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By using a monotonic functional on a suitable matrix space, some new oscillation
criteria for self-adjoint matrix Hamiltonian systems are obtained. They are different
from most known results in the sense that the results of this paper are based on
information only for a sequence of subintervals of [t0, ∞), rather than for the whole
half-line. We develop new criteria for oscillations involving monotonic functionals
instead of positive linear functionals or the largest eigenvalue. The results are new,
even for the particular case of self-adjoint second-differential systems which can be
applied to extreme cases such as λmax[−

∫ ∞
t0

C(s) ds] = −∞.

1. Introduction

In this paper, we consider the following self-adjoint matrix Hamiltonian system

X ′(t) = A(t)X(t) + B(t)Y (t),

Y ′(t) = C(t)X(t) − AT(t)Y (t),

}
t � t0, (1.1)

where X(t), Y (t), A(t), B(t) and C(t) are n × n real continuous matrix functions
with B(t) = BT(t) > 0, C(t) = CT(t). Here and below, the transpose of matrix
M is denoted by MT and its positive definiteness is denoted by M > 0. In what
follows, we denote by S the subspace of all n×n symmetric matrices and by En ∈ S
the identity matrix.

A solution (X(t), Y (t)) of system (1.1) is said to be non-trivial if detX(t) �= 0
for at least one t ∈ [t0,∞) and a non-trivial solution (X(t), Y (t)) of (1.1) is said to
be prepared or self-conjugate if

XT(t)Y (t) − Y T(t)X(t) = 0, t � t0. (1.2)

System (1.1) is said to be oscillatory on [t0,∞) if there is a non-trivial prepared
solution (X(t), Y (t)) of (1.1) such that detX(t) vanishes at least once on [T, ∞) for
each T � t0. Otherwise, it is said to be non-oscillatory. It is well known [14, theo-
rem 8.1, p. 303] that if system (1.1) is oscillatory, then every non-trivial prepared
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solution (X̄(t), Ȳ (t)) of (1.1) has the property that det X̄(t) vanishes at least once
on [T, ∞) for every T > t0.

The oscillatory properties of (1.1) are important in the optimization of certain
functionals associated with (1.1). Therefore, such properties have been studied quite
extensively. In particular, letting A(t) ≡ 0, P (t) = B−1(t) and Q(t) = −C(t), the
system (1.1) reduces to the self-adjoint system

(P (t)X ′(t))′ + Q(t)X(t) = 0, (1.3)

and to

X ′′(t) + Q(t)X(t) = 0 (1.4)

for P (t) = En. In these cases, for the matrix system (1.1) and less general sys-
tem (1.3), as well as (1.4), oscillation has been the subject of study by several
authors for many years, as seen in [1–6, 9, 10, 12–18] and references therein. Some
results have concentrated on showing that (1.1) is oscillatory by applying a posi-
tive functional (see [10,16–18]). Several others have involved the eigenvalues of the
integrals of A(t), B(t) and C(t) (see [1, 2, 4, 6, 13,15] and references therein).

For any K ∈ S, we assume its eigenvalues λi[K], i = 1, 2, . . . , n, are ordered such
that λmin[K] = λn[K] � · · · � λ2[K] � λ1[K] = λmax[K]. It was conjectured by
Hinton and Lewis [6] that (1.4) is oscillatory if

lim
t→∞

λmax

[∫ t

0
Q(s) ds

]
= ∞.

This conjecture was partly proved by several authors and finally settled by Byers
et al . [2]. The result has a more general form that is applicable to the system (1.4),
(1.3) and (1.1) (see [1–4,9, 10,12,13,15]).

In 1987, Butler et al . [1] showed that the system (1.4) is oscillatory when

lim sup
t→∞

1
t

∫ t

a

λmax[Q(s)] ds = ∞,

provided that

lim inf
t→∞

1
t

∫ t

a

(
tr

∫ τ

a

Q(s) ds

)
dτ > −∞.

In 1993, Erbe et al . [4] proved that system (1.4) is oscillatory if

lim sup
t→∞

1
tm

λmax

[∫ t

a

(t − s)mQ(s) ds

]
dt = ∞ (1.5)

for some m > 1.
In 2003, by using a monotonic subhomogeneous functional q of degree µ on S,

Yang et al . [16] and Meng et al . [12] obtained oscillation theorems for (1.1) which
extend those of Erbe et al . [4] and Kamenev [7], respectively. Other oscillation
results based on the Wintner-type criterion for (1.1) and the special system (1.3)
can also be found in the recent paper [18] and the references therein.

There are many other oscillation criteria. System (1.1) is obviously an extension
of (1.3). On the one hand, we notice that, in the criteria given by [1–4,6,10,13,18],
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only the largest eigenvalue or the positive linear functional of some integrals is
involved. It is not clear from these how oscillation is affected by the other eigenvalues
and the other functionals. On the other hand, many papers involve P (t) and the
integral of Q(t) and, hence, require the information integral of Q(t) on the entire
half-line [t0,∞). But, from the Sturm separation theorem, if there exists a sequence
of subintervals [ai, bi] of [t0,∞), as ai → ∞, such that for each i there exists a
solution of the scalar equation (1.3) that has at least two zeros in [ai, bi], then every
solution of the scalar equation (1.3) is oscillatory, no matter how ‘bad’ the scalar
equation (1.3) is (or P and Q are) on the remaining part of [t0,∞). In [3,8,9,15,17],
however, some interval criteria were established for the oscillation of (1.3) and for
second-order scalar differential equations. However, these oscillation criteria in the
literature are unable to be used to study the matrix Hamiltonian system (1.1).
Results in [3, 8, 9, 15, 17] are substantially different from the existing results for
oscillation. Moreover, the conditions of all theorems in Meng et al . [12] involve a
fundamental matrix solution Φ(t) of the system x′ = A(t)x, which cannot be solved
in a closed form except for in a few special cases. In view of these facts, it is therefore
of interest to find new oscillation criteria for (1.1).

This paper establishes some new oscillation criteria for the self-adjoint Hamilto-
nian matrix system (1.1) which improve the previous results, even for second-order
ordinary differential equations. We approach our goal by means of a somewhat gen-
eral monotonic functional q, as well as a new matrix Riccati-type transformation
containing commonly used generalized Riccati transformations W (t) = {v(Y X−1 +
fB−1)}(t) and the other generalized Riccati transformation W (t) = (µY X−1)(t),
where v(t) = exp{

∫ t
f(s) ds}. Our results will reveal that not only the positive

linear functional but also the nonlinear functional may be used to determine the
oscillation. In particular, the theorems obtained in this paper further replace the
conditions in the theorems of [12] by conditions independent of any fundamental
matrix solution, i.e. involving only the coefficient matrices A, B and C. Moreover,
by choosing appropriate functionals q and averaging functions, we can present a
series of explicit oscillation criteria. Thus, the results of this paper extend, improve
and unify a number of existing results. For more details, see remarks 2.4, 2.9, 2.10
and 2.11.

This paper is organized as follows: § 2 states the main results, and their proofs
are given in § 3.

To state some of our theorems we need the following definitions and a lemma.

Definition 1.1 (Meng and Mingarelli [12]; Yang and Cheng [16]). A functional q
such that S → R is said to be monotonic (or non-decreasing) if J − K � 0 implies
that q[J ] � q[K] for J , K ∈ S.

Definition 1.2. A functional q : S → R is said to be subhomogeneous if q[λK] �
λq[K] whenever K ∈ S and λ � 0. Furthermore, a functional q : S → R is said to
be subhomogeneous of degree µ if there exists a µ ∈ R such that, for any K ∈ S,
any λ � 1, q[λK] � λµq[K].

The first part of definition 1.2 is found in [5] and the second in [12].

Definition 1.3 (Hartman [5]). A linear functional L : S → R satisfying

L[K + J ] = L[K] + L[J ], L[λK] = λL[K]
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for K, J ∈ S, λ ∈ R, is said to be ‘positive’ if L[K] > 0 whenever K ∈ S and
K > 0.

Denote the eigenvalues of an n × n Hermitian matrix K ∈ S by

λ1[K], λ2[K], . . . , λn[K],

where λmin[K] = λn[K] � · · · � λ2[K] � λ1[K] = λmax[K]. We may note that,
because of the classical characterization of the eigenvalues of matrix in S, the func-
tional q[K] = λi[K] (i = 1, 2, . . . , n) is a monotonic functional which is traditionally
called the ‘eigenvalue’ functional. On the other hand, it is readily verified that if
P � 0 in S, then the nonlinear functional q[K] = λi[K + P ] (i = 1, 2, . . . , n) is
also a monotonic functional and λi[K + P ] � λi[K]. Furthermore, it is easy to see
that the nonlinear trace functional on S defined by q[K] = tr[K + En] is also a
monotonic functional. Moreover, a positive linear functional L is also a monotonic
functional and L[J ] � L[K] for J � K with J, K ∈ S.

Lemma 1.4. Let φ(t) and θ(t) be positive and smooth real-valued functions on
[t0,∞). Then the system (1.1) is oscillatory if and only if

U ′(t) = A(t)U(t) +
φ(t)
θ(t)

B(t)V (t) +
1
2

(
φ′

φ
+

θ′

θ

)
(t)U(t),

V ′(t) = C1(t)U(t) − AT(t)V (t) +
1
2

(
φ′

φ
+

θ′

θ

)
(t)V (t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.6)

is oscillatory, where

C1(t) =
θ(t)
φ(t)

{
C +

ψ

θ
(B−1A + ATB−1) +

(
ψ

θ
B−1

)′
− ψ2

θ2 B−1
}

(t), (1.7)

with

ψ(t) =
θ(t)
2

(
φ′

φ
− θ′

θ

)
(t) = θ(t)

{
1
2

[
ln

φ(t)
θ(t)

]}′
.

Proof. Let us make a change of unknown variables:

U(t) = (φX)(t), V (t) = (θY + αB−1X)(t). (1.8)

Then system (1.1) becomes (1.6).

Remark 1.5. Note that the ratios ψ/θ and φ/θ appear in (1.7), and

ψ(t)
θ(t)

=
{

1
2

[
ln

φ(t)
θ(t)

]}′
.

If we let

ω(t) =
θ(t)
φ(t)

= exp
{

−2
∫ t

t0

g(s) ds

}
,

where g ∈ C1([t0,∞), R), then ψ(t)/θ(t) = g(t), ψ(t)/φ(t) = ω(t)g(t), and C1(t)
in (1.7) becomes

C1(t) = ω(t){C + g(B−1A + ATB−1) + (gB−1)′ − g2B−1}(t).
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2. Kamenev-type theorems

Throughout this paper, we always assume that functions µ ∈ C1([t0,∞), (0,∞)),
f ∈ C1([t0,∞), R), φ and θ ∈ C1([t0,∞), (0,∞)). Let

v(t) = exp
{

−2
∫ t

f(s) ds

}
, B1(t) =

φ(t)
θ(t)

B(t), t � t0. (2.1)

Motivated by the ideas of Kong [8] and Yang [15,17], we use H(t, s)k(s) instead
of H(t, s) and state the following concept which will be used extensively in the
remainder of the paper.

Definition 2.1. Let D = {(t, s) : t � s � t0}, D0 = {(t, s) : t > s > t0}. The real-
valued functions (H, k, µ) ∈ H if there exist functions k, µ ∈ C1([t0,∞), (0,∞)),
H ∈ C1(D, R), h1 and h2 ∈ C1(D0, R) satisfying the following conditions:

(H1) H(t, s) � 0 for t > s � t0, and H(t, t) = 0 for t > t0;

(H2)
∂

∂t
(H(t, s)k(t)) + H(t, s)k(t)

µ′(t)
µ(t)

= h1(t, s), for all (t, s) ∈ D0;

(H3)
∂

∂s
(H(t, s)k(s)) + H(t, s)k(s)

µ′(s)
µ(s)

= −h2(t, s), for all (x, s) ∈ D0.

For the case (H(t, s), k(s), µ(t)) = (H(t − s), 1, 1) ∈ H, we find that h1(t, s) =
h2(t, s) := h(t − s). The subclass of H containing such (H(t − s), 1, 1) is denoted
by H ∈ H0.

The main theorem of this paper is the following interval criterion for the oscilla-
tion of system (1.1).

Theorem 2.2. Let (H, k, µ) ∈ H. Suppose that, for each T � t0, there exist b, c, d ∈
R with T � b < c < d such that one of the following two conditions holds.

(I) The following inequality is satisfied:

1
H(c, b)

∫ c

b

H(s, b)k(s)T (s) ds +
1

H(d, c)

∫ d

c

H(d, s)k(s)T (s) ds

>
1

H(c, b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds +
1

H(d, c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds. (2.2)

(II) There exists a monotonic functional q on S such that either

q

[
1

H(c, b)

∫ c

b

H(s, b)k(s)T (s) ds +
1

H(d, c)

∫ d

c

H(d, s)k(s)T (s) ds

]

> q

[
1

H(c, b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds +
1

H(d, c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds

]
(2.3)
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or

q

[
1

H(c, b)

∫ c

b

{H(s, b)k(s)T (s) + J01
1 (s, b)} ds

+
1

H(d, c)

∫ d

c

{H(d, s)k(s)T (s) + J01
2 (d, s)} ds

]

> q

[
1

H(c, b)

∫ c

b

[−J02
1 (s, b)] ds +

1
H(d, c)

∫ d

c

[−J02
2 (d, s)] ds

]
, (2.4)

where T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t) and C1(t) is defined as
in (1.7),

J01
1 (s, t) = H(s, t)k(s)v(s)µ(s)[f(A + AT) − ATB−1

1 A](s)

+ v(s)µ(s)[12h1(s, t) + H(s, t)k(s)f(s)][ATB−1
1 + B−1

1 A](s),

J02
1 (s, t) = −v(s)µ(s)[{ 1

2 (H(s, t)k(s))−1/2h1(s, t) + (H(s, t)k(s))1/2f(s)}

× B
−1/2
1 (s) + (H(s, t)k(s))1/2f(s)B1/2

1 (s)]2 (2.5)

and

J01
2 (t, s) = H(t, s)k(s)v(s)µ(s)[f(A + AT) − ATB−1

1 A](s)

− v(s)µ(s)[12h2(t, s) + H(t, s)k(s)f(s)][ATB−1
1 + B−1

1 A](s),

J02
2 (t, s) = −v(s)µ(s)[{ 1

2 (H(t, s)k(s))−1/2h2(t, s) + (H(2t, s)k(s))1/2f(s)}

× B
−1/2
1 (s) − (H(t, s)k(s))1/2f(s)B1/2

1 (s)]2. (2.6)

Then system (1.1) is oscillatory.

By applying theorem 2.2 to the subclass H0 of H, we get the following results.

Theorem 2.3. Assume for any A0 � a, that there exists H ∈ H0 such that one of
the following two conditions holds.

(I) For A0 � b < c,

∫ c

b

H(s−b){T0(s)+T0(2c−s)} ds >

∫ c

b

{−(J01
10 +J02

10 )(s−b)−(J01
20 +J01

20 )(2c−s)} ds.

(2.7)

(II) There exists a monotonic functional q on S satisfying the condition that,
for A0 � b < c, either

q

[∫ c

b

H(s − b){T0(s) + T0(2c − s)} ds

]

> q

[
−

∫ c

b

{(J01
10 + J02

10 )(s − b) + (J01
20 + J01

20 )(2c − s)} ds

]
(2.8)
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or

q

[∫ c

b

{H(s − b)[T0(s) + T0(2c − s)] + [J01
10 (s − b) + J01

20 (2c − s)]} ds

]

> q

[
−

∫ c

b

{J02
10 (s − b) + J02

20 (2c − s)} ds

]
, (2.9)

where T0(t) = v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t) and C1(t) is defined as
in (1.7),

J01
10 (s − b) = H(s − b)v(s)[f(A + AT) − ATB−1

1 A](s)

+ v(s)[ 12h(s − b) + H(s − b)f(s)][ATB−1
1 + B−1

1 A](s),

J02
10 (s − b) = −v(s)[{ 1

2 (5H(s − b))−1/2h(s − b) + (6H(s − b))1/2f(s)}B
−1/2
1 (s)

+ (7H(s − b))1/2f(s)B1/2
1 (s)]2

and

J01
20 (2c − s) = H(s − b)v(2c − s)[f(A + AT) − ATB−1

1 A](2c − s) − v(2c − s)

× [ 12h(s − b) + H(s − b)f(2c − s)][ATB−1
1 + B−1

1 A](2c − s),

J02
20 (2c − s) = −v(2c − s)

× [{ 1
2 (H(s − b))−1/2h(s − b) + (H(s − b))1/2f(2c − s)}

× B
−1/2
1 (2c − s) − (H(s − b))1/2f(2c − s)B1/2

1 (2c − s)]2.

Then system (1.1) is oscillatory.

Remark 2.4. Assume that K, P ∈ S and P > 0. Let q[K] be a monotonic func-
tional. Take q[K] = λi[K] (i = 1, 2, . . . , n) or L[K] as in theorems 2.2(II) or 2.3,
respectively, with the other conditions unchanged. Then system (1.1) is oscillatory.
Also, if we take the nonlinear functional q[K] = λi[K + P ] (i = 1, 2, . . . , n) or
tr[K + En] in theorems 2.2(II) or 2.3 with the other conditions unchanged, then
system (1.1) is still oscillatory.

Next consider theorem 2.2 with special functions such as k(t), µ(t), f(t), H(t, s)
and special monotonic functional such as q. Then, we apply theorem 2.2 to get the
following interesting theorems.

Theorem 2.5. Let (H, k, µ) ∈ H. Suppose, for each l � t0, one of the following
two conditions holds.

(I) The inequalities are both satisfied:

lim sup
t→∞

∫ t

l

{H(s, l)k(s)T (s) + (J01
1 + J02

1 )(s, l)} ds > 0 (2.10)

and

lim sup
t→∞

∫ t

l

{H(t, s)k(s)T (s) + (J01
2 + J02

2 )(t, s)} ds > 0. (2.11)
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(II) There exists a positive linear functional L satisfying

lim sup
t→∞

∫ t

l

{H(s, l)k(s)L[T (s)] + L[(J01
1 + J02

1 )(s, l)]} ds > 0 (2.12)

and

lim sup
t→∞

∫ t

l

{H(t, s)k(s)L[T (s)] + L[(J01
2 + J02

2 )(t, s)]} ds > 0, (2.13)

where T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(0t) and C1(1t) is defined
as in (1.7), J01

1 (3s, t) and J02
1 (4s, t) are defined by (2.5), J01

2 (t, s) and J02
2 (t, s)

by (2.6). Then (1.1) is oscillatory.

Now, we choose H(t, s) = (t − s)α for α > 1 and µ(t) = k(t) = 1, f(t) ≡ 0 for
t � t0. Then H ∈ H0 and h(t − s) = α(t − s)α−1. Based on theorem 2.2, we obtain
the following result.

Theorem 2.6. Let B be a constant matrix and B−1
1 (t) � B for t � t0. Then

(1.1) is oscillatory provided that, for each l � t0 and for some α > 1, one of the
following conditions holds.

(I) The following two inequalities hold:

lim sup
t→∞

1
tα−1

∫ t

l

{(t − s)αM(s) + 1
2α(t − s)α−1N(s)} ds >

α2

4(α − 1)
B (2.14)

and

lim sup
t→∞

1
tα−1

∫ t

l

{(s − l)αM(s) − 1
2α(s − l)α−1N(s)} ds >

α2

4(α − 1)
B. (2.15)

(II) There exists a monotonic functional q such that

lim sup
t→∞

q

[
1

tα−1

∫ t

l

{(t − s)αM(s) + 1
2α(t − s)α−1N(s)} ds

]
> q

[
α2

4(α − 1)
B

]
(2.16)

and

lim sup
x→∞

q

[
1

tα−1

∫ t

l

{(s − l)αM(s) − 1
2α(s − l)α−1N(s)} ds

]
> q

[
α2

4(α − 1)
B

]
,

(2.17)

where M(s) = −(C1 + ATB−1
1 A)(s), N(s) = −(ATB−1

1 + B−1
1 A)(s) and C1(t)

defined as in (1.7).

Define

R(t) =
∫ t

l

θ(s)
φ(s)

ds, t � l � t0,

and let

H(t, s) = [R(t) − R(s)]α, t � t0,

where α > 1 is a constant.
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Theorem 2.7. Suppose that limt→∞ R(t) = ∞ holds. Let B0 be a constant matrix
and B−1(t) � B0 for t � t0. Then system (1.1) is oscillatory provided that, for
each l � t0 and for some α > 1, one of the following two conditions holds.

(I) The following two inequalities are satisfied:

lim sup
t→∞

1
Rα−1(t)

∫ t

l

{[R(t) − R(s)]αM(s) + 1
2α[R(t) − R(s)]α−1N0(s)} ds

>
α2

4(α − 1)
B0 (2.18)

and

lim sup
t→∞

1
Rα−1(t)

∫ t

l

{[R(s) − R(l)]αM(s) − 1
2α[R(s) − R(l)]α−1N0(s)} ds

>
α2

4(α − 1)
B0. (2.19)

(II) There exists a positive linear functional L such that

lim sup
t→∞

1
Rα−1(t)

∫ t

l

{[R(t) − R(s)]αL[M(s)] + 1
2α[R(t) − R(s)]α−1L[N0(s)]} ds

>
α2

4(α − 1)
L[B0] (2.20)

and

lim sup
x→∞

1
Rα−1(t)

∫ t

l

{[R(s) − R(l)]αL[M(s)] − 1
2α[R(s) − R(l)]α−1L[N0(s)]} ds

>
α2

4(α − 1)
L[B0], (2.21)

where M(s) = −(C1 + ATB−1
1 A)(s), N0(s) = −(ATB−1 + B−1A)(s) and C1(t)

defined as in (1.7).

From the above oscillation criteria, we can obtain different sufficient conditions for
the oscillation of all prepared solutions of system (1.1) by choosing H(t, s) = (t−s)α

for α > 1.

Theorem 2.8. Let B0 be a constant matrix and B−1
1 (t) � B for t � t0. Then

system (1.1) is oscillatory provided that, for each l � t0 and for some α > 1, one
of the following two conditions holds.

(I) The following inequality is satisfied:

lim sup
t→∞

1
tα−1

∫ t

l

[(s − l)α(M(s) + M(2t − s)) + 1
2α(s − l)α−1(N(s) − N(2t − s))] ds

>
α2

2(α − 1)
B. (2.22)
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(II) There exists either a monotonic subhomogeneous functional q or a positive
linear functional q on S such that

lim sup
t→∞

1
tα−1 q

{∫ t

l

[(s − l)α(M(s) + M(2t − s))

+ 1
2α(s − l)λ−1(N(s) − N(2t − s))] ds

}
>

α2

2(α − 1)
q[B],

(2.23)

where M(s) = −(C1 + ATB−1
1 A)(s), N(s) = −(ATB−1

1 + B−1
1 A)(s) and C1(t)

defined as in (1.7).

Remark 2.9. Our results improve and generalize earlier results by Kumari and
Umamaheswaram [10, theorems 2.3–2.9], Meng and Mingarelli [12], Yang and Cheng
[16] for (1.1) and Kong [8,9], Meng et al . [13], Erbe et al . [4] for (1.3) or its special
cases, and many existing results for the scalar system x′′(t) + q(t)x(t) = 0.

Remark 2.10. Theorems 2.6–2.8 give an improvement of the Kamenev criterion [7]
to the Hamiltonian system (1.1). If we compare theorems 2.6–2.8 with the Kamenev-
type condition (1.5), we can see that the former is an essential improvement of the
latter. In particular, taking n = 1, A(t) = 0, B(t) = 1 and C(t) = −γ/t2, from (1.1),
it then follows the Euler equation

x′′(t) +
γ

t2
x(t) = 0. (2.24)

It is well known that (2.24) is oscillatory for γ > 1
4 and non-oscillatory for γ � 1

4 .
Applying theorem 2.6 to (2.24), we see that (2.24) is oscillatory for γ > 1

4 (see
example 2.14, below). This implies that our results are sharper.

Remark 2.11. Although the conditions in theorems 2.2, 2.3 and 2.5–2.8 seem to
be more complicated than the previous ones, with appropriate use of the functions
H, k, f , µ, φ, θ and functional q and from theorems 2.2, 2.3 and 2.5–2.8 we can
derive a number of oscillation criteria. For example, we choose µ(t) = k(t) = 1 for
t � t0. Then theorems 2.2, 2.3 and 2.5 can reduce to many interesting conclusions.
Furthermore, let φ(t) = θ(t) = 1 for t � t0. Then C1(t) = C(t) for t � t0. Therefore,
from theorems 2.2, 2.3 and 2.5–2.8, many other corollaries follow. Moreover, by
applying theorems 2.2, 2.3 and 2.5–2.8 in the special cases considered, one can
derive many new criteria for the oscillation of the system (1.1) by varying the
positive linear functional and the nonlinear functionals as considered. The details
are omitted here.

The following example illustrates theorem 2.3. It is easy to see that [10, theo-
rem 2.2] is not applicable in our example. Furthermore, the results in [1–9,13,15,17]
are also not suitable since A(t) �≡ 0 or n �≡ 1.

Example 2.12. Consider the four-dimensional Hamiltonian system (1.1), where

A(t) =
[
0 −1
2 0

]
, B(t) =

[
1 0
0 2

]
, C(t) = −

[
q1(t) − 2 0

0 q2(t) − 1

]
, t � 0,

(2.25)
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and X and Y are n×2 matrix functions of t on [0,∞), and qi(t) (i = 1, 2) are given
as follows:

qi(t) =

⎧⎪⎨
⎪⎩

5(t − 3n), 3n � t � 3n + 1,

5(−t + 3n + 2), 3n + 1 < t � 3n + 2,

ξi(t), 3n + 2 < t � 3n + 3,

n ∈ N0 = {0, 1, 2, 3, . . . }, ξi(t) (i = 1, 2) are arbitrary functions such that qi(t) is
continuous.

Nevertheless, ξi(t) can be selected as a ‘bad’ term C(t) such that either the
integral

∫ ∞
0 qi(s) ds does not exist, or

λmax

[
−

∫ ∞

0
C(s) ds

]
= −∞.

So the results of [1–18] cannot apply to the system containing the coefficient (2.25).
In fact, the system containing the coefficient (2.25) is oscillatory by theorem 2.3.
We now give a proof.

Proof. Choose φ(t) = θ(t) = 1, f(t) = 0, µ(t) = k(t) = 1 and H(t − s) = (t − s)2.
Then v(t) = 1, B−1

1 (t) = B(t), C1(t) = C(t) and h(t, s) = 2(t − s). After a simple
computation, it follows that

(C + ATB−1A)(s) = diag(q1(s) − 2, q2(s) − 1), (ATB−1 + B−1A)(s) = 0,

H(s − b)T0(s) + J10
01 (s − b) = diag(q1(s), q2(s)),

H(s − b)T0(2c − s) + J10
02 (2c − s) = diag(q1(2c − s), q2(2c − s))

and

J20
01 (s − b) = − diag(1, 1

2 ), J20
02 (2c − s) = − diag(1, 1

2 ).

For any l > 0 there exists n ∈ N0 such that 3n > l. Let b = 3n, c = 3n + 1 and
q[K] = λmax[K]. By some simple computations, we find that (2.9) holds. Then, by
theorem 2.3(II), the system containing the coefficient (2.25) is oscillatory.

Example 2.13. Let a be a constant. Consider the four-dimensional system (1.1),
where

A(t) =
[

0 a

−a 0

]
, B(t) =

[
1 0
0 1

]
, C(t) = −

[
a2 + 3

4 0
0 a2 − 5

4

]
, t � 0,

(2.26)
and X and Y are 2 × 2 matrix functions of t on [0,∞). With theorem 2.5, the
verification of oscillation for the system containing the coefficient (2.26) is valid. Let
φ(t) ≡ θ(t) ≡ k(t) ≡ 1, f(t) ≡ 1

2 , µ(t) = et and H(t, s) = (t − s)2. Then v(t) ≡ e−t,
B1(t) = En, C1(t) = C(t), h1(t, s) = (t − s)(2 + t − s), h2(t, s) = (t − s)(2 − t + s)
and

T (t) = µ(t)v(t)(−C1 − f(AT + A) + f2B1 − f ′En)(t) = −C + 1
4B,

(ATB−1A)(s) = a2E2.
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Define L[K] = k11, where K = (kij) ∈ S. By some simple computations, we obtain

lim sup
t→∞

∫ t

l

{H(s, l)k(s)L[T (s)] + L[(J01
1 + J02

1 )(s, l)]} ds

= lim sup
t→∞

∫ t

l

{(s − l)2L[diag(1,−1)] − 1
4 (2 + s − l)2L[diag(1, 1)]} ds

= lim sup
t→∞

{ 1
4 (t − l)3 − 1

2 (t − l)2 − (t − l)}

> 0

and

lim sup
t→∞

∫ t

l

{H(t, s)k(s)L[T (s)] + L[(J01
2 + J02

2 )(t, s)]} ds

= lim sup
t→∞

{ 1
4 (t − l)3 + 1

2 (t − l)2 − (t − l)} > 0.

It follows from theorem 2.5(II) that the system containing the coefficient (2.26) is
oscillatory. In fact, let a = 0. Then

(X(t), Y (t)) =

⎛
⎝

⎡
⎣ cos

√
3

2 t sin
√

3
2 t

exp{
√

5
2 t} exp{

√
5

2 t}

⎤
⎦ ,

⎡
⎣ −

√
3

2 sin
√

3
2 t

√
3

2 cos
√

3
2 t

√
5

2 exp{
√

5
2 t}

√
5

2 exp{
√

5
2 t}

⎤
⎦

⎞
⎠

is such an oscillatory solution of the system containing the coefficient (2.26). How-
ever, if a = ± 1

2 in the system containing the coefficient (2.26), then we have
tr[−C(t)] = 0.

The following example uses theorem 2.6.

Example 2.14. Let γi (1 � i � n) be constants and γ1 > 1
4 . Consider the 2n-

dimensional system (1.1), where

A(t) = [0]n×n, B(t) � En, C(t) = − diag
(

γ1

t2
,
γ2

t2
, . . . ,

γn

t2

)
, (2.27)

and X and Y are n × n matrix functions in t on [1,∞). The previous results
in [1–16, 18] are relatively difficult to calculate for the case (2.27). However, with
theorem 2.6, the verification of oscillation for the system containing the coefficient
(2.27) is valid. Choose φ(t) ≡ θ(t) ≡ 1. Then B1(t) ≡ B(t) and C1(t) = C(t).
Furthermore, it is easy to see 0 < B−1(t) � En, M(t) = −C(t) and N(t) = 0.

Define q[K] = L[K] = k11, where K = (kij) ∈ S. By theorem 2.6(II), the system
containing the coefficient (2.27) is oscillatory.

For α > 1, we may get theorem 2.6(II) if

lim sup
t→∞

1
tα−1

∫ t

l

(s − l)αL[−C(s)] ds >
α2

4(α − 1)
L[En] (2.28)

and

lim sup
t→∞

1
tα−1

∫ t

l

(t − s)αL[−C(s)] ds >
α2

4(α − 1)
L[En]. (2.29)
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Indeed, (2.28) and (2.29) are equivalent to

lim sup
t→∞

1
tα−1

∫ t

l

(s − l)α γ1

s2 ds =
γ1

α − 1
>

α2

4(α − 1)
or γ1 > 1

4α2 > 1
4 .

3. Proofs of the main results

Before proving theorem 2.2, we need the following lemmas. We believe that the
following lemmas, which will be used in establishing oscillation criteria for (1.1),
are of independent interest.

Lemma 3.1. Let (U(t), V (t)) be a prepared solution of (1.6) such that det U(t) �= 0
on [t0,∞). Then for all µ ∈ C1([t0,∞), (0,∞)) and f ∈ C1([t0,∞), R), the matrix
function W (x) on [t0,∞) defined by

W (t) = µ(t)v(t)[V (t)U−1(t) + f(t)En] = µ(t)Z(t) (3.1)

satisfies the Riccati system

W ′(t) =
(

µ′

µ
W

)
(t) −

[
1
µv

WB1W + ATW + WA − f(WB1 + B1W − 2W )
]
(t)

− T (t), (3.2)

where T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t) and C1(t) is defined as
in (1.7).

Proof. From (1.2), (1.8) and (3.1) it follows that

WT(t) = µ(t)v(t){[U−1]TV T + fEn}(t)

= µ(t)v(t){[φ−1X−1]T[θY T + αXTB−1] + fEn}(t)

= µ(t)v(t){φ−1θ[X−1]TXTY X−1 + φ−1α[X−1]TXTB−1 + fEn}(t)

= µ(t)v(t){(θY + αB−1X)(φ−1X−1) + fEn}(t)

= µ(t)v(t){V U−1 + fEn}(t) = W (t),

which implies that W is Hermitian. Differentiating the Hermitian matrix (3.1) and
invoking (1.6), we obtain

W ′(t) = µ′(t)Z(t) + µ(t)Z ′(t)

=
(

µ′

µ
W

)
(t)

+ (µv)(t)
{

−
[
ATZ + ZA +

1
v
ZB1Z

]
(t)

+ (f [ZB1 + B1Z − 2Z])(t) −
(

1
µ

T

)
(t)

}

=
(

µ′

µ
W

)
(t) −

[
1
µv

WB1W + ATW + WA

− f(WB1 + B1W − 2W )
]
(t) − T (t)

for t ∈ [t0,∞).
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Lemma 3.2. Let (U(t), V (t)) be a prepared solution of (1.6) such that det U(t) �= 0
on [c, d) ⊂ [t0,∞). For all µ ∈ C1([t0,∞), (0,∞)), f ∈ C1([t0,∞), R), let

W (t) = µ(t)v(t)[V (t)U−1(t) + f(t)En] = µ(t)Z(t), t ∈ [c, d).

Then, for any (H, k, µ) ∈ H,

∫ d

c

H(d, s)k(s)T (s) ds � H(d, c)k(c)W (c) +
∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds, (3.3)

where
T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t),

C1(t) is defined as in (1.7), J01
2 (d, s) and J02

2 (d, s) are defined as in (2.6).

Proof. By lemma 3.1, W (x) satisfies the Riccati system (3.2). Replacing t by s
in (3.2) and then multiplying the subsequent equation by H(t, s)k(s) and integrating
with respect to s from c to t (d > t � c), and then after some simple computation,
we have∫ t

c

H(t, s)k(s)T (s) ds

= −
∫ t

c

H(t, s)k(s)W ′(s) ds +
∫ t

c

H(t, s)k(s)
µ′(s)
µ(s)

W (s) ds

−
∫ t

c

H(t, s)k(s)
[

1
µv

WB1W + ATW + WA − f(WB1 + B1W − 2W )
]
(s) ds

= H(t, c)k(c)W (c) −
∫ t

c

[
− ∂

∂s
[H(t, s)k(s)] − H(t, s)k(s)

µ′(s)
µ(s)

]
W (s) ds

−
∫ t

c

H(t, s)k(s)
[

1
µv

WB1W + ATW + WA − f(WB1 + B1W − 2W )
]
(s) ds

= H(t, c)k(c)W (c) −
∫ x

a

S−1(s)G(t, s)S−1(s) ds, (3.4)

where

S(s) =
[

1
µ(s)v(s)

B1(s)
]1/2

and

G(t, s) = H(t, s)k(s){[SWS][SWS]}(s) + [h2(t, s) + 2H(t, s)k(s)f(s)](SWS)(s)

+ H(t, s)k(s){S[ATW + WA − f(WB1 + B1W )]S}(s).

Let

Q(t, s) = [H(t, s)k(s)]1/2[SW − fµvS + S−1A](s)

+ { 1
2 [H(t, s)k(s)]−1/2h2(t, s) + [H(t, s)k(s)]1/2f(s)}S−1(s).
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Then

QT(t, s) = [H(t, s)k(s)]1/2[WS − fµvS + ATS−1](s)

+ { 1
2 [H(t, s)k(s)]−1/2h2(t, s) + [H(t, s)k(s)]1/2f(s)}S−1(s).

Note that

[h2(t, s) + 2f(s)H(t, s)k(s)]W (s)

+ H(t, s)k(s)
[

1
µv

WB1W + ATW + WA − f(WB1 + B1W )
]
(s)

= S−1(s)G(t, s)S−1(s)

= (QTQ)(t, s) + H(t, s)k(s)v(s)µ(s)[f(A + AT) − ATB−1
1 A](s)

− v(s)µ(s){ 1
2h2(t, s) + H(t, s)k(s)f(s)}[ATB−1

1 + B−1
1 A](s)

− v(s)µ(s){[ 12 (H(t, s)k(s))−1/2h2(t, s) + (H(t, s)k(s))1/2f(s)]B−1/2
1 (s)

− (H(t, s)k(s))1/2f(s)B1/2
1 (s)}2

= (QTQ)(t, s) + (J01
2 + J02

2 )(t, s). (3.5)

By (3.4) and (3.5), we obtain∫ t

c

H(t, s)k(s)T (s) ds = H(t, c)k(c)W (c) −
∫ t

c

{(QTQ)(t, s) + (J01
2 + J02

2 )(t, s)} ds,

which implies that∫ t

c

H(t, s)k(s)T (s) ds

= H(t, c)k(c)W (c) +
∫ t

c

[−(J01
2 + J02

2 )(t, s)] ds −
∫ t

c

(QTQ)(t, s) ds

� H(t, c)k(c)W (c) +
∫ t

c

[−(J01
2 + J02

2 )(t, s)] ds, t ∈ [c, d). (3.6)

Letting t → d− in (3.6), we obtain (3.3). This completes the proof of lemma 3.2.

Lemma 3.3. Let (U(t), V (t)) be a prepared solution of (1.6) such that det U(t) �= 0
on [b, c) ⊂ [t0,∞). For all µ ∈ C1([t0,∞), (0,∞)), f ∈ C1([t0,∞), R), let

W (t) = µ(t)v(t)[V (t)U−1(t) + f(t)En] = µ(t)Z(t), t ∈ (b, c].

Then, for any (H, k, µ) ∈ H,∫ c

b

H(s, b)k(s)T (s) ds � −H(c, b)k(c)W (c) +
∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds, (3.7)

where
T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t),

C1(t) is defined as in (1.7), and J01
1 (d, s) and J02

1 (d, s) are defined as in (2.5).
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Proof. Now go back to (3.2), replace t by s, multiply by H(s, t)k(s), and integrate
the result with respect to s from t to c for t ∈ (b, c], to obtain∫ c

t

H(s, t)k(s)T (s) ds

= −
∫ c

t

H(s, t)k(s)W ′(s) ds +
∫ c

t

H(s, t)k(s)
µ′(s)
µ(s)

W (s) ds

−
∫ c

t

H(s, t)k(s)
{

1
µv

WB1W + [ATW + WA − f(WB1 + B1W ) − 2W ]
}

(s) ds

= −H(c, t)k(c)W (c) +
∫ c

t

[h1(s, t) + 2f(s)H(s, t)k(s)]W (s) ds

−
∫ c

t

H(s, t)k(s)
{

1
µv

WB1W + [ATW + WA − f(WB1 + B1W )]
}

(s) ds

= −H(c, t)k(c)W (c) −
∫ c

t

{(QT
1 Q1)(s, t) + (J01

1 + J02
1 )(s, t)} ds, (3.8)

where

R(s) =
(

1
µ(s)v(s)

B1(s)
)1/2

and

Q1(s, t) = [H(s, t)k(s)]1/2[SW − fµvS + S−1A](s)

− [ 12 [H(s, t)k(s)]−1/2h1(s, t) + [H(s, t)k(s)]1/2f(s)]S−1(s).

Note that

(QT
1 Q1)(s, t) = H(s, t)k(s)

[
1
µv

WB1W + ATW + WA − f(WB1 + B1W )
]
(s)

− [h1(s, t) + 2f(s)H(s, t)k(s)]W (s) − J1(s, t),

where J1(s, t) is defined as in (2.5). It follows from (3.8) that∫ c

t

H(s, t)k(s)T (s) ds = −H(c, t)k(c)W (c)

+
∫ c

t

[−(J01
1 + J02

1 )(s, t)] ds −
∫ c

t

(QT
1 Q1)(s, t) ds

� −H(c, t)k(c)W (c) +
∫ c

t

[−(J01
1 + J02

1 )(s, t)] ds.

Letting t → b+ in the above inequality, we obtain (3.7). The proof of lemma 3.3 is
complete.

Lemma 3.4. Let (H, k, µ) ∈ H. For any prepared solution (U(t), V (t)) of (1.6),
det U(t) �= 0 in the open interval (b, d). Then, for any constant c ∈ (b, d) ⊂ [t0,∞),
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1
H(c, b)

∫ c

b

H(s, b)k(s)T (s) ds +
1

H(d, c)

∫ d

c

H(d, s)k(s)T (s) ds

� 1
H(c, b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds +
1

H(d, c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds, (3.9)

or there exists a monotonic functional q on S such that

q

[
1

H(c, b)

∫ c

b

H(s, b)k(s)T (s) ds +
1

H(d, c)

∫ d

c

H(d, s)k(s)T (s) ds

]

� q

[
1

H(c, b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds +
1

H(d, c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds

]
,

(3.10)

where T (t) = µ(t)v(t)(−C1 − f [A + AT] + f2B1 − f ′En)(t), C1(t) is defined as
in (1.7), and J1(s, t) and J2(t, s) are defined as in (2.5) and (2.6), respectively.

Proof. From lemma 3.2 and dividing both sides of (3.3) by H(b, c), it follows that

1
H(c, b)

∫ c

b

H(s, b)k(s)T (s) ds � −k(c)W (c) +
1

H(c, b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds.

(3.11)

By lemma 3.3 and a similar argument to that above, we obtain

1
H(d, c)

∫ d

c

H(d, s)k(s)T (s) ds � k(c)W (c) +
1

H(d, c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds.

(3.12)

Then, adding (3.11) and (3.12), it follows that (3.9) holds.
Furthermore, by using (3.9) and the monotonic functional q on S, we obtain

(3.10). The proof is complete.

Corollary 3.5. Let (H, k, µ) ∈ H. Suppose also that, for sufficiently large A0 �
t0, there exist b, c, d ∈ R and A0 � b < c < d satisfying either case (I) or case (II)
of theorem 2.2. Then, for any prepared solution (U(t), V (t)) of (1.6), det U(t) has
at least one zero in (b, d).

Proof of Corollary 3.5. Assume that there is a prepared solution (U(t), V (t)) of
the system (1.6) such that det U(t) �= 0 for t ∈ (b, d). This allows us to make a
transformation (3.1), that is,

W (t) = µ(t)v(t)[V (t)U−1(t) + f(t)En] = µ(t)Z(t).

From lemma 3.4, it follows that (3.9) holds. We then reach a contradiction to (2.2).
Similarly, we can obtain (3.10), which contradicts (2.3).

Proof of theorem 2.2. The proof is by contradiction. First, we prove the case (2.2).
Without loss of generality, one can assume that there is a prepared solution

(X(t), Y (t)) of the system (1.1) such that detX(t) �= 0 for t ∈ [T, ∞) with T �
t0. Furthermore, it follows that there is a prepared solution (U(t), V (t)) of the
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system (1.6) such that det U(t) �= 0 for t ∈ [T, ∞) with T � t0. Pick a sequence
{Ti} ⊂ [T, ∞) such that Ti → ∞ as i → ∞. From (2.2), we know that, for each
i ∈ N , there exist bi, ci, di ∈ R such that Ti � bi < ci < di, and (2.2) holds where b,
c and d are replaced by bi, ci and di, respectively. From corollary 3.5, it follows that
det U(t) has at least one zero ti, ti ∈ (bi, di) (i = 1, 2, . . . ). Noting that ti � bi � Ti,
i ∈ N , we see that det U(t) has arbitrarily large zeros. Therefore, for the case (2.2),
(1.6) is oscillatory. Moreover, by lemma 1.4, (1.1) is oscillatory.

In a manner similar to the above argument, for the case (2.3), we can show
that (1.1) is also oscillatory.

Proof of theorem 2.3. (I) Without loss of generality, one can assume that there is
a prepared solution (X(t), Y (t)) of the system (1.1) such that detX(t) �= 0 for
t ∈ [T, ∞) with T � t0. Furthermore, there is a prepared solution (U(t), V (t)) of
the system (1.6) such that det U(t) �= 0 for t � T � t0. By lemma 3.4, we find
that if H ∈ H0 and detU(t) �= 0 in the open interval (b, d), then for any constant
c ∈ (b, d) ⊂ [t0,∞),

1
H(c − b)

∫ c

b

H(s − b)k(s)T (s) ds +
1

H(d − c)

∫ d

c

H(d − s)k(s)T (s) ds

� 1
H(c − b)

∫ c

b

[−(J01
1 + J02

1 )(s, b)] ds +
1

H(d − c)

∫ d

c

[−(J01
2 + J02

2 )(d, s)] ds.

(3.13)

In particular, let d = 2c − b. Then H(d − c) = H(c − b) = H( 1
2 (d − b)), and for any

w ∈ L[b, d], we have∫ d

c

H(d − s)w(s) ds =
∫ c

b

H(s − b)w(2c − s) ds,

∫ d

c

h2(d − s)w(s) ds =
∫ c

b

h2(s − b)w(2c − s) ds.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

Hence, (3.13) and (3.14) imply that∫ c

b

H(s − b){T0(s) + T0(2c − s)} ds �
∫ c

b

{−J10(s − b) − J20(2c − s)} ds, (3.15)

which contradicts (2.7). Thus, detU(t) has at least one zero in the open interval
(b, 2c − b). Hence, the system (1.6) is oscillatory. It follows from lemma 1.4 that
system (1.1) is oscillatory.

(II) In a manner similar to the proof of case (I), we can obtain (3.15). Applying
the monotonic functional q to both sides of the inequality (3.15), it follows that

q

[∫ c

b

H(s − b){T0(s) + T0(2c − s)} ds

]
� q

[∫ c

b

{−J10(s − b) − J20(2c − s)} ds

]
,

(3.16)

which contradicts (2.8). Therefore, (1.1) is also oscillatory.
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Proof of theorem 2.5. (I) For any T � t0, we set b = T . On choosing l = b in (2.10),
there exists c > b such that∫ c

b

{H(s, b)k(s)T (s) + (J01
1 + J02

1 )(s, b)} ds > 0. (3.17)

We choose l = c in (2.11). There then exists d > c such that∫ d

c

[H(d, s)k(s)T (s) + (J01
2 + J02

2 )(d, s)] ds > 0. (3.18)

From (3.17) and (3.18), we obtain (2.2). By using theorem 2.2, system (1.1) is
oscillatory.

(II) For any T � t0, we set b = T . We choose l = b in (2.12). Then by definition 1.3
there exists c > b such that

L
{∫ c

b

[H(s, b)k(s)T (s) + (J01
1 + J02

1 )(s, b)] ds

}
> 0. (3.19)

Let l = c in (2.13). Then there exists b > c such that

L
{∫ d

c

[H(d, s)k(s)T (s) + (J01
2 + J02

2 )(d, s)] ds

}
> 0. (3.20)

It follows from (3.19) and (3.20) that (2.3) for the case q = L of theorem 2.2 holds.
Based on theorem 2.2, we can conclude the proof.

Proof of theorem 2.6. Choose k(t) ≡ µ(t) ≡ 1 and f(t) ≡ 0. Then v(t) ≡ 1, T (t) =
−C1(t),

J01
1 (s, l) = −[(s − l)αATB−1

1 A + 1
2α(s − l)α−1N ](s),

J02
1 (s, l) = − 1

4α2(s − l)α−2B−1
1 (s),

J01
2 (t, s) = −[(t − s)αATB−1A − 1

2α(t − s)α−1N ](s),

and

J02
2 (t, s) = − 1

4α2(t − s)α−2B−1
1 (s).

Noting that

lim
t→∞

α2

4tα−1

∫ t

l

(s − l)α−2 ds =
α2

4(α − 1)
, (3.21)

lim
t→∞

α2

4tα−1

∫ t

l

(t − s)α−2 ds =
α2

4(α − 1)
, (3.22)

from (3.21) and (3.22), it follows that

lim sup
t→∞

1
tα−1

∫ t

l

{H(t, s)k(s)T (s) + (J01
2 + J02

2 )(t, s)} ds

= lim sup
t→∞

1
tα−1

∫ t

l

{(t − s)αM(s) + 1
2α(t − s)α−1N(s) − 1

4α2(t − s)α−2B−1
1 (s)} ds
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� lim sup
t→∞

1
tα−1

∫ t

l

{(t − s)αM(s) + 1
2α(t − s)α−1N(s) − 1

4α2(t − s)α−2B} ds

= lim sup
t→∞

1
tα−1

∫ t

l

{(t − s)αM(s) + 1
2α(t − s)α−1N(s)} ds +

α2

4(α − 1)
B

> 0

and

lim sup
t→∞

1
tα−1

∫ t

l

{H(s, l)k(s)T (s) + (J01
1 + J02

1 )(s, l)} ds

= lim sup
t→∞

1
tα−1

∫ t

l

{(s − l)αM(s) − 1
2α(s − l)α−1N(s) − 1

4α2(s − l)α−2B−1(s)} ds

� lim sup
t→∞

1
tα−1

∫ t

l

{(s − l)αM(s) − 1
2α(s − l)α−1N(s)} ds − α2

4(α − 1)
B

> 0.

Hence,

lim sup
t→∞

∫ t

l

{H(s, l)k(s)T (s) + (J01
1 + J02

1 )(s, l)} ds > 0

and

lim sup
t→∞

∫ t

l

{H(t, s)k(s)T (s) + (J01
2 + J02

2 )(t, s)} ds > 0

imply that (2.10) and (2.11) hold. From theorem 2.5(I), it follows that the sys-
tem (1.1) is oscillatory.

(II) According to the linearity of the positive linear functional L and theo-
rem 2.5(II), we can show that the system (1.1) is also oscillatory. The proof is
similar to that of case (I). We omit the details.

Proof of theorem 2.7. Set f(t) ≡ 0 and k(t) ≡ µ(t) ≡ 1. It is easy to see that
v(t) ≡ 1, T (t) = −C1(t),

h1(t, s) = α[R(t) − R(s)]α/2−1 φ(t)
θ(t)

, h2(t, s) = α[R(t) − R(s)]α/2−1 φ(s)
θ(s)

,

H(t, s)k(s)µ(s)v(s)T (s) + (J01
2 + J02

2 )(t, s)

= [R(t) − R(s)]αM(s) − 1
2α[R(t) − R(s)]α−1N0(s)

− 1
4α2 φ(s)

θ(s)
[R(t) − R(s)]α−2B−1(s)

and

H(s, l)k(s)µ(s)v(s)T (s) + (J01
1 + J02

1 )(s, l)

= [R(s) − R(l)]αM(s) + 1
2α[R(s) − R(l)]α−1N0(s)

− 1
4α2 φ(s)

θ(s)
[R(s) − R(l)]α−2B−1(s).
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Noting that

∫ t

l

[R(s) − R(l)]α−2 φ(s)
θ(s)

ds =
1

α − 1
[R(t) − R(l)]α−1

and ∫ t

l

[R(t) − R(s)]α−2 φ(s)
θ(s)

ds =
1

α − 1
[R(t) − R(l)]α−1,

in view of limt→∞ R(t) = ∞, it follows that

lim
t→∞

α2

4Rα−1(t)

∫ t

l

[R(s) − R(l)]α−2 φ(s)
θ(s)

ds =
α2

4(α − 1)
(3.23)

and

lim
t→∞

α2

4Rα−1(t)

∫ t

l

[R(t) − R(s)]α−2 φ(s)
θ(s)

ds =
α2

4(α − 1)
. (3.24)

(I) From (2.18) and (3.23), we have

lim sup
t→∞

1
Rα−1(t)

∫ t

l

{H(s, l)k(s)T (s) + (J01
1 + J02

1 )(s, l)} ds Bs

= lim sup
t→∞

1
Rα−1(t)

∫ t

l

{
[R(s) − R(l)]αM(s) + 1

2α[R(s) − R(l)]α−1N0(s)

− 1
4α2 φ(s)

θ(s)
[R(s) − R(l)]α−2B−1(s)

}
ds

� lim sup
t→∞

1
Rα−1(t)

∫ t

l

{
[R(s) − R(l)]αM(s) + 1

2α[R(s) − R(l)]α−1N0(s)

− 1
4α2 φ(s)

θ(s)
[R(s) − R(l)]α−2B0

}
ds

= lim sup
t→∞

1
Rα−1(t)

∫ t

l

{[R(s) − R(l)]αM(s) + 1
2α[R(s) − R(l)]α−1N0(0s)} ds

− α2

4(1α − 1)
B0

> 0.

It follows that

lim sup
t→∞

∫ t

l

{H(s, l)k(s)T (s) + (J01
1 + J02

1 )(s, l)} ds > 0

implies that (2.10) holds. Similarly, (2.19) implies that (2.11) holds. From case (I)
of theorem 2.5, the system (1.1) is oscillatory.
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(II) Analogously to case (I), from (2.20) and (3.23), it follows that

lim sup
t→∞

1
Rα−1(t)

∫ t

l

{H(s, l)k(s)L[T (s)] + L[(J01
1 + J02

1 )(s, l)]} ds

� lim sup
t→∞

1
Rα−1(t)

∫ t

l

{[R(s) − R(l)]αL[M(s)]

+ 1
2α[R(s) − R(l)]α−1L[N0(s)]} ds − α2

4(α − 1)
L[B0]

> 0

implies that

lim sup
t→∞

∫ t

l

{H(s, l)k(s)L[T (s)] + L[(J01
1 + J02

1 )(s, l)]} ds > 0.

Therefore, (2.12) holds. Similarly, (2.21) implies that (2.13) holds. By using case (II)
of theorem 2.5, the system (1.1) is also oscillatory.

Proof of theorem 2.8. Choose k(t) ≡ µ(t) ≡ 1 and f(t) ≡ 0. Then v(t) ≡ 1, T0(t) =
−C1(t),

J01
10 (s − b) = −[(s − b)α(ATB−1

1 A)(s) − 1
2α(s − b)α−1N(s)],

J02
10 (s − b) = − 1

4α2(s − b)α−2B−1
1 (s),

J01
20 (2c − s) = −[(s − l)α(ATB−1

1 A)(2c − s) + 1
2α(s − b)α−1N(2c − s)](2c − s),

and

J02
20 (2c − s) = − 1

4α2(s − b)α−2B−1
1 (2c − s).

(I) From (2.22) with (3.21), one knows that, for l � T ,

lim sup
t→∞

∫ t

l

[(s − l)α(M(s) + M(2t − s)) + 1
2 (N(s) − N(2t − s))] ds

> 1
2α2

∫ t

l

(s − l)α−2 ds B. (3.25)

Thus, for any T � t0, there exist b, c ∈ R such that T � b < c and∫ c

b

[(s − l)α(M(s) + M(2c − s)) + 1
2 (N(s) − N(2c − s))] ds

> 1
2α2

∫ c

b

(s − l)α−2 ds B

=
∫ c

b

1
2α2(s − l)α−2B ds

�
∫ c

b

1
4α2(s − l)α−2[B−1

1 (s) + B−1
1 (2c − s)] ds,

that is, (2.7) holds. By theorem 2.3(II), (1.1) is oscillatory.
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(II) By using (2.23) and (3.21), it follows that, for l � T ,

lim sup
t→∞

q

{∫ t

l

[(s − l)α(M(s) + M(2t − s)) + 1
2 (N(s) − N(2t − s))] ds

}

>

[
1
2α2

∫ t

l

(s − l)α−2 ds

]
q[B]. (3.26)

Therefore, by the first part of definition 1.2 or definition 1.3, for any T � t0, there
exist b, c ∈ R satisfying T � b < c and

q

{∫ c

b

[(s − l)α(M(s) + M(2c − s)) + 1
2 (N(s) − N(2c − s))] ds

}

>

[
1
2α2

∫ c

b

(s − l)α−2 ds

]
q{B}

� q

{∫ c

b

1
2α2(s − l)α−2B ds

}

� q

{∫ c

b

1
4α2(s − l)α−2[B−1

1 (s) + B−1
1 (2c − s)] ds

}
,

that is, (2.9) holds. From theorem 2.3(II), we find that (1.1) is also oscillatory. The
proof is therefore complete.
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