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Abstract
The validity of network observations is sometimes of concern in empirical studies, since observed net-
works are prone to error and may not represent the population of interest. This lack of validity is not just a
result of randommeasurement error, but often due to systematic bias that can lead to themisinterpretation
of actors’ preferences of network selections. These issues in network observations could bias the estimation
of common network models (such as those pertaining to influence and selection) and lead to erroneous
statistical inferences. In this study, we proposed a simulation-based sensitivity analysis method that can
evaluate the robustness of inferences made in social network analysis to six forms of selection mecha-
nisms that can cause biases in network observations—random, homophily, anti-homophily, transitivity,
reciprocity, and preferential attachment. We then applied this sensitivity analysis to test the robustness of
inferences for social influence effects, and we derived two sets of analytical solutions that can account for
biases in network observations due to random, homophily, and anti-homophily selection.
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1. Introduction
Thoughmuch progress has beenmade inmodeling social network data, the validity of the network
observations is still relatively a blind spot in available methods for social network analysis (Steglich
et al., 2010; Moffitt, 2001). Most or all currently available statistical analysis methods assume that
network observations are perfectly accurate and fully representative, while we know that social
network data are sometimes unreliable and prone to error, especially network relations (Marsden,
1990; 2005). And this lack of validity in network observations is not just a result of simple random
measurement errors, but often due to systematic bias that can lead to the misinterpretation of
actors’ preferences for network selection. Furthermore, these biases in network observations can
directly translate into an omitted variable problem, and as such are related to statistical inferences.
As a consequence, these biases in observed networks could directly decrease the validity of a study
and limit the inference we can draw from the data, such as those pertaining to social influence
effects.

In this study, we employ a sensitivity analysis framework (Rosenbaum & Rubin, 1983; Frank
et al., 2013; VanderWeele, 2011) for making inferences when there are potential biases in the net-
work observations. First, we will discuss the sources of the biases in the network observations and
how they relate to the misinterpretation of various selection mechanisms; next, we will introduce
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the idea of simulation-based sensitivity analysis through the rewiring of observed network rela-
tions and consider different mechanisms for rewiring that represent some of the sources of biases;
after that we will apply our proposed methods to quantify the robustness of inferences for social
influence effects and give specific examples; finally, we will derive two sets of analytical solutions
for sensitivity analysis of social influence effects under random, homophily and anti-homophily
rewiring.

1.1 Bias in networks andmisinterpretation of selectionmechanisms
The validity of network observations is often of concern in empirical studies, since observed net-
works are prone to error and may not represent the population of interest. This misinterpretation
can occur for various reasons as we described below.

1.1.1 Observation errors
While measurement errors exist in most social science data, the accuracy of observations in
network relations is especially of concern (Marsden, 1990). The most common self-reported mea-
sures of network relations are known to suffer from cognitive bias (Freeman et al., 1987; Feld
& Carter, 2002). For example, Freeman et al. (1987) show that peoples’ perception of social ties
will be biased toward the routine and frequent interactions. And other studies have shown that
self-reported measures of network relations often are biased toward self, group structure, balance,
routine interaction, etc. (Marsden, 2005). Studies by Bernard, Killworth, and Sailer (Killworth &
Bernard, 1976; Bernard & Killworth, 1977; Bernard et al., 1981, 1982) showed that there are dis-
cernable differences between social ties data obtained via questionnaires and behavioral records
obtained via various methods including diaries, monitoring of radio communication, observers,
or electronic monitoring. Later studies have found a higher (80%) agreement between network
questions in surveys and interviews (Pitts & Spillane, 2009). However, in general, observation
errors in network relations are often a mixture of both random measurement errors and system-
atic bias that is driven bymany known or unknownmechanisms in actors’ preferences for network
selection.

1.1.2 Mismatch between the frequency of interaction and functions of the network
Even when network observations are 100% accurate, the validity of the observations still depends
on the functions of the network. For example in an information flow network, the frequency
of interaction does not necessarily represent how much or how valuable certain informa-
tion/resources are that flow through a tie, as weak ties are known to be more useful in terms of
delivering novel information than strong ties (Granovetter et al., 1973). Furthermore, the observed
frequency/importance of interaction is often not the same as that which actors actually perceive
(Casciaro, 1998). For example, in the context of influence, actors may perceive more influence
from those with whom they share similar interests but have less frequent interactions, compared
with those with whom they share less similar interests but talk more often. This is because it is
more likely that similar actors share the same identity and find it easier to talk to homophilous
others, and in contrast, they find it more difficult and thus have to spend a longer time communi-
cating with dissimilar others while actually conveying less information (Byrne, 1971; Mark, 1998;
Carley, 1991). As a result, the frequency of interaction may not be the best representation of an
actor’s perception of the importance of their alters in terms of influence.

1.1.3 Sampling bias
The observed networks may not represent the population of interest. This can occur both on the
network level and actors’ level. On a network level, the observed network can be seen as one real-
ization from a set of possible networks that are generated by a single underlying stochastic process
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(Robins et al., 2007). It is possible that the one realization we observe does not represent the actual
underlying preferences of actors in the network. At the actor level, if the actors in the study sample
have preferences for network selection which are different than those in the population of inter-
est, the observed network will be biased and will not represent the population network of interest
as well.

Due to the potential sources of bias in network measures described above, by using the
observed networks in an analysis, actors’ actual preferences for interactions are often misinter-
preted. And this misinterpretation may have a direct impact on issues related to both internal
validity—whether the observed relationship is confounded by the unobserved mechanisms that
drive network selection, and external validity—whether the observed network best represents the
population of interest. Furthermore, these issues in observed network observations will likely
bias the estimation of many common network models, such as those pertaining to influence and
selection, which subsequently lead to erroneous inferences.

The purpose of this study is not to propose methods that can reduce the error in network obser-
vations or decrease the bias in the estimation process, rather, we follow a sensitivity analysis
framework and investigate how bias in network observations can affect estimation and inferences
from network models. Specifically, we propose that instead of stating that an inference drawn
from the study is invalid because of unobserved bias in network relations, one should really ask
howmuch bias, and what kind, must have occurred in the network data to invalidate an inference.
We focus on sensitivity analyses of network relations for several reasons:

1. Recent work in sensitivity analysis recognizes the near impossibility of controlling for all
potential confounders but find a productive scientific path forward by quantifying howmuch
and in what ways the assumption of no omitted variables must be violated to invalidate an
inference. The approach proposed in this paper follows this stream of research (Rosenbaum
& Rubin, 1983; Frank, 2000; Pan & Frank, 2004; VanderWeele, 2011), as biases in network
observations can essentially be framed as an omitted variable bias problem,. However, it is
unique in this context because we will consider how the omitted variable could change as
a result of network selection, and, correspondingly, how strong the various mechanisms of
selection must be to invalidate an inference.

2. Sensitivity analysis of the bias in network relations helps to frame external validity issues
in social network studies. As network data usually contain the whole population of interest,
external validity issues are rarely of concern. But as the observed network can also be treated
as one realization from a set of possible networks that are generated by the same underly-
ing stochastic process (Robins et al., 2007), a natural question to ask is to what extent the
observed network can represent the underlying stochastic process. So, sensitivity analysis
helps to express the validity of network observations into an external validity issue. While
the sampling bias of observed networks can also be translated into a sample replacement
problem (Frank et al., 2013), social network data usually have unique characteristics like
non-random sampling and dependent observations (Manski, 1993; ?) that poses additional
challenges for sensitivity analysis and calls for alternative methods that account for unique
features of network relations.

3. The impact of some forms of observation errors/bias in network relations (missing data for
example) on network outcomes has been studied (Robins et al., 2004; Kossinets, 2006), and
relevant methods to detect, replace missing networks, as well as inferences from incom-
plete network have been developed (Guimerà & Sales-Pardo, 2009; Handcock & Gile, 2010;
Huisman, 2009). However, the impact of many other forms of errors/bias in network rela-
tions is rarely considered and largely unknown. Thus, we contribute to the literature by
exploring various mechanisms that can generate observation errors in network relations and
their impact on inferences through a sensitivity analysis framework.
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2. Theoretical framework
Biases in the observed networks inevitably lead to misinterpretations of network selection mecha-
nisms, and as a consequence, the estimation of many other processes is also biased (e.g. influence).
Hence, a natural question to ask is “had the misinterpretations of the network selection been cor-
rected, would the statistical inferences based on the corrected network still hold?” Our sensitivity
analysis builds on this logic by constructing a network including counterfactual data that is gen-
erated by the “corrected” network selection mechanism and assesses if the inference still holds on
the counterfactual network.1 In particular, we calculate how different the network including the
counterfactual data has to be from the observed network to invalidate an inference and use that
as an indicator of the robustness of an inference. Specifically, we assess what percentage observed
ties would have to be replaced by ties that are generated by a specific selectionmechanism to inval-
idate the inference. For example, if one suspects that the true network is more homophilous than
the observed network, one can assess to what extent observed ties would have to be replaced with
more homophilous ties to invalidate the inference. Next, we formalize this approach by describing
the replacement of ties in terms of a rewiring of the network, as well as the various mechanisms
for rewiring.

2.1 Sensitivity analysis through rewiring networks
The sensitivity analysis we propose is a combination of analytical and simulation-based
approaches that operate through the rewiring of a currently observed network. Our basic model
assumes that actors control their outgoing ties (e.g. who they nominate as friends) and can rewire
their ties based on various mechanisms given the observed network. The out-degree of each actor
is kept as a constant, which assumes the bias/error in network relations lies in misreporting but
not under-reporting or over-reporting. With these assumptions, we can express the magnitude of
bias in terms of rewiring and assess the extent to which errors/bias in network structure can bias
estimates and ultimately alter inferences. This approach allows us to ground analysis in theory
and to test specific forms of bias existing in network relations as represented in actors’ preferences
for network selection. This is different from previous research in which errors are assumed to
be random, or ties are rewired at random (e.g. the Quadratic Assignment Procedure (QAP) test
(Krackhardt, 1987)). Through this framework, we want to contribute to the discussion of validity
in studies of social network analysis by focusing on the strength of evidence relative to theoretically
plausible alternatives, which is the key to making a strong inference in any field of science (Platt,
1964). Essentially we are asking (1) “what percentage of network relations have to be rewired to
invalidate an inference?” and (2) “what forms of bias must exist in network relations to invalidate
a current inference?”2

2.2 Mechanisms for rewiring
While there are many potential mechanisms that drive an interaction between actors (thus also
bias in observed networks), we follow a long tradition of “structure versus agency” (Emirbayer &
Goodwin, 1994), or as Mayhew (1980) referred to as “structuralist” and “individualistic” views of
the world. Structure, representing the social-organizational structure in which actors are embed-
ded, limits the choices and opportunities available for network ties. Agency represents the capacity
of actors to act freely, based on their own preferences and intentions. Studies have found that both
can play an important part in shaping humans’ interactions, sometimes reinforcing each other
(Kossinets &Watts, 2009). In our proposedmethods, we include some widely studied factors from
both views of the world. However, for the purpose of sensitivity analysis, we also want to separate
each mechanism and explore how our inferences are sensitive to the specific form of bias resulting
from eachmechanism. Thus, in our sensitivity analysis, we only rewire an observed network based
on one mechanism at a time. Next, we will introduce six mechanisms that can possibly bias net-
work observations, and we categorize them into either agency or structure. Specifically for agency
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we have random, homophily, and anti-homophily; for structure we interpret it as the network
structure, in the form of reciprocity, transitivity, and preferential attachment.

2.2.1 Agency rewiring
For agency rewiring, first we have random rewiring. In this case, we assume that there are random
measurement errors in an observed network. As is similar to the QAP test (Krackhardt, 1987), we
rewire network ties randomly among nodes, but we preserve nodes’ out-degree. In our application,
the purpose is not to simulate the distribution of estimates in a random network, but to assess the
extent to which an inference is robust to random errors in networks. Each time we rewire a certain
percentage of observed ties randomly and re-estimate our model of interest. We repeat this many
times to get an average estimate and compare with a pre-set threshold (e.g., associated with p
value < .05) for inference. For example, if we assume 30% of our network observations are due to
random error, we would randomly rewire 30% of observed ties. We do this repeatedly over a series
of simulation rounds. Then we compare our average estimates with a pre-set threshold to decide
if our inference is altered (for the analytic expressions this is analogous to taking an expectation).

Next we have homophily rewiring. Homophily, or “birds of a feather flock together,” refers to a
pervasive phenomenon that people tend to seek similar others for interaction (McPherson et al.,
2001). It is an important network-generating mechanism that sometimes produces clustered net-
works or segregation (Schelling, 1971). Here particularly we focus on the agency of actors and refer
to this type of behavior as a result of “choice homophily” as noted in Kossinets & Watts (2009),
who attribute the choice of similar other as results of individual, psychological preferences. This
is different from “induced homophily,” where the choice of similar others is a consequence of
the homogeneity of structural opportunities for interaction, as in neighborhoods, schools, work-
places, and friendship circles (Feld, 1981). Thus, in our model, as actors rewire their ties, they tend
to choose other actors who are most similar to themselves without being subject to structural con-
straints. And here, homophily can be broadly defined to be based on various attributes available in
the observed data. For example, in a study of social influence effects examining best friends’ smok-
ing behavior on actors’ smoking behavior (An, 2015), if we suspect that networks of interest are
more homophilous based on smoking behavior than observed, we can rewire a certain percentage
of observed ties based on homophily. That is, we rewire a certain percentage of observed ties to
connect actors with those of most similar smoking behavior who are not previously connected,
re-estimate our model and compare average estimates with a pre-set threshold to decide if our
inference is altered.

For agency, we also have anti-homophily rewiring. Given the importance of homophily, it
would make sense to consider the opposite of homophily for both practical and theoretical rea-
sons. Practically, given the predominant evidence that homophily exists in networks, a natural
question to ask is “what if the observed network is too homophilous?,” or how to account for
errors/bias that result from processes counter to homophily. Theoretically, anti-homophily, or
“heterophily” in a broader sense, reflects the tendency for people to interact with dissimilar or
diverse others. People might choose to interact with non-homophilous others to seek new infor-
mation or perspectives (Granovetter, 1973). There is agency in heterophily as heterophilous ties
are mostly formed voluntarily (Rivera et al., 2010), and they are found to be more and more com-
mon over time in situations such as team building and scientific collaboration (Moody, 2004; Page,
2007). Thus, it would make sense to include anti-homophily as an alternative network-generating
mechanism and possible source of bias. In our model, if we need to assess how our inference
is robust to “anti-homophily,” we would rewire a certain percentage of observed ties to connect
actors with the most dissimilar attributes of concern, then re-estimate our model and compare
average estimates with a pre-set threshold to decide if our inference is altered.
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2.2.2 Structure rewiring
Next we turn to a set of structural mechanisms that account for errors/bias in networks. The
first is transitivity, or “triadic closure,” which refers to the phenomenon that people tend to
become friends with the friends of their friends (Rivera et al., 2010). This is found to be true
across various social settings such as corporate board members (Davis et al., 2003), Hollywood
movie actors (Watts, 1999), Broadway musical artists (Uzzi & Spiro, 2005), inventors (Fleming
et al., 2007), and scientists (Newman, 2001b). There are various motivations for transitivity
(increased encounter opportunities—Granovetter, 1973), decreased risk and uncertainty (Burt &
Knez, 1995), and third-party introductions, with important implications for network structure.
For example, Jin, Girvan and Newman (2001) found that if a pair has more mutual friends, they
will have higher probability to meet, and the resulting network exhibits high levels of clustering
and strong community structure.

Thus, we include transitivity as an important source of bias and rewire networks based on
shared numbers of friends, updating a graph sequentially. For example, if we were to rewire certain
observed ties based on transitivity, we create an order list for the ties to be rewired, then we rewire
the first tie to the alter node who is not connected to the ego in the current graph but shares most
common friends3 with ego. Then we update the graph and recalculate the network measures (the
number of common friends shared by each pair in the updated graph), and do the same thing
for the second tie to be rewired, and so forth. In this way, the order of movement matters since
actors are more Markovian driven, and at the same time, it explores the whole space in terms
of simulation results. As an illustration, consider Figure 1(a) as our original network, which is
an unweighted random directed network without loops, where network size is 50 and density is
0.1. Figure 1(b) is one example of the resulting network if we rewire 100% of the ties based on
transitivity, which contains many more triads and exhibits a community structure.

Reciprocity represents bi-directional connections (if i selects j, j will also select i) in a directed
network. It has been found in friendship networks among students in various grade levels (Runger
& Wasserman, 1980; Mollica et al., 2003). Possible reasons for the occurrence of reciprocity
include people tending to like others who like them (Newcomb, 1956; Backman & Secord, 1959;
Sprecher, 1998; Montoya & Insko, 2008) and reciprocation relative to a first advance of friendship
(Goffman, 1963; Leifer, 1988). Reciprocity also has important implications for network structure
such as stabilizing networks over time (Rivera et al., 2010). In our model, we include reciprocity
as an alternative mechanism for rewiring, following similar sequential steps as in the transitivity
case, except that actors will rewire their out-going ties to create more reciprocated ties. Figure 1(c)
is one example of the network if we rewire 100% of the ties of the network in Figure 1(a) based on
reciprocity, thus creating many more reciprocated relations. Figure 1(c) appears less dense than
Figure 1(a) because the ties that are present are mostly reciprocated indicating two-way flows
within pairs who interact, but fewer pairs who interact.

Finally, we consider preferential attachment. Preferential attachment states that social con-
nections tend to accrue to those who already have them, also known as “rich get richer” or
the “Matthew Effect” (Merton, 1968). Preferential attachment may be driven by people’s ten-
dency to use others’ degree as a proxy for their own fitness, status, power, etc. (Zerubave et al.,
2015). Empirical and simulation results suggest that preferential attachment can generate a core-
periphery structure or power-law degree distribution in networks (Barabási & Albert, 1999;
Newman, 2001), which is found in many settings such as online friendship networks, scientific
collaborations, and sexual contact networks. (Golder et al., 2007; Moody, 2004; Newman, 2001;
Liljeros et al., 2001). For the reasons above, we include preferential attachment as a possible mech-
anism for rewiring that accounts for errors/bias in networks. The steps we use to rewire are the
same as for previous mechanisms, except that actors will now rewire to others who possess a
higher in-degree for the current graph. Figure 1(d) is one example of the network if we rewire
100% of the ties of the network in Figure 1(a) based on preferential attachment, thus generating
a clear core-periphery structure (Borgatti & Everett, 2000).4
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Figure 1. Structural rewiring example. (a) Original network. (b) 100% ties rewired based on transitivity. (c) 100% ties rewired
based on reciprocity. (d) 100% ties rewired based on preferential attachment.

3. Applying sensitivity analysis to inferences for social influence effects
After establishing our sensitivity analysis method and various rewiring mechanisms, in this sec-
tion we give some specific examples on how it can be applied to empirical data. Note that although
the sensitivity analysis method we propose could potentially be applied to many different types of
models, we are particularly interested in making inferences from social influence models for sev-
eral reasons: (1) Social influence effects, which are defined as the propensity of an individual to
behave in some way varying with the prevalence of that behavior in the network neighbors of
the individual (Manski, 1993), have received considerable attention and have been widely stud-
ied (Kandel, 1978; Marsden & Friedkin, 1993; Doreian, 2001; An, 2011) as they have potential
implications for various issues in different fields such as health behavior (e.g. obesity and smok-
ing), information diffusion, and teacher practice changes, among others (Christakis & Fowler,
2007; 2008, Valente, 2005, 1996; Frank et al., 2004). (2) There are many challenges in identifying
social influence effects, as they are often confounded with other unobserved variables (individ-
ual attributes, social-environmental factors, etc), especially homophily in the selection process

https://doi.org/10.1017/nws.2020.36 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.36


80 R. Xu and K. A. Frank

(Aral et al., 2009; Frank & Xu, 2020; Shalizi & Thomas, 2011). Many sophisticated statistical mod-
els have been developed to identify social influence effects (Christakis & Fowler, 2007; Steglich
et al., 2010; An, 2011), including the more recent development in the latent space adjusted
approach (Xu, 2018). However, in general, there is still debate about the validity of these methods
and more research need to be done (VanderWeele & An, 2013; Lyons, 2011; Frank & Xu, 2020).
Sensitivity analysis has been proposed as an alternative to deal with the impact of unobserved vari-
ables (Rosenbaum & Rubin, 1983; Frank, 2000 2004; VanderWeele, 2011). However, the validity
of observed network ties has not been carefully considered. In this context, our proposed meth-
ods can contribute to questions such as how inference about social influence effects is robust to
errors/bias in networks generated by various mechanisms (e.g., homophily). (3) While how net-
work errors affect other outcomes (e.g., centrality) have been studied (Martin & Niemeyer, 2019),
the robustness of social influence effect to network errors is less explored. As outcomes and identi-
fication of social influence effects are critically contingent upon the network structure or to whom
individuals are exposed (Friedkin & Johnsen, 1999), it is vital to investigate how inference of social
influence effects is robust to alternatives or possible errors in the measurement of network ties.5

3.1 Theoretical derivation of the direction of the bias due to various selectionmechanisms
In this section, we formally frame the bias/error in network observations as an omitted variable
problem and provide some algebraic intuition for the direction of the bias of the coefficient for
social influence effects under different selection mechanisms.

Within a given social network, where node represents person and a directed tie from A to B
represents A nominates B as a network partner (e.g. friendship nomination), we assume people
are influenced by those that they nominate. One form of models that characterizes the influence
process can be written as (assume predictors are centered about their grand mean so we ignore
the constant term).

Y = β1Yt−1 + β2Wt−1Yt−1 + ut (1)

here Y represents an n× 1 vector of the behavior of nodes, andWt−1 represents an n× n weight-
ing matrix based on observed network ties that pertain to the relationships or ties that occur
between t − 1 and t. The error term ut is uncorrelated with Wt−1Yt−1. For example, Y can rep-
resent teachers’ teaching practices, and W represents the weighting matrix based on teachers’
interactions with one another. We choose this form of linear model over other alternatives as
they have greater flexibility to include covariates, and we only use lagged endogenous variables,
which to us is a more realistic assumption that there is some lag in the transmission of influence
effects. In addition, such formulations require less strict conditions for identification of social
effects (Manski, 1993). It has been shown to be able to recover the true influence effect under
reasonable assumptions (Frank & Xu, 2020).6 This influence model has its origin in Friedkin &
Johnsen (1990) (see other discussions in Leenders, 2002; Valente, 2005; An, 2011). The model
and its variation has been applied to study many different phenomena, such as health policy
implementation (Valente et al., 2019), physician technology use (Zheng et al., 2010), new product
diffusion (Iyengar et al., 2011), adolescent smoking status (An, 2015), and teachers’ professional
practices (Frank et al., 2013; Penuel et al., 2002; Sun et al., 2013).

For the ease of notation, assume that W does not change over time, and there is bias/error in
network observations of teachers’ interactions so that the true network is

W̃ =W + E (2)

where we represent the network change based on unobserved mechanism as E. So that

Yt = β1Yt−1 + β2W̃Yt−1 + u− β2EYt−1 (3)
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where u− β2EYt−1 is the new unobserved error term. Next, we estimate this new model and
derive the bias of β2.

For ease of notation, let Ỹ = W̃Yt−1. Using the Frisch–Waugh–Lovell theorem, we can get

β̂2 = (Ỹ ′MYt−1 Ỹ)−1Ỹ ′MYt−1Yt = β2 + (Ỹ ′MYt−1 Ỹ)−1Ỹ ′MYt−1 (u− β2EYt−1) (4)

whereMYt−1 = I − Yt−1(Y ′
t−1Yt−1)−1Y ′

t−1. Define bias as β̂2 − β2, since u is uncorrelated with all
the independent variables, substituting M into equation above we have

bias= β̂2 − β2 = −β2(Ỹ ′MYt−1 Ỹ)−1Ỹ ′EYt−1 + (Ỹ ′MYt−1 Ỹ)−1Ỹ ′Yt−1(Y ′
t−1Yt−1)−1Y ′

t−1EYt−1
(5)

This result has several implications:

(1) For random rewiring in networks,

bias= β̂2 − β2 = −β2(Ỹ ′MYt−1 Ỹ)−1Ỹ ′EYt−1 (6)

as Yt−1 and EYt−1 are uncorrelated. And as Ỹ = W̃Yt−1 = (W + E)Yt−1, which is positively
correlated with EYt−1, so bias < 0 if β2>0, bias > 0 if β2 < 0. This means with random
rewiring β̂2 will be biased toward 0 when compared with β2.

(2) For homophily rewiring, Yt−1 and EYt−1 will be positively correlated for β2 > 0, so the sec-
ond part of the bias term is larger than 0. As a result, intuitively for the same % of ties rewired
as the random case, β̂2 under homophily rewiring should have a smaller attenuation than β̂2
under random rewiring.

(3) For anti-homophily rewiring, Yt−1 and EYt−1 will be negatively correlated for β2 > 0, so the
second part of the bias term is smaller than 0. As a result, intuitively for the same % of ties
rewired, β̂2 under anti-homophily rewiring should have a larger attenuation than β̂2 under
random rewiring.

(4) For other structure rewiring, the direction of bias is generally unknown.

Thus, we frame the bias/error in network observations as an omitted variable problem and
show the direction of the bias under different selection mechanisms. Next we illustrate this by
performing our sensitivity analysis on a simulated dataset.

3.2 Simulation example: applying sensitivity analysis to quantify the robustness of an inference
for social influence effects

Next, we use a simulated dataset to illustrate how to apply our proposed methods to empirical
data to test the robustness of an inference about social influence effects to various errors/bias in
networks. (i) We start by estimating a lagged linear-in-mean social influence model and acquire
model estimates. (ii) Next, we calculate thresholds to alter our inference for each parameter, using
the sensitivity analysis method described in Frank et al. (2013). (iii) Assuming that there are
errors in the observed networks, we then rewire the observed networks based on various mecha-
nisms (random, homophily, anti-homophily, transitivity, reciprocity, and preferential attachment,
respectively) repeatedly and re-estimate the influence model to obtain new estimates for each
parameter. (iv) Finally, we compare the average of the new estimates in step (iii) with the thresh-
olds set in step (ii) to decide what percentage of networks (and under what mechanisms) need to
be rewired to invalidate our inference.

Specifically, we construct a simulated network dataset using a random unweighted directed
network without self-loops, where network size is 50 and density is 0.2. This allows us to see
how influence estimates change with various rewiring mechanisms over the full spectrum of
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Table 1. Regression results from the influence model example

Estimates Standard error t-value Pr

β̂1 0.41834 0.07563 5.532 1.37e–06∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β̂2 0.83638 0.28675 2.917 0.00541∗∗

**p < .01; ***p < .001.

network change (i.e. 0% to 100%). We used a linear-in-mean variation of model (1) to represent
the influence process:

yit = β0 + β1yit−1 + β2

∑
wijt−1yjt−1∑
wijt−1

+ eit (7)

where yit represents the behavioral outcome of interest for person i at time t, wijt−1 is a binary
variable representing whether person i has a network relationship with person j at time t − 1
(1 if yes and 0 otherwise), and eit is an error term following a normal distribution with mean
0 and standard deviation of 0.2. Together,

∑
wijt−1yjt−1∑
wijt−1

represents the average behavior of person
i’s network partners. For example, this model could characterize how teacher’s teaching practice
is influenced by other teachers he/she has interaction with. To identify social influence effects, we
simulated the influence process over two time points and estimated the influence model as in (7);
estimated parameters are shown in Table 1. The ratio between the estimate of the prior term (β1)
and the estimate of the network exposure term (β2) is comparable to what have been reported in
several empirical studies, including one that studies how teachers’ computer uses are influenced
by colleagues (Frank et al., 2011). Furthermore, we calculate the thresholds to alter the inference
for each parameter, following Frank et al. (2013).

To explore how our estimates are robust to various errors in the observed network, we then
rewire a different percentage of existing ties (varying from 10 to 90%) based on the following:

(1) Random selection: For each tie that is randomly chosen to be rewired, the new tie is chosen
randomly from the unestablished ties;

(2) Homophily: For each tie that is randomly chosen to be rewired, the new tie is chosen from
the unestablished ties with the smallest value of |yit−1 − yjt−1|;7

(3) Anti-homophily: For each tie that is randomly chosen to be rewired, the new tie is chosen
from the unestablished ties with the largest value of |yit−1 − yjt−1|;

(4) Transitivity: For each tie that is randomly chosen to be rewired, the new tie is chosen from
others whom the actor is not previously connected to but share most common friends with;

(5) Reciprocity: For each tie that is randomly chosen to be rewired, the new tie is chosen such
that the connections are mutual;

(6) Preferential attachment: For each tie that is randomly chosen to be rewired, the new tie is
chosen such that the higher an actor’s existing in-degree, the more likely the actor is to be
chosen to replace a previous tie.

Note that in each case existing ties to be rewired are selected randomly and actors preserve their
out-degree. For each configuration, we simulate 500 times and re-estimate model (7) after each
simulation, and for each simulation, we record the estimates for β1, β2 and correlation between
the prior term and the network exposure term. And we compare the mean estimates with the
pre-set threshold to determine if our inference should be invalidated.

Results are shown in Figure 2. Figures 2(a) and 2(b) plots the average estimates of prior and net-
work exposure vs % of ties rewired, respectively. Black lines in each graph represent the threshold
to alter the inference (as defined by statistical significance for alpha= .05), which is calculated
as in Frank et al. (2013). Figure 2(a) shows that the estimates of the prior are generally not influ-
enced by variousmechanisms of rewiring, except when rewiring by homophily or anti-homophily.
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Figure 2. Impact of rewiring on the estimates.

Nevertheless, estimates of the prior are all above the threshold, and the inference is robust to all
mechanisms of rewiring.

Estimates of network exposure effects exhibit more interesting patterns. Figure 2(b) shows that
20% of the ties need to be rewired randomly to invalidate the inference of a social influence effect.
And as expected, estimates for the social influence effects suffer from a larger attenuation under
anti-homophily rewiring; the inference is invalidated even if only 10% of ties are rewired. There
is a smaller attenuation of the estimates for the social influence effect under homophily rewiring
with 30% of the ties needing to be rewired to invalidate the inference. For other structural types
of rewiring (transitivity, reciprocity, preferential attachment), around 20–30% of the ties need
to be rewired to invalidate the inference, and the attenuation is smaller than random rewiring
but larger than homophily rewiring. Note that a calculation from Frank et al. (2013) indicates
that 31% of the estimates of social influence effects have to be due to bias in order to invali-
date the inference. Thus, in this example, social influence effects are less robust to errors/bias in
networks than simply replacing cases with null hypothesis where the influence effect is assumed
to be 0.

4. Analytic solutions for sensitivity analysis of the social influence effects
While these simulation-based sensitivity analysis methods are intuitive and easy to implement,
they still have several limitations: (1) Sometimes these simulation-based methods are compu-
tationally expensive, especially when the network size is large or when there are many actors’
characteristics/variables of interest; (2) to fully understand the behavior/performance of these sen-
sitivity analysis methods under various conditions, it would be helpful if we could derive some
sort of closed form/analytic solutions, such as solutions that can be represented as functions of
observed networks and correlations between variables.

Thus, in this section, we develop analytical solutions for our sensitivity analysis of the social
influence effects based on three rewiring mechanisms, namely, random rewiring, homophily
rewiring, and anti-homophily rewiring.

For simplicity, we assume that there are only three variables in our influence model as in (7):
dependent variable Y , a prior term Z, and a network exposure term X (although it is possible to
extend this analysis to models with more covariates). And the key relationship of interest is the
relationship between network exposure X and dependent variable Y .
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Figure 3. Analytical solution framework.

To determine the impact of different rewiring mechanisms on the inferences about network
influence, we follow a partial correlation framework as in Frank (2000). The robustness of an
inference is essentially decided by the partial correlation between the dependent variable Y and
the network exposure term X, conditional on other covariates, such as rXY|Z , as shown in Figure 3.
By rewiring the network relations, we are only creating a new exposure term X without changing
the correlation between the dependent variable Y and the prior term Z, given by rYZ . As a result,
we only need to consider how rewiring changes the correlation rXY between the network exposure
and the dependent variable, and rXZ , the correlation between network exposure and prior term
(or other covariates), and how these new correlations generate the new partial correlation r∗XY|Z .

In this section, we will derive two sets of analytical solutions. The first set is called “node-level
rewiring,” where for (1− p)∗ 100% of ties rewired, we assume (1− p)∗ 100% of nodes rewire all of
their ties. The second set is called “tie-level rewiring,” where for (1− p)∗ 100% of ties rewired we
assume ties rewired are distributed evenly across all nodes. Note that the first set is more intuitive,
and the second set is more technically challenging, but the operations of our simulations are in
principle more similar to the second set of analytical solutions. And as we will show later, the
analytical solutions for tie-level rewiring will have a better fit to raw correlations rXY , rXZ after
rewiring, but in terms of goodness of fit to partial correlations between network exposure and the
dependent variable rXY|Z (which is the sufficient statistic determining the robustness of inference),
the two sets of analytical solutions perform equally well.

Finally, note that in this study, we have not derived analytical solutions for structural rewiring
such as transitivity rewiring, preferential attachment rewiring, or reciprocity rewiring. This is
because in these mechanisms we need to know the full network and exact distributions of the
variables of interest (rather than their correlations) to calculate the new partial correlations. We
leave this topic for future work.

The rest of the section is organized as follows: first, we derive the analytical solutions for node-
level rewiring where we assume a certain percentage of actors rewires all their ties while others
rewire none. Next we derive the analytical solution for tie-level rewiring where we assume ties
rewired on average are evenly distributed across all actors. Finally, we will give some simulated
examples to examine how well the two derived analytical solutions fit the simulation results.

4.1 Analytical solution for node-level rewiring
In the first set of analytical solutions, we assume only that certain actors in the network have
errors in their networks while other actors’ network is perfectly measured. For example, in a net-
work with evenly distributed degrees, if there are (1− p)100% of the observed ties that need to
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be rewired due to errors/biases, we assume that there is zero accuracy in observed networks for
(1− p)100% of the actors, all of whom have to rewire all their networks. And for the remaining
p∗100% actors, their networks are perfectly measured and are 100% accurate. In empirical cases,
this may not be realistic, unless some actors identify the wrong primary social group, misread the
network question, or deliberately sabotage the study by reporting all their network relations incor-
rectly. However, for the derivation of an analytical solution, this is more intuitive and analytically
accessible. In addition, the imperfect approximation of rXY and rXZ might cancel out in the cal-
culation of partial correlation, and it is possible that we can still achieve approximately consistent
estimates of the partial correlation, which is the sufficient statistic for statistical inference. Thus,
we derive analytical solutions for random, homophily, and anti-homophily rewiring under this
assumption.
Random rewiring. Assume that we randomly rewire (1− p)∗100% of ties in the observed net-
work, the variance of network exposure will not change, and the new raw correlation between the
network exposure X and a dependent variable Y after rewiring −r∗XY would become (assume all
variables are grand mean centered)

r∗XY = p ∗ 1
n
∑

XY√
var(X)var(Y)

+ (1− p)H0 = prXY + (1− p)∗0= prXY (8)

Here, H0 is the hypothesized correlation between the exposure after rewiring and Y . For the
rewired ties, the new correlation is zero from random rewiring. For (1− p)∗100% actors their
rXY has changed to 0, while for p∗100% actors who have not rewired their ties, their rXY remain
unchanged. The new correlation becomes a weighted average between rXY and 0.

For a similar reason, the new raw correlation between the network exposure X and the prior
term Z after rewiring −r∗XZ would become a weighted average between rXZ and 0:

r∗XZ = p ∗ 1
n
∑

XZ√
var(X)var(Z)

+ (1− p)H0 = prXZ + (1− p)∗0= prXZ (9)

After deriving the two new raw correlations after rewiring, we now derive the key partial corre-
lation r∗XY|Z after rewiring (Z represents the prior here, which can also include other covariates)
have the form:

r∗XY|Z = r∗XY − r∗XZrYZ√
1− r∗2XZ

√
1− r2YZ

= prXY − prXZrYZ√
1− p2r2XZ

√
1− r2YZ

(10)

Note rYZ is unchanged as rewiring does not change the correlation between dependent variable
and the prior/covariate. As this shows, we can now represent the new partial correlation in terms
of p (the percentage of ties retained) and the original correlations in the observed data.

To understand the robustness of inference, we need to know one more thing—the thresh-
old of inference. In this case, the threshold of partial correlation rXY|Z − r# (based on statistical
significance) can be calculated as

r# = t#√
t#2 + res.df

(11)

where t# is the critical value of t used to make an inference, and res.df represents the residual
degrees of freedom.

Thus to invalidate the observed inference, we need to randomly rewire (1− p)% of ties in order
to get

r∗XY|Z = prXY − prXZrYZ√
1− p2r2XZ

√
1− r2YZ

= r# (12)
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To write p as function of other variables, we have

p=
r#
√
1− r2YZ√

r#2r2XZ(1− r2YZ)+ (rXY − rYZrXZ)2
(13)

Homophily rewiring. Next we derive an analytical solution for homophily rewiring. Assume that
homophily is based on the prior (this can also extend to homophily based on a prior and other
covariates), and for ties, that rewired people will rewire to others who engage in exactly the same
behavior. The underlying assumption here is that the network is big and diverse enough so that
everyone can find others who engage in exactly the same behavior.

Then for a large network where everyone can find perfectly homophilous others based on the
prior, to rewire (1− p)∗100% of ties, we assume (1− p)∗100% of nodes rewire all their ties (so that
on average (1− p)∗100% of the total ties are rewired), and the new raw correlation between net-
work exposure X and the prior term Z after rewiring −r∗XZ becomes a weighted average between
rXZ and 1.

r∗XZ =

1
n

(
np∑
1
XZ +

n(1−p)∑
1

X′Z
)

√
var(X)var(Z)

=
p
np

np∑
1
XZ + 1− p

n(1− p)

n(1−p)∑
1

X′Z
√
var(X)var(Z)

= prXZ + (1− p)∗H0 = prXZ + (1− p)∗1 (14)

Here, X′ represents the new network exposure after rewiring, and for the (1− p)∗100% of nodes
who rewire to perfectly homophilous others based on the prior, their new correlation between
network exposure and prior term, as stated in H0, should be 1.

For a similar reason, the new raw correlation between network exposure X and the dependent
variable Y after rewiring −r∗XY would become a weighted average between rXY and rYZ .

r∗XY =

1
n

(
np∑
1
XY +

n(1−p)∑
1

X′Y
)

√
var(X)var(Y)

=
p
np

np∑
1
XY + 1− p

n(1− p)

n(1−p)∑
1

YZ)
√
var(X)var(Y)

= prXY + (1− p)∗rYZ

(15)

Note that here for the (1− p)∗100% of nodes who rewire all their ties to perfectly homophilous
others, their network exposure becomes exactly the same in their prior term. As a result, for
these people, the new correlation between network exposure X and the dependent variable Y after
rewiring becomes the correlation between the prior term Z and the dependent variable Y − rYZ .

After deriving the two new raw correlations after rewiring, we now derive the key partial
correlation r∗XY|Z after rewiring, which has the form:

r∗XY|Z = r∗XY − r∗XZrYZ√
1− r∗2XZ

√
1− r2YZ

= (prXY + (1− p)∗rYZ)− (prXZ + (1− p))∗rYZ√
1− (prXZ + (1− p))2

√
1− r2YZ

(16)

As this shows, we can now represent the new partial correlation in terms of p (the percentage of
ties retained) and the correlations in the observed data.

Using r# as defined in (11), to invalidate the observed inference, we need to rewire
(1− p)∗100% of ties based on homophily in order to get

r∗XY|Z = (prXY + (1− p)∗rYZ)− (prXZ + (1− p))∗rYZ√
1− (prXZ + (1− p))2

√
1− r2YZ

= r# (17)
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To write p as function of other variables, we have

p= 2(rXZ − 1)(r2YZ − 1)r#2

(rXY − rXZrYZ)2 − r2XZr
2
YZr#2 + r2XZr#2 + 2rXZr2YZr#2 − 2rXZr#2 − r2YZr#2 + r#2

(18)

Anti-homophily rewiring. Next, we derive an analytical solution for anti-homophily rewiring.
Assume that anti-homophily is based on the prior (this can also be extended to other covariates),
and for ties, that rewired people will rewire to others who hold the most dissimilar behavior/belief.

As before, to rewire (1− p)∗100% of ties, we assume that (1− p)∗100% of nodes rewire all
their ties (so that on average (1− p)∗100% of the total ties are rewired), and the new raw correla-
tion between network exposure X and the prior term Z after rewiring −r∗XZ becomes a weighted
average between rXZ and −1:

r∗XZ =

1
n

(
np∑
1
XZ +

n(1−p)∑
1

X′Z
)

√
var(X)var(Z)

=
p
np

np∑
1
XZ + 1− p

n(1− p)

n(1−p)∑
1

X′Z
√
var(X)var(Z)

= prXZ + (1− p)H0 ≈ prXZ − (1− p) (19)
x′ represents the new network exposure after rewiring and for the (1− p)∗100% of nodes who
rewire to themost dissimilar others based on the prior, and their new correlation between network
exposure and the prior term, as stated in H0, should approximately be −1. Note that for each dif-
ferent distribution of the prior term, the correlation r∗xz after rewiring will be different. Assuming
prior is a binary variable (e.g. whether actors smoke or not), and when all actors connect to oth-
ers who have different behavior to themselves, the correlation between network exposure and the
prior would be −1.

For a similar reason, the new raw correlation between network exposure X and the dependent
variable Y after rewiring −r∗XY would become a weighted average between rXY and −rYZ :

r∗XY =

1
n

(
np∑
1
XY +

n(1−p)∑
1

X′Y ′
)

√
var(X)var(Y)

=
p
np

np∑
1
XY + 1− p

n(1− p)

n(1−p)∑
1

(− Z)Y ′

√
var(X)var(Y)

= prXY − (1− p)rYZ

(20)
Note that here for the (1− p)∗100% of nodes who rewire all their ties to themost dissimilar others,
their new network exposure term and their prior term have a perfect negative correlation of −1.
As a result, for these people, the new correlation between network exposure X and the dependent
variable Y after rewiring becomes −rYZ and the correlation between the prior term Z and the
dependent variable Y with a negative sign.

After deriving the two new raw correlations after rewiring we now derive the key partial
correlation r∗XY|Z after rewiring, which has the form:

r∗XY|Z = (prXY − (1− p)rYZ)− (prXZ − (1− p))∗rYZ√
1− (prXZ − (1− p))2

√
1− r2YZ

(21)

As this shows, we can now represent the new partial correlation in terms of p (the percentage of
ties retained) and the correlations in the observed data.

Again, using r# as defined in (11), to invalidate the observed inference, we need to randomly
rewire (1− p)% of ties to obtain

r∗XY|Z = (prXY + (1− p)∗rYZ)− (prXZ + (1− p))∗rYZ√
1− (prXZ + (1− p))2

√
1− r2YZ

= r# (22)
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To write p as a function of other variables we have

p= −2(rXZ + 1)(r2YZ − 1)r#2

(rXY − rXZrYZ)2 − r2XZr
2
YZr#2 + r2XZr#2 − 2rXZr2YZr#2 + 2rXZr#2 − r2YZr#2 + r#2

(23)

4.2 Analytical solutions for tie-level rewiring
The previous derivation is based on the assumption that we rewire all ties for (1− p)∗100% of the
nodes. However, in our simulation we are essentially rewiring (1− p)100% of ties evenly across
all nodes. Here we give a simulation example where we randomly rewire 30% of the total ties
from a random network. Figure 4 shows the distribution of the percentage of the ties rewired on
an individual level. As this shows, the percentage of ties rewired for each individual varies from
10% to 80%, but on average each node has rewired 30% of its original ties. Compared with the
assumptions in the analytical solutions of the node-level rewiring, the assumption that rewiring
occurs evenly across all of the nodes is more reasonable, as network measurements for each actor
can be imperfect for various reasons, such as bias toward self, group structure, balance, and rou-
tine interaction (Marsden, 2005). So in this section, we derive a new set of analytical solutions by
assuming that rewiring occurs evenly for each node. This approach would have more similarity
to the empirical situation and the actual simulation, but is more difficult to derive. Here we pro-
vide some intuition for this scenario. Note that here we only derive the analytical solutions for
homophily rewiring and anti-homophily rewiring, since in random rewiring the result will not be
affected much by the level at which we rewire the ties, as long as we simulate a sufficient number
of times. See Appendix A (Supplementary Material) for the details of derivation.

4.3 Validation
In this section, we provide three simulation examples to evaluate howwell our analytical solutions.

In each example, we construct a simulated network dataset where network size is 100 and the
density of ties= 0.1. As above, the network is a random unweighted directed network without
self-loops, and the influence process is as follows:

yit = β0 + β1yit−1 + β2

∑
wijt−1yjt−1∑
wijt−1

+ eit (24)

where yit represents the behavioral outcome of interest, wijt−1 is a binary variable representing
a network relationship, and eit is an error term following a normal distribution with mean 0
and standard deviation 0.2. We simulated the influence process based on model (24) for two
time points. In the three simulated examples, we fix the correlation between the prior and the
dependent variable (rYZ) to be ∼0.6, the correlation between the prior and the network exposure
(rXZ) to be 0.1∼ 0.2, but vary the correlation between network exposure and the dependent vari-
able (rXY ) to be > 0.4 (strong influence/inference), 0.3 (moderate influence/inference), and < 0.2
(weak influence/inference).

To explore how our estimates are robust to various errors in the observed network, we then
rewire a different percentage of existing ties (varying from 10 to 90%) based on (1) random
selection; (2) homophily, that is, actors will rewire to unestablished ties with the smallest value
of |yit−1 − yjt−1|; or (3) anti-homophily, that is, actors will rewire to unestablished ties with the
largest value of |yit−1 − yjt−1|.

In each configuration, we simulate 1000 times and calculate the mean of (1) the new raw corre-
lation rXZ between the prior and the network exposure after rewiring; (2) the new raw correlation
rXY between network exposure and the dependent variable after rewiring; and (3) the partial cor-
relation rXY|Z between network exposure and the dependent variable after rewiring. We then
compare the simulation results with the two sets of analytical solutions below.
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Figure 4. Distribution of percent of the ties rewired.

Figure 5. Strong influence—random rewiring example.

Example 1 is a case when there is strong influence/inference. rXY > 0.4. Random rewiring
results are shown in Figure 5.

The graphs from left to right, respectively, show (1) raw correlations rXY between network
exposure and the dependent variable after rewiring, (2) raw correlations rXZ between the prior
and network exposure after rewiring; and (3) partial correlations rXY|Z between network exposure
and the dependent variable after rewiring. The X axis shows the percentage of ties rewired. The
Y axis shows the values of correlation. Blue dots are the results from simulations (each point
is a result of 1000 simulations), the green line is the result from the analytical solutions for the
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Figure 6. Strong influence—homophily rewiring example.

Figure 7. Strong influence—anti-homophily rewiring example.

Figure 8. Moderate influence—random rewiring example.

node-level rewiring, and the red line is the result from the analytical solutions for the tie-level
rewiring. The black line represents the threshold to change the inference. The same description
applies to all the graphs set out below. Homophily rewiring results are shown in Figure 6, where
anti-homophily results are shown in Figure 7.

Example 2 is a case when there is moderate influence/inference, rXY ≈ 0.3. As before random
rewiring results are shown in Figure 8, homophily rewiring results are shown in Figure 9, and
anti-homophily rewiring results are shown in Figure 10.
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Figure 9. Moderate influence—homophily rewiring example.

Figure 10. Moderate influence—anti-homophily rewiring example.

Figure 11. Weak influence—random rewiring example.

Example 3 is a case when we have weak influence/inference, rXY < 0.2. As before random
rewiring results are shown in Figure 11, homophily rewiring results are shown in Figure 12,
anti-homophily rewiring results are shown in Figure 13.

As the three examples show, the analytical solutions for node-level rewiring do not fit well to
the actual raw correlations rXY and rXZ after rewiring, but the analytical solutions for the tie-level
rewiring fit quite well to the raw correlations rXY and rXZ from the simulations, mainly due to the
fact that the calculation of the tie-level rewiring approximates the actual simulation process better.
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Figure 12. Weak influence—homophily rewiring example.

Figure 13. Weak influence—anti-homophily rewiring example.

However, in terms of determining the robustness of inference, both sets of analytical solutions
are equally useful and fit very well with the partial correlation rXY|Z calculated from the simula-
tion, except for anti-homophily rewiring, where the analytical solution overestimates the partial
correlation to some extent. One possible reason could be that for the anti-homophily rewiring,
we assume the new correlation rXZ between network exposure and prior after rewiring is −1. But
the magnitude of the actual correlation is usually smaller than 1, depending on the distribution of
the prior term. As a result, our analytical solutions for anti-homophily rewiring are likely to pro-
vide an upper bound for the actual partial correlation of interest. In Figure S1 in the Appendix C
(Supplementary Material), we give another simulation example where the prior term is a binary
variable, so that the new correlation between network exposure and the prior after rewiring should
be −1. As Figure S1 shows (Supplementary Material), in this case, most of the bias is eliminated
and the analytical solutions fit very well with the simulation results.

Finally, note that in the homophily rewiring, we assume that actors can rewire to others who
hold exactly the same behavior. This generally requires a large network where everyone can find
perfectly homophilous others. It should not be surprising that the fit between the analytical solu-
tion and simulation would be worse with a smaller size of the network, or higher density of ties,
in which cases the actors are forced to form ties with others who are different from themselves.
And indeed, examples (Figures S2 and S3) in Appendix D (SupplementaryMaterial) show a worse
fit between the analytical solution and homophily rewiring when we reduce the network size or
increase the density of the network.
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5. Discussion and conclusion
This study proposes a set of simulation-based sensitivity analysis methods that can test the robust-
ness of inferences made in social network analysis to six forms of selection mechanisms that can
cause biases in network observations, namely, random, homophily, anti-homophily, transitivity,
reciprocity, and preferential attachment. Specifically, we show how these approaches are useful in
testing the robustness of inferences for social influence effects. Besides, we have also derived two
sets of analytical solutions for sensitivity analysis methods that can account for selection mech-
anisms based on random, homophily, and anti-homophily. Examples show that the analytical
solutions generally fit well to the simulation results under reasonable assumptions.

The principle under which these sensitivity analysis methods operate closely relate to the sen-
sitivity analysis literature that account for the omitted variable problem, as biases in the network
observations can essentially be framed as an omitted variable problem. However, themethods pro-
posed in this paper are unique in this context because they consider the specific properties of the
omitted variable and how it could change as a result of network selection and, correspondingly,
how strong the various mechanisms of selection must be to invalidate an inference.

The simulation-based sensitivity analysis methods developed in this chapter can be easily
adapted and applied to various study designs (e.g. observational studies and randomized experi-
ments) andmany different forms of network analysis, such as a one-mode selectionmodel (e.g. P2,
ERGM (Van Duijn et al., 2004; Robins et al., 2007)), bipartite graph analysis, and models that deal
with co-evolution between behavior and networks (SIENA (Snijders et al., 2007)). Nevertheless,
our focus has been on the robustness of inference in influence models, partly due to the wide
interest of behavioral outcomes under the network process. Our sensitivity analysis methods
essentially re-construct the network exposure terms by rewiring the observed interaction matrix
W, and different rewiring mechanisms have distinct implications for the network structure and
the distribution of the network exposure term, as follows.

1. Different agency rewiring (random, homophily, and anti-homophily) can create distinct dis-
tributions of network exposure. For example, random rewiring can create a network exposure
that is close to the overall mean of the actor’s prior belief/behavior distribution; homophily
rewiring (in the extreme) can create a network exposure that is exactly the same as the
actor’s prior belief/behavior distribution; and anti-homophily rewiring often creates a net-
work exposure with a polarized bimodal distribution, as actors seek most dissimilar others
in this case, and their network exposure will be clustered around those with most dissimilar
behaviors/beliefs.

2. Structural rewiring (transitivity, reciprocity, and preferential attachment) can create distinct
network structures. For example, if observed ties are completely rewired based on transitivity,
we would see a network with a strong community feature and local clustering; if observed
ties are completely rewired based on reciprocity we would see a network with fewer paths
but much more bi-directional interactions; finally, if observed ties are completely rewired
based on preferential attachment, we would see a network with a core-periphery structure or
a network with a power-law degree distribution.

Besides simulation-based sensitivity analysis methods, in this study, we have also developed
analytical solutions for random, homophily, and anti-homophily rewiring. However, it should
be noted that the motivation behind the analytical solutions in this study is not to replace
the simulation-based rewiring, but to better understand how simulation-based rewiring meth-
ods work and how they affect the inference of social influence effects in various scenarios.
Furthermore, the analytical solutions can help readers to locate a range of percent of ties to be
rewired when only some key statistics (instead of raw data) from a study is available, or when
it is computationally expensive to run though the whole range of percent of ties to be rewired
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in the simulation. In general, the goodness of fit between analytical solutions and simulation-
based rewiring depends on the observed network structure and the distribution of covariates of
interest (e.g. prior, individual characteristics such as gender, age, etc.), some of which have direct
sociological implications, as follows.

1. The analytical solution for homophily rewiring requires that actors rewire to perfectly
homophilous others, and this fits better to simulation results when we have a larger network,
as is plausible since actors are more likely to find similar others in a large social structure
with a lot of heterogeneity (Blau, 1977). In contrast, selection constraint is more salient in
smaller networks as actors’ choices will be more limited. And it will be even more difficult if
actors are seeking similar others on multiple dimensions (age, race, etc.). Furthermore, the
analytical solution also fits better to simulation results when we have a sparser network, as
for each individual it is easier to find and maintain a small homogenous social group than a
large one.

2. The analytical solution for anti-homophily rewiring assumes that the new correlation
between network exposure and the prior term after rewiring should approximately be −1.
This assumption is more likely to hold when the distribution for actors’ prior belief/behavior
is binary or bimodal. For example, if actors seek dissimilar others based on whether they
smoke or not (1 yes, 0 no), the resulting correlation after rewiring between network exposure
and the prior term should be exactly −1. Or if the variable of interest is a continuous mea-
sure of political ideas/belief and actors’ prior orientation are clustered around two polarizing
political ideas/beliefs, the resulting correlation after rewiring between network exposure and
the prior term should be approximately −1 as well because actors can fulfill their selection
preferences. As a result, the analytical solution for anti-homophily rewiring will fit better with
simulation results in cases where there are two ideologically polarized groups.

Finally, note that there are several limitations in this study which introduce future avenues of
research.

1. In our study, we represent network relations using binary variables, either there is a relation
or there is no relation. However, there are many other representations of network relations,
using descriptors such as ranks and weights. The sensitivity analyses developed in this study
can be extended to include these cases.

2. We have only applied our sensitivity analyses to inference for social influence effects.
Although our simulation-based sensitivity analyses can potentially be applied to any case
using network data, in our study, we only give examples for the inference for social influ-
ence effects, and our analytical solutions also only apply to one type of social influence
effect. Future research may explore the analytical solutions of the sensitivity analysis as
applied to other network outcome (e.g. centrality (Martin & Niemeyer, 2019)) and influence
models.

3. Our sensitivity analysis methods only deal with observed variables in networks, not unob-
served variables. For example, for the homophily and anti-homophily rewiring, our sensitiv-
ity analysis methods only apply to homophily/anti-homophily based on observed variables.
That is, our methods estimates and inferences are vulnerable to unobserved/confounding
variables, which are the focus of many other sensitivity analysis methods (Frank, 2000;
VanderWeele, 2011). For example, Frank (2000) characterized the strength of correlations
between the omitted variable and the exposure term and between the omitted variable and
the outcome necessary to change the inference. Potentially, this limits how useful our meth-
ods are in terms of testing the internal validity of the inference for social influence effects,
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since latent homophily/shared environmental factors are usually the biggest concerns. Some
other potential remedies include conducting randomized experiments, or utilizing latent
social positions and latent social distances generated from latent space models (Hoff et al.,
2002) to account for omitted variable bias due to latent homophily/shared environmen-
tal factors or observation error/sampling error in networks (Xu, 2018; Sweet et al., 2020).
Future research may explore how randomized network experiments or latent space adjusted
approaches perform and how they interact with the sensitivity analysis methods proposed
here.

4. Our current methods only focus on rewiring of misreported ties in network studies and we
assume the out-degree for each person is constant. Although misreported ties are important
concerns and can occur due to various reasons (e.g. bias due to cognitive priming and satis-
ficing in multiplex network measurements, misreport of aspirational ties (Berndt &Murphy,
2002; Pustejovsky & Spillane, 2009)), unreported or underreported ties are generally more
prevalent in network studies. Future research may explore how to generate unreported ties
based on various mechanisms mentioned in this paper and their implications for statistical
inferences.

Nevertheless, we consider the sensitivity analyses developed here to be important steps in terms
of understanding how misinterpretation of actors’ preferences that are manifest in observed net-
works can affect the robustness of inferences. And they are also useful as empirical tools that
allow us to quantify the robustness of our inferences by devising clear and testable alternative
hypotheses, which are the keys to making strong inference in any field of science (Platt, 1964).
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Notes
1 The idea is similar to replacing unsampled population as in Frank &Min (2007), where ties are the unit of analysis. In their
original cases, the estimate of interest based on ideal sample can be represented as β̂1 = (1− π)β̂ob

1 + πβ̂un
1 . However, what is

unique in our case is that the observed sample and unobserved sample are generally not independent. As a consequence, the
inference based on ideal sample is much more complicated than the weighted average of the estimates based on two samples
and thus less tractable.
2 In principle, our proposed methods are analogous to a community detection algorithm (Girvan & Newman, 2002) that
identifies edges with high betweeness (Freeman, 1977) that need to be removed to create separable components in the graph.
3 Our network is directed, but we define common friends as in an undirected graph to capture various definitions of transi-
tivity or triads. For details see Davis & Leinhardt (1972) on triad censuses, or Wasserman and Faust (1994, p 243) and Robins
et al. (2007).
4 Note that for random and homophily-based rewiring, the maximum percentage of network relations that can be rewired is
constrained by the density of the network, since observed ties must be rewired to different pairs. However, for structure-based
rewiring, there are no such constraints, and observed ties do not necessarily have to be rewired to different pairs, as actors
can choose whichever pairs maximize their utility.
5 This in principle is very similar to the case in Frank (2000) where he talked about the attenuation bias due to measurement
errors in confounding variables. Here we discuss how measurement errors in networks (and as a result in exposure terms)
can attenuate our inference.
6 Some have raised potential concerns for only modeling influence because it ignores the selection process occurring at
the same time which might bias the influence estimates (An, 2011). However, as Shalizi & Thomas (2011) showed that the
selection bias can be translated into an omitted variable bias problem. And Frank & Xu (2020) showed as long as we have
controlled for the confounding variable that affects both selection and influence, the true influence effect can still be identified
using model 1 or its equivalent (see also Xu, 2018).
7 Note that in empirical data, we can incorporate variables other than Y for rewiring based on homophily.
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