E top(s′). Applying Lemma 3.2,

top(t) =E top(s[x := u])

=E top(s)θ[x := top(u)]

=E top(s′)θ[x := top(u)]

=E top(s′[x := u]) = top(t′)

where the second line follows by Lemma 3.2, which defines θ, and the third line follows

from rule (sub). This completes the induction step and hence the proof.

Theorem 3.4. Let fι→ι be a variable. Then the equation

(min (f 0) (iszero (f (iszero (f 0))))) = 0

is valid in the full type hierarchy overA, but is not provable using (β), (η) and E = Th(A).

Proof. The equation is valid in the full type hierarchy over A; a case analysis based

on whether (f 0) = 0 or (f 0) 6= 0 can be used to establish that it is valid in the model.

This equation is not, however, provable. Suppose, by way of contradiction, that

(min (f 0) (iszero (f (iszero (f 0))))) =βηE 0.

By Lemma 2.2,

(min (f 0) (iszero (f (iszero (f 0))))) =E+{f} 0.

Note that (f 0) = (f (iszero (f 0))) is not valid in the full type hierarchy over A, so

(f 0) 6=E+{f} (f (iszero (f 0))). Thus,

y1 = Rep(f 0) 6= Rep(f (iszero (f 0))) = y2.

By Lemma 3.3, if (min (f 0) (iszero (f (iszero (f 0))))) =E+{f} 0, then

(min y1 (iszero y2)) =E 0,

which is clearly not the case. We have reached a contradiction, so the equation is not

provable.

4. A necessary and sufficient condition for completeness

The goal of this section is to prove the following theorem:

Suppose Σ is an algebraic signature, X is an infinite set of variables of type ι,

and fι→ι→ι is a variable. Let E be a Σ, λ-theory, and E1 be the restriction of E to

algtermsΣ,X . Then (β), (η) and E1 prove all equations in E iff E1 and (extCong)

prove all equations in

{(t1 = t2) ∈ E | t1, t2 ∈ algtermsΣ,{fι→ι→ι},X}.
Note that the theorem concerns theories, not models, which emphasizes the syntactic

nature of the proof. At the end of the section, we use the theorem to deduce a fact about

models.
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4.1. Outline of the proof

We generalize techniques in Statman (1982b) and Breazu-Tannen (1988) to the case when

algebraic equations are present. In broad outline, the proof has two main steps:

1 If M,N are closed terms and M 6=βηE N, there is a sequence of arguments, driving

both terms to base type and having only first-order free variables, that distinguishes

the terms. We refer to this as the first main lemma, and state it precisely as Lemma 4.5.

2 There exists a set of terms, involving only free variables fι→ι→ι and xι, such that for

any closed second-order terms M,N with M 6=βηE N, there is a sequence of arguments

drawn from the set and driving both terms to base type, that distinguishes the terms.

We refer to this as the second main lemma, and state it precisely as Lemma 4.7.

The proof of the theorem is simple given these two statements.

We need some notation before beginning the proofs. Fix some algebraic signature Σ.

First, we use the notation C[t1, . . . , tk] as shorthand for a substitution C[x1 := t1, . . . , xk :=

tk] with C ∈ algtermsΣ,X and x1, . . . , xk ∈ X. Second, some of the proofs go by induction

on the structure of Φ-normal forms.

Definition 4.1. Algebraic Φ-normal forms and regular Φ-normal forms – together called

the set of Φ-normal forms – are subsets of terms over an algebraic signature Σ. The sets

are defined by simultaneous induction:

— (λ~x. y (M1 ~x) . . . (Mk ~x)), where ~x is not free in any of the Mi’s, is a regular Φ-

normal form if k > 0, each Mi is a Φ-normal form, and y is a variable of type

(σ1 → . . .→ σk → ι); and

— λ~x. C[(M1 ~x), . . . , (Mk ~x)], where ~x is not free in any of the Mi’s, is an algebraic

Φ-normal form if each Mi is a regular Φ-normal form and C ∈ algtermsΣ,X is a

non-trivial term (that is, it is not a variable).

Note that when M is a closed Φ-normal form, each of the constituent terms of M are

also closed Φ-normal forms. This is the reason we use Φ-normal forms and not βη-normal

forms in induction proofs; the βη-normal form of a closed term may not be composed

of closed terms. For example, in the βη-normal form (λx. λf. f (f x)), the subterm (f x)

is not closed.

It is not hard to see that any term is βη-equivalent to a term in Φ-normal form.

Lemma 4.2. For any term M, there is a Φ-normal form N such that M =βη N.

Proof. Without loss of generality, assume that M is in long-βη-normal form; it is thus

a λ-abstraction whose body is of base type, with the form

M =βη λ~x. u M1 . . . Mn.

Each Mj is in long-βη-normal form and u is either a variable or a constant drawn from

Σ. We proceed by induction on the structure of M.

If u is a variable, by the induction hypothesis, M1, . . . ,Mn – which are strictly smaller

in size than M – are βη-equivalent to Φ-normal forms N1, . . . , Nn. The term

λ~x. u ((λ~x. N1)~x) . . . ((λ~x. Nn)~x)
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is in Φ-normal form and is βη-equivalent to M. If u is a constant, there is an algebraic

term C such that

(u M1 . . . Mn) = C[P1, . . . , Pk]

where each Pi is a long βη-normal form that begins with a variable (they cannot be

λ-abstractions, because each Pi has type ι). Since P1, . . . , Pk are smaller than M, by the

induction hypothesis there are terms Qi in Φ-normal form such that Pi =βη Qi. Moreover,

since each Pi is of base type and begins with a variable, each Qi must begin with a

variable. Thus, the terms Qi are regular Φ-normal forms, so the term

λ~x. C[((λ~x. Q1)~x), . . . , ((λ~x. Qk)~x)]

is in Φ-normal form and is βη-equivalent to M.

4.2. First main lemma

We now turn to the proof of the first main lemma. Fix some set FO of first-order variables

disjoint from Σ and with an infinite number of variables of each first-order type. We begin

with a preliminary lemma.

Lemma 4.3. Suppose M,N ∈ algtermsΣ,FO,X and M =E+FO N. If f ∈ FO and M =

(f M1 . . .Mm) and N = (f N1 . . . Nm), then for all 1 6 i 6 m, Mi =E+FO Ni.

Proof. Let 1 6 i 6 m. It is not hard to show that there is a sequence

(f M1 . . .Mm) = T0 =E+FO T1 =E+FO . . . =E+FO Tn = (f N1 . . . Nm),

where each Tj =E+FO Tj+1 has the form D[sθ] =E+FO D[tθ] with (s = t) ∈ E or (t = s) ∈ E
and D[x] is a term with one occurrence of x (see Breazu-Tannen (1987, Proposition 2.17)).

The goal of the proof is to transform the sequence into a proof of Mi =E+FO Ni.

Consider any term Q. The term Q is obtained by replacing every maximal subterm

Q′ of Q satisfying the property

Q′ = (f P1 . . . Pm) and, for every 1 6 j 6 m, Mj =E+FO Pj or Nj =E+FO Pj (1)

by the term Pi. We claim that Tj =E+FO Tj+1, and thus

T0 =E+FO T1 =E+FO . . . =E+FO Tn.

Since T0 = Mi and Tn = Ni, this is enough to prove that Mi =E+FO Ni.

To prove the claim, suppose the proof step is D[sθ] =E+FO D[tθ], where (s = t) ∈ E
or (t = s) ∈ E and D[x] has one occurrence of x. There are two cases:

— Suppose sθ is contained in no subterm of D[sθ] satisfying Property 1. Thus, tθ is also

not contained in any subterm of D[tθ] satisfying Property 1. Then D[sθ] = D[sθ],

where θ(xi) = θ(xi). Thus D[tθ] = D[tθ], and therefore D[sθ] =E+FO D[tθ].

— Suppose sθ is contained in a subterm of D[sθ] satisfying Property 1, and let the

maximal such term be u = (f P1 . . . Pm). Let u′ = (f P ′1 . . . P ′m) be the term at

the corresponding position in D[tθ]. Note that u′ also satisfies Property 1, and so is
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replaced by P ′i when the transformation (·) is applied to it. It is clear that Pi =E+FO P
′
i .

Therefore, D[sθ] =E+FO D[tθ].

This completes the proof of the claim and hence the lemma.

Suppose we have a set of equations such that for any equation M = N in the set there

is a sequence of arguments ~V ∈ termsΣ,FO such that (M ~V ) and (N ~V ) are of type ι, and

(M ~V ) 6=βηE (N ~V ). The next lemma says that one may obtain a single list of arguments

that achieves the same purpose for all the equations.

Lemma 4.4. Suppose T ⊆ termsΣ,6 is a finite set of (closed) terms of type σ = (σ1 →
. . . → σn → ι) in regular Φ-normal form. Suppose for each M,N ∈ T with M 6=βηE N,

there are terms V1, . . . , Vn ∈ termsΣ,FO such that

(M V1 . . . Vn) 6=βηE (N V1 . . . Vn).

Then there exist U1, . . . Un ∈ termsΣ,FO such that:

1 for all M ∈ T , βη-nf(M ~U) has a variable at the head of an application; and

2 for all M,N ∈ T if M 6=βηE N, then (M U1 . . . Un) 6=βηE (N U1 . . . Un).

Proof. Let (M1, N1), . . . , (Mk,Nk) be the (distinct) pairs of terms in T with Mi 6=βηE Ni.

Let

(V1,1, . . . , V1,n), . . . , (Vk,1, . . . , Vk,n)

be vectors such that

(Mi Vi,1 . . . Vi,n) 6=βηE (Ni Vi,1 . . . Vi,n).

Let f1, . . . , fn ∈ FO be distinct variables and

Uj = λyσ1

1 . . . . λy
σn
n . fj (V1,j y1 . . . yn) . . . (Vk,j y1 . . . yn).

We claim that this choice of U1, . . . , Un satisfies the condition desired. Since each M ∈ T
is a closed regular Φ-normal form, it follows easily that each βη-nf(M ~U) has a variable

at the head of an application, namely one of the fj ’s. To see the second part, note that

Uj[fj := λ~x. xi] =βη Vi,j .

Since (Mi Vi,1 . . . Vi,n) 6=βηE (Ni Vi,1 . . . Vi,n), and fj does not appear in any term other than

Uj , it follows that (Mi
~U) 6=βηE (Ni

~U).

Lemma 4.5. Suppose M,N ∈ termsΣ,6 are closed terms and M 6=βηE N. Then there exist

terms V1, . . . , Vm in termsΣ,FO such that (M V1 . . . Vm) 6=βηE (N V1 . . . Vm) at base type.

Proof. Without loss of generality, we may assume that M,N are in Φ-normal form. We

proceed by induction on the sum of the sizes of M and N.

1 Both M and N are in algebraic Φ-normal form. Then for some k, l, n > 0 and terms C

and D, both of which begin with a constant from Σ,

M = λxσ1

1 . . . . λx
σn
n . C[(M1 x1 . . . xn), . . . , (Mk x1 . . . xn)]

N = λxσ1

1 . . . . λx
σn
n . D[(N1 x1 . . . xn), . . . , (Nl x1 . . . xn)]
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where T = {M1, . . . ,Mk,N1, . . . , Nl} are regular Φ-normal forms. By the induction

hypothesis, for every pair P ,Q ∈ T such that P 6=βηE Q, there exists a vector
~V ∈ termsΣ,FO such that (P ~V ) 6=βηE (Q ~V ). Thus, by Lemma 4.4, there exists a vector
~U ∈ termsΣ,FO such that for every pair P ,Q ∈ T with P 6=βηE Q, (P ~U) 6=βηE (Q ~U),

and βη-nf(P ~U) and βη-nf(Q ~U) have a variable at the head. Let M ′ = βη-nf(M ~x),

N ′ = βη-nf(N ~x), M ′′ = βη-nf(M ~U), and N ′′ = βη-nf(N ~U). Therefore, the pair of

terms

(topΣ,{x1 ,... ,xn},E(M ′), topΣ,{x1 ,... ,xn},E(N ′))

is the same as the pair

(topΣ,FO,E(M ′′), topΣ,FO,E(N ′′))

up to variable renaming. Since M 6=βηE N,

topΣ,{x1 ,... ,xn},E(M ′) 6=βηE topΣ,{x1 ,... ,xn},E(N ′),

and hence topΣ,FO,E(M ′′) 6=βηE topΣ,FO,E(N ′′). By Lemmas 2.2 and 3.3, we have that

(M ~U) 6=βηE (N ~U).

2 Exactly one of M and N is in algebraic Φ-normal form. Without loss of generality,

assume that M is in algebraic Φ-normal form and N is in regular Φ-normal form. For

some k, n > 0 and algebraic term C ,

M = λxσ1

1 . . . . λx
σn
n . C[(M1 x1 . . . xn), . . . , (Mk x1 . . . xn)]

where the Mi’s and N are regular Φ-normal forms. The case goes similarly to the

previous case, taking T = {M1, . . . ,Mk,N}.
3 Both M and N are in regular Φ-normal form. There are two subcases:

(a) The head variables are unequal. Then for some k, l, n > 0 and i 6= j,

M = λxσ1

1 . . . . λx
σn
n . xi (M1 x1 . . . xn) . . . (Mk x1 . . . xn)

N = λxσ1

1 . . . . λx
σn
n . xj (N1 x1 . . . xn) . . . (Nl x1 . . . xn).

Choose the sequence ~V such that Vi = λ~y. z1 and Vj = λ~y. z2, where zι1, z
ι
2 ∈ FO,

and zι1 6= zι2; the other terms in the sequence may be chosen arbitrarily (but with

the appropriate type). Then (M~V ) =βηE z1 6=βηE z2 =βηE (N~V ).

(b) The head variables are equal. For some k, n > 1,

M = λxσ1

1 . . . . λx
σn
n . xi (M1 x1 . . . xn) . . . (Mk x1 . . . xn)

N = λxσ1

1 . . . . λx
σn
n . xi (N1 x1 . . . xn) . . . (Nk x1 . . . xn).

Since M 6=βηE N, it must be the case that Mj 6=βηE Nj for some 1 6 j 6 k. By the

induction hypothesis, there exist terms U1, . . . , Un, . . . , Um ∈ termsΣ,FO such that

(Mj U1 . . . Um) 6=βηE (Nj U1 . . . Um), and both (Mj U1 . . . Um) and (Nj U1 . . . Um) are

of type ι. Choose fresh variables hι→ι→ι ∈ FO and y1, . . . , yk , that is, variables not

appearing free in any of the terms U1, . . . , Um. For any 1 6 p 6 n, define

Vp =

{
λy1. . . . λyk. h (yj Un+1 . . . Um) (Ui y1 . . . yk) if p = i

Up otherwise.
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We just need to verify that (M V1 . . . Vn) 6=βηE (N V1 . . . Vn). First, we do a little

calculation:

(M V1 . . . Vn) =βηE Vi (M1 V1 . . . Vn) . . . (Mk V1 . . . Vn)

=βηE h (Mj V1 . . . Vn Un+1 . . . Um) (Ui (M1 V1 . . . Vn) . . .

(Mk V1 . . . Vn))

Similarly,

(N V1 . . . Vn) =βηE h (Nj V1 . . . Vn Un+1 . . . Um) (Ui (N1 V1 . . . Vn) . . .

(Nk V1 . . . Vn)).

By way of contradiction, assume that (M V1 . . . Vn) =βηE (N V1 . . . Vn). It follows

from Lemmas 2.2 and 4.3 that

(Mj V1 . . . Vn Un+1 . . . Um) =βηE (Nj V1 . . . Vn Un+1 . . . Um).

Let H = λuι. λvι. v; substituting H for variable h, we obtain

(Mj V1 . . . Vn Un+1 . . . Um)[h := H] =βηE (Nj V1 . . . Vn Un+1 . . . Um)[h := H]. (2)

But because we chose h to be fresh with respect to the terms U1, . . . , Um, h only

occurs in the term Vi. Calculating,

Vi[h := H] = λy1. . . . λyk. H (yj Un+1 . . . Um) (Ui y1 . . . yk)

=βη λy1. . . . λyk. (λu. λv. v) (yj Un+1 . . . Um) (Ui y1 . . . yk)

=βη λy1. . . . λyk. Ui y1 . . . yk

=βη Ui

Thus,

(Mj V1 . . . Vn Un+1 . . . Um)[h := H] =βηE (Mj U1 . . . Un Un+1 . . . Um)

(Nj V1 . . . Vn Un+1 . . . Um)[h := H] =βηE (Nj U1 . . . Un Un+1 . . . Um).

It follows from Equation (2) that

(Mj U1 . . . Un Un+1 . . . Um) =βηE (Nj U1 . . . Un Un+1 . . . Um).

This contradicts our original choice of U1, . . . , Um, so we must have

(M V1 . . . Vn) 6=βηE (N V1 . . . Vn).

This completes the induction and hence the proof.

4.3. Second main lemma

Moving to the second main lemma, pick variables fι→ι→ι and xι. Define

VTk

i = λyι1. . . . λy
ι
k. f i (f y1 (f y2 (. . . (f yk x) . . . )))
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where

0 = x

n+ 1 = (f n x).

Lemma 4.6. Let E be a consistent set of algebraic equations over signature Σ. For any

m 6= n, m 6=βηE n.

Proof. By Lemma 4.3, it is enough to show that for any n > 0, 0 6=βηE n. Suppose, by

way of contradiction, that 0 = x =βηE n = (f n− 1 x). Then

(λf. x) (λx. λz. y) =βηE (λf. (f n− 1 x)) (λx. λz. y),

so x =βηE y. By Lemma 2.2, x =E y, a contradiction. Thus, 0 6=βηE n.

Lemma 4.7. Suppose M,N ∈ termsΣ,6, M 6=βηE N, and the type of M and N is σ = (σ1 →
. . .→ σn → ι), where each σi is a first-order type. Then (M Vσ1

1 . . . V σn
n ) 6=βηE (N Vσ1

1 . . . V σn
n ).

Proof. We use induction on the sum of the sizes of M and N.

1 Both M and N are in algebraic Φ-normal form. Then for some k, l, n > 0, and terms

C and D with C,D both beginning with a constant from Σ,

M = λxσ1

1 . . . . λx
σn
n . C[(M1 x1 . . . xn), . . . , (Mk x1 . . . xn)]

N = λxσ1

1 . . . . λx
σn
n . D[(N1 x1 . . . xn), . . . , (Nl x1 . . . xn)]

where M1, . . . ,Mk,N1, . . . , Nl are regular Φ-normal forms. Let M ′ = βη-nf(M ~x) and

N ′ = βη-nf(N ~x), M ′′ = βη-nf(M ~V ) and N ′′ = βη-nf(N ~V ). By the induction

hypothesis, for every pair of terms P ,Q ∈ {M1, . . . ,Mk,N1, . . . , Nl} = T such that

P 6=βηE Q, it must be that (P ~V ) 6=βηE (Q ~V ). Note also that since all P ,Q ∈ T are

regular Φ-normal forms, βη-nf(P ~V ) and βη-nf(Q ~V ) both begin with the function

variable f. Therefore, the pair of terms

(topΣ,{x1 ,... ,xn},E(M ′), topΣ,{x1 ,... ,xn},E(N ′))

is the same as the pair

(topΣ,{f},E(M ′′), topΣ,{f},E(N ′′))

up to variable renaming. Since M 6=βηE N,

topΣ,{x1 ,... ,xn},E(M ′) 6=βηE topΣ,{x1 ,... ,xn},E(N ′),

and hence topΣ,{f},E(M ′′) 6=βηE topΣ,{f},E(N ′′). Then, from Lemmas 2.2 and 3.3,

(M ~V ) 6=βηE (N ~V ).

2 Exactly one of M and N is in algebraic Φ-normal form. Without loss of generality,

assume that M is in algebraic Φ-normal form and N is in regular Φ-normal form. For

some k, n > 0 and algebraic term C ,

M = λxσ1

1 . . . . λx
σn
n . C[(M1 x1 . . . xn), . . . , (Mk x1 . . . xn)]

where the Mi’s and N are regular Φ-normal forms. The case goes similarly to the

previous case, taking T = {M1, . . . ,Mk,N}.
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3 Both M and N are in regular Φ-normal form. There are two subcases:

(a) The head variables are unequal. Then for some k, l, n > 0 and i 6= j,

M = λxσ1

1 . . . . λx
σn
n . xi (M1 x1 . . . xn) . . . (Mk x1 . . . xn)

N = λxσ1

1 . . . . λx
σn
n . xj (N1 x1 . . . xn) . . . (Nl x1 . . . xn).

Note that βη-nf(M ~V ) = (f i t1), and, similarly, that βη-nf(N ~V ) = (f j t2). By

Lemma 4.6 i 6=E j. By Lemma 4.3, (M ~V ) 6=βηE (N ~V ).

(b) The head variables are equal. For some k, n > 1 and i 6= j,

M = λxσ1

1 . . . . λx
σn
n . xi (M1 x1 . . . xn) . . . (Mk x1 . . . xn)

N = λxσ1

1 . . . . λx
σn
n . xi (N1 x1 . . . xn) . . . (Nk x1 . . . xn).

Notice that k must be greater than 0, and that for some j, Mj 6=βηE Nj . Thus, by

the induction hypothesis, (Mj
~V ) 6=βηE (Nj

~V ). Now doing some calculation,

(M ~V ) =βηE (f i (f (M1
~V ) (. . . (f (Mk−1

~V ) (f (Mk
~V ) x)) . . . )))

(N ~V ) =βηE (f i (f (N1
~V ) (. . . (f (Nk−1

~V ) (f (Nk
~V ) x)) . . . ))).

Suppose, by way of contradiction, that (M ~V ) =βηE (N ~V ). Using Lemma 4.3

repeatedly, we then get (Mj
~V ) =βηE (Nj

~V ), which is a contradiction. Thus,

(M ~V ) 6=βηE (N ~V ).

This completes the induction and hence the proof.

4.4. Putting it together

Theorem 4.8. Suppose Σ is an algebraic signature, X is an infinite set of variables of

type ι, and fι→ι→ι is a variable. Let E be a Σ, λ-theory, and E1 be the restriction of E to

algtermsΣ,X . Then (β), (η) and E1 prove all equations in E iff E1 and (extCong) prove all

equations in

E2 = {(t1 = t2) ∈ E | t1, t2 ∈ algtermsΣ,{fι→ι→ι},X}.
Proof. (⇒) Let t1, t2 ∈ algtermsΣ,{fι→ι→ι},X , and suppose (t1 = t2) ∈ E2. Regard t1 = t2 as

an ‘algebraic’ equation over the algebraic signature Σ ∪ {f}, f being a symbol of arity 2.

Since t1 =βηE t2, by Lemma 2.2, t1 =E1
t2.

(⇐) Suppose E1 and (extCong) prove all equations in E2. It is obvious that if (β), (η)

and E1 prove an equation, that equation is also in E; this follows merely from the fact that

E is a Σ, λ-theory. So suppose M 6=βηE1
N. Without loss of generality, we may assume that

M,N are closed terms. By Lemma 4.5, there are terms U1, . . . , Um in termsΣ,FO such that

(M U1 . . . Um) 6=βηE1
(N U1 . . . Um) at base type. Let y1, . . . , yk be the free (and necessarily

first-order) variables of U1, . . . , Um. Then

M ′ = (λy1. . . . λyk. M U1 . . . Um) 6=βηE1
(λy1. . . . λyk. N U1 . . . Um) = N ′.

Now, by Lemma 4.7, there is a sequence of terms V1, . . . , Vn in termsΣ,f,x such that

(M ′ V1 . . . Vn) 6=βηE1
(N ′ V1 . . . Vn) at base type. By Lemma 2.2,

βη-nf(M ′ V1 . . . Vn) 6=E1+{f} βη-nf(N ′ V1 . . . Vn).
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By hypothesis, this equation is not in E2, and hence not in E. Therefore, (M = N) must

not be in E either.

It may be helpful to consider a slight restatement of the above theorem (suggested by

a referee) to get a sense of the types involved. Suppose E is a Σ, λ-theory, and

E1 = {(t1 = t2) ∈ E | t1, t2 are closed of first-order type}
E2 = {(t1 = t2) ∈ E | t1, t2 are closed of (ι→ ι→ ι)→ ι→ ι}.

Essentially the same proof as above shows that

Theorem 4.9. E1, (β) and (η) prove all the equations of E iff E1, (β) and (η) prove all the

equations of E2.

One might be tempted to say that E2 alone determines E, but this is not true. For a

counterexample, consider the language with base type constants Ω, true, false (all of type

ι), and if : ι→ ι→ ι→ ι. Consider the Σ, λ-theory generated by the fully abstract model

of sequential PCF over the booleans. The subtheory consisting of equations between

closed terms of order no more than three is decidable (Sieber, 1992). The full theory is

undecidable (Loader, 1997). Therefore, the full theory is not generated from the subtheory:

there are two ways of generating a theory from the subtheory, one through the use of βη

(which will be a decidable theory), and the other to the full theory.

4.5. Application to models

Theorem 4.10. Suppose Σ is an algebraic signature, X is an infinite set of variables of

type ι, and fι→ι→ι is a variable. Suppose M is a Σ-model and E1 is a set of algebraic

equations over signature Σ. Then (β), (η) and E1 completely axiomatize the equations of

M iff E1 and (extCong) prove all equations between terms in algtermsΣ,{fι→ι→ι},X that are

valid in M.

Proof. The proof is immediate from Theorem 4.8, taking E = Th(M).

Theorem 4.10 is difficult to apply directly. Suppose we are given a Σ-model M and a

set E of algebraic equations over the signature Σ. To use the theorem, we need to consider

all extended algebraic terms algtermsΣ,{f},X , and prove that E and (extCong) prove all

extended algebraic equations that are valid inM. It would be simpler to apply a theorem

that depended only on properties of the induced algebra ofM, and some minimal property

on the rest of the model. The minimal property on the model that we use in the next two

sections is given by the following definition.

Definition 4.11. A model M has enough first-order functions if every binary, finite partial

function over the base type ι can be extended to some element in the model. More

precisely, if g : Mι ×Mι ⇀Mι is a finite partial function, there is an f ∈ Mι→ι→ι such

that for all (d, e) ∈ dom(g), ap(ap(f, d), e) = g(d, e).

The goal in the next two sections is to find suitable conditions on the algebra.
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5. Disjunctively closed algebras

A Σ-algebra A is disjunctively closed if for every finite set of algebraic equations E, none

of which is valid in A, there is a single A-environment σ such that for every equation

s = t ∈ E, A[[s]]σ 6= A[[t]]σ. Equivalently, A is disjunctively closed if for every valid

disjunction (E1 ∨ . . .∨En) of equations, where the variables are universally quantified over

the entire formula, at least one of the equations Ei is valid in A.

The property of disjunctive closedness may sound ad hoc at first glance, but the theory

of the simply-typed λ-calculus without algebraic equations already satisfies the following

analogous property.

Theorem 5.1. If βη-reasoning is complete for a model M over the empty signature,

and if the equations (M1 = N1), . . . , (Mk = Nk) are not valid in M, there is a single

M-environment ρ such that M[[Mi]]ρ 6=M[[Ni]]ρ for all i.

Proof. We use the restrictions of Lemmas 4.4, 4.5, and 4.7 to the simply-typed λ-calculus

without constants from Statman (1982). We begin by transforming each Mi and Ni into

closed terms of the same type σ: we can apply each side of each equation (Mi = Ni)

to fresh variables ~xi to get base type terms, and then λ-abstract each Mi and Ni over

all the free variables of M1, . . . ,Mk,N1, . . . , Nk and ~x1, . . . , ~xk . Call the results of this

transformation M ′i and N ′i . By the analogue of Lemma 4.5, there are vectors ~Vi of terms

in terms6,FO for each equation with (M ′i ~Vi) 6=βη (N ′i ~Vi). By the analogue of Lemma 4.4,

we can collapse these vectors into a single distinguishing vector ~V of terms in terms6,FO .

Let x1, . . . , xk be the free variables of ~V , and consider the terms

M ′′i = (λx1. . . . λxk. M
′
i
~V )

N ′′i = (λx1. . . . λxk. N
′
i
~V )

By the analogue of Lemma 4.7, there is a single vector ~U of terms in terms6,{fι→ι→ι ,xι} for

all i, (M ′′i ~U) 6=βηE (N ′′i ~U). By completeness, there is an environment ρ′ – in particular, a

choice for f and x – such thatM[[(M ′′i ~U)]]ρ′ 6=M[[(N ′′i ~U)]]ρ′. It is then not hard to turn

this into a distinguishing environment ρ for the original terms (by using the meanings of
~V and ~U).

Not every algebra is disjunctively closed. Trivially, any finite algebra with at least two

elements cannot be disjunctively closed: if the algebra has n > 1 elements, the distinct

variables x1, . . . , xn+1 are pairwise distinguishable, but there is no single environment that

distinguishes all of them. Consequently, if we consider the set of equations {xi = xj | i 6= j},
none of the equations is valid, and yet no single environment can invalidate all the

equations. Another example is the {iszero}-algebra (N,K), where K(iszero) is the unary

function that returns zero on a non-zero argument, and one on zero. This algebra is

not disjunctively closed because four terms – x, y, iszero(x), and iszero(y) – are pairwise

unequal but not simultaneously distinguishable. Nevertheless, some interesting algebras

are disjunctively closed.

Theorem 5.2. The following algebras are disjunctively closed.

— The {0, 1,+, ∗}-algebra N = (N,K) with the evident interpretation.
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— The {0, succ, pred}-algebra (Z,K) with the evident interpretation.

— The {nil, append, 〈0〉, 〈1〉, . . . }-algebra (NatList,K), where the carrier is the lists over the

naturals, 〈i〉 is interpreted as the singleton list constructor, and append is interpreted

as the list appending function.

— The {6,∪,∩}-algebra (Set,K), where the carrier consists of sets over some unspecified

infinite type.

Proof. We prove the disjunctive closedness of the first algebra N here, using a sim-

plification of the proof of Benedikt et al. (1998, Lemma 4), and leave the others to the

reader. Let Σ = {0, 1,+, ∗} and E = Th(N). Suppose E0 = {t1 = t′1, . . . , tm = t′m} is a set

of equations such that ti, t
′
i ∈ algtermsΣ,X , and, for all i, ti 6=E t

′
i. We have to find a single

distinguishing environment for all the equations. Assume that the variables appearing in

t1, t
′
1, . . . , tm, t

′
m are x1, . . . , xn. We find an environment ρ by induction on n. For n = 0,

any environment works. Now suppose n = (k + 1). Notice that, for each j 6 m, the jth

equation in E0 can be written in the form

(
∑
i∈Ij

pi,j(xk+1) ∗ vi,j) = 0.

In this notation, each Ij is a finite set, each pi,j(xk+1) is a polynomial over xk+1, each

vi,j is a product (xe1

1 ∗ . . . ∗ xekk ) with el > 0, and for any i, l ∈ Ij such that i 6= l, vi,j and

vl,j are different products of x1, . . . , xk . Now choose a value r for xk+1 such that all the

non-zero polynomials among the polynomials pi,j(xk+1) evaluate to a non-zero value; this

is possible because there are only a finite number of roots for each polynomial. Evaluate

the polynomials, and substitute the value in each of the above equations, leaving a set

of equations over the variables x1, . . . , xk; note that this does not result in any of the

equations becoming valid. By the induction hypothesis, there is an environment ρ that

distinguishes all of these equations. Then the environment ρ[xk+1 7→ r] distinguishes all

of the equations in E0.

5.1. Completeness for disjunctively closed algebras

We show that βηE is complete for reasoning about the equality of mixed terms in a Σ-

modelM that has enough first-order functions, and whose induced algebra is disjunctively

closed and is axiomatized by E. Using Theorem 4.10, it is enough to consider terms in

algtermsΣ,{fι→ι→ι},X . So suppose M and N are such terms with M 6=E+{f} N; we need

to find a distinguishing environment in the model, namely, an environment ρ such that

M[[M]]ρ 6=M[[N]]ρ. The proof carves M and N up into subterms that are purely algebraic,

and then uses disjunctive closedness of the algebra to find a distinguishing environment

for certain equations between the subterms.

We begin with some notation. Fix an algebraic signature Σ, a set X of variables of type

ι, and a disjunctively closed Σ-algebra B. Denote the equational theory of the algebra

by E. Let fι→ι→ι be a variable. We say that a term in algtermsΣ,{f},X is Σ-top if it has a

symbol from Σ ∪X at its root (non-Σ-top terms must thus begin with an f). When given

a Σ-top term, we can traverse each branch downwards and stop when we encounter an

occurrence of the symbol f: the subterm at each such point is a non-Σ-top term. In this
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manner we can decompose the given term into a purely algebraic Σ-term and a set of

non-Σ-top terms.

Lemma 5.3. If t is Σ-top, there is a unique non-trivial Σ-term C[x1, . . . , xn] and non-Σ-top

terms s1, . . . , sn such that t = C[s1, . . . , sn].

Proof. The proof is by structural induction on t.

Our goal is to decompose a term – or, more generally, a set of terms – over Σ and f

into a set of algebraic terms over Σ. Recall, from Section 3, the function topΣ,{f},E from

terms to terms, and the function RepΣ,{f},E from algtermsΣ,{f},X to Y , where Y is a set of

variables of type ι disjoint from X ∪ {f}. Recall also that RepΣ,{f},E(t) = RepΣ,{f},E(s) iff

t =E+{f} s. We define a variant of top that applies top to the term t and then replaces

each occurrence of a variable x ∈ X in it by RepΣ,{f},E(x), yielding a term in algtermsΣ,Y .

To that end, define

topp(t) = θ(topΣ,{f},E(t)),

where θ is a substitution such that dom(θ) = X and for all x ∈ X, θ(x) = RepΣ,{f},E(x).

Lemma 5.4. If topp(t) =E topp(t′), then t =E+{f} t′.

Proof. Let y1, . . . , yn be the free variables in topp(t) and topp(t′). Then for some t1, . . . , tn,

t = topp(t)[y1 7→ t1, . . . , yn 7→ tn]

t′ = topp(t′)[y1 7→ t1, . . . , yn 7→ tn]

Therefore, topp(t) =E topp(t′) implies t =E+{f} t′.

The operation topp is just what we need to decompose a set of algebraic terms over Σ

and f into a set over Σ. Recall that a Σ′ extension of a Σ-algebra, where Σ ⊆ Σ′, has the

same carrier as the Σ-algebra A, and interprets the additional symbols in Σ′ as well.

Lemma 5.5. Suppose B is a disjunctively closed Σ-algebra, E = Th(B) and t, t′ ∈
algtermsΣ,{f},X , and t 6=E+{f} t′. Then there is a finite, partial, binary function g over the

carrier of B such that for any Σ ∪ {f}-algebra A extending B with A[[f]] � dom(g) = g,

there is an environment σX such that A[[t]]σX 6=A[[t′]]σX .

Proof. Let S = {topp(u) | u is a subterm of t or t′}. Since B is disjunctively closed,

there is a B-environment σY such that for every pair of terms s, s′ ∈ S , if s 6=E+{f} s′, then

B[[s]]σY 6= B[[s′]]σY . Since t 6=E+{f} t′, by Lemma 5.4, topp(t) 6=E+{f} topp(t′). It follows

that

B[[topp(t)]]σY 6= B[[topp(t′)]]σY .

Define g as follows. Suppose (f s s′) is a subterm of t or t′, and u = topp(s), u′ = topp(s′).
Let

a = B[[u]]σY

b = B[[u′]]σY .
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Then define

g a b = σY (RepΣ,{f},E(f s s′)).

Note that this function is well defined.

Let A be any algebra extending B to the signature Σ ∪ {f} with A[[f]] � dom(g) = g.

Let σX be any A-environment such that for all x ∈ X, σX(x) = σY (RepΣ,{f},E(x)). We

claim that for any term s ∈ S , A[[s]]σX = B[[topp(s)]]σY . From this it follows that

A[[t]]σX 6=A[[t′]]σX.

The proof of the claim goes by induction on the structure of s.

— s = x. Then topp(s) = y, where RepΣ,{f},E(x) = y. Then

A[[s]]σX = σX(x) = σY (RepΣ,{f},E(x)) = σY (y) = B[[y]]σY = B[[topp(s)]]σY .

— s = (f s1 s2) and topp(s) = y, where y = RepΣ,{f},E(s). By the induction hypothesis,

A[[s]]σX = (A[[f]]A[[s1]]σX A[[s2]]σX)

= (A[[f]] B[[topp(s1)]]σY B[[topp(s2)]]σY )

= σY (RepΣ,{f},E(f s1 s2))

= B[[topp(s)]]σY .

— s = (c s1 . . . sn), where c ∈ Σ. By the induction hypothesis,

A[[s]]σX = (A[[c]]A[[s1]]σX . . .A[[sn]]σX)

= (A[[c]] B[[topp(s1)]]σY . . .B[[topp(sn)]]σY )

= B[[topp(s)]]σY .

This completes the proof of the claim, and hence the lemma.

We now have enough facts to prove the following theorem.

Theorem 5.6. LetM be a model, B be the Σ-algebra induced byM, and E be a complete

axiomatization of equations valid in B. Suppose B is disjunctively closed, and M has

enough first-order functions. Then (β), (η) and E completely axiomatize equality between

mixed terms in M.

Proof. Suppose M 6=βηE N for closed terms M and N. Then by Lemmas 4.5 and 4.7,

there exists a term V ∈ termsΣ,{xι,fι→ι→ι} (actually, V contains no symbols from Σ, but this

fact is not important) such that

(V M) 6=βηE (V N)

at type ι. Thus,

βη-nf(V M) 6=E βη-nf(V N).

Since the βη-normal forms of (V M) and (V N) are in algtermsΣ,{f},X , by Lemma 5.5 there

is a Σ∪ {f}-extension A of B such that the currying of the interpretation of f in A is in
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Mι→ι→ι and

A 6|= βη-nf(V M) = βη-nf(V N).

Thus M 6|= M = N.

Corollary 5.7. The full type hierarchy over any of the algebras from Theorem 5.2 is

completely axiomatized by (β), (η) and the equations of the algebra.

5.2. Continuous models over flat algebras

Continuous type hierarchies over algebras form an important class of models: they can

be used to give semantics to programming languages with recursion. In this section we

establish the fact that disjunctive closedness of a flat algebra B is a sufficient condition

for completeness of βηE-reasoning for proving valid equations in the full continuous type

hierarchy over B.

Two technical problems arise in proving such a theorem for full continuous models.

First, it seems difficult to apply our techniques when the base type has some arbitrary

partial order structure. We can, however, use our techniques in models whose induced

algebra is a flat algebra, i.e., an algebra with a flat poset (with a distinguished least

element ⊥) as the carrier, and whose algebraic operations are monotone (and thus

continuous) functions. Second, we cannot directly apply Theorem 5.6, because the ‘has

enough first-order functions’ condition does not hold in the full continuous type hierarchy.

For instance, any non-monotonic, partial function cannot be extended to an element in

the model. The proof must be careful in constructing a monotone, partial function.

We need the following two lemmas.

Lemma 5.8. Let B be a disjunctively closed, flat Σ-algebra, and E be a finite set of

equations between terms in algtermsΣ,X such that no equation in E is valid in B. Then

there is an environment σ such that:

1 If (s = t) ∈ E, then B[[s]]σ 6= B[[t]]σ.

2 For all x, σ(x) 6= ⊥.

Proof. Let

E1 = {(s = x) | (s = t) or (t = s) ∈ E, x ∈ FV (s), and B 6|= (s = x)}
and let E2 = E ∪ E1. Note that E2 is finite. By disjunctive closedness of B, there is an

environment σ0 that distinguishes all equations in E2. We turn the environment σ0 into

another environment σ as follows. Define

R = {B[[s]]σ0 | (s = t) or (t = s) ∈ E2} ∪ {⊥}
and pick b to be an element of B that is not in R; such a b must exist because the carrier

of B must be infinite and R is finite. Then let

σ(x) =

{
σ0(x) if σ0(x) 6= ⊥
b if σ0(x) = ⊥.

We claim that σ – which maps all variables to non-⊥ elements – distinguishes all equations
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in E2, and hence all equations in E. Suppose, by way of contradiction, thatB[[s]]σ = B[[t]]σ

with (s = t) ∈ E2. Since B[[s]]σ0 6= B[[t]]σ0,

B[[s]]σ0 = ⊥ and B[[t]]σ0 = B[[t]]σ

or B[[t]]σ0 = ⊥ and B[[s]]σ0 = B[[s]]σ.

because for any term t ∈ S , B[[t]]σ0 v B[[t]]σ. Without loss of generality, assume the

former. Since B[[s]]σ0 6= B[[s]]σ, for some x ∈ FV (s), it must be that σ0(x) = ⊥. Therefore,

B[[s]]σ0 = B[[x]]σ0. So (s = x) 6∈ E1 and thus B |= (s = x). By the definition of σ(x), we

have σ(x) = b 6= B[[t]]σ0 = B[[t]]σ. Since B |= (s = x), we contradict B[[s]]σ = B[[t]]σ.

Lemma 5.9. Suppose B is a flat, disjunctively closed Σ-algebra, t, t′ ∈ algtermsΣ,{f},X , and

t 6=E+{f} t′. Then there is a finite, partial, and monotone binary function g over the carrier

of B such that:

1 ⊥ is not in the domain or range of g; and

2 For any Σ∪{f}-algebra A extending the Σ-algebra B with A[[f]] � dom(g) = g, there

is an environment σX such that A[[t]]σX 6=A[[t′]]σX .

Proof. The proof is exactly as in Lemma 5.5, using Lemma 5.8 to turn environments

into environments that map all variables to non-⊥ values.

Using this lemma, we can prove the following theorem in exactly the same way as we

proved Theorem 5.6.

Theorem 5.10. If a Σ-algebra with an underlying flat cpo structure is disjunctively closed,

the continuous type hierarchy over it is completely axiomatized by (β), (η) and the

equational theory of the algebra.

In the rest of this section we focus on flat algebras whose operations preserve as well

as reflect ⊥. More precisely, given a Σ-algebra A, the lifted algebra A⊥ is constructed by

adding a least element ⊥, defining v on elements of A⊥ by

a v a′ iff a = ⊥ or a = a′,
and defining, for any c ∈ Σ

(A⊥[[c]] a1 . . . an) = ⊥ if any ai = ⊥
(A⊥[[c]] a1 . . . an) = (A[[c]] a1 . . . an) if no ai = ⊥.

The following lemma gives a simple test for the disjunctive closedness of lifted algebras.

Lemma 5.11. A⊥ is disjunctively closed iff A is disjunctively closed and every equation

valid in A has the same free variables occurring on both sides.

Proof. (⇐) Let E be a nonempty set of equations none of which is valid in A⊥. We

claim that none of the equations are valid inA. From this we can extract an environment

σ in A by disjunctive closedness that distinguishes all the equations in E; this same σ

invalidates in A⊥ every equation in the set E. To prove the claim, suppose (s = t) ∈ E.

We know that there is an A⊥-environment σ such that A⊥[[s]]σ 6= A⊥[[t]]σ. Since every

equation valid inA has the same variables occurring on both sides, FV (s) = FV (t). Thus,
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for all x ∈ FV (s), we have σ(x) 6= ⊥ (if it were ⊥, both A⊥[[s]]σ and A⊥[[t]]σ would be

⊥). But then σ is an A-environment, so A 6|= s = t, proving the claim.

(⇒) Let E be the equational theory of A. First, we show that A is disjunctively closed.

Let E0 be a set of equations, none of which is valid in A. Then none of these equations

can be valid in A⊥ either. Let

E1 = {(s = x) | (s = t) or (t = s) ∈ E, x ∈ FV (s), and A⊥ 6|= (s = x)},
and let E2 = E0 ∪ E1. Note that E2 is finite. By disjunctive closedness of A⊥, there is

an environment σ0 that distinguishes all equations in E2. As in the proof of Lemma 5.8

above, there is an environment σ distinguishing all equations in E2 – and hence in E –

that does not assign any variable to ⊥. Thus, A is disjunctively closed.

To show that every equation in E has the same variables occurring on both sides, it

suffices to show (up to symmetry) that if s = t is an equation with a variable x free in

s but not in t, then A 6|= s = t. Let s = t be such an equation. Suppose A |= s = x. If

A |= s = t, then A |= x = t, making A the trivial (one-element) algebra. However, this

would make A⊥ a two-element algebra, contradicting its disjunctive closedness. Thus,

A 6|= s = t.

Next, suppose A 6|= s = x. Let x′ be a fresh variable. It is clear that A⊥ 6|= s = x,

A⊥ 6|= s = s[x := x′] and A⊥ 6|= s[x := x′] = x′. By disjunctive closedness of A⊥, there

is an environment σ that invalidates all three equations. Since x is a free variable of s,

it is clear that σ(x), σ(x′) 6= ⊥. Furthermore, σ(y) 6= ⊥ for any other variable y free in

s, since otherwise σ cannot distinguish s = s[x := x′]. Let σ′ be any environment that

maps all variables to non-⊥ values, and agrees with σ on FV (s) ∪ {x′}. Since A⊥[[s]]σ′ 6=
A⊥[[s[x := x′]]]σ′, we can conclude that A[[s]]σ′ 6= A[[s[x := x′]]]σ′. If A |= s = t,

noting that x does not occur in t, we would have A |= s[x := x′] = t, contradicting

A[[s]]σ′ 6=A[[s[x := x′]]]σ′. Therefore, it must be the case that A 6|= s = t.

Corollary 5.12. The following algebras are disjunctively closed, but their liftings are not:

— The {0, 1,+, ∗}-algebra N = (N,K) with the evident interpretation.

— The {6,∪,∩}-algebra (Set,K), where the carrier consists of sets over some unspecified

infinite type.

Proof. The equation (x ∗ 0) = 0 is valid in the first; the equation (x ∩6) =6 is valid

in the second.

Corollary 5.13. The full continuous type hierarchy over the result of lifting the following

algebras is completely axiomatized by (β), (η) and the equational theory of the (unlifted)

algebra:

— The {0, 1,+}-algebra N = (N,K) with the evident interpretation.

— The {nil, append, 〈0〉, 〈1〉, . . . }-algebra (NatList,K), where the carrier is the lists over the

naturals, 〈i〉 is interpreted as the singleton list constructor, and append is interpreted

as the list appending function.

— The {∪,∩}-algebra (Set,K), where the carrier consists of sets over some unspecified

infinite type.
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6. Finitely collapsing algebras

Disjunctive closedness is sufficient, but not necessary, for completeness of the combined

theories. The {0, succ, pred}-algebra (N,K) with the evident interpretation provides one

counterexample: the terms x, 0, and (succ (pred x)) are all pairwise unequal in the model,

but any environment that distinguishes (succ (pred x)) from x must assign zero to x.

Clearly such an environment does not distinguish x and 0. Nevertheless, the full type

hierarchy over this algebra is completely axiomatized by (β), (η) and the equational theory

of this algebra. What makes the algebra special is its limited signature, consisting only of

unary or nullary symbols. We call such a signature a unary signature. We prove a general

completeness theorem for unary signatures in this section:

Let Σ be a unary signature. Let M be any Σ-model with enough first-order

functions, with induced Σ-algebra B = (B,K), where B is infinite. Suppose, for

every gι→ι ∈ Σ and every element a ∈ B, we have B[[g]]−1(a) is finite. Then the

equations (β), (η) and the equational theory of B completely axiomatize equality

between mixed terms in M.

Clearly, the {0, succ, pred}-algebra above satisfies the condition. This allows us to conclude

that, for any complete equational axiomatization E of the algebraic equations valid in

the algebra, the full type hierarchy over this algebra is completely axiomatized by (β), (η)

and E.

The technical details of this theorem require some definitions. If A is a set and g is a

function from A to A, we say g is finitely collapsing if g−1(e) is always finite for every

element e ∈ A. Equivalently, g is finitely collapsing if g(S) is infinite for every infinite

S ⊆ A. In this section we only consider unary-signature algebras in which the carrier set is

infinite and every operator is finitely collapsing. Such algebras are called finitely collapsing

unary algebras. In such algebras, the following lemma shows that defined operators are

finitely collapsing too.

Lemma 6.1. Finitely collapsing unary functions over a set A are closed under composition.

Finally, to simplify the presentation, we extend the definition of meaning function of

an algebra A = (A,K) to algtermsΣ,{fι→ι→ι},X . Suppose σ is a function from variables of

type ι to elements of A, and from fι→ι→ι to an element of the set-theoretic function space

[A → A → A]. If t ∈ algtermsΣ,{f},X , we define A[[t]]σ in the evident way, using σ to

interpret f. More precisely, the definition of the meaning function is

A[[xι]]σ = σ(xι)

A[[f t1 t2]]σ = (σ(f)A[[t1]]σ A[[t2]]σ)

A[[cσ t1 . . . tn]]σ = (K(cσ)A[[t1]]σ . . .A[[tn]]σ),

which applies to all terms in algtermsΣ,{f},X .

Our goal is to prove the following result:

Let Σ be a unary signature, and A be a unary, finitely collapsing algebra. Let

E = Th(A), and suppose t1, t2 ∈ algtermsΣ,{f},X , where X is a set of variables of
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type ι. If t1 6=E+{f} t2, there is an environment σ with domain X ∪ {f} such that

A[[t1]]σ 6=A[[t2]]σ.

The strategy is to construct the environment σ by induction on the structure of t1 and

t2. The statement must be strengthened, however. To gain some insight, consider the case

when t1 = C1[f s1 s2], t2 = C2[f s3 s4], C1[x], C2[x] ∈ algtermsΣ,X , and C1[x] =E C2[x].

Without loss of generality, we may assume that C1[x] = C2[x] (we call this C[x]), as well

as that s1 6=E+{f} s3. By the induction hypothesis, there is an environment σ such that

A[[s1]]σ 6=A[[s3]]σ. Since C[x] may be a trivial term, to conclude that A[[t1]]σ 6=A[[t2]]σ

we need to guarantee the following condition.

Condition 1. σ(f) is a ‘pairing function’ that maps distinct inputs to different outputs.

With this assumption, a =A[[f s1 s2]]σ 6=A[[f s3 s4]]σ = b. However, A[[C[x]]][x 7→ a]

might be equal to A[[C[x]]][x 7→ b]; to avoid this, we need to add one more condition.

Let Def(t) be the set of unary functions defined in t; for instance,

Def(g1(g2(f x g3(y)))) = {h1, h2, h3, h4}
where h1(a) = A[[g1(g2(x))]][x 7→ a], h2(a) = A[[g3(x)]][x 7→ a], h3(a) = A[[g1(x)]][x 7→ a]

and h4(a) =A[[g2(x)]][x 7→ a]. Then we get the following condition.

Condition 2. For any h ∈ Def(t1) ∪ Def(t2), and a, b ∈ range(σ(f)), h(a) = h(b) iff a = b.

Thus, continuing our argument, knowing that a, b satisfy this property because they be-

long to range(σ(f)), we are assured thatA[[C[x]]][x 7→ a] is not equal toA[[C[x]]][x 7→ b].

To formalize the argument, we need a few definitions and lemmas. Fix a unary signature

Σ, a finitely collapsing Σ-algebra A = (A,K) with A an infinite set, an infinite set of

variables X all of type ι, and a variable fι→ι→ι. We use the notion of ‘partial environments’

for X∪{f}. A partial environment assigns values to some subset of X, and assigns a partial

binary function to f. A partial binary function g ∈ [A→ A→ A] is a partial finite pairing

function if the domain is finite, and for every two ordered pairs such that (a, b) 6= (c, d)

and (g a b) and (g c d) are both defined, (g a b) 6= (g c d). If g is a partial finite pairing

function, we write

dom(g) = {a ∈ A | there is a b ∈ A such that (g a b) or (g b a) is defined}.
A partial environment σ is said to be a PFPF-environment if σ(f) is a partial finite

pairing function. We use the symbols σ, σ0, . . . , σn, . . . to range over PFPF-environments.

A PFPF-environment σ′ extends a PFPF-environment σ if:

— dom(σ) ⊆ dom(σ′),
— for all variables x ∈ X such that x ∈ dom(σ), σ(x) = σ′(x), and

— for the distinguished binary function variable f, σ(f) ⊆ σ′(f).

A partial environment enables us to ‘expand’ the constructed environment at induction

steps. The meaning function [[·]] acting on algtermsΣ,{f} can be defined exactly as total

environments. The reader should note that the function is partial; that is, the meaning of

certain terms may not be defined because of the partiality of the environment.

Let F be a finite set of finitely collapsing functions over A. We say S ⊆ A is F-rigid if

for every g ∈ F , g � S is injective. For an F-rigid set S , we say that an element d ∈ A− S
is F-compliant with S if S ∪ {d} is F-rigid.
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Lemma 6.2. Suppose F is a finite set of finitely collapsing unary functions over A. For

every finite F-rigid set S , there are cofinitely many elements F-compliant with S .

Proof. Let S be a finite F-rigid subset of A. Consider the set

U = {b ∈ A | g(b) = g(s) for some g ∈ F, s ∈ S}.
Note that for any given g ∈ F and s ∈ S , there are only finitely many b’s such that

g(b) = g(s); this follows from the fact that g is finitely collapsing. Thus, because S and F

are finite, U must be finite. Thus, A−U is infinite. Clearly, for any d ∈ A−U, S ∪ {d} is

F-rigid.

Lemma 6.3. Let F be a finite set of finitely collapsing unary functions over A, and let K

be a finite subset of A. Let σ be a PFPF-environment such that range(σ(f)) ∩ K = 6
and range(σ(f)) ∪ K is F-rigid. Let t ∈ algtermsΣ,{f},X such that A[[t]]σ is undefined.

Then there is a PFPF-environment σ′ extending σ such that range(σ′(f)) ∪ K is F-rigid,

range(σ′(f)) ∩K =6, A[[t]]σ′ is defined, and A[[t]]σ′ 6∈ dom(σ′(f)).

Proof. The proof is by induction on the structure of t.

— t is algebraic. Then t has at most one free variable, say x. Choose σ′ = σ[x 7→ a], where

a is such thatA[[t]][x 7→ a] 6∈ dom(σ(f)). There must be such an a becauseA is finitely

collapsing. Note that range(σ′(f)) = range(σ(f)). Clearly, range(σ′(f)) ∪ K is F-rigid

and range(σ′(f)) ∩ K = 6, by hypothesis. Furthermore, σ′ is a PFPF-environment

extending σ.

— t = C[f s1 s2], where C[x] is an algebraic term. First, we define a new PFPF-

environment σ1 by considering two cases:

– If both A[[s1]]σ and A[[s2]]σ are defined (call them a and b), then since A[[t]]σ is

undefined we can infer that (σ(f) a b) is undefined. Let σ1 = σ.

– If one of A[[s1]]σ or A[[s2]]σ is undefined, then we may without loss of generality

assume that A[[s1]]σ is undefined. By the induction hypothesis, there is a PFPF-

environment σ0 extending σ such that a = A[[s1]]σ0 6∈ dom(σ0(f)), range(σ0(f)) ∩
K =6 and the set range(σ0(f)) ∪K is F-rigid. If A[[s2]]σ0 is defined, call it b and

let σ1 = σ0; otherwise, by the induction hypothesis, there is a PFPF-environment

σ1 extending σ0 such that b = A[[s2]]σ1 6∈ dom(σ1(f)), range(σ1(f)) ∩ K = 6 and

range(σ1(f)) ∪K is F-rigid. In either case, (σ1(f) a b) is undefined.

Let h be the function

h(c) =A[[C[x]]][x 7→ c].

Recall that C[x] is an algebraic term (i.e., contains no occurrences of f) with one

hole; thus, h is a finitely collapsing unary function by Lemma 6.1. Now, choose d

such that h(d) 6∈ dom(σ1(f)) ∪ {a, b}, d 6∈ range(σ1(f)) ∪ K , and d is F-compliant with

range(σ1(f))∪K – there must be such a d by Lemma 6.2, because h is finitely collapsing,

and range(σ1(f)) ∪K and dom(σ1(f)) ∪ {a, b} are finite. Let

σ′ = σ1[f 7→ (σ1(f) ∪ {(a, (b, d))})].
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Then range(σ′(f)) = range(σ1(f))∪{d}. Clearly, σ′ extends σ, range(σ′(f))∪K is F-rigid,

range(σ′(f)) ∩K =6, A[[t]]σ′ = h(d) is defined, and h(d) 6∈ dom(σ′(f)).

This completes the induction and hence the proof.

Lemma 6.4. Let F be a finite set of finitely collapsing unary functions over A. Suppose σ

is a PFPF-environment, A[[f s1 s2]]σ is undefined and range(σ(f)) is F-rigid. Then there

is a PFPF-environment σ′ extending σ such that range(σ′(f)) is F-rigid, and A[[s1]]σ′,
A[[s2]]σ′ are defined but A[[f s1 s2]]σ′ is undefined.

Proof. The proof is similar to the proof of Lemma 6.3.

We can now finally state the main lemma.

Lemma 6.5. Suppose t1, t2 ∈ algtermsΣ,{f},X . Let E = Th(A) and F = Def(t1) ∪ Def(t2).

Suppose t1 6=E+{f} t2. Then there exists a PFPF-environment σ such that

— A[[t1]]σ 6=A[[t2]]σ; and

— range(σ(f)) is F-rigid.

Proof. The proof is by induction on the sum of the sizes of t1 and t2. There are four

main cases:

1 t1 and t2 are algebraic terms. Since t1 6=E+{f} t2, there is a PFPF-environment σ,

which assigns to f the empty partial function, such that A[[t1]]σ 6= A[[t2]]σ. Clearly,

range(σ(f)) =6 is F-rigid.

2 t1 = C1[x] and t2 = C2[f s1 s2], where C1[x] and C2[x] are algebraic terms. Let a′
be any element of A, and let σ0 = [x 7→ a′] and a = A[[t1]]σ0. Note that σ0 is a

PFPF-environment, and range(σ0(f)) = 6 is F-rigid. By Lemma 6.4, there is a σ1

extending σ0 such that range(σ1(f)) is F-rigid, A[[s1]]σ1 = a1, and A[[s2]]σ1 = a2, and

(σ1(f) a1 a2) is not defined. Pick b 6∈ range(σ1(f)) such that A[[C2[x]]][x 7→ b] 6= a and

range(σ1(f)) ∪ {b} is F-rigid; we know such a b must exist by Lemma 6.2, because

range(σ1(f)) is finite and F-rigid, and

h(d) =A[[C2[x]]][x 7→ d]

is a finitely collapsing unary function (Lemma 6.1). Let σ be the extension of σ1 with

σ(f) = σ1(f) ∪ {(a1, (a2, b))}.
Clearly, A[[t1]]σ 6=A[[t2]]σ and range(σ(f)) ∪ {b} is F-rigid.

3 t1 = C1[f s1 s2], t2 = C2[f s3 s4] and C1[x] 6=E C2[x], where C1[x] and C2[x] are

algebraic terms. Let

h1(d) =A[[C1[x]]][x 7→ d] and h2(d) =A[[C2[x]]][x 7→ d],

which are finitely collapsing unary functions by Lemma 6.1. Choose some c such

that h1(c) 6= h2(c). Repeatedly applying Lemma 6.3, taking K = {c}, we obtain a

PFPF-environment σ1 such that A[[si]]σ1 = ai, for i = 1, . . . , 4, c 6∈ range(σ1(f)) and

range(σ1(f)) ∪ {c} is F-rigid. At least one of A[[t1]]σ1 or A[[t2]]σ1 is undefined. Up to

symmetry, there are two cases:
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— Both A[[t1]]σ1 and A[[t2]]σ1 are undefined. There are two subcases:

– (a1, a2) 6= (a3, a4). By Lemma 6.2, we can choose a′ ∈ A that is F-compliant

with range(σ1(f)). Since h1, h2 are finitely collapsing unary functions, there are

cofinitely many b′ such that h1(a′) 6= h2(b′). By Lemma 6.2, the set of elements

F-compliant with range(σ1(f)) ∪ {a′} is cofinite. Therefore, we can pick b′ 6= a′
such that the set range(σ1(f)) ∪ {a′, b′} is F-rigid and h1(a′) 6= h2(b′). Let σ be

the extension of σ1 with

σ(f) = σ1(f) ∪ {(a1, (a2, a
′)), (a3, (a4, b

′))}.
Clearly, A[[t1]]σ 6=A[[t2]]σ and range(σ(f)) is F-rigid.

– (a1, a2) = (a3, a4). Let σ be the extension of σ1 with

σ(f) = σ1(f) ∪ {(a1, (a2, c))}.
Since c 6∈ range(σ1(f)), σ(f) is a PFPF-environment. Note that range(σ(f)) is

the same as range(σ1(f)) ∪ {c}. Clearly, A[[t1]]σ 6= A[[t2]]σ and range(σ(f)) is

F-rigid.

— A[[t1]]σ1 = a and A[[t2]]σ1 is undefined. By Lemma 6.2, there are cofinitely

many elements F-compliant with range(σ1(f)). Since h2 defines a finitely collapsing

function, there are cofinitely many b′ such that h2(b′) 6= a. Thus, we can pick b′
such that b′ is F-compliant with range(σ1(f)), b′ 6∈ range(σ1(f)) and h2(b′) 6= a. Let

σ be the extension of σ1 with argument f, and

σ(f) = σ1(f) ∪ {(a3, (a4, b
′))}.

Clearly, range(σ(f)) is rigid and A[[t1]]σ 6=A[[t2]]σ.

4 t1 = C1[f s1 s2], t2 = C2[f s3 s4] and C1[x] =E C2[x], where C1[x] and C2[x] are

algebraic terms. Let

h(d) =A[[C1[x]]][x 7→ d].

Then either s1 6=E+{f} s3 or s2 6=E+{f} s4. Without loss of generality, assume the former.

By the induction hypothesis, there is a σ1 such that a1 = A[[s1]]σ1 6= A[[s3]]σ1 =

a3, and range(σ1(f)) is F-rigid. If A[[t1]]σ1 and A[[t2]]σ1 are both defined, then

A[[f s1 s2]]σ1 = a′ 6= b′ = A[[f s3 s4]]σ1, since σ1(f) is a PFPF-environment. Further-

more, since range(σ1(f)) is F-rigid, a′, b′ ∈ range(σ1(f)) and h ∈ Def(t1) ∪ Def(t2), we

can conclude that h(a′) 6= h(b′). Thus, A[[t1]]σ1 6=A[[t2]]σ1.

However, if either or both A[[t1]]σ1,A[[t2]]σ1 are undefined, by Lemma 6.3 there is

a PFPF-environment σ2 extending σ1 such that range(σ2(f)) is F-rigid, A[[si]]σ2 are

defined, for i = 1, . . . , 4, and at least one of A[[t1]]σ2,A[[t2]]σ2 is undefined. Without

loss of generality, assume thatA[[t2]]σ2 is undefined. LetA[[si]]σ2 = ai, for i = 1, . . . , 4.

There are two cases:

— A[[t1]]σ2 = a: By Lemma 6.2, we can choose b′ satisfying the following properties:

b′ is F-compliant with range(σ2(f)), b′ 6∈ range(σ2(f)) and h(b′) 6= a. Let σ extend

σ2 such that

σ(f) = σ2(f) ∪ {(a3, (a4, b
′))}.
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Note that A[[t1]]σ 6=A[[t2]]σ and range(σ(f)) is F-rigid.

— A[[t1]]σ2 is undefined: Then (σ2(f) a1 a2) is undefined. We can choose a′, b′ satis-

fying the following properties: a′ 6= b′, a′, b′ 6∈ range(σ2(f)), range(σ2(f))∪ {a′, b′} is

F-rigid, and h(a′) 6= h(b′). Define

σ(f) = σ2(f) ∪ {(a1, (a2, a
′)), (a3, (a4, b

′))}.
Clearly, range(σ(f)) is F-rigid and A[[t1]]σ 6=A[[t2]]σ.

This concludes the case analysis and hence the proof.

Theorem 6.6. Let Σ be a unary signature. LetM be a Σ-model that has enough first-order

functions and the induced algebra B. Suppose B is finitely collapsing. Then the theory

consisting of (β), (η) and Th(B) completely axiomatizes equality of mixed terms in M.

Proof. Suppose t1 = t2, an equation between closed terms, is not provable from the

equations (β), (η) and E = Th(B). By Lemmas 4.5 and 4.7, there is a term V such that

— (V t1) and (V t2) are of base type.

— βη-nf(V t1) and βη-nf(V t2) are in algtermsΣ,{f},X , where X is a set of variables of type

ι.

— βη-nf(V t1) 6=E+{f} βη-nf(V t2).

By Lemma 6.5, there is a PFPF-environment σ′ that distinguishes βη-nf(V t1) and

βη-nf(V t2). There is a total extension f+, in M, to the partial function σ′(f). We can

extend σ′ to a total environment by setting σ(f) = f+. Thus, M 6|= t1 = t2.

Corollary 6.7. The full type hierarchy over the {0, succ, pred}-algebra N = (N,K), with

the evident interpretation, is completely, axiomatized by (β), (η) and Th(N).

The condition of being finitely collapsing is not a necessary condition for the com-

pleteness theorem stated in Theorem 6.6. Consider the algebra A with carrier the set of

natural numbers and whose signature Σ contains exactly one symbol f, where f on even

numbers is zero, and f on odd numbers adds two. The subalgebra B of A consisting

of the odd natural numbers is finitely collapsing. We show in the following theorem that

the full type hierarchy over A is completely axiomatized by (β), (η) and Th(B). Since B
satisfies no non-trivial algebraic equation over Σ, Th(A) = Th(B). It follows that (β), (η)

and Th(A) completely axiomatize equality of mixed terms in the full type hierarchy.

Theorem 6.8. Let Σ be a unary signature. LetM be the full type hierarchy over Σ-algebra

A. SupposeA contains a subalgebra B that is finitely collapsing. Then the equations (β),

(η) and Th(B) completely axiomatize equality between mixed terms in M.

Proof. Let M and N be closed, mixed terms where M |= M = N. Let M′ be the full

type hierarchy over B. Let R be the logical relation over M and M′ induced by the

partial function from A to B with domain B ⊆ A that is the identity on this domain. This

logical relation relates the meanings of the symbols in Σ, since B is a subalgebra of A.

As Friedman has shown in Friedman (1975), R is a partial function at all types (in his

phrase, a partial homomorphism). Combining this fact with the fundamental theorem of

logical relations (Statman, 1985b; Mitchell, 1996), it follows that for closed terms M and
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N, M |= M = N implies M′ |= M = N. Since B is finitely collapsing, by Theorem 6.6,

(β), (η) and Th(B) prove M = N.

7. Discussion

We have considered the problem of equational reasoning about mixed terms in Σ-

models, using βη and the Σ-algebraic equations valid in the model. The main theorem,

Theorem 4.10, which states that the equational theory of mixed terms in a model is

completely determined by the structure of the first-order types, is difficult to apply. We

have proposed two sufficient conditions, and given a few corollaries.

Our theorems can be used in combination with a theorem of Breazu-Tannen (Breazu-

Tannen, 1988) for deducing decidability of various theories.

Theorem 7.1 (Breazu-Tannen). Suppose E is a set of equations over the signature Σ and

t1, t2 ∈ termsΣ,X . Then there exist finite sets of algebraic equations S1, . . . , Sn, effectively

computable from t1 = t2, such that t1 =βηE t2 iff for some i every equation in Si is provable

using E.

In particular, if E is decidable, then so is βηE. To see how to apply this theorem, consider

the {0, succ,+, ∗}-algebra (N,K) with the evident interpretation. In Section 5 we proved

that this algebra is disjunctively closed. By our completeness theorem for disjunctively

closed algebras, it follows that the full type hierarchy over this algebra is completely

axiomatized by (β), (η) and the equational theory of this algebra. An axiomatization of

this theory is given by the equations

x+ y = y + x x ∗ y = y ∗ x
x+ (y + z) = (x+ y) + z x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ (y + z) = x ∗ y + x ∗ z 0 ∗ x = 0

0 + x = x 1 ∗ x = x

Henkin (1977) shows that this is a complete axiomatization of validities in this algebra.

Note that every term in the theory is provable equal to a multinomial, and two multinomi-

als are provably equal iff up to rearrangements of summands they are identical. Therefore,

this is a decidable theory. Invoking Theorem 7.1, it follows that equality of mixed terms

in the full type hierarchy is decidable. In a similar fashion, one may show the following

corollary.

Corollary 7.2. The equational theories of the full type hierarchies over the following

algebras are decidable:

— The {succ, pred}-algebra (N,K) with the evident interpretation.

— The {0, succ, pred}-algebra (Z,K) with the evident interpretation.

— The {6,∪,∩}-algebra (Set,K), where the carrier consists of sets over some unspecified

infinite type.

The full continuous type hierarchies over the following flat, continuous algebras have

decidable equational theories:

— The lifted {0, 1,+}-algebra N⊥, where N = (N,K) with the evident interpretation.
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— The lifted {∪,∩}-algebra S⊥, where S = (Set,K), where the carrier consists of sets

over some unspecified infinite type.

Some of the technical results above raise further questions. First, can one generalize

Lemma 4.7 to fι→ι instead of fι→ι→ι? Simpson (1995) gives a counterexample for the

case when the algebraic signature is empty, but one can ask the question for specific,

non-empty signatures. Second, Theorem 4.9 essentially shows that if an equational theory

of closed, first-order terms is sufficient for proving facts about closed, second-order terms,

one can lift the first-order reasoning to all types. One can then ask whether this holds at

other orders.

We have left a number of other, more important problems open as well. For instance,

are there other easily characterized settings in which completeness holds? That is, are

there other corollaries of Theorem 4.10 along the lines of Theorems 6.6 and 5.6? Also,

can one extend the results to richer type systems? It appears that the extension to

languages with products is easy. For sums, on the other hand, even though there is a

complete axiomatization of the simply-typed λ-calculus with coproducts (Dougherty and

Subrahmanyam, 1995), extending our results to this calculus is likely to be challenging.

Likewise, we believe that results along our lines for type systems with second-order

polymorphism (Girard, 1971; Reynolds, 1974) would be interesting and challenging as

well. Finally, can one extend the results to call-by-value languages? One approach might

be to take Moggi’s computational λ-calculus (Moggi, 1991) as the starting point rather

than (β) and (η).
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