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An analytical model is developed for the lift force produced by unsteady rotating
wings; this configuration is a simple representation of a flapping wing. Modelling this
is important for the aerodynamic and control-system design for bio-inspired drones.
Such efforts have often been limited to being two-dimensional, semi-empirical,
sometimes computationally expensive, or quasi-steady. The current model is unsteady
and three-dimensional, yet simple to implement, requiring knowledge of only the
wing kinematics and geometry. Rotating wings produce a vortex loop consisting of
the root vortex, leading-edge vortex, tip vortex and trailing-edge vortex, which grows
with time. This is modelled as a tilted planar loop, geometrically specified by the
wing size, orientation and motion. By equating the angular impulse of the vortex loop
to that of the fluid volume driven by the wing, the circulatory lift force is derived.
Potential flow theory gives the fluid-inertial lift. Adding these two contributions yields
the total lift formula. The model shows good agreement with a range of experimental
and computational cases. Also, a steady-state lift model is developed that compares
well with previous work for various angles of attack.

Key words: swimming/flying, vortex dynamics, separated flows

1. Introduction

Unsteady and bio-inspired aerodynamics have been studied extensively, motivated by
their applications to small agile drones. Research on mathematical models for vehicle
design and flight controllers is ongoing, due to the challenge of representing the
separated flow and the forces that a vehicle may encounter during a high-angle-
of-attack manoeuvre, gust or flapping-wing motion. Here we review prior models,
particularly for wings in unsteady rotation that are relevant to flapping-wing flight.

Several researchers have used potential flow theory to obtain the force and moment
for the incompressible flow around a flat plate or airfoil (e.g. Ansari, Żbikowski &
Knowles 2006a; Xia & Mohseni 2013; Yan, Taha & Hajja 2014). Using the Joukowski
transformation to map the flow to a complex plane, the velocity potentials are
calculated for the background flow and any singularities, such as vortices, introduced.
The pressure is evaluated from the unsteady Bernoulli equation and the force can be
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A simple vortex-loop-based model for unsteady rotating wings 1021

calculated from the unsteady Blasius theorem (see Xia & Mohseni 2013; Yan et al.
2014), or directly from Kelvin’s impulse theorem (Ansari et al. 2006a). Eldredge &
Jones (2019) suggest separately modelling the fluid-inertial or added-mass force, and
the circulatory force (see also Babinsky et al. 2016).

One type of two-dimensional (2-D) potential-flow modelling introduces point or
discrete vortices at small time intervals and advects them to model the separated
shear layers, e.g. their rollup into leading-edge vortices (LEVs) (Ansari et al. 2006a;
Xia & Mohseni 2013; Eldredge & Jones 2019). To solve for the unknown vortex
strengths, Kelvin’s theorem coupled with conditions at the leading edge (LE) and
trailing edge (TE) are enforced. The Kutta condition is typically used at the TE
(see Ansari et al. 2006a; Xia & Mohseni 2013; Eldredge & Jones 2019). Ramesh
et al. (2014) defined an empirically determined LE suction parameter for rounded
edges, which allows non-zero suction versus a Kutta condition, to determine LEV
shedding. Li & Wu (2016) used residual vortex sheets at the LE and TE, and created
maps showing the contribution of each vortex element to the plate force. Numerical
methods are required to implement these discrete vortex models.

To extend this to three-dimensional (3-D) flow, for a flapping (rotating, plunging
and pitching) wing Ansari et al. (2006a) and Ansari, Żbikowski & Knowles (2006b)
used a blade-element approach, with several 2-D sections of constant radius across
the wing span; integration of the sectional forces yields the total lift. Tip effects and
spanwise flow are neglected, which is reasonable at a Reynolds number (Re) of 160
(calculated using mean chord and mean tip speed) (Ansari et al. 2006b). Compared
to an experiment, the model accuracy for the overall mean lift is 13 %, with greater
deviations in peak lift, and the mean error reduces to ∼7 % with further periodic
cycles.

The inviscid 3-D unsteady vortex–lattice method (UVLM) (see Roccia et al. 2013;
Nguyen et al. 2016) is also used because of its lower computational cost and higher
fidelity versus the discrete vortex method. In UVLM, the vortex structures (bound
vortices, wake and LEV) are divided into small lattices of constant strength, and then
the velocity field is determined by applying the Biot–Savart law to the lattices. Finally,
the pressure is calculated from Bernoulli’s equation to obtain the force. The UVLM
(Roccia et al. 2013) performs better than the Ansari et al. (2006b) model, which is
fundamentally the 2-D version of UVLM, and works for different insect geometries
and kinematics. Nguyen et al. (2016) further modified it to incorporate the LEV force
and vortex-core growth.

Other analytical models are discussed here. For a flapping wing in hover with
rotation, pitching and plunging, Żbikowski (2002) proposed two analytical approaches
for calculating the lift. One is the unsteady thin-airfoil theory of von Kármán &
Sears (1938), augmented with a nonlinear correction for deforming vortex wakes to
model the LEV. The other is a velocity-potential approach: either a frequency-domain
method (Theodorsen 1935) or an indicial technique incorporating the Wagner function
(Wagner 1925), in conjunction with the Polhamus (1966) LE suction model. The
latter approach was modified to account for wake deformation and downwash, giving
reasonable results for periodic flapping, although wing–wake interactions were not
modelled (Pedersen & Żbikowski 2006). Pullin & Wang (2004) created a similarity
solution for the spiral rollup of the LE and TE vortex sheets, for a 2-D flat plate
at high angle of attack (α) having power-law starting-flow velocities. The sheet
development is dictated by the Birkhoff–Rott equation, and the results exhibit good
agreement with numerical simulations. For a similar problem, Pitt Ford & Babinsky
(2013) showed that the LEV and bound circulations can be estimated by the Wagner
function.
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1022 J. Chowdhury and M. J. Ringuette

For 3-D flows, Wong, Gillespie & Rival (2018) proposed a shear-layer feeding
model for the LEV circulation and its spanwise advection using vorticity-containing
mass. The circulation feeding-rate error is 10 % when compared with delta-wing
experiments. Limacher, Morton & Wood (2016) simplified the Navier–Stokes
equations to predict the LEV-core streamline, which agreed well with experiments
inboard of the tip. Moreover, Chen et al. (2018) developed a closed-form analytical
expression for the LEV position and circulation for rotating wings with various
shapes, by setting a free parameter for the spanwise vorticity transport.

Some of the models described above are too computationally expensive to be
readily used for engineering design or control, and low-order models are meant to
address this. The NATO AVT-202 effort (Ol & Babinsky 2016) gives a 2-D low-order
model for flat plates undergoing translation and pitching (see also Babinsky et al.
2016). It uses potential flow for the added-mass force, and a scaled Wagner function
for the circulation of the LE–TE vortex dipole; the time-varying distance between
the LEV and trailing-edge vortex (TEV) is approximated using a relative ‘drift’
velocity between their cores equal to half the free-stream velocity. Hemati, Eldredge
& Speyer (2014) optimized the point-vortex strengths of the Wang & Eldredge (2013)
model using high-fidelity simulation data, which yields better results. Eldredge &
Darakananda (2015) also created a low-order 3-D model that represents the flow
as a small number of large-scale closed vortex loops made of linear segments. The
problem is open, but can be closed with further submodels (e.g. the Kutta condition)
or empirical data to obtain the time-varying vortex strengths. Recently, Darakananda
& Eldredge (2019) developed a 2-D model for bodies at high α, representing the LE
and TE separated shear layers as discrete vortices, but the rolled-up and shed vortices
as single points. To compensate for the force change from feeding circulation to the
single points, a generalization of the ‘impulse-matching’ approach (Wang & Eldredge
2013) to alter the point-vortex velocities is used.

Semi-empirical low-order models include that of Mancini, Manar & Jones (2015)
for high-α translating and pitching plates. The potential-flow model incorporates
LEV position and strength from experiments, and the steady-state lift coefficient
is used to scale down the overpredicted lift. The accuracy is within 20 % when
the vortex tracking is reliable, prior to LEV dissipation. A recent paper presents a
cycle-averaged semi-empirical force model for a plunging (out-of-plane rotation) and
twisting wing based on an undulating wave model applied to actuator disk theory
(Jiao et al. 2018). The thrust force is a simple algebraic expression, somewhat similar
to the circulatory lift developed in this paper and will be discussed in § 2. Galler,
Weymouth & Rival (2019) proposed a semi-empirical model for an accelerating plate
based on Darwin’s drift-volume approach. They also discussed the limitations of
decomposing the unsteady force into circulatory and non-circulatory components for
highly separated flows during the acceleration phase.

In general, quasi-steady models use steady-state forces from experiments or
computational fluid dynamics (CFD) at different instants of the wing motion to
estimate the time-varying lift (see Sane & Dickinson 2002; Berman & Wang
2007; Percin & van Oudheusden 2015). Sane & Dickinson (2002) presented a
quasi-steady model and blade-element implementation for a flapping wing undergoing
rotation and pitching. Lee et al. (2016b) expanded this model to a greater variety
of wing kinematics and geometries by finding coefficients using curve fitting to
CFD simulations; the error was generally within 10 %, but up to 20 % in some
cases. Nabawy & Crowther (2014) improved the Sane & Dickinson (2002) model by
introducing a power factor k= kindktipkflap in Prandtl’s lifting line theory, to estimate the
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slope of the 3-D wing lift. The kind, ktip and kflap represent the non-uniform downwash
velocity, tip loss and effective flapping disk area, respectively, and can be evaluated
analytically. Berman & Wang (2007) presented force and moment expressions based
on the Navier–Stokes equations with quasi-steady models for the circulatory and
viscous terms, for a flapping wing (rotation, pitch and plunge). This formulation was
convenient for energy optimization and a sensitivity analysis of the parameters.

A state-space model given by Taha, Hajja & Beran (2014) uses Duhamel’s principle
assuming linearity of the unsteady aerodynamics around flapping wings (rotation and
pitching). Stipulating an attached LEV, the static lift is found from a semi-empirical
relation involving aspect ratio (A) and α. Coupled with the Wagner function, the
unsteady lift is calculated. To make the model low-order, the radius of gyration is
taken as the representative wing length. The model error is within 13 % of the direct
numerical simulation results. Lee, Choi & Kim (2015) developed a simple scaling law
for the lift using a steady vortex-loop theory, where the LEV circulation is scaled by
that around a finite-A wing. It uses only kinematic and geometric parameters, and
produces an excellent collapse of the lift data for various hovering insects. The final
expression is the closest to that presented here; however, the current approach employs
an unsteady physical model of the evolving wing-vortex loop.

There remains a lack of a rotating-wing model that is 3-D, unsteady, closed-form,
analytical and very inexpensive. In this paper, we present a simple model having
these qualities, using vortex-loop dynamics. Several researchers showed that the
rotating wing produces a vortex loop containing the LEV, tip vortex (TV), TEV and
root vortex (RV) (e.g. Sun & Wu 2004; Kim & Gharib 2010; Ozen & Rockwell
2012b). Substantial advances have been made in understanding vortex-loop dynamics,
especially for vortex rings (see Shariff & Leonard 1992). Sullivan et al. (2008)
established straightforward relations among the vortex-ring parameters, such as
velocity, radius, circulation, etc., and vortex generator. This motivated the current
study to estimate the unsteady lift, which takes advantage of the coherent vortex loop
produced in rotating-wing flow, avoids complications from the 3-D flow structures,
yet retains key physics. The model is presented in § 2, and in § 3 we compare it to
several experiments and numerical simulations.

2. Model
Here the incompressible flow of a rectangular wing rotating from rest at a fixed,

high α is modelled as a single tilted LEV–TV–TEV–RV loop. The impulse of a thin,
3-D vortex loop can be written in a simple form (Wu, Ma & Zhou 2006) as

I= ρΓ S, (2.1)

where ρ is the fluid density, Γ is the loop circulation and S is the vector surface
spanned by the loop. Once the impulse is known, the net force on the wing in the
vertical direction, or lift, can be calculated as

L= Lin + ρ
d
dt
(Γ Shor), (2.2)

where Shor is the projection of the loop area onto the horizontal plane. The second
term on the right-hand side is similar to that found in Wu et al. (2006). The two
contributions to the net lift are the fluid-inertial force and circulatory force. Here,
assuming an infinitely thin flat-plate wing, potential flow theory (Sedov 1965) is used
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FIGURE 1. (Colour online) (a) Schematic of the model wing and its motion, including
a Q∗ = 6 isosurface (Carr et al. 2015) to illustrate the real vortex loop. (b) Simplified
vortex-loop geometry for the model (top view); the loop arrows give the swirl direction.
(c) Experimental visualization to conceptually show the model loop angle (θ ).

at each wing section to calculate the fluid-inertial lift per unit span. This can be
integrated over the entire span to get the net fluid-inertial lift, which for a rectangular,
rotating wing is (Percin & van Oudheusden 2015)

Lin =πρc2Φ̈
b2

t − (bt − b)2

8
sin α cos α, (2.3)

where Φ is the wing rotation angle, Φ̈ is the angular acceleration, c is the chord, b is
the span, bt is the total span, including the root cutout or offset, and α is the geometric
angle of attack (figure 1a). For the rectangular wings considered here, A= b/c.

Figure 1(a) also shows an isosurface of the Q-criterion from the A= 2 experiments
of Carr, DeVoria & Ringuette (2015), to illustrate the real vortex flow for comparison
with the model. Here the dimensionless Q∗ = Qc2/(RΩ)2 is used, where R is the
radius of gyration and Ω is the angular speed. A top view of the rotating-wing LEV–
TV–TEV–RV loop geometry for the present model is given in figure 1(b). It is a
simplification of the experiments and simulations mentioned in § 1, including that of
figure 1(a). At the start of rotation, Φ = 0, the LEV and TEV are collocated at the
span-parallel line (z-axis), which intersects the axis of rotation, making the initial
loop area zero. The z-axis moves with the wing as Φ(t) increases. It is assumed that
there is a single LEV from root to tip that remains attached at this z-axis during
wing rotation, discussed further below. The TEV stays fixed at the starting angular
position, which is an approximation of the behaviour found by Carr et al. (2015). For
the model, the TV and RV formation follow the arcs traversed by the z-axis, at their
respective edge locations, starting from Φ = 0. Therefore, the loop shape is a circular
sector growing with Φ(t), minus the root-cutout region.

Piston–cylinder vortex-generator experiments have shown that the momentum
imparted by the piston to the volume of fluid it displaces is nearly equal to
the impulse of the vortex ring (Sullivan et al. 2008). Drawing an analogy to the
rotating-wing configuration, we assume that the angular impulse of the vortex loop
about the axis of wing rotation is equal to the angular momentum of the volume of
fluid brought into motion by the wing,

mf R2Ω = ρΓ SverR, (2.4)
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where mf is the mass of this fluid, and the associated volume is approximated as the
area swept through by the wing in the horizontal plane, multiplied by the projection
of the wing chord onto the vertical plane,

mf =
1
2
ρ(c sin α)(b2

t − (bt − b)2)Φ. (2.5)

In (2.4), the radius of gyration can be calculated from (2.6) for rectangular plates (Lee,
Lua & Lim 2016a):

R= c

√√√√√(bt − b
c
+A

)3

−

(
bt − b

c

)3

3A
. (2.6)

Similar to the mean piston speed in the momentum conservation equation of Sullivan
et al. (2008), the running mean of the angular speed, Ω(t), is used in (2.4), i.e. at
each time the mean is calculated starting from t = 0 (Gharib, Rambod & Shariff
1998):

Ω(t)=
1
t

∫ t

0
Ω(τ) dτ =

Φ(t)
t
. (2.7)

The Sver in (2.4) is the projection of the vortex loop area onto the vertical plane,
derived later.

As mentioned above, it is assumed that the LEV stays attached along the z-axis
(or the wing) until the end of the motion. Jardin & Colonius (2018) showed that this
is true approximately for a local Rossby number, Ro, of Ro= z/c< 3, if the span is
long enough to avoid nearby TV effects (see also Lentink & Dickinson 2009; Kruyt
et al. 2015). For larger z/c, the LEV moves farther aft and interacts with the trailing
tip flow. The LEV evolution depends on Re, A and Ro (see Bhat et al. (2019), who
determined that these effects are best isolated using span-based definitions of Re and
Ro), but often exhibits arch-like liftoff outboard and further LEVs forming ahead of
the main one (e.g. Jardin, Farcy & David 2012; Harbig, Sheridan & Thompson 2013;
Garmann & Visbal 2014; Carr et al. 2015; Percin & van Oudheusden 2015; Phillips,
Knowles & Bomphrey 2015; Lee et al. 2016a; Bhat et al. 2019). However, the
LEV remains close to the wing over much of the span and the overall flow exhibits
a growing vortex loop for up to A ≈ 4, albeit with complex outboard structures
(Garmann & Visbal 2014; Carr et al. 2015; Jardin & Colonius 2018). Therefore, the
simplified assumptions of an attached LEV and large-scale, increasing loop structure
are reasonable at least for the A values tested in § 3. Taking advantage of this, Shor
is calculated as the area traversed by the z-axis in the horizontal plane (figure 1b):

Shor =
1
2
(b2

t − (bt − b)2)Φ. (2.8)

The Shor therefore increases linearly with Φ, as also found by Sun & Wu (2004).
For simplicity, the additional wing area is neglected, since including it produces
a negligible change in lift. Moreover, placing the LEV at the z-axis reduces the
complexity of the Biot–Savart calculation, given below.

As shown in simulations and experiments, the vortex loop is inclined but with
a complex, unsteady 3-D geometry (Sun & Wu 2004; Carr et al. 2015; Jardin &
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Colonius 2018). This is represented in the model by a single angle θ(Φ) with respect
to the horizontal (figure 1c), yielding a planar loop. The θ is necessary to calculate
Sver:

Sver =
1
2(b

2
t − (bt − b)2)Φ tan θ. (2.9)

From (2.4), Γ can then be solved:

Γ =
RΩc sin α

tan θ
. (2.10)

Lee et al. (2015) give a similar expression, but for steady circulation, using a scaling
law. The dynamic, 3-D nature of the real vortex loop makes it challenging to model
θ . For simplicity, we conceptualize θ as being dictated by α∗, which is α scaled by
the near-wake flow, and the angle αi produced by the induced velocity of the loop
itself:

θ(Φ)= α∗ − αi(Φ). (2.11)

The α∗ term is meant to account for the flow deflection after it passes over the
wing. First, we take a reference for the deflection angle to be α= arctan(sin α/cos α),
i.e. aligned with the chord line. However, prior work shows that the TE flow does
not follow the chord line after it leaves the wing for all α. For example, at large
α, such as 60◦, the TE flow deflects upwards compared to the chord line (Ozen &
Rockwell 2012a; Garmann & Visbal 2014; Li, Dong & Cheng 2017), implying a
reduction of the near-wake downward flow. At smaller α, e.g. 15◦, there is evidence
that the TE flow is below this line (Jones & Babinsky 2011; Li et al. 2017). To
capture this inverse relationship of the near-wake downward flow with α, the sin α
is divided by the vertical deflection velocity, V1, from the wing orientation with a
scaling factor K to be determined, i.e. V1 = KRΩ sin α. Also, this can be thought
of as accounting for the downwash from the LEV in the near-wake region. Similarly,
the cos α is divided by the approximate horizontal velocity of the TEV, V2, in the
wing-fixed frame, which is estimated to be RΩ as discussed above. Effectively, this
does not adjust the horizontal flow path, but achieves the desired decrease in the
vertical flow deflection with increasing α for a more physically meaningful α∗. Overall,
the expression is

α∗ = arctan
(

V2

V1

sin α
cos α

)
= arctan

(
RΩ

KRΩ sin α
sin α
cos α

)
= arctan

(
1

K cos α

)
. (2.12)

The K estimation is motivated by observations from the α = 45◦, A = 2
rotating-wing data of Carr et al. (2015). Figure 2(a) shows velocity vectors in
the rotating frame in an x–y plane at the radius of gyration, for Φ = 84◦. In the near
wake, the vectors are roughly aligned with the wing chord line, as illustrated by the
dashed 45◦ reference line in figure 2(a), although there are local spatial variations as
expected. This indicates that at α= 45◦ the near-wing wake flow can be approximated
as being aligned with the chord, so that α∗≈α. The ratio of the near-wake downward
velocity to the horizontal reference velocity, v/(RΩ), is visualized in three dimensions
in figure 2(b) using three isosurfaces: v/(RΩ)=−1.0 and −0.9, and Q∗= 6 showing
the vortex structure. There is a coherent region of magnitude v/(RΩ)∼ 1 in the wake
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←

FIGURE 2. (Colour online) Experimental results from Carr et al. (2015) for A= 2, α=
45◦ and Φ = 84◦ motivating α∗. (a) Wing-fixed x–y plane velocity vectors at R along
the wing span (every other vector is given); a dashed 45◦ line is in the near wake
for reference. (b) Isosurfaces showing magnitudes of downward velocity and the vortex
loop: nested black and translucent grey indicate v/(RΩ) = −1.0 and −0.9, respectively;
translucent white is Q∗ = 6.

near the radius of gyration. This further suggests that the assumption of α∗ ≈ α is
plausible for α=45◦. Wolfinger & Rockwell (2015) also showed regions of magnitude
∼1 dimensionless downward velocity in the outboard flow of an A = 2, α = 45◦

wing for high Φ and slightly larger R/c. Therefore, the assumption of α∗ ≈ α at
α= 45◦ leads to K =

√
2. Although K is estimated from observations at only α= 45◦

and A= 2, § 3 shows that α∗ and αi yield a θ that allows the model to capture the
correct lift trend with α.

The induced angle αi is given by

tan αi =

∣∣∣∣ vi

Uhor

∣∣∣∣= Γ A∣∣RΩ − Γ A tan θ
∣∣ ≈ Γ A

RΩ
. (2.13)

Here vi is the downward induced velocity, Uhor is the net horizontal velocity at R
from the wing motion and induced by the loop, and Γ A is the induced velocity of
the horizontally projected loop itself; A is what remains after Γ is factored out of
the Biot–Savart calculation. The denominator |RΩ − Γ A tan θ | can be approximated
as RΩ , since RΩ� Γ A tan θ .

The A is evaluated on the z-axis at R using the Biot–Savart law at each instant in
time (Γ is assumed constant along the loop):

ΓA=
Γ

4π

∫
loop

ds× r
|r|3

, (2.14)

where ds is a differential length element along the loop, and r is the position vector
from the loop to the point R. This calculation is done for the TV, RV and TEV loop
segments, and for illustration figure 1(b) gives the parameters for the TV contribution.
The reference position R is taken for Uhor and the A calculation, since it has been
shown to be the most appropriate wing length scale when non-dimensionalizing and
comparing flapping-wing data (Lee et al. 2016a). The magnitude A is

A= ARV + ATV + ATEV, (2.15)
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where

ARV =

∣∣∣∣ 1
4π

∫ Φ(t)

0
(bt − b)

(bt − b)− R cos ϕ
(R2 + (bt − b)2 − 2R(bt − b) cos ϕ)3/2

dϕ
∣∣∣∣ , (2.16)

ATV =

∣∣∣∣ 1
4π

∫ Φ(t)

0
bt

bt − R cos ϕ
(R2 + b2

t − 2Rbt cos ϕ)3/2
dϕ
∣∣∣∣ , (2.17)

ATEV =

∣∣∣∣ 1
4π

∫ b

0

R sinΦ
(R2 + (bt − β)2 − 2R(bt − β) cosΦ)3/2

dβ
∣∣∣∣ . (2.18)

The modulus is used so the result is consistent with the actual integration path direction.
The integrals are of the elliptic form, and therefore can be evaluated analytically.
However, in § 3, integrals and derivatives are calculated numerically (trapezoidal rule
and second-order least-squares differentiation, respectively) for convenience.

Early in the motion, ATEV (2.18) has a very high value because of the proximity
of the LEV to the TEV. However, afterwards, ATEV is very small compared to ATV .
Therefore, equation (2.15) is approximated as

A= ARV + ATV . (2.19)

Then, substituting (2.10), (2.12), (2.13) and (2.19) into (2.11) gives
√

2 cos α tan2 θ + (Ac sin α − 1) tan θ +
√

2Ac sin α cos α = 0. (2.20)

The root of (2.20) that is physically meaningful is

tan θ =
1

2
√

2 cos α

[
−(Ac sin α − 1)+

√
(Ac sin α − 1)2 − 8Ac sin α cos2 α

]
. (2.21)

Later in the motion, for high Φ such as 200◦ (depending on the wing geometry and
kinematics), the root fails and so dθ/dt is frozen thereafter. Once θ is known, Γ is
calculated using (2.10). Finally, the Γ , Shor (2.8) and Lin (2.3) are substituted into (2.2)
to compute the time-varying lift. The time average of the ρ d(Γ Shor)/dt term of (2.2)
yields a similar expression to that of Jiao et al. (2018) for the cycle-averaged thrust of
a flapping wing (plunging and twisting) with no root gap. It should be further noted
that the current model only requires the wing geometry and kinematics as inputs.

Additionally, a steady-state lift expression is developed from (2.2). Using (2.10) and
(2.8), the circulatory lift component, Lcirc, can be written as

Lcirc = ρ
d
dt
(Γ Shor)

=
1
2

Rρc sin α(b2
t − (bt − b)2)

[
2Φ dΦ/dt

t tan θ
−

Φ2

t2 tan θ
−
Φ2 dθ/dt
t sin2 θ

]
. (2.22)

At steady state, dΦ/dt and Φ/t can be individually equated to Ωf , where Ωf is the
final steady angular speed, and dθ/dt= 0. The steady-state value for tan θ requires the
steady-state value of A, which can be determined by assuming the TV and RV to be
semi-infinite in length, with circulation Γ . The corresponding induced velocity due to
both vortices is still calculated at R, giving Ass as

Ass =
1

4π

[
1

bt − R
+

1
R− (bt − b)

]
, (2.23)
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Cases A Root cutout α R/c Angle (deg.) travelled Re (based
(bt − b)/c (deg.) during acceleration on UR,f and c)

UB4 4 0.3 45 2.57 10 (RΦ = 0.45c) 1609
UB3 3 0.3 45 2.00 10 (RΦ = 0.35c) 3312
UB2 2 0.3 45 1.42 10 (RΦ = 0.24c) 3558
TUD 2 0.7 45 1.80 27 (RΦ = 0.85c) 8113
UMD-fast 2 0.5 45 1.60 32 (RΦ = 0.90c) 17 071
UMD-slow 2 0.5 45 1.60 187 (RΦ = 5.24c) 17 071
RVC 2 0.5 45 1.60 187 (RΦ = 5.24c) 660
AFRL 2 0.5 60 1.60 43 (RΦ = 1.22c) 3215

TABLE 1. Cases for model validation.

where the first and second terms on the right-hand side are due to the TV and RV,
respectively. At steady state, tan θ becomes

tan θss =
1

2
√

2 cos α

[
−(Assc sin α − 1)+

√
(Assc sin α − 1)2 − 8Assc sin α cos2 α

]
.

(2.24)

Finally, the steady-state values are substituted into (2.22), and Lcirc is non-dimensionalized
by 1/2ρU2

R,f bc to get the steady-state lift coefficient, CL,ss, where UR,f is the final
azimuthal velocity at R:

CL,ss =
(2bt − b) sin α

R tan θss
. (2.25)

3. Model validation and discussion
We consider six different experimental cases to validate the model, namely A =

2, 3 and 4 from Carr et al. (2015), here called UB2, UB3 and UB4, respectively,
and A = 2 with slower accelerations and varying root cutouts from Manar et al.
(2016) (UMD-fast) and Percin & van Oudheusden (2015) (TUD). We also compare the
model with the more gradual acceleration experiment of Manar et al. (2016), called
UMD-slow. Additionally, we test it against the computational simulation of Phillips,
Nakata & Bomphrey (found in Jones et al. 2016) with a motion profile and geometric
parameters matching those of UMD-slow, and that of Garmann & Visbal (2014), here
referred to as RVC and AFRL, respectively. The motion for the AFRL case is very
gradual in the beginning, and we consider the start of the motion for the model at
Φ ≈ 1◦. All unsteady cases tested have α = 45◦, except for AFRL with α = 60◦.
Further, steady-state model results are compared with the experiments of Dickinson,
Lehmann & Sane (1999) for various α.

Figure 3(a) gives the motion profiles for all unsteady cases, and table 1 provides
their specific parameters. The force data were extracted from plots in the references
and interpolated to a discrete time scale for all cases except the Carr et al. (2015)
results, which were directly available. The motion profiles were generated from the
equations used in the references. Figure 3(b) shows how the model loop angle θ varies
with Φ for all cases. The θ starts from a value equal to α∗, then decreases rapidly
and finally becomes nearly constant. All A = 2 cases have comparable loop angles
for the same α.
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FIGURE 3. (a) Motion profiles; UB2, UB3 and UB4 overlap. (b) Loop angle variation.
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FIGURE 4. Comparison of the lift coefficient from the α = 45◦ experimental/numerical
cases (solid lines) and the model (dashed lines): (a) A= 2 and (b) A= 2–4.

The lift coefficients, CL = 2L/ρU2
R,f bc, for all A= 2 and α= 45◦ cases are shown

in figure 4(a) and those for the different A tests of Carr et al. (2015) are given in
figure 4(b). Figure 5(a) presents the CL comparison for α= 60◦. The model reasonably
predicts CL within 18 % of the experimental results during the wing’s steady motion,
except for TUD and UB2, which have maximum errors below 27 %. It is not always
effective at capturing the startup-acceleration peak, and the deviation is more than
20 % of the experimental results. However, it gives a reasonable estimate (within
12 % error) of the peak when compared with the numerical simulations. The model’s
non-circulatory force component starts to decrease from the peak value before the
experimental CL drops for all cases, possibly because of force-signal filtering and
also in the experiment the fluid’s inertia continues to exert force past the instant the
wing acceleration ceases (Galler et al. 2019).

The model force could be affected at some time instants by the simplifications. For
example, a single loop angle θ is used to represent the orientation of the complex
3-D loop structure; this could incur some error. Also, in determining α∗, the tangent
of the geometric α is scaled by the ratio of vertical and horizontal velocities at R,
estimated based on observations from experiments/simulations in the near-wake region.
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FIGURE 5. (Colour online) (a) Unsteady CL versus Φ: A= 2 and α = 60◦.
(b) Steady-state CL versus α: A= 2.

Cases UB4 UB3 UB2 TUD UMD-fast UMD-slow RVC AFRL

Error (%) 6.3 3.5 16.6 18.2 4.9 10.9 7.4 9.4

TABLE 2. Model error based on mean CL.

Perhaps this could be improved in the future with the knowledge of a detailed analysis
of the flow behaviour in this region for varying α. Further, there is a range of Φ
between the occurrence of high and low ATEV values for which the TEV is not too
close (spatially) to the LEV to make ATEV go to infinity, nor too far for ATEV to be
insignificant compared to ATV (see § 2); ATEV significantly contributes to A in this
region. Additionally, the presence of split or multiple outboard LEVs in the real high-
Re flows, filtering of the experimental data, and set-up constraints such as mounting
hardware are not captured by the model.

Overall, the model may also deviate from the experiments and simulations for
the following reasons. First is the assumption that the impulse of the loop is equal
to that imparted to the volume of fluid swept by the wing. Sullivan et al. (2008)
presented the ratio of impulses measured in an experiment to those calculated from
their piston–cylinder model, which uses the same assumption. The impulse is over-
or underpredicted up to 10 % for the cases considered (cf. their table 8). Second, the
vortex loop area is modelled here as the sector area traversed by the wing. This is
a good assumption but they are not exactly equal. Despite these drawbacks, for the
UB3, UB4, UMD-fast, RVC and AFRL cases, the error is within 10 % for most of
the Φ range shown. Also, we calculate the error based on the mean CL taken over
Φ up to 250◦ for each case, as given in table 2. The deviation is within 20 % for all
cases, and for some it is below 10 %.

Further, the trends of the model CL show good agreement with those of the
experiments and simulations. In all cases, CL increases with a shallow slope even after
the wing stops accelerating (figure 4a and 4b) for both the model and benchmark
cases. This produces a broad local maximum in some of the experimental and
numerical CL curves, whereas in others and all the model estimations, the CL simply
levels off.
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FIGURE 6. (a) Inertial and circulatory lift coefficients (dashed and solid lines, respectively)
for the A= 2, α = 45◦ cases. (b) Loop circulation for all cases.

Cases Ac (Φ = 180◦) Assc

UB2 0.1619 0.1616
UB3 0.1092 0.1080
Dickinson et al. (1999) 0.1575 0.1600

TABLE 3. Comparison of dimensionless Ac and Assc for cases with various A and Ro.

Figure 5(b) gives the behaviour of the model with α, comparing the average CL

of the unsteady model over Φ = 150◦–250◦, and the steady-state form (2.25), to the
quasi-steady measurements of Dickinson et al. (1999) for α = 0◦–90◦. To calculate
the CL,ss (2.25), the unsteady A was simplified for long-time behaviour by assuming
semi-infinite TV and RV to obtain Ass (cf. § 2). The dimensionless Assc estimate is
very close to the unsteady counterpart in the steady state, as shown for some cases
with various A and Ro=R/c in table 3. Dickinson et al. (1999) measured the lift for
a robotic fruit-fly wing rotating from rest in a liquid-filled tank. For both the unsteady
and steady models, to compare with the experiment we use a rectangular geometry
but match their wing area, A = 2 and Ro = 2.35; the unsteady model employs the
UB2 velocity profile. Figure 5(b) shows excellent agreement between the unsteady-
and steady-state forms of the model, and these compare well with the quasi-steady
measurements. Together with figures 4 and 5(a), this demonstrates that the model can
predict the proper trends with α. At first the steady-state CL increases with α, then
after approximately α = 45◦, it decreases to zero at α = 90◦ (figure 5b).

In figure 6(a), the model inertial and circulatory force components are given for
the A = 2, α = 45◦ cases. In the steady-motion portion, eventually the circulatory
forces become very close despite the differences in motion profiles. Figure 6(b) shows
the dimensionless vortex loop circulation; b is used in scaling it to represent the loop
size. The circulation initially increases with Φ; then its growth substantially reduces
after wing acceleration ceases. As given by (2.10), this behaviour is governed by
Ω(t) and θ , leading to the slowing growth as they level off. The trend of the loop
circulation resembles that of the total circulation produced at the LE in the Carr et al.
(2015) experiments.
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4. Conclusions
In this paper we present a simple analytical model for unsteady rotating-wing lift

with the wing geometry and kinematics as the only inputs. The LEV is assumed
to remain attached to the wing for the entire duration of the rotating motion, and
to be connected to the TV, TEV and RV to form a closed loop. The wing motion
specifies the shape and size of the planar loop in the model, and its tilt, as observed
in experiments and numerical simulations, is determined from consideration of the
wing orientation, flow deflection and downwash. By matching the angular momentum
of the loop to that of the volume of fluid swept by the wing about the axis of
rotation, the circulation of the loop is found. The loop area increases linearly with
the angular displacement of the wing (Sun & Wu 2004). Circulation is multiplied by
the loop area and density to give the impulse. Finally, the net lift force is the sum of
the inertial lift from potential flow theory and the time derivative of the loop impulse.
The model is compared with some experimental and computational results having
different A, α and motion profiles. The model predicts unsteady lift reasonably well,
and mean lift within 20 % deviation. Further, a steady-state form of the model is
derived, which shows excellent agreement with the averaged value of the unsteady
model in the steady-state part. The lift variation with α found in prior literature is
also captured very well. The circulation of the vortex loop first increases and then
stays approximately constant, as dictated by the running mean of the wing angular
velocity and the loop tilt angle.
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