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We investigate how stochastic asset price dynamics with herding and financial constraints
explains the presence of a period of financial distress (PFD) following the peak and
preceding the crash of a bubble [Charles P. Kindleberger, Manias, Panics, and Crashes: A
History of Financial Crisis, 4th ed. (New York: Wiley, 2000, Appendix B)] as common
among most major historical speculative bubbles. Simulations show that the PFD is due to
(1) agents’ wealth distribution dynamics and (2) positive and sufficiently high transaction
costs generating losses for a significant mass of the agents’ distribution after the peak of
the bubble. The use of transaction costs to get the result is only a modeling tool. Many
other mechanisms—able to generate losses for a large mass of the agents’ distribution in
periods in which financial constraints bind—can produce the same result. The paper also
shows how the PFD is affected by a variation of the sensitivity of price to the excess
demand and by the switching strategy.
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1. INTRODUCTION

In the fourth edition of his magisterial Manias, Panics, and Crashes (2000),
Charles Kindleberger has an Appendix (B) that lists a series of famous speculative
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bubbles and crashes in world history.1 The list begins with the 1622 currency
bubble of the Holy Roman Empire during the Thirty Years War and ends with
the Asian and Russian crises of 1997–1998. In his discussion of how speculative
bubbles operate, drawing heavily on the work of Hyman Minsky (1972, 1982),
Kindleberger identifies a general pattern followed by most of them. There is an
initial displacement of the fundamental that begins the bubble, although not all
have a well-defined such displacement. Later the bubble reaches a peak after a
period of credit expansion and speculative euphoria. Then for most there is another
date after the peak when there is a crash or crisis. Kindleberger calls the period in
between these two dates the period of financial distress.2 Of the 46 bubbles listed
in this appendix, Kindleberger identifies 36 as having such a period, as indicated
by having clearly distinct dates for a peak and a later crash, with a few others
potentially having one.

One can argue with his list. Missing bubbles include the U.S. silver price bubble
that peaked and crashed in 1980 and the U.S. NASDAQ bubble that peaked and
crashed in March 2000, following the pattern set by the first two on his list, the
Holy Roman Empire bubble and then the Dutch tulip mania that crashed suddenly
on February 5, 1637 [Posthumus (1929); Garber (1989)], with the last one on
his list from 1997 to 1998 also showing this pattern.3 Nevertheless, to the extent
that Kindleberger’s list reasonably reflects historical patterns, it would appear that
a solid majority of historically noteworthy speculative bubbles had such periods
of financial distress, periods after the peaks of the bubbles in which the market
declined somewhat gradually before it dropped more precipitously in a panic-
driven crash. Even the most famous stock market crash (October 1929) followed
a similar path: as Figure 1 shows, it peaked in August before eventually crashing
two months later.

To date there have been only a few theoretical models that have been able to
separate a peak from a crash [DeLong et al. (1990); Rosser (1991, 1997); Hong
and Stein (2003); Föllmer et al. (2005)]. One problem has been the widespread
reluctance of economic theorists to accept the reality that potentially speculative
markets have heterogeneous agents, reflecting favoritism for representative agent
models in which the agent in question has rational expectations. Indeed, under
sufficiently strict conditions (a finite number of infinitely lived, risk-averse, rational
agents, with common prior information and beliefs, trading a finite number of
assets with real returns in discrete time periods), it can be shown that speculative
bubbles are impossible [Tirole (1982)]. Influenced by the spectacular crashes
in 1987 and 2000, economists have become increasingly willing to doubt the
realistic applicability of such theorems to actual markets. DeLong et al. (1991)
showed not only that “noise traders” could survive, but even that some of them
might outperform the supposedly rational fundamentalist traders in the market.
Such arguments have opened the door to studies that emphasize the roles of
heterogeneous interacting agents [Day and Huang (1990); Chiarella (1992); Arthur
et al. (1997); Brock and Hommes (1997); Lux (1998); Chiarella et al. (2001, 2003);
Chiarella and He (2002); Kaizoji (2000); Bischi et al. (2006); Hommes (2006)],
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FIGURE 1. Stock market crash (October 1929). In the abscissa the “.5” year label means
the end of June.

even as none of these have demonstrated the pattern described by Minsky and
Kindleberger as the “period of financial distress.”

Kindleberger (2000, p. 17) provides a stylized account of what has typically
been involved in the process.

As the speculative boom continues, interest rates, velocity of circulation, and prices
all continue to mount. At some stage, a few insiders decide to take their profits and
sell out. At the top of the market there is hesitation, as new recruits to speculation are
balanced by insiders who withdraw. Prices begin to level off. There may then ensue an
uneasy period of “financial distress.” The term comes from corporate finance, where
a firm is said to be in financial distress when it must contemplate the possibility,
perhaps only a remote one, that it will not be able to meet its liabilities. For an
economy as a whole, the equivalent is the awareness on the part of a considerable
segment of the speculating community that a rush for liquidity—- to get out of other
assets and into money—may develop, with disastrous consequences for the prices
of goods and securities, and leaving some speculative borrowers unable to pay off
their loans. As distress persists, speculators realize, gradually or suddenly, that the
market cannot go higher. It is time to withdraw. The race out of real or long-term
financial assets and into money may turn into a stampede.

In the next section we discuss the literature on stock market crashes. We then
present a model (Section 3) that is similar to the one used by Chiarella et al.
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(2003) and Bischi et al. (2006) for a large set of heterogeneous agents who interact
with each other, derived from work originally done by Brock (1993), Brock and
Hommes (1997), and Brock and Durlauf (2001a, 2001b). We introduce a wealth
constraint into such heterogeneous interacting agents models to study this period
of financial distress. We show that during a bubble the existence of financial
constraints, in such a framework, is sufficient to produce a period of financial
distress provided transaction costs are sufficiently high. We present simulations in
Section 4 that display the phenomenon [for general discussion about simulations
in finance see LeBaron (2006)]. Section 5 concludes.

2. BUBBLES, CRASHES, AND FINANCIAL DISTRESS

Historical discussions of the most spectacular of the early bubbles, the closely
intertwined Mississippi bubble of 1719–1720 in France and South Sea bubble of
1720 in Britain, show a standard pattern [Bagehot (1873); Oudard (1928); Wilson
(1949); Carswell (1960); Neal (1990)]. Common to all these discussions are two
groups of agents, a smart group of “insiders,” who buy into the bubble early and
who get out early, usually near the peak, and a less well-informed (or intelligent
or experienced) group of “outsiders” who do not get out in time. These are the
agents who continue to prop the bubble up during the period of distress as the
wiser insiders are selling out. The crash comes when this group of outsiders, for
whatever reason, finally panic and sell. In discussing the British South Sea bubble,
Wilson (1949, p. 202) characterizes this outsider group as including “spinsters,
theologians, admirals, civil servants, merchants, professional speculators, and the
inevitable widows and orphans.”

An important factor in many of the actual crashes, noted especially for the 1929
stock market crash by Minsky, Kindleberger, and also Galbraith (1954), is that
investors can encounter wealth constraints, especially if they have borrowed on
margin to buy assets. Actually in our work we want to show, in a simplified setting,
that wealth constraints per se are able to explain the crash after a period of financial
distress. The crash itself can be exacerbated by a mounting series of margin calls
that force investors to sell to meet them, thereby pushing the price further down
and triggering more such calls. These calls arise because many buyers only have
put a small portion of money down to buy compared to the price (the “margin”),
but then must put up more money if the price falls below a critical level based on
the margin.

Efforts have long been made to model speculative bubbles using the interactions
of such insiders and outsiders [Baumol (1957); Telser (1959): Farrell (1966)],
although without showing such a period of distress. Others have simply shown
interactions between fundamentalists who do not participate in the bubble and
trend-chasing chartists who do, but without subdividing them [Zeeman (1974)].
However, all these incipient efforts to model using heterogeneous agents fell into
disrepute as the rational expectations revolution gathered steam during the 1970s.
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FIGURE 2. Stylized representation of a bubble produced by rational bubbles.

The first to revive such an effort, and also to show something like a period of
financial distress, were DeLong et al. (1990). Following Black (1986), they were
principally concerned with demonstrating the possibility of “rational speculation”
in the presence of noise traders, with the rational speculators forecasting the future
purchases of the noise traders and thereby making money by buying in advance
of their purchases. This makes the “rational speculators” like the “insiders” from
the older literature, whereas the noise traders are the “outsiders.” However, they
are not interested in a Minsky–Kindleberger period of financial distress as such,
and their model shows more slowly rising prices after the noise traders enter the
market, rather than actually falling prices. The trend chasing of the noise traders
guarantees that the bubble continues to rise even as the rational speculators are
selling, although at a lower rate, or at least does not decline.

The first to specifically model a period of financial distress was Rosser (1991,
Chapter 5; 1997), who introduced multiple periods and a lag operator within
a stochastically crashing bubble framework, following Blanchard and Watson
(1982). Although this model allows rational speculation, the rationality assumption
was relaxed. It was shown that the three basic cases discussed by Kindleberger
and shown below in Figures 2–4 could occur, although the parameter set for the
financial distress case was of measure zero and thus unable to explain the ubiquity
of that historical phenomenon.

Both of these models involved strong assumptions with agents of extreme types,
in contrast to those used in this paper. In the model used here, agents are allowed
to be of intermediate types in terms of trend chasing and willingness to switch
strategies, all operating within a wealth constraint. Although there are links to
the Rosser approach, the greater flexibility and realism of the model used here is
better able to model the financial distress phenomenon.

Some more recent efforts to model periods of financial distress have been carried
out using insider–outsider models in models of financial crises in emerging market
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FIGURE 3. A stylized representation of a bubble produced by interacting heterogeneous
agents. It can be asymmetric, but it falls much slower than the rational bubble.

foreign exchange rates, although without showing a period of declining currency
value prior to a full crash, or “sudden stop” [Calvo and Mendoza (2000)]. Although
it does not specifically focus on the period of distress, the model of Hong and Stein
(2003) looks as if it could generate such a pattern and can be argued to fit the
insider–outsider pattern, as it involves differing degrees of information among
traders, with more pessimistic traders only buying after the price starts to decline
and gets to a level they think is sustainable, with their buying helping to prop it up
for a period of time.

The model of Föllmer et al. (2005) shows some patterns in its simulations that
resemble periods of financial distress, with a gap between a peak and a crash.
However, the dynamics involve a struggle between fundamentalists and chartists
for domination of the market dynamics just prior to a switch from the chartists
dominating to the fundamentalists dominating after the crash happens. The crash
does not involve financial constraints specifically. Furthermore, the authors make

FIGURE 4. A stylized representation of a bubble with a crash preceded by a period of
financial distress.
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no mention of these scattered appearances arising from their model or that it might
possibly help explain a widely existing feature of most major historical bubbles.

Rosser (1991, Chapter 5) provides three canonical patterns for bubbles and
crashes, drawing on the discussion by Kindleberger. The first is that of the accel-
erating bubble that is followed by a sudden crash, much like that of the Dutch tulip
mania on February 5, 1637.4 This is depicted in Figure 2. Most of the models of
rational agent bubbles tend to follow this pattern [Blanchard and Watson (1982)].

Another is that of a bubble that decays more gradually after rising, as in France
in 1866 or in Britain in 1873 and 1907. This is depicted in Figure 3. It is often
argued that many bubbles follow an intermediate path between these two, with a
decline that is not a discontinuous crash, but that asymmetrically declines more
rapidly than it increased.5 This has been studied using heterogeneous interacting
agents models [Chiarella et al. (2003)]. The model used by the authors is similar to
the framework in Bischi et al. (2006) but with a more complex timing mechanism.
An other difference is that, in the Chiarella et al. work, the herding component in
agents’ decisions is not exogenous but chosen period by period using a genetic
algorithm. That paper shows that (1) this kind of model may generate endogenous
bubbles; (2) when a speculative bubble starts the herding component becomes
positive and sufficiently high (the J parameter in Section 3); (3) herding behavior
is rational (in line with the DeLong et al. results) because during the bubble it
allows speculating agents to make more profits. To be precise, because their work
shows that the distribution of profit using herding behavior strategies has greater
variance than the fundamentalist one, the formers’ becomes rational when the
expected value of that strategy is sufficiently higher than that of the fundamentalist
to compensate for the risk.

Finally, there is the pattern we are studying in this paper, the historically most
common pattern according to Kindleberger, that of the bubble that exhibits a
period of financial distress after the peak but prior to the crash. This is depicted in
Figure 4.

In our project, we show the existence of a period of financial distress (as defined
by Kindleberger)—given a bubble—using the Bischi et al. (2006) framework
that generates bubbles according to the values of parameters because it is more
computationally convenient, which in turn follows directly the work of Chiarella
et al. (2003) for showing the emergence of endogenous bubbles. This framework
will have some differences from the stylized story told above.

3. THE MODEL

In this section we will describe a model able to explain the existence of a period
of distress during the bubble. In such a framework, we consider a population of
investors facing a binary choice problem. The agents, at the beginning of each
period of the simulation, choose a strategy wit ∈ {−1,+1}, where −1 stands
for “willing to sell,” whereas +1 stands for “willing to buy” a unit of a given
share. We do not model an optimal portfolio problem explicitly; rather, the trade
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decisions have to be interpreted as the marginal adjustment the agents make as
they try to take advantage of profit opportunities arising due to continuous trading
information diffusion. As a simplification, all agents trade in every period. The
following assumptions are made:

(i) There exist two assets: a risk-free asset with a constant real return on investment r

and a risky asset with price Pt that pays a constant dividend, say y.
(ii) Agents, whose number is N, observe past prices, the past relative excess demand,

wt−1 = N−1
∑

wit−1, and the real interest rate, r , and have rational expectations
about the dividend process. Therefore the fundamental solution of the risky asset
price is the ratio F = y/r .6 The information set of the agent is the union of his or her
private characteristics and the public information set; that is r, y, and past prices and
excess demand. In our simulations y/r is held constant and determines the starting
point of the simulation process. Also, N is held constant in our simulations, except for
agents dropping out due to bankruptcy only to be replaced by new agents. As shown
in Bischi et al. (2006), in principle N can follow a stationary process. Assuming N
constant allows us to avoid the volumes dynamics problem, i.e., the relation between
changes of prices and changes of volumes.

(iii) In order to take their buy/sell decision, the agents evaluate an expected benefit
function, Vit , that will depend on their private beliefs about what price will prevail
in the market. We assume that the agents engage in rational herd behavior; i.e., they
expect that Vit will be positively related to the other agents’ buy/sell decisions.

(iv) Price dynamics—not known by the agents—are assumed to follow the difference
equation (tâtonnement process)

pt = pt−1 + f (wt ) + σ1z1t , (1)

where pt is the logarithm of the asset price, and f (w) is a deterministic term that
measures the influence of excess demand on current price variations, with properties
f (0) = 0, f ′(w) > 0. The stochastic component of price dynamics is captured
by σ1z1, where z1 is a NID(0, 1) process, so that σ1 is the standard deviation of
the shocks. Note that, when the excess demand is zero, both the conditional and
the unconditional distribution of price changes follow a Gaussian process with zero
mean and variance σ 2

1 . With out-of-equilibrium dynamics (w �= 0), the conditional
distribution will have a different mean, although remaining Gaussian by definition,
whereas the unconditional distribution may not belong to the normal distributions
family [see Leombruni et al. (2003)].

(v) Agents have homogeneous expectations regarding the relative excess demand at
period t , say we

t . Following Brock and Durlauf (2001b), agents’ static expectations
with respect to their information set are assumed; i.e., the excess demand expected
is that previously observed, we

t = wt−1.

The agent’s choice is modeled as a binary random variable that describes, from
the point of view of the modeler, the choice of agent i at time t between the two
strategies. In other terms, the random variable wi gives the probability distribution
of agents’ decisions conditional on their expectations. With perfect information, no
social interactions, and perfect market efficiency, the relevant statistic to compute
would be the ratio between the expected value of the fundamental solution of price
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dynamics and the actual price that measures the expected rate of profit (loss) when
the price reaches the fundamental.

However, we assume that the herding behavior undermines the ability to cal-
culate this for the actual assets’ price dynamics. The rationale of this imitative
behavior is that the agents try to extrapolate from the observed choices of the
others, and exploit, the piece of information they are lacking.

Following the social interaction literature, a convenient way to model the herd
component in the behavior of the investors is by means of a binary choice frame-
work with interaction. Namely, we assume that the non–financially constrained
benefit function for the strategy wi is

Uit = (p̄t − pt−1)wit + Jwitw
e
t + εit . (2)

The equation above is a standard assumption in the social interaction literature
[see Brock and Durlauf (2001a, 2001b)]. It implies that the utility or benefit
function is affected by three additive components. The first component gives the
private benefit in choosing strategy wi after having observed the price. This is
done by comparing observed past log price p with log expected price p̄ (see
below). The second component is an interaction term (proportional spillovers)
measuring the benefit of that choice in a situation where the expected average
choice is we. Finally, the last term introduces, stochastically and from the point of
view of the modeler, idiosyncratic factors and private information affecting agents’
decisions.

To be precise, the first term of the right hand side is the benefit of the strategy
“buy one unit of share” or “sell one unit of share” in case the agent would consider
only the adaptive expectation of the price without social interaction. The second
term captures the positive spillover agent i expects in following others’ expected
choices. It captures the interaction among investors, in the form of a proportional
spillover Jwiw

e. In other words, the benefit expected by agent i depends on
his or her expectation as to the average choice of the market, we. The positive
parameter J measures the weight given to the choices of other agents. We assume
a constant strength of the interaction because the aim of this work is not to prove
that models of this kind may produce bubbles, as this is exactly what it is shown
by the authors in Chiarella et al. (2003). Rather, we show the existence of a
period of financial distress given the bubble. To be precise, the analysis in the
following is parametric, with key positive parameters J and β (defined below),
because models of this kind [see also Kaizoji (2000)] may produce bubbles (i.e., a
“large” distance between actual price and the fundamental solution, e.g., 50% or
100%).

The discrete choice literature calls the term (p̄t −pt−1)wit +Jwitw
e
t the “deter-

ministic component of the benefit function.” The third term, εit , represents random
variables that may have different distributions under the two choices and, in this
setting, captures the source of heterogeneity between agents’ decisions. As said
above, the random variables capture agents’ unknown (to the modeler) features.
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As in Brock and Durlauf (2001a) and Bischi et al. (2006), we assume that the
difference of the random components under the two choices (−1 and +1) is a
logistic distribution with parameter β. This parameter, in the binary choice with
interaction framework, has two interpretations: (1) the importance of the part of
agents’ decisions not known by the modeler and (2) the velocity at which agents
switch their strategies when profitability changes [see Brock and Durlauf (2001a,
2001b)]. We note here that the two parameters, J and β, the herding parameter and
the propensity–to switch strategies parameter, play the central roles in determining
the bifurcation structure of the dynamical system.

The key additional assumption of this model is the presence of a financial
constraint on agents’ decision process. In other words, agents start the continuous
trading with a given initial wealth and remain in the market only if their losses are
not too high. Formally, an agent’s benefit function with liquidity constrains may
be expressed by the equation

Vit = {Uit if Wit−1 > θWi0,−∞ · wit if Wit−1 ≤ θWi0}, (3)

with 0 < θ < 1 measuring the fraction of the initial wealth below which the agent
sells with probability 1. Wi is the wealth of the agent.

In this framework, agents’ stochastic decisions regarding whether to buy or to
sell could be described by the probability that the benefit function will yield a
higher benefit than the other choice [see Brock and Durlauf (2001a, 2001b) for
surveys of the methodology]; that is,

Pr(wit ) = Pr{Vit (wit ) > Vit (−wit )}. (4)

So far, we have not considered any dynamics in the priors about the expected
price. Actually, when an investor follows the herd because of the (assumed)
presence of information asymmetries, he or she should coherently revise his or her
priors. For instance, if he or she follows the herd during a bull market, we should
expect that he or she will contextually increase his or her prior on the fundamental.
More generally, we can model the priors revision assuming that the agents adjust
their private expectations by comparing them with the public information that
is currently mirrored in the price level. That is, we can assume the following
adaptive learning mechanism, homogeneous across agents, for the priors on the
log-expected price:

p̄t+1 = p̄t − ρ(p̄t − pt) + σ2z2t+1, (5)

where ρ ∈ [0, 1] is a measure of the adaptive speed of adjustment. The adaptive
mechanism given in the equation above can be described by saying that the new
expected price is a convex combination of the previous expected price and the
previous realized price (ρ being the relative weight of the realized price) plus a
stochastic component σ2z2, where z2 is a NID(0, 1) process, so that σ2 determines
the variance of the shocks. This hypothesis, made for the sake of simplicity, means
that in the original variables the updating rule is not linear but geometric.
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The model can be implemented (after an initialization of parameters and starting
values of all variables) by dividing period t into four steps as follows:

Start Period t
(Step 1) Agents decide wit [using equations (2), (3), (4)]
(Step 2) Asset price changes [using equation (1)]
(Step 3) Agents realize profit/losses and update wealth using the profit equation (7)

(see next section)
(Step 4) Agents compute p̄t+1 [using equation (5)]
End period t

In Step 1 agents decide wit observing pt−1, wt−1, p̄t , and Wit−1. In Step 2 there is
the computation of price pt after the realization of wt . In Step 3 agents compute
�it and Wit . Finally, in Step 4 agents compute p̄t+1.

4. SIMULATION RESULTS

In this section the model is analyzed by simulations (performed using GNU
Octave; see www.octave.org) that are implemented assuming an annual dividend
with mean d = 1 and r = 0.1; therefore the fundamental solution F is equal to 10.
Although in the short run the expected price will deviate from this fundamental,
in the long run the mean of the expected price will equal this fundamental. We
specify a linear-in-log-price dynamics with f (wt) = k wt ; that is,

pt = pt−1 + kwt + σ1z1t , (6)

where k = 0.4 and the standard deviation σ1 = 2 × 10−6, whereas σ2 = 4 × 10−2.
The initial log expected price is p̄0 = ln(10.1), whereas p0 = ln(10). J and β were
set equal to respectively 0.5 and 0.1. For every agent i = 1, . . . , 100 the buy/sell
decision is made according to the probability measure described in Section 3. To
keep things simple, agents buy and sell in every period; w = 1 means to buy one
unit at the beginning of period and sell it at the end; w = −1 is a one-period
short position. To summarize, losses and profits are realized in every period.
So in simulations agents do not collect shares. The following realized profit is
computed:

�it = wit (�pt + y) − c, (7)

where y is the part of the dividend attributed to the time interval simulative step.
The wealth in each period changes by adding the profit in equation (7). During the
simulations the constant value 1/36,000 for y and an interest rate such that the
fundamental solution is 10 were used. Finally, c is a transaction cost [as in Chiarella
et al. (2003)] assumed constant and equal to 0.8. We will see that such high
levels of transaction costs are necessary to produce a distribution dynamics of
wealth generating the PFD. The parameter ρ of equation (5) is set to 0.7 during
simulations. The simulations were started with the initial wealth of every agent,
W0, equal to $1,000. In the simulations with financial constraint and positive
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FIGURE 5. Asset price rate of growths with positive transaction costs (top panel) and with
zero transaction costs (bottom panel).

transaction costs we set θ = 0.7. To avoid the problem “how to reinvigorate the
market after the crash,” we replace the agents with new ones when the priors on
the log expected price go below 60% of the fundamental solution. The hypothesis
is made for computational convenience, but it can be interpreted as “new people
enter the market to speculate after the crash.”

With zero transaction costs we observe bubbles of the second type such as the
one stylized in Figure 3. The numerical analysis shows that the time series bubbles
look like Figure 3. Even though fluctuations may be asymmetric and may show a
change of slope during downfall, they do not exhibit a crash preceded by a period
of financial distress (i.e., an outlier rate of growth; see below).

If we allow transaction costs to be positive and the financial constraints to bind
we may observe simulations such as Figure 5 in which a period of financial distress
appears. To identify such phenomena we use the Kindleberger definition in the
Introduction: time between the peak of the bubble and the crash or crisis (at least
10 periods of decline preceding a crash).

In the simulations the crash is identified by an accelerating (outlier rate of
growth) fall after the peak (Figure 6).

Looking at the four-period rate of growth of the asset price (Figure 5) computed
with the log differences for the cases with positive transaction costs (top panel)
and zero transaction costs (bottom panel), we see that a crash is identifiable by
an outlier rate of growth. Using the standard one-period rate of growth, �logp,
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FIGURE 6. Introduction of positive transaction costs with liquidity constraints.

nothing changes qualitatively, but the result is less evident. This is because it an
anomalous rate of growth with zero transaction costs may occur, but the probability
of observing a four-period outlier is negligible.

Regarding the test, we use the Grubbs outliers test, but the result is robust
with respect to non-Gaussianity of the rate of growth (the excess kurtosis is 0.38)
because the four-period rate of growth before iteration 400 is more than four
standard deviations higher. The two series were obtained using the same seed
for the GNU Octave random number generator (the seed is 4 in a Debian Stable
operative system). To be precise, analyzing situations with c = 0, 0.1, 0.2, . . . ,

the minimum level able to produce the bubble is the value c = 0.8.
Performing 200 Monte Carlo simulations with 100 agents, each of 1,000 runs

with parameters as above, but changing the random seed in the random number
generator, we get 84 crashes preceded by a PFD. We consider an episode a PFD
only if its duration is at least 10 periods and the 4-period rate of growth is an
outlier of the empirical distribution. During simulations the maximum (minimum)
value of the duration of the PFD was 158 (11); the mean duration was 61.23 with
standard deviation 29.12 (Table 1, first row).

Because we do not obtain such phenomena without the introduction of the
financial constraint (or put differently, when the θ parameter is sufficiently low so
that the constraint is not binding), the following conjectures can be asserted for
this model.

TABLE 1. Period of financial distress statistics

Reduction in
β Min Max Mean Stand. dev. amplitude (%)

0.1 11 158 61.23 29.12 22.71
0.7 19 202 72.69 37.64
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FIGURE 7. Wealth distribution dynamics.

RESULT 1. Bubbles characterized by a PFD (type 3 bubble, Figures 1 and 4)
are generated when the agents are financially constrained with sufficiently high
transaction costs.

The explanation of type 3 bubbles is evident when looking at the evolution of
the wealth distribution of agents (Figure 7). The three densities (from right to
left) describe the situation at the beginning (= 20), after 200 periods and last just
before the crash, where it is possible to see that a large tail of the distribution is at
or below the threshold 0.7 × 1,000 = 700.7 In other words,

RESULT 2. The PFD is the time necessary, after the maximum of the bubble,
to have a sufficient mass of agents needing to sell because of financial constraints.

The relatively high transaction cost is necessary to have a PFD in simulations.
The distribution of wealth seem to spread over time. With zero transaction cost,
the distribution may become so wide that the tail crossing the critical level (700
in simulations) has too little to generate the PFD. In other words, the financial
constraint binds for too few agents. It must be stressed that the positive transaction
cost device to get the PFD was chosen for its simplicity from both a modeling and
a computational point of view. Many other mechanisms—able to generate losses
for a big mass of the agents’ distribution in periods in which financial constraints
bind—can produce the same result.
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FIGURE 8. An increase in β. The two time series share the same random numbers and the
same parameters other than β. In the gray time series β = 0.1; in the black time series
β = 0.7.

An increase of the parameter β from 0.1 to 0.7 produces an increase in the mean
and the variance of the PFD distribution (Table 1, second row). An example of
this result is shown in Figure 8. Table 1 (second row) summarizes a Monte Carlo
simulation with parameters as above, but β increased from 0.1 to 0.7. During
simulations the maximum (minimum) value of the duration of the PFD was 202
(19); the mean duration was 72.69 with standard deviation 37.64. Furthermore, in
every run on the second set (β = 0.7), the amplitude of the bubble decreases. The
average reduction is 22.71%. This value was computed evaluating the reduction
in percentage of the maximum preceding the crash. Summarizing the results, the
following conclusion can be asserted.

RESULT 3. An increase of the parameter β increases the PFD and decreases
the amplitude of the bubble.

An interpretation of this result might be that as β represents the willingness of
agents to change their strategies, it can be interpreted as an index of the rationality
of the agents.8 Thus the amplitude of the bubble is kept down when agents are
more likely to switch away from the herd-driven upward surges, and the crash is
delayed when the same tendency to switch in response to profitability maintains
the liquidity of more traders for a longer period.
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FIGURE 9. A decrease of k and c. The time series is produced with k = 0.1 and c = 0.4.

Regarding the role of the k parameter, simulations show the following:

RESULT 4. A decrease of the parameter k decreases the minimum transaction
cost able to produce the PFD.

In other terms, analyzing situations with a low level of k, we found that lower
values of c produce the PFD compared to the case k = 0.4. To be precise, with
k = 0.1 and with c = 0, 0.1, 0.2, . . . the minimum level able to produce the
bubble, with other parameters unchanged, is the value c = 0.4 (see Figure 9).

The result is due to the fact that a reduction in k reduces price volatility and so
the possibility to make profits. In such situations, the reduction of wealth produced
by c affects more the probability that wealth will reach the critical level below
which agents sell with probability one.

Finally, a set of simulations is performed with the same random numbers as the
first one, except the parameter J, which increases from 0.5 to 3. Every run results
in a greater amplitude of the bubble (the distance of actual price, at the maximum,
and the fundamental solution more than tripled), but with no significant change
in duration. An example of such a simulation is shown in Figure 10. Table 2

TABLE 2. Effect of an increase in J from 0.5 to 3

J Mean (PFD) Stand. dev. (PFD) Increase in amplitude (%)

0.5 61.23 29.12 56.87
3.0 62.18 30.23

Note: The last column shows the average percentage increase at the maximum of the bubble.
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FIGURE 10. Increase in J. The two time series share the same random numbers and the
same parameters except for J. In the gray time series J = 0.5; in the black time series
J = 3.

summarizes the results of the third simulation (second row) compared to the first
one (first row). The second set of simulations show a 56.87% average increase in
the mean value of bubble amplitude.

RESULT 5. An increase of the parameter J increases the amplitude of the
bubble.

An interpretation of this is fairly intuitive in that one can easily expect that an
increase in the strength of herding will increase the size of the bubble. As argued
earlier, it is this herding or interaction parameter J that fundamentally lies behind
the emergence of bubbles in this model, just as is widely thought to be the case
in real markets. Trend-chasing speculators imitate each other and push the price
upward.

5. CONCLUDING REMARKS

In this work, we have considered how introducing a financial constraint into a
framework characterized by herding and switching of priors about the funda-
mentals by heterogeneous investors can per se explain the appearance of a PFD
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between the peak and the crash of a speculative bubble. The incompleteness of the
agents’ information set is sufficient for nonfundamentalist dynamics in the agents’
decision process, modeled in a binary choice setting with interacting agents.

The model is built along the line of Chiarella et al. (2003) and Bischi et al.
(2006), which are able to produce bubbles but unable to explain a period of
financial distress preceding a crash unless we introduce a financial constraint on
agents’ decisions.

Simulations show that the PFD can arise from agents’ wealth distribution dy-
namics in situations characterized by sufficiently high transaction costs, although
we recall that our model involves a number of simplifying assumptions such as a
constant number of agents and that they all must trade in each period. The PFD is
the time necessary, after the bubble’s peak, for a sufficient mass of agents coming to
need to sell because of financial constraints. An increase in the switching strategy
velocity (the intensity of choice in the social interaction literature β) increases the
PFD’s length and decreases the bubble’s amplitude.

Furthermore, a decrease in k (the sensitivity of prices to the excess demand)
decrease the minimum level of c able to produce the PFD. The result is due to the
fact that a reduction in k reduces price volatility and so the possibility of making
profits.

Finally, an increase of the strength of the interaction parameter J increases the
amplitude of the bubble.

NOTES

1. The earlier editions were in 1978, 1989, and 1996. All of them had this Appendix, to which
Kindleberger kept adding more bubbles with each edition. In the first edition he listed 37, with 30 of
them having clearly distinct dates for the peak and the subsequent crash.

2. The term for a time when a firm may not be able to meet its liabilities originally comes from
corporate finance [Gordon (1971)]. In this paper investors in an asset market face liquidity constraints
that become more severe as prices decline. Kindleberger (2000, p. 94) also notes that this period is
sometimes called any of uneasiness, apprehension, tension, stringency, pressure, uncertainty, ominous
conditions, fragility, an ugly drop in the market, or a thundery atmosphere, with these more colourful
later expressions dating back to the South Sea Bubble of 1720.

3. One can argue that the 1997–1998 episodes were really two bubbles and crashes, which would
make the numbers 36 of 47. Adding the U.S. silver and NASDAQ bubbles would make this 36 of 49,
still a solid majority. Even the NASDAQ bubble arguably exhibited a period of financial distress, as
the day of its most rapid decline occurred nearly a month after its peak in March 2000.

4. Actually what happened during the tulip mania was that on the very next day after it started
to crash, the market was shut down for several months, thereby making it unclear what would have
happened if it had remained open [Posthumus (1929)].

5. The pattern in which a rapid price increase is followed by a long decline is very rarely observed,
with perhaps the most prominent recent example being that of Japanese real estate [Land Information
Division (2002)]. The authors thank the late Charles Kindleberger for his personal discussion of the
historically unusual nature of the relationship between the 1990 crash of the Japanese stock market
and the slow decline of Japanese real estate prices after 1991.

6. This fundamental does not directly drive the dynamics in the model in this paper. In that regard,
the model in this paper does not conform precisely to the implied story depicted in Figures 2–4, where
price follows the fundamental, only to deviate from it during a definite bubble, and then to return to it
afterward.
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7. Although agents drop out of the market as their wealth falls below the 700 cutoff, they are not
replaced by new agents before the crash. After the crash, agents below are replaced by new agents with
a wealth of 1,000 in order to avoid the problem of “how to reinvigorate the market after the crash.”
The hypothesis is made for computational convenience, but it can be interpreted as “new people enter
the market after the crash.”

8. Buz Brock has argued to the authors that an infinite value for β is equivalent to “Chicago
rationality,” where agents in effect have no tendency to stick with a strategy at all and immediately
switch to the current best one.
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