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Abstract
This paper focuses on automatically assessing language proficiency levels according to linguistic
complexity in learner English. We implement a supervised learning approach as part of an automatic essay
scoring system. The objective is to uncover Common European Framework of Reference for Languages
(CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the
concept of microsystems with features related to learner-specific linguistic systems in which several forms
operate paradigmatically. Results on internal data show that different microsystems help classify writings
from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of
lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several
corpora (59.2% balanced accuracy).
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1. Introduction
Proficiency assessments are an essential requirement for language education centres, both at
individual and institutional levels. For individuals, learning a language requires regular assess-
ments so that learners and teachers can focus on specific areas upon which to train. For institu-
tions, there is a growing demand to group learners homogeneously in order to set adequate
teaching objectives and methods. The design and organization of language assessment tests
are labour intensive and thus costly. In this context, automatic essay assessment may appear
as a solution.

Automating assessment is conducted with automatic essay scoring systems (AES). Initially
grounded in rule-based approaches (Page, 1968), more modern systems rely on probabilistic
models based on natural language processing (NLP) tools exploiting learner corpora (Meurers,
2015). Some of these models depend on the identification of linguistic features used as predictors
of writing quality. In second language (L2) studies, features belong to three dimensions:
complexity, accuracy and fluency (Housen, Kuiken & Vedder, 2012; Ortega, 2009; Wolfe-
Quintero, Inagaki & Kim, 1998). Some of these features operationalize complexity and act as
criterial features in L2 language (Hawkins & Filipović, 2012). They help build computer models
for error detection and automated assessment and, by using model explanation procedures, their
significance and effect can be measured. Recent work on identifying criterial features has been
fruitful, as many studies have addressed many types of features. However, to the best of our
knowledge, few studies have tried to test features of several dimensions within a single model
(Tack, François, Roekhaut & Fairon, 2017; Volodina, Pilán & Alfter, 2016) to investigate how they
compare.

In addition, many of the developed models use features that quantify text items on the syntag-
matic axis. For instance, the type-token ratio computes the number of tokens in relation to other
elements of the syntagmatic chain. This approach relies on categorizing linguistic forms distinctly
without relating them to possible substitutes in the same position and with the same language
function, thus ignoring the relationships that exist between forms on the paradigmatic axis.
The way learners select forms of a specific function is not captured in current feature collection
methods. Form variations of a given linguistic function (Ellis, 1994) need to be accounted for, and
a solution may be found in operationalizing the notion of microsystem (Gentilhomme, 1979;
Py, 1996).

Our proposal is to use a machine learning approach to test criterial features of many dimen-
sions within a single model. The purpose is to provide answers on their respective importance. We
also test new functional features that capture functional variations within single linguistic
microsystems.

2. Theoretical background
2.1 A multidimensional set of “criterial features”

Initiated with the Threshold project (van Ek & Trim, 1998) and increasingly active in recent years,
research on criterial features has focused on linking linguistic properties to L2 proficiency and to
the levels of the Common European Framework of Reference for Languages (CEFR). However,
since the CEFR descriptors used by examiners are not explicitly linked to any linguistic properties
at any of the six levels, the research on criterial features aims at identifying these properties
(Hawkins & Buttery, 2010).

Among the three components of L2, complexity includes absolute linguistic complexity that
focuses on quantitative features – that is, “the number of discrete components that a language
feature or a language system consists of, and as the number of connections between the different
components” (Housen et al., 2012: 24). The two authors further divide linguistic complexity into
system and structure complexity.
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There are two main approaches in the identification of criterial linguistic features for proficiency.
The first one falls into the structure category endorsed by projects like the English Profile project
(O’Keeffe & Mark, 2017) or the Global Scale of English project (de Jong & Benigno, 2017). Relying
on quantitative methods applied to learner corpora (including errors), specific grammatical or
lexical forms and syntactic patterns have been mapped to specific CEFR levels, forming the original
definition of criterial features. The second approach falls into the systemic category of complexity as
it focuses on the learners’ L2 system as a whole. It relies on global measurements in texts and
provides information on the range, size, and variety of different forms and structures. The literature
abounds with such metrics, starting with the ubiquitous type-token ratio. With the advent of
computational methods applied to learner corpora (Granger, Kraif, Ponton, Antoniadis &
Zampa, 2007), many types of system complexity metrics have been put to the test as criterial features.

The first group of metrics includes lexical complexity metrics. These measures are based on
word counts, lexicons and reference corpora. They were tested as predictive features of learner
levels in terms of usage and properties (Crossley, Salsbury, McNamara & Jarvis, 2011; Lu, 2012).

The second group of measures corresponds to syntactic complexity. By applying pattern
extraction, phrases of different types are detected and counted, giving insight in terms of
properties and usage (Chen & Zechner, 2011; Khushik & Huhta, 2020; Lan, Lucas & Sun,
2019; Lu, 2010). The results of the research showed that correlations exist between CEFR levels
and certain features (Lu, 2010, 2014).

Semantic and pragmatic features were also tested in studies including cohesion (Crossley, Kyle &
McNamara, 2016; Crossley & McNamara, 2012) and semantic measurements based on reference
corpora (Kyle & Crossley, 2015). Errors, or negative properties of interlanguage, were also tested.
Ballier et al. (2019) showed that error-tag frequencies could be used as potential proficiency
predictors.

As studies became more elaborate, the question of the relative importance of features of all
dimensions was raised. Some tools have been developed for the creation of complexity metrics
datasets of various dimensions (Chen & Meurers, 2016). Syntactic and lexical complexity metrics
were combined (Arnold, Ballier, Gaillat & Lissòn, 2018; Ballier & Gaillat, 2016) as well as semantic
measures (Venant & d’Aquin, 2019). Some experimental designs also combined syntactic, lexical,
discourse and error features in the form of metrics (Vajjala, 2018) or properties such as part of
speech (POS) and n-grams (Garner, Crossley & Kyle, 2019; Yannakoudakis, Briscoe & Medlock,
2011) or edit distance between erroneous segments and their corresponding target hypothesis
(Tono, 2013). All these efforts bore fruit for the research community, and learner data challenges
(the ACL Building Educational Applications workshop series) helped foster techniques and
modelling beyond the learner corpus research community. For example, a shared task was
organized at the CAp18 conference on artificial intelligence in France. A dataset including lexical,
readability and syntactic complexity metrics was provided to competitors to predict CEFR levels of
French first language (L1) writings in English. Competitors added other features such as n-grams
and spelling errors to compute their models (Ballier et al., 2020).

The results of all these studies show that, in spite of their benefits, other complexity measures
are required for the characterization of proficiency levels. Since the CEFR adopts a functional
approach, a line of investigation might reside in identifying system metrics that also inform on
specific functional structures, as pointed out by Biber, Gray, Staples and Egbert (2020). One
way of approaching the issue could be through the notion of microsystems.

2.2 Microsystems in learners

Microsystems are part of the structure complexity construct. They tap into functional complexity
because they are composed of several constructions grouped according to functional proximity.
Microsystems can be defined as families of competing constructions in a single paradigm. First
introduced by Gentilhomme (1979) with personal pronouns in native French, the notion was
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cross-examined with that of interlanguage (Py, 1980). Py (1980) argued that a microsystem makes
it possible to view language as an unstable equilibrium. Interlanguage microsystems take several
shapes, including that of autonomous sets of elements. Gentilhomme (1980) describes learner
microsystems as unexpected uses of forms that are evidence of systemic acquisitional processes.
Learners develop microsystems that are unstable and transitory in nature (Py, 2000). In terms of
syntax, it is possible to illustrate this process with the paradigmatic interactions between forms of
the same linguistic function but of different semantic implications.

The article microsystem composed of a, the or Ø (“zero article”) can provide a base for illus-
trating this view. (For a description of Ø, see, for instance, Depraetere & Langford, 2012.) Let
examples (1), (2) and (3) contrast the uses of the in three samples from the Education First-
Cambridge Open Language Database (EFCAMDAT) corpus (Geertzen, Alexopoulou &
Korhonen, 2014):

(1) “Ladies and Gentlemans, My flat was robbed the previous evening. In coming back at my
home, I saw that the window was broken.” (EFCAMDAT writing ID: 2498)

(2) “What do you think about positive discrimination in the companies?” (EFCAMDAT
writing ID: 569744)

(3) “Why the gender’s discrimination is still a problem in our society?” (EFCAMDAT writing
ID: 579779)

The use of the article might be expected in (1) due to the associative anaphora linking flat and
window. However, the is unexpected in (2) and (3) due to misunderstandings of the generic values
of companies and gender’s discrimination. In examples (2) and (3), Ø is in paradigmatic compe-
tition with the (Depraetere & Langford, 2012: 91–93). Learners use articles with variability, which
constitutes an unstable microsystem. As learners use forms and constructions to perform certain
speech acts linked to specific language functions, microsystems can be seen as an attempt to opera-
tionalize systematic form-function variations (Ellis, 1994: 135). Evidence of this process has been
examined through the use of it, this and that in Gaillat (2016).

To capture the variability within microsystems, our proposal is to create metrics that measure
the importance of each construction in relation to its counterparts within a given text. Single
measures could thus encapsulate the internal variations of multivariable microsystems. This
approach would bridge the gap between structure and system complexity. Microsystem metrics
offer an insight into the evolution of linguistic functions at systemic level across categories such
as articles, modal auxiliaries, tenses and nouns. We take these grammatical areas to be represen-
tative of potential interlanguage grammar rules in construction and analyse written productions
through these lenses.

To the best of our knowledge, the literature on criterial features does not include heuristics
based on microsystems, nor does it report many studies testing many metrics as criterial features
of many dimensions. Our approach includes the definition of some microsystems that are used for
specific language functions such as determination or the expression of modal possibility. Our
experimental design exploits machine learning algorithms to classify learner writings with many
types of metrics, including specifically designed microsystem metrics.

Our research aims are (1) to assess many complexity metrics as potential criterial features
(Hawkins & Filipović, 2012) and (2) to investigate the significance of microsystem metrics as
criterial features within the broad spectrum of complexity metrics.

3. Methods
3.1 Corpora

The data used for modelling and measuring the correlation between learner levels and micro-
systems consist of the Spanish and French L1 subsets of the EFCAMDAT, an 83-million-word
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corpus collected and made available by Cambridge University and its partner, the organization
Education First. This corpus is made up of learner writings in English and rated by humans. It was
annotated with metadata such as learner level, nationality but also, for some texts, errors and POS
tagging. The levels that were assigned to learners are based on the levels from Education First’s
online school, Englishtown, with ratings ranging from 1 to 16. Learner levels thus had to be
mapped onto CEFR levels. Levels 1–3 correspond to the A1 level and level 16 to the C2 level,
as indicated in Geertzen et al. (2014). Data were selected and manipulated independently of
the participation of the Cambridge and Education First research teams.

In our study, 49,817 texts written by 8,851 French and Spanish learners were downloaded from
the database. This textual data runs across all Englishtown writing topics and CEFR levels.
Tables 1 and 2 give the breakdown for each L1.

To test the validity of our models on external data, we used the CEFR-ASAG corpus (Tack
et al., 2017), a collection of short answers to open-ended questions, written by French L1 learners
of English and graded with CEFR levels. It consists of 712 texts written by different learners in
response to three questions. We used a balanced sample of 299 texts.

3.2 Features

We created new functional metrics based on the notion of microsystems (see section 2.2). We
assume that microsystems are sets of competing constructions (some being more likely for natives,
others more prone to be L1-like). Based on intuition, Table 3 provides a list of other potential
functional microsystems identified by two expert English teachers and linguists. For instance,
the nominal microsystem includes three constructions that learners find difficult. They may
use genitive constructions instead of noun � preposition � noun or compound noun construc-
tions. Similarly, other substitutions may be observed among the can, may, might, could modals
used to express epistemic and radical possibility. Regarding that, it has been noticed that confu-
sions occur between the relativizer forms. We also specified a type of error linked to the confusion
between the relativizer and complementizer functions.

The microsystems include variability in grammaticality: some of the substitutions among the
aforementioned constructions are just semantic differences in the case of modal auxiliaries; others
jeopardize grammaticality (which versus who for animate antecedents). The weighting of the
parameters of these different constructions is beyond the scope of this paper.

Table 1. The EFCAMDAT French dataset

A1 A2 B1 B2 C1 C2

# of tokens 817,228 888,298 887,987 528,880 138,541 13,689

# of types 561,688 581,317 571,193 320,973 80,722 8161

# of writings 17,605 11,584 8,105 3,514 742 76

Median 36 67 98 134 173 170.5

Table 2. The EFCAMDAT Spanish dataset

A1 A2 B1 B2 C1 C2

# of tokens 125,500 163,668 228,710 185,094 64,534 5,954

# of types 84,334 106,553 144,295 108,942 37,150 3,620

# of writings 2,572 2,066 2,005 1,176 340 32

Median 38 68 103 143 173 167.5
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Finding a method to quantify variability in microsystems at text level could help to measure the
importance of specific linguistic functions in L2 systems. To operationalize microsystems, we
added a set of metrics relying on paradigmatic relations between forms of similar functions
(i.e. microsystem variables as defined in Table 3). For each microsystem x (e.g. “modals for possi-
bility”), the frequency of occurrence ƒ of each variable i (e.g. “may”) in this microsystem was
computed within each text j (see Eq. 1a). In addition, a ratio was computed for each variable
i relative to all n variables of the microsystem (see Eq. 1b). The absolute and relative microsystem
features were computed as follows:

MSA�xij� � fijMSA�xij� � fijMSA�xij� � fij (1a)

MSA�xij� � fij MSR�xij� � fij=
Xn
k�1

fkj (1b)

where
x = the microsystem
n = the total number of variables in microsystem x
i = the i-th variable in the set of n variables
j = the j-th text (learner writing)
fij = the frequency of occurrence of variable i in text j

The microsystem ratios reflect the variations in the proportions of one variable over its paradig-
matic competitors. Microsystem features are computed within each writing separately.

The L2 Syntactic Complexity Analyzer (L2SCA) tool (Lu, 2010) was modified in order to
capture specific linguistic forms belonging to specific microsystems. The program proceeds in
two stages. First, it extracts the constructions used in the microsystems and, second, it calculates
ratios that operationalize the microsystems. The Tregex module of Stanford CoreNLP (Manning
et al., 2014) was used to retrieve constructions including nouns, modal auxiliaries, articles,
proforms, relativizers and complementizers. For illustration’s sake, we focus on the microsystem

Table 3. Learner microsystems and their variables

Microsystems Function Variables

Nominal constructs Denomination determiner genitive; noun-of/for-noun
constructions, compound nouns

Modals for possibility Possibility may, can, might, could

Modals for obligation Obligation must, have to

Proforms Reference it, this, that

Articles Determination a, the, Ø

Relativizers Reference that, which, who, 0

Complementizer vs.
relativizer

Expressing hypotaxis that

Duration/start/date Expressing time for, since, ago, from, during

Prepositional constructions Linking entities for, to

Quantifiers Quantification (neutral; large;
small)

some vs. any; many vs. much vs. most; few vs.
little

Note. Relative pronoun 0 is not included in the operationalization of the program as the detection of the non-existent tokens remains an
obstacle.
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of proforms. The Penn Treebank tagset used for the program does not have a specific tag for
proforms, so that the this proforms were retrieved with the following Tregex patterns:

prf�this1 �0 DT � n1 < = tjT� �his=& > -=NP: 	 =0 (1)

prf�this2 �0 = tjT� �his= > NN � n10 (2)

Pattern (1) identifies all this that are tagged as DT (determiner) and that are the rightmost
descendents of noun phrase (NP) constituents. Pattern (2) identifies all this immediately
dominated by a noun (NN).

The evaluation of the extractions of all the forms specified in microsystems is outside the scope
of this paper. Nevertheless, it must be mentioned that most forms are captured with patterns
relying on their POS tags (see Appendix 1). It may be argued that evaluating their extraction
relates to evaluating POS tagging in learner corpora (accuracy results above 95%). Several papers
have established a high level of accuracy in POS tagging learner English (see (Huang, Murakami,
Alexopoulou & Korhonen, 2018; van Rooy & Schafer, 2003). The analysis of proforms is not based
on the identification of the tag, and previous works support its reliability (Gaillat, 2016: 183–196).
The extraction of this forms was evaluated by applying distinctive patterns on 2,853 occurrences in
the Wall Street Journal subset of the Penn Treebank corpus (Marcus, Santorini & Marcinkiewicz,
1993). All this proforms were accounted for.

As a result of the extraction process, 51 constructions were incorporated as variables in 29
microsystem metrics (see Appendix 1 for a list of microsystem metrics, their variables and
Tregex extraction patterns). The modified version of L2SCA is called L2SCA_microsystem.1 It
also includes the same indices as L2SCA.

In addition to these microsystem features, several other types were extracted and used to
compute metrics. The feature types encompass lexical, syntactic, semantic and discourse
complexity as well as accuracy. (See Appendix 2 for a list of all the implemented metrics and
the tools used to compute them.) In total, 767 different features were extracted and merged into
one dataset to input into the classification models.

3.3 Statistical analysis

There were three aims in this statistical analysis:

1. Test the utility of the novel microsystem features over existing features
2. Compare feature importance
3. Build a prediction model for future learners.

We implemented this analysis through a machine learning (ML) approach. In principle, an ML
analysis relies on observations recorded in a computer model. In our experiments, the observa-
tions are made up of the features of the texts linked to their CEFR levels, and their statistical
relationships are computed by applying a specific mathematical function – that is, a model.
The model is subsequently used to predict CEFR levels in new observations of features. The
analysis performed for each of the three aforementioned aims is summarized as follows.
Analysis (see Code in Appendix 3) was performed using R Version 3.6 through the
{glmnet}(Friedman, Hastie & Tibshirani, 2010) and {caret} packages (Kuhn, 2008).

3.3.1 Testing the utility of the microsystem features
In order to test the efficacy of our novel microsystem variables, we built three classification
models: (i) using 687 features from previous research, as explained in section 4.2, as a baseline;

1Available from the project’s website: http://www.clillac-arp.univ-paris-diderot.fr/projets/ulysse2019
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(ii) adding the 51 microsystem variables introduced in this paper along with 29 microsystem
ratios; and (iii) adding the 51 microsystem variables introduced in this paper along with 12 inter-
actions (see Appendix 3) involving variables of the same microsystems.

Using dataset (i) we compared multinomial logistic regression, ensemble random forests, linear
discriminant analysis, k-nearest neighbours, Gaussian naive Bayes, support vector machine and
decision tree classifier. We found the optimal classification model for (i) and applied this model to
each set of features (ii) and (iii). We report on the precision, recall, F1 score (F1= harmonic mean
of precision and recall; i.e. 2 ×

precision × recall
precision�recall ), and balanced accuracy (balanced accuracy =

average of sensitivity and specificity; i.e. sensitivity�specificity
2 ) of each model. Results are presented

for each of the six learner classes and overall by micro-averaging over the classes to take account
of different class sizes. Models were run using fivefold cross-validation to allow for testing with
multiple random splits of the data. After running these models, results were macro-averaged
across cross-validation folds.

Once the model is used to predict learner level in the test set, we perform an error analysis. We
define the error group as a three-level categorical variable – that is, 0 if classification is correct, 1 if
classification is one level lower or higher, 2 if classification is two or more levels lower or higher. A
one-way analysis of variance is then used to test whether there are mean differences in each feature
according to the error group, adjusting for multiple testing across 767 total features, and taking
only those p values of< 0.05/767 to be statistically significant.

3.3.2 Comparing microsystem feature importance
A second analysis used multivariable logistic regression, a classifying method for categorical data,
to investigate the relative importance of the 51 new microsystem variables and their 29 ratios
across learner levels. We split the data based on learner levels (A, B and C) and ran separate
logistic regressions on these data using only the microsystem variables. We report on the strongest
positive and negative associated features in terms of their Wald test statistic or z score for each
level – that is, A2 versus A1, B2 versus B1 and C2 versus C1. A positive association suggests the
feature is more common in advanced learners; a negative association suggests the feature is less
common in advanced learners. We report on the odds ratios of the features to explore how much
the use of a feature increases the odds of being an advanced learner.

3.3.3 Building a classification model for future learners
Although the optimal model found using all features in section 4.2.1 will allow classification of
future learners, using over 700 features will also likely overfit to the EFCAMDAT sample data.
Therefore, we employed a feature selection algorithm, in particular elastic net regression (Zou
& Hastie, 2005), which conducts dimension reduction and prediction simultaneously. Elastic
net regression is a useful classifying method for modelling the relationship between a binary
response variable Y and a large number of potential features X1; 
 
 
 ;XP. The regression model
used is

ln
πi

1 � πi

� �
� β0 � β1x1 � 
 
 
 � βpxp� 2

where π � P Y � 1� �, β0;β1; 
 
 
 βp are regression coefficients and i � 1; 
 
 
 ; n observations are
available. In cases where the number of predictors P is bigger than n, some form of model selection
or dimension reduction is required. Penalized regression is one such tool that shrinks the coeffi-
cients with several types of penalty available. The elastic net combines two common penalized
regression approaches: (i) the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996) and (ii) ridge regression (Hoerl & Kennard, 2000). This is useful because
the LASSO allows for automatic feature selection by shrinking coefficients of some variables

ReCALL 137

https://doi.org/10.1017/S095834402100029X Published online by Cambridge University Press

https://doi.org/10.1017/S095834402100029X
https://doi.org/10.1017/S095834402100029X


to 0, while the ridge regression penalty excels where features are heavily correlated – which is likely
the case for linguistic features.

Fivefold cross-validation was used to repeatedly test performance across multiple splits of the
data. The performance metrics – precision, recall, F1 score and balanced accuracy – were calcu-
lated in each fold and summarized using their macro-average (i.e. simply taking the average of the
five precision, recall, F1 and balanced accuracy metrics) and standard deviation.

3.4 Data for evaluation

To evaluate the models we applied a twofold strategy. First, we used a subset of the EFCAMDAT
dataset as an internal test set and, second, we used the CEFR-ASAG external dataset to test the
validity of the model and its resistance to overfitting. We used this corpus as it was made up of
small writings and was challenging for the dataset on which we had trained our model. The mean
of ASAG texts was 157.62 tokens per writing (SD= 81.66) distributed over the six levels, a value
typically associated with A1 in our data. Whereas our corpus is heavily biased towards A1, the
ASAG corpus has a majority of B1 writings.

3.4.1 Internal validation
The internal test set was sourced randomly from 25% of the EFCAMDAT dataset, resulting in
12,454 texts. Among the seven model types tested, the optimal classification performance in
the testing dataset was found using multinomial logistic regression.

3.4.2 External validation
The external test set was made up of 299 short texts. It was built with the same feature extraction
process described in section 3.2 and run on the CEFR-ASAG corpus texts. First, the optimal classi-
fication model from (i) was used to classify with all the features as in (i) and (ii) (see section 3.3.1).
Second, following Occam’s razor principle and to avoid overfitting (capturing non-generalizable
features), an elastic net method was applied, including feature dimensionality reduction.

4. Results and feature analysis
4.1 Testing the utility of the microsystem features

4.1.1 Classification of all six CEFR levels
Among the seven model types tested, the optimal classification performance in the testing dataset
was found using multinomial logistic regression. The classifier using previously developed features
achieved 80% balanced accuracy. Using the additional microsystem variables along with their
ratios increased performance to 82%, which translated to an extra 249/12,454 writings correctly
classified. Full results are given in four tables in Appendix 4. It includes classification performance,
the confusion matrix and detailed comparisons with and without microsystem features. One
comment about confusions is that they mostly occur with adjacent classes. A closer examination
shows that many writings tend to be classified in the lower adjacent class. Note that the appendix
only includes one of multiple confusion matrices from cross-validation.

We performed an error analysis in those 12,454 test essays – 10,159 were correctly classified,
1,865 misclassified one level higher/lower error, and 430 misclassified two or more levels higher/
lower error. From ANOVA, 469 out of 767 features show mean differences between these two
groups, indicating which of the features are associated with errors. The top 10 of these are shown
in Table 3 in Appendix 4.
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4.1.2 Comparing microsystem feature importance
The second analysis of the internal testing protocol relied on the logistic regression model and
aimed at investigating the relative importance of microsystem variables across the aggregated
A, B and C CEFR levels. We measured the impact of microsystem features in each level.
There are two types of features. Figures 1, 2 and 3 (available as supplementary material) show
features that indicate occurrences of specific variables and others (with the MS prefix) that show
microsystems composed of specific variables. The figures show the strongest features of each level
in terms of z score.

Results regarding the A level (Figure 1) reveal four significant microsystems. Nominal
constructions (i.e. prepositional, genitive and compound constructions) relative to each other
appear to be significant predictors of the A2 level as opposed to the A1 level. The obligation micro-
system composed of modals have to and must also appears as a significant predictor of A2.
Likewise, the duration microsystem (based on for and ago) as well as the quantification micro-
system (based on quantifiers much, most and many) both show preference for A2 rather than A1
writings. As the microsystems implement forms of a specific language function, these results may
indicate that writings are likely to implement the nominal, obligation, duration and quantification
functions as a first step in their progress. Even more so as A1 tasks are mostly with the present
tense, so that for/since/ago is probably not tested at this stage.

Results (Figure 2) show that the B level is influenced by two microsystems. The determination
microsystem tends to be indicative of the B1 level. The quantification microsystem with most and
many appears to be indicative of the B1 level too. This trend is to be compared with that of the A
level, in which the quantification microsystem is favoured in A2. The level adjacency may indicate
that the quantification language function appears and consolidates between A2 and B1 levels. In
functional terms, B learners seem to be developing their proficiency by implementing determi-
nation and quantification language functions. The B2 level tends to appear as these microsystems
stabilize in terms of variable proportions.

For level C writings (Figure 3), the proform microsystem and several specific constructions
appear to be significant. The proform microsystem tends to predict C1 as learners overuse this
compared with it and that, whereas the microsystem tends to predict C2 as learners increase the
relative importance of that. This microsystem suggests the onset of anaphoric and deictic
reference processes, which corresponds to more complex discourse. With higher discourse
complexity, learners tend to increase their use of referential expressions, leading to variability
in the proform microsystem. The modals should and will also appear to be significant. This
may indicate more elaborate discourse in writing as learners diversify their stance in terms of
epistemic or radical modality.

4.2 Building a classification model for future learners

4.2.1 Logistic regression model for classification using all features
In order to test the validity of the logistic regression model trained on the EFCAMDAT dataset,
the same model was used to classify a dataset built from the CEFR-ASAG corpus. Classification
according to the six CEFR levels showed poor results, with 51% balanced accuracy in the
ASAG data.

There are several reasons for the loss in balanced accuracy between the two datasets. First,
performance in test data randomly taken from the training data is always optimistic, because
the test and train sets are very similar. Conversely, the CEFR-ASAG corpus corresponds to shorter
contexts and different tasks than the EFCAMDAT corpus. Second, the ASAG data have few A1
writings (∼16%), whereas the EFCAMDAT has approximately 40%. This lack of calibration
between class populations is not reflected in the model, leading to errors.
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4.2.2 Elastic net modelling EFCAMDAT data with feature selection
To limit overfitting and improve classification on external data, we used an elastic net regression
model on the EFCAMDAT training set. This method is a classifying algorithm that comes with the
benefit of including feature dimensionality reduction (i.e. feature selection). The elastic net model
fitted in 178 minutes using a MacBook Pro with 8 GB of memory. Using just 44 features, classifi-
cation showed 75.0% balanced accuracy (CI [74.3, 75.8], p< 0.001) and 59.2% (CI [53.4, 64.8],
p< 0.001) on the EFCAMDAT and CEFR-ASAG test sets respectively (see tables in Appendix 4
Part B). Compared with the logistic regression model, the elastic net regression model showed
lower performance on the EFCAMDAT test set but, most importantly, it improved performance
on the CEFR-ASAG test set showing context adaptability.

The elastic net modelling method combines regression with feature selection. In other terms, it
employs methods to not only compute best fit for all data points but also remove non-significant
features. In doing so, it combines the smallest set of features for the best classification. In the
EFCAMDAT regression model, 44 features are combined. The features encompass several
linguistic dimensions. Table 4 shows how features are distributed according to their linguistic
dimensions.

Among the microsystem features presented in section 3, the proform microsystem based on
that appears to be significant when combined with other lexical, syntactic, accuracy and pragmatic
features. The modal ought to, in its raw frequency, is conjointly significant with the other features.
This suggests that sophisticated grammatical markers could be used as criterial features for lexical
sophistication.

5. Discussion
The performance in classification of the logistic regression and the elastic net models shows
comparable results to those obtained in other studies applying L2 English proficiency classifi-
cation. To the best of our knowledge, all studies use test sets extracted from the same corpora
as their training sets. Likewise, we tested our models internally and best results showed 82%
balanced accuracy on the 6-point CEFR scale with a logistic regression model. We even obtained
95% balanced accuracy on a 2 beginner-and-advanced scale, which can be useful for large-scale
automated groupings of students above and below the B1/B2 border. In comparison, Vajjala
(2018) reported 73.2% balanced accuracy on a TOEFL subset categorized according to a 3-point
scale. Crossley, Kyle, Allen, Guo and McNamara (2014) reported 55% on another TOEFL subset
on a 5-point scale, and Tack et al. (2017) reported 53% balanced accuracy on the ASAG corpus
with a 5-point scale.

Error analysis in the confusion matrix of the logistic regression model revealed a substantial
number of errors between proficiency levels including non-adjacent class errors. Significant differ-
ences are mainly due to errors related to word frequencies and syntactic patterns (complex
nominals and verb phrases). Regarding frequencies, some learners may have written an
unexpected number of words for their level. Regarding syntactic patterns, the complex nominal
(CN1) feature includes nouns plus adjective, possessive, prepositional phrase, relative clause,
participle, or appositive. This broad variety of structures may create noise in the model. For
instance, learners of different levels may use the relative clause structure, leading to ambiguities
in classification.

Compared with the logistic regression presented in this paper, all the aforementioned studies
showed the advantage of limiting the number of features and increasing their potential for gener-
alization. Our logistic regression model relies on a large array of features, which makes it prone to
overfitting. After reducing dimensionality with the elastic net method presented in this paper, the
model classified 75% of the data correctly. This result compares well with the aforementioned
performance rates.
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Table 4. Combined features for best model classification with elastic net

Dimension Features Tools

Lexical variation Lexical Variation; Noun Variation; Type-Token Ratio LCA

Lexical sophistication Brysbaert_Concreteness_Combined_AW TAALES

COCA_Academic_Bigram_Lemma_Frequency

COCA_lemma_academic_bi_MI

Component_Brysbaert_Concreteness_Combined_AW

Component_Brysbaert_Concreteness_Combined_CW

Component_COCA_fiction_tri_2_MI

Component_COCA_spoken_Frequency_CW

Component_COCA_spoken_tri_2_DP

Component_COCA_spoken_tri_2_MI

Component_Freq_N_AW

Component_MRC_Imageability_AW

Component_MRC_Imageability_CW

Component_SUBTLEXus_Freq_CW

MRC_Concreteness_AW

MRC_Familiarity_AW

MRC_Imageability_AW

eat_tokens_AW

Syntactic complexity MD_OUGHTTO L2SCA microsystem

MS_PRF_THAT

acad_av_delta_p_verb_cue_type

acad_av_faith_verb_cue_type

acad_av_lemma_freq

acad_av_lemma_freq_type

all_av_lemma_freq

all_av_lemma_freq_type

amod_nsubj_deps_struct

conj_and_all_nominal_deps_NN_struct

conj_and_nsubj_deps_struct TAASC

fic_av_lemma_freq

fic_av_lemma_freq_type

mag_av_lemma_freq

mag_av_lemma_freq_type

neg_per_cl

news_av_lemma_freq

news_av_lemma_freq_type

news_lemma_attested

poss_nsubj_deps_NN_struct

poss_nsubj_deps_struct

Cohesion adjacent_overlap_verb_sent TAACO

conjunctions

Accuracy average_mispelling_every50words PyEnchant
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In order to measure the potential for generalization of our models, we tested the trained models
on external data. The logistic regression model showed signs of overfitting as the balanced
accuracy on external data dropped from 81% to 51%. Conversely, the elastic net model showed
a higher ability for generalization with a 59.2% balanced accuracy on external data. These results
show that external validation of models is a necessary step in order to assess the fit of a model and
the significance of its features. This appears as an essential step to include in further studies, and it
shows the importance of open access to data sources.

In terms of feature significance, our approach was twofold. The first research question was to
assess a large array of complexity metrics as potential criterial features. Based on a dataset of 767
metrics and 49,817 observations, an elastic net method helped identify a limited set of significant
features. It is important to stress that it is the combination of features that supports the results. In
other terms, it would be incorrect to isolate each of the 44 features and give them independent
significance. The feature selection showed that it was mostly lexical and syntactic features that
supported best classification. These findings are in line with several studies (Crossley et al.,
2011; Kyle & Crossley, 2015; Lu, 2014; Vajjala, 2018).

A caveat is in order at this stage. The models were trained mainly on short texts, with a scarcity
of data at specific CEFR levels. The models may be sensitive to variations due to differences in
instruction tasks, implying the use of some microsystems versus others. Consequently, micro-
systems and other features may not be captured in sufficient numbers in some classes, leading
to unclear boundaries between classes.

The second research question was to investigate the significance of new microsystem metrics as
criterial features. We tested these features as part of a multinomial logistic regression model. Each
microsystem operationalizes the paradigmatic relations of competing constructions in learners.
The results show that microsystem features contribute to improving CEFR level prediction, albeit
to a small extent. The results suggest a series of learning stages. The ratios of nominal construc-
tions relating two nouns, the ratios of modals linked to obligation and the ratios of quantifiers all
appear to be indicative of the A level. Concerning the B level, ratios of quantifiers including most,
many, little and few, as well as ratios including determiners a, the and Ø, show significance. This
suggests that learners introduce quantification between the A2 and B1 levels and that determi-
nation starts occurring in significant proportions at B1. The C level shows the proform micro-
system as significant as well as specific modals such as should and will. As discourse
complexifies, learners introduce language constructions with higher semantic complexity.
Learners construct referential processes by including deictic and anaphoric constructions, and
they increasingly take stances as they use deontic and epistemic modality devices. Some features
may be subject to task effects – for example, the use of modal will in A1 (see section 4.1.2).

In the context of language teaching, microsystem features might appear very informative.
Microsystems contrast forms that compete with each other in the minds of learners. Using them
could prove to be fruitful in iCALL systems, providing formative feedback based on simple, clear,
elaborated manageable units (Shute, 2008). Microsystems are operationalized as simple limited
sets of items that are clearly organized according to linguistic functions (Biber et al., 2020).
They could be used to build automated feedback on specific language functions as Saricaoglu
(2019) shows with causal explanations. In addition, the approach could augment the drive towards
data-driven learning as the system feeds from a corpus to guide learning (Boulton, 2017).

6. Conclusion
In this paper, we have reported a supervised learning approach for the classification of learner
writings in English according to the six CEFR proficiency levels. Our hypothesis concerned
the use of linguistic metrics in the determination of CEFR levels. First, we assessed the significance
of many complexity metrics as potential criterial features in proficiency. The models show that a
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combination of lexical, syntactic, accuracy and pragmatic features helps predict CEFR levels.
Among all feature types, lexical and syntactic features appear to be very important. In this respect,
frequency information extracted from reference corpora favours prediction. Unlike previous
research, our study also provides additional external validation with the ASAG corpus. We tested
the portability of the models across corpora with different topics and prompts and showed that
some features help with model generalization.

For the second research question, we investigated the significance of newly designed micro-
system metrics as criterial features. These metrics are based on learner-specific paradigms
including competing constructions. Specific functional features that function paradigmatically
have proved to influence the perception of learner writing proficiency by human annotators.
Analysis of the results suggests that some microsystems are connected to acquisitional stages
operationalized in terms of levels. The study maps specific constructions to levels in functional
terms.

Results are also encouraging as part of the development of an AES protype.2 The project
includes an NLP pipeline built upon several state-of-the-art tools measuring lexical, semantic,
syntactic, accuracy and pragmatic complexity. The system provides two services: CEFR-level
prediction and complexity metric extraction. It relies on the Docker technology, which makes
it deployable as a cloud service (Sousa et al., 2020).

Understanding foreign language acquisition is a long path that involves many dimensions.
With experience, language teachers acquire these dimensions intuitively in order to assess and
train their students. However, processing students’ productions is slow and variable. The research
presented here should be seen as a way to invent new tools to assist teachers who would benefit
from easy-to-use analytical tools that objectivize the progress of their learners.
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