X-ray powder diffraction data for holmium nitrate pentahydrate

J. Maixner,^{1,a)} and V. Bartůněk²

¹Central Laboratories, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic ²Department of Inorganic Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

(Received 15 February 2012; accepted 29 February 2012)

X-ray powder diffraction data, unit-cell parameters, and space group for the holmium nitrate pentahydrate Ho(NO₃)₃•5H₂O are reported [a = 6.642(8) Å, b = 9.55(2) Å, c = 10.56(2) Å, $\alpha = 63.672(1)^{\circ}$, $\beta = 84.622(2)^{\circ}$, $\gamma = 76.085(2)^{\circ}$, unit-cell volume V = 582,74 Å³, Z = 2, space group *P*-1]. Ho (NO₃)₃•5H₂O is isostructural with ytrium nitrate pentahydrate (PDF 01-75-2104) (ICDD, 2011). All measured lines were indexed and are consistent with the *P*-1 space group. No detectable impurities were observed. © 2012 International Centre for Diffraction Data [doi:10.1017/S0885715612000334]

Key words: X-ray powder diffraction, holmium nitrate pentahydrate

I. INTRODUCTION

Holmium (Ho) is an important element from the f-block elements of the periodic table, the so-called lanthanides. Ho has wide use for example in Ho lasers used in medicine (Suardi *et al.*, 2009; Helfand *et al.*, 2010) and in magnetic resonance imaging (MRI) contrast agents (Norek and Peters, 2011). Ho compounds have interesting optical properties, such as changing of colors under different light sources, which could be used, for example, in glasses (Farok *et al.*, 1996). Holmium oxide is used in spectrophotometry such as calibration filter (Macdonald, 1964; Travis *et al.*, 2002).

Holmium nitrate is usually a pale pink or pale yellow substance depending on light source similar to holmium oxide. It is usually in the form of pentahydrate. It is soluble in water and stable in air, and therefore is a suitable precursor for various chemical reactions (Yan and Chen, 2001; Fox *et al.*, 2005).

II. EXPERIMENTAL

A. Synthesis

Holmium nitride was prepared by reaction of diluted (20 wt%) nitric acid with an abundant amount of holmium oxide. After reaction the solution has neutral pH. This solution was subsequently evaporated at a temperature of about 50 °C in an evaporator. When crystals started to form, the solution was removed from the evaporator and cooled to room temperature. Crystals obtained from the solution after filtration, were dried in air. The nitric acid used in this study was of

Figure 1. X-ray powder diffraction pattern of the Ho(NO₃)₃•5H₂O, using CuK α_1 radiation ($\lambda = 1.5406$ Å).

 ^{a)} Author to whom correspondence should be addressed. Electronic mail: jaroslav.maixner@vscht.cz

p.a. quality, and holmium oxide (99.9% purity) was purchased from LACHEMA. All chemicals were used as received without further purification.

Formation of holmium nitride in the form of pentahydrate was confirmed by its absolute calcination in the furnace. The sample was heated to 1000 °C at 5 °C/min and then cooled spontaneously. Only holmium oxide remained (Balboul, 2000). The rest of the sample (57%) corresponds to absolute calcination of holmium oxide pentahydrate (Balboul, 2000).

B. Powder data collection

The diffraction pattern for holmium nitrate pentahydrate [Ho(NO₃)₃•5H₂O] was collected at room temperature using an X'Pert PRO θ - θ powder diffractometer with parafocusing Bragg–Brentano geometry and Cu $K\alpha_1$ radiation ($\lambda = 1.5406$ Å, generator setting: 40 kV, 30 mA). An ultrafast X'Celerator detector was employed to collect XRD data over the angular range from 4° to 80° 2 θ with a step size of 0.017° 2 θ and a counting time of 81.28 s/step. The software

package HIGHSCORE PLUS V 3.0D (PANalytical, Almelo, Netherlands) was used to analyze the data, to fit the background, and to eliminate the $K\alpha_2$ component. The top of smoothed peak method was used to determine the peak positions and intensities of the diffraction peaks. Automatic indexing of the experimental XRD pattern was performed using DICVOL04 (Boultif and Louër, 2004).

III. RESULTS

The experimental powder diffraction pattern is depicted in Figure 1. Automatic indexing of results obtained using DICVOL04 show that Ho(NO₃)₃•5H₂O is triclinic with space group *P*-1 and unit-cell parameters: a = 6.642(8) Å, b = 9.55(2) Å, c = 10.56(2) Å, $\alpha = 63.672(1)^{\circ}$, $\beta = 84.622(2)^{\circ}$, $\gamma = 76.085(2)^{\circ}$, unit-cell volume V = 582,74 Å³, Z = 2, space group *P*-1. The figures of merits are $F_{30} = 37.1(0.0165, 49)$ (Smith and Snyder, 1979) and $M_{20} = 12.3$ (de Wolff, 1968). All lines were indexed (Table I) and are consistent with the *P*-1 space group.

TABLE I. Indexed X-ray powder diffraction data for Ho(NO₃)₃ • 5H₂O. Only the peaks with I_{rel} of 1 or greater are presented [a = 6.642(8) Å, b = 9.55(2) Å, c = 10.56(2) Å, $\alpha = 63.672(1)^\circ$, $\beta = 84.622(2)^\circ$, $\gamma = 76.085(2)^\circ$, unit-cell volume V = 582,74 Å³, Z = 2, space group *P*-1]. All lines were indexed and are consistent with the *P*-1 space group. The *d*-values were calculated using CuK α_1 radiation ($\lambda = 1.5406$ Å).

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	I _{obs}	Н	k	L	$2\theta_{\rm cal}$ (°)	d_{calc} (Å)	$\Delta 2\theta$
9.276	9.526	10	0	0	1	9.335	9.466	0.0591
10.552	8.377	100	0	1	0	10.595	8.343	0.0436
15.324	5.778	41	1	1	0	15.371	5.760	0.0471
15.477	5.721	66	1	1	1	15.528	5.702	0.0509
16.457	5.382	73	1	0	-1	16.509	5.365	0.0517
16.689	5.308	37	1	0	1	16.740	5.292	0.0518
16.906	5.240	51	0	1	-1	16.939	5.230	0.0333
16.988	5.215	30	0	1	2	17.029	5.203	0.0405
18.683	4.746	26	0	0	2	18.734	4.733	0.0506
19.081	4.647	56	1	-1	-1	19.094	4.644	0.0130
20.151	4.403	12	1	1	-1	20.203	4.392	0.0520
20.516	4.326	39	1	1	2	20.564	4.316	0.0481
21.239	4.180	32	0	2	0	21.282	4.172	0.0432
21.339	4.161	21	0	2	2	21.378	4.153	0.0395
22.596	3.932	48	1	2	0	22.643	3.924	0.0475
22.859	3.887	22	1	2	2	22.905	3.880	0.0456
23.080	3.850	20	1	0	-2	23.129	3.842	0.0491
23.413	3.796	2	1	-1	1	23.416	3.796	0.0029
25.298	3.518	2	0	1	-2	25.339	3.512	0.0414
26.184	3.401	3	1	-2	-1	26.222	3.396	0.0378
26.790	3.325	11	0	2	-1	26.827	3.321	0.0369
26.941	3.307	8	0	2	3	26.981	3.302	0.0400
27.292	3.265	3	2	1	0	27.328	3.261	0.0356
27.459	3.246	6	2	1	1	27.491	3.242	0.0314
27.824	3.204	52	1	-2	-2	27.857	3.200	0.0329
28.013	3.183	11	1	1	3	28.046	3.179	0.0326
28.244	3.157	8	0	0	3	28.261	3.155	0.0166
29.083	3.068	15	2	0	-1	29.111	3.065	0.0278
29.197	3.056	15	1	3	1	29.195	3.056	-0.0017
29.282	3.048	8	0	3	2	29.293	3.046	0.0104
29.352	3.040	3	2	0	1	29.382	3.037	0.0301
29.657	3.010	24	2	2	1	29.692	3.006	0.0348
29.924	2.984	16	1	-1	-3	29.961	2.980	0.0372
30.179	2.959	31	1	-1	2	30.204	2.957	0.0256
30.280	2.949	28	2	1	-1	30.321	2.945	0.0404
30.732	2.907	23	2	1	2	30.763	2.904	0.0310
30.995	2.883	19	2	2	0	31.027	2.880	0.0321
31.310	2.855	19	2	2	2	31.351	2.851	0.0403
31.711	2.819	17	1	0	3	31.733	2.818	0.0222

Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	I _{obs}	Н	k	L	$2\theta_{\rm cal}$ (°)	d_{calc} (Å)	$\Delta 2\theta$
31.860	2.807	5	2	-1	0	31.892	2.804	0.0316
32.131	2.783	18	0	3	0	32.161	2.781	0.0293
32.275	2.771	10	0	3	3	32.308	2.769	0.0333
33.336	2.686	2	2	0	-2	33.373	2.683	0.0368
34.238	2.617	9	0	2	-2	34.263	2.615	0.0249
34.426	2.603	48	0	2	4	34.449	2.601	0.0236
34.523	2.596	11	0	1	4	34.573	2.592	0.0494
34.740	2.580	12	2	-1	1	34.760	2.579	0.0193
35.017	2.560	16	1	2	-2	35.042	2.559	0.0247
35.258	2.543	10	2	3	1	35.291	2.541	0.0331
35.384	2.535	38	1	-3	-2	35.391	2.534	0.0073
35.595	2.520	27	1	2	4	35.567	2.522	-0.0275
36.620	2.452	13	1	1	4	36.643	2.450	0.0225
37.261	2.411	14	1	3	-1	37.291	2.409	0.0294
37.588	2.391	13	2	-2	-1	37.597	2.390	0.0092
37,753	2.381	15	- 1	3	4	37.778	2.379	0.0245
37 925	2 371	27	1	-3	_3	37 922	2 371	-0.0029
38 847	2.316	15	1	_2	_4	38.857	2.371	0.0106
39.012	2.310	30	1	_2	2	39.007	2 307	-0.0053
39.245	2.307	26	1	4	3	39.270	2.307	0.0245
30 363	2.294	5	2	_1	_3	30 /13	2.292	0.0502
39.616	2.207	11	2	-1	-3	30 643	2.204	0.0269
40.056	2.275	5	0	4	3	40.082	2.272	0.0265
40.050	2.249	5	2	4	3	40.082	2.240	0.0205
40.231	2.239	5	2 1	0	3	40.202	2.230	0.0100
40.349	2.234	15	1	0	-4	40.373	2.232	0.0241
40.700	2.212	15	1	0	4	40.780	2.211	0.0143
40.927	2.203	13	3	1	0	40.950	2.205	0.0088
41.033	2.197	19	2	2	-2	41.072	2.190	0.0108
41.010	2.136	0	2	2	4	41.651	2.130	0.0150
42.157	2.142	24	2 1	4	2	42.172	2.141	0.0154
42.444	2.128	23	1	4	0	42.438	2.128	-0.0059
42.007	2.120	58	1	-3	-4	42.009	2.120	0.0015
42.783	2.112	28	0	2	-3	42.773	2.112	-0.0099
42.930	2.105	10	2	3	4	42.955	2.104	0.0107
43.123	2.096	14	3	2	2	43.136	2.095	0.0133
43.332	2.086	30	0	4	0	43.346	2.086	0.0142
43.349	2.077	27	0	4	4	43.550	2.076	0.0004
43.944	2.059	19	1	2	5	43.959	2.058	0.0150
44.153	2.050	8	0	1	5	44.168	2.049	0.0149
44.342	2.041	18	0	3	-2	44.354	2.041	0.0120
44.593	2.030	9	1	-4	-2	44.584	2.031	-0.0093
45.381	1.997	22	3	3	1	45.383	1.997	0.0017
45.540	1.990	22	2	-3	-1	45.534	1.991	-0.0063
45.663	1.985	15	l	-4	-3	45.657	1.985	-0.0056
45.735	1.982	14	3	-1	-1	45.733	1.982	-0.0017
45.894	1.976	21	3	2	-1	45.884	1.976	-0.0100
46.038	1.970	18	2	-1	-4	46.042	1.970	0.0046
46.217	1.963	16	2	4	0	46.237	1.962	0.0193
46.535	1.950	8	3	2	3	46.532	1.950	-0.0037
46.628	1.946	10	3	0	2	46.644	1.946	0.0161
46.787	1.940	14	2	4	4	46.795	1.940	0.0079
46.997	1.932	5	1	-1	-5	47.016	1.931	0.0187
47.172	1.925	19	3	1	-2	47.176	1.925	0.0043
47.300	1.920	17	3	3	0	47.307	1.920	0.0069
47.505	1.912	11	2	-3	-3	47.515	1.912	0.0097
47.679	1.906	17	2	-3	0	47.677	1.906	-0.0020
47.849	1.899	25	1	5	2	47.841	1.900	-0.0076
47.921	1.897	29	3	1	3	47.909	1.897	-0.0119
47.998	1.894	22	2	0	4	47.992	1.894	-0.0055
48.239	1.885	7	1	4	5	48.253	1.885	0.0142
48.536	1.874	5	2	3	-2	48.537	1.874	0.0007
48.767	1.866	5	1	-4	-4	48.763	1.866	-0.0047
48.844	1.863	8	0	4	5	48.857	1.863	0.0126
49.393	1.844	8	2	3	5	49.395	1.844	0.0021
49.752	1.831	2	1	5	1	49.756	1.831	0.0039

Continued

TABLE I.	Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	I _{obs}	Н	k	L	$2\theta_{\rm cal}$ (°)	d_{calc} (Å)	$\Delta 2\theta$
50.091	1.820	1	1	5	4	50.058	1.821	-0.0338
50.805	1.796	9	3	2	-2	50.807	1.796	0.0026
51.153	1.784	16	2	4	-1	51.154	1.784	0.0006
51.241	1.781	15	0	5	1	51.245	1.781	0.0044
51.410	1.776	11	0	5	4	51.413	1.776	0.0030
51.600	1.770	8	3	4	3	51.615	1.769	0.0153
51.774	1.764	8	3	-2	-2	51.785	1.764	0.0104
51.980	1.758	14	3	-2	0	51.993	1.757	0.0133
52.164	1.752	6	3	-1	2	52.136	1.753	-0.0281
52.246	1.749	5	1	3	-3	52.250	1.749	0.0033
52.457	1.743	5	0	3	-3	52.444	1.743	-0.0125
52.898	1.729	7	2	5	4	52.899	1.729	0.0014
53.539	1.710	9	1	5	0	53.530	1.711	-0.0095
53.616	1.708	10	1	-4	1	53.621	1.708	0.0050
53.981	1.697	12	3	4	0	53.968	1.698	-0.0130
54.455	1.684	4	1	4	-2	54.447	1.684	-0.0081
54.917	1.671	5	3	-2	1	54.929	1.670	0.0115
55.112	1.665	4	1	4	6	55.114	1.665	0.0019
55.666	1.650	4	4	2	1	55.653	1.650	-0.0132
55.764	1.647	6	1	1	6	55.770	1.647	0.0063
55.913	1.643	5	2	0	-5	55.914	1.643	0.0011
56.066	1.639	2	2	5	0	56.088	1.638	0.0217
56.385	1.630	2	4	2	0	56.387	1.630	0.0027
56.651	1.623	5	1	-3	3	56.652	1.623	0.0002
56.995	1.614	12	2	2	-4	56.982	1.615	-0.0132
57.118	1.611	9	4	0	0	57.107	1.612	-0.0114
57.221	1.609	6	4	1	-1	57.224	1.609	0.0034
57.400	1.604	8	3	5	2	57.399	1.604	-0.0014
57.735	1.596	6	4	1	2	57.727	1.596	-0.0079
57.986	1.589	5	3	-3	-2	57.991	1.589	0.0051
58.376	1.580	2	3	4	-1	58.374	1.580	-0.0019
58.530	1.576	3	2	4	6	58.523	1.576	-0.0068
58.699	1.572	4	1	6	2	58.690	1.572	-0.0096
58.894	1.567	6	1	6	4	58.890	1.567	-0.0045
59.526	1.552	7	3	5	4	59.516	1.552	-0.0098
59.792	1.545	7	2	6	3	59.799	1.545	0.0065
60.028	1.540	8	4	3	3	60.042	1.540	0.0134
60.131	1.538	8	3	1	-4	60.125	1.538	-0.0057
60.326	1.533	10	0	5	-1	60.325	1.533	-0.0005
60.654	1.526	6	0	6	2	60.636	1.526	-0.0187
60.978	1.518	6	4	0	2	60.957	1.519	-0.0209
61.265	1.512	6	1	3	-4	61.261	1.512	-0.0036
61.460	1.507	3	0	3	-4	61.475	1.507	0.0147
61.660	1.503	4	4	4	2	61.652	1.503	-0.0075
61.834	1.499	3	0	3	7	61.802	1.500	-0.0321
62.158	1.492	6	2	5	6	62.164	1.492	0.0068
62.363	1.488	9	1	2	-5	62.368	1.488	0.0054
62.782	1.479	4	4	3	-1	62.776	1.479	-0.0062
63.085	1.472	6	4	2	-2	63.073	1.473	-0.0119
63.213	1.470	4	0	4	-3	63.198	1.470	-0.0154
63.516	1.464	8	2	6	5	63.518	1.463	0.0024
63.952	1.455	4	2	-3	-6	63.954	1.455	0.0018
64.280	1.448	5	3	4	-2	64.278	1.448	-0.0019
64.773	1.438	5	3	3	6	64.753	1.439	-0.0197
65.460	1.425	8	3	4	6	65.465	1.425	0.0052
65.686	1.420	6	1	5	-2	65.690	1.420	0.0044
65.953	1.415	3	3	-4	-2	65.960	1.415	0.0071
66.291	1.409	6	2	0	6	66.295	1.409	0.0032
68.709	1.365	5	2	-5	-5	68.707	1.365	-0.0019
68.996	1.360	5	1	7	3	68.968	1.361	-0.0285
70.145	1.341	2	2	1	-6	70.124	1.341	-0.0214
70.354	1.337	1	4	-1	-4	70.343	1.337	-0.0104
71.264	1.322	4	4	-1	3	71.261	1.322	-0.0032
71.418	1.320	6	1	0	7	71.432	1.320	0.0147
71.590	1.317	3	3	3	-4	71.579	1.317	-0.0114

Continued

TADLE I. COmmune	TABLE I.	Continued
------------------	----------	-----------

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	Iobs	Н	k	L	$2\theta_{\rm cal}$ (°)	d_{calc} (Å)	$\Delta 2\theta$
72.006	1.310	6	3	-1	-6	72.026	1.310	0.0206
72.262	1.306	3	1	4	8	72.261	1.306	-0.0012
72.632	1.301	4	0	4	8	72.631	1.301	-0.0001
72.945	1.296	4	0	2	8	72.924	1.296	-0.0203
73.099	1.294	5	3	6	6	73.119	1.293	0.0203
73.401	1.289	3	5	1	2	73.404	1.289	0.0032
73.596	1.286	6	1	7	1	73.577	1.286	-0.0191
73.755	1.284	4	5	2	-1	73.758	1.284	0.0028
74.104	1.278	7	2	-6	-3	74.105	1.278	0.0005
74.366	1.275	3	2	3	-5	74.357	1.275	-0.0092
74.633	1.271	2	4	6	2	74.639	1.271	0.0061
74.925	1.266	4	2	-4	-7	74.931	1.266	0.0060
75.069	1.264	4	1	-3	5	75.042	1.265	-0.0269
75.238	1.262	2	2	-4	3	75.255	1.262	0.0169
75.541	1.258	3	0	5	8	75.534	1.258	-0.0071
75.828	1.254	2	5	1	-2	75.829	1.254	0.0011
76.434	1.245	2	1	-4	-8	76.395	1.246	-0.0391
76.767	1.241	4	2	0	7	76.779	1.240	0.0123
77.101	1.236	5	3	-5	-1	77.106	1.236	0.0056
77.562	1.230	5	4	6	5	77.556	1.230	-0.0064
78.163	1.222	3	1	7	0	78.176	1.222	0.0135
78.522	1.217	3	5	-1	-2	78.533	1.217	0.0110
78.717	1.215	2	5	4	4	78.696	1.215	-0.0205
79.045	1.210	2	5	-1	1	79.013	1.211	-0.0325
79.897	1.200	3	5	0	-3	79.891	1.200	-0.0063

ACKNOWLEDGEMENTS

This work was supported by grant from the Grant Agency of the Czech Republic (GAČR 104/09/1497) and by Grant from the Ministry of Education Youth and Sports of the Czech Republic (MSM 6046137302).

- Balboul, B. (2000). "Physicochemical characterization of the decomposition course of hydrated holmium nitrate. Thermoanalytical studies," Powder Technol. 107(1–2), 168–174.
- Boultif, A. and Louër, D. (2004). "Powder pattern indexing with the dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- de Wollf, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- Farok, H. M., Saunders, G. A., Lambson, W. A., Kruger, R., Senin, H. B., Bartlett, S., and Takel, S. (1996). "An 'Alexandrite' effect and optical properties of holmium metaphosphate glass," Phys. Chem. Glasses 37 (3), 125–128.
- Fox, R. V., Ball, R. D., Harrington, P. D., Rollins, H. W., and Wai, C. M. (2005). "Holmium nitrate complexation with tri-n-butyl phosphate in supercritical carbon dioxide," J. Supercrit. Fluids 36(2), 137–144.
- Helfand, B. T., Manvar, A. M., Auffenberg, G. B., Blackwell, R., Hartman, R. J., and McVary, K. T. (2010). "Holmium laser ablation and enucleation

of the prostate: a pilot study of the hybrid technique," Can. J. Urol. **17**(3), 5190–5194.

- ICDD (2011). *Powder Diffraction File*, edited by Frank McClune (International Centre for Diffraction Data, Newtown Square, PA USA)
- Macdonald, R. P. (1964). "Uses for holmium oxide filter in spectrometry," Clin. Chem. 10(12), 1117.
- Norek, M. and Peters, J. A. (2011). "MRI contrast agents based on dysprosium or holmium," Prog. Nucl. Magn. Reson. Spectrosc. 59(1), 64–82.
- Smith, G. S. and Snyder, R. L. (**1979**). " F_N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder indexing," J. Appl. Crystallogr. **12**, 60–65.
- Suardi, N., Gallina, A., Salonia, A., Briganti, A., Deho, F., Zanni, G., Abdollah, F., Naspro, R., Cestari, A., Guazzoni, G., Rigatti, P., and Montorsi, F. (2009). "Holmium laser enucleation of the prostate and holmium laser ablation of the prostate: indications and outcome," Curr. Opin. Urol. 19(1), 38–43.
- Travis, J. C., Zwinkels, J. C., Mercader, F., Ruiz, A., Early, E. A., Smith, M. V., Noel, M., Maley, M., Kramer, G. W., Eckerle, K. L., and Duewer, D.L. (2002). "An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry," Anal. Chem. 74(14), 3408–3415.
- Yan, B. and Chen, Z. (2001). "Cyano-bridged aqua(N,N-dimethylacetamide) (cyanoiron) lanthanides from samarium, gadolinium, or holmium nitrate and potassium hexacyanoferrate: crystal structures and magnetochemistry," Helv. Chim. Acta 84(4), 817–829.