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Unsteady thrust, lift and moment of a
two-dimensional flapping thin airfoil in the

presence of leading-edge vortices: a first
approximation from linear potential theory
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The effect of a leading-edge vortex (LEV) on the lift, thrust and moment of a
two-dimensional heaving and pitching thin airfoil is analysed within the unsteady
linear potential theory. First, general expressions that take into account the effect of
any set of unsteady point vortices interacting with the oscillating foil and unsteady
wake are derived. Then, a simplified analysis, based on the Brown–Michael model,
of the initial stages of the growing LEV from the sharp leading edge during each
half-stroke is used to obtain simple expressions for its main contribution to the
unsteady lift, thrust and moment. It is found that the LEV contributes to the
aerodynamic forces and moment provided that a pitching motion exists, while its
effect is negligible, in the present approximation, for a pure heaving motion, and
for some combined pitching and heaving motions with large phase shifts which
are also characterized in the present work. In particular, the effect of the LEV
is found to decrease with the distance of the pivot point from the trailing edge.
Further, the time-averaged lift and moment are not modified by the growing LEVs
in the present approximation, and only the time-averaged thrust force is corrected,
decreasing slightly in most cases in relation to the linear potential results by an
amount proportional to a2

0k3 for large k, where k is the reduced frequency and a0 is
the pitching amplitude. The time-averaged input power is also modified by the LEV
in the present approximation, so that the propulsion efficiency changes by both the
thrust and the power, these corrections being relevant only for pivot locations behind
the midchord point. Finally, the potential results modified by the LEV are compared
with available experimental data.

Key words: aerodynamics, vortex flows

1. Introduction
The leading-edge vortex (LEV) has been proved to be very relevant for the

generation of unsteady forces and moment on heaving and pitching airfoils, especially
at relatively low Reynolds numbers, being partly responsible for the excellent
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Unsteady thrust, lift and moment of a two-dimensional flapping thin airfoil 345

aerodynamic performance of flapping wings in insects and small birds (Ellington
1984; Dickinson & Götz 1993; Ellington et al. 1996; Wang 2000; Minotti 2002; Wang
2005; Maxworthy 2007; Shyy & Liu 2007; Baik et al. 2012; Pitt Ford & Babinsky
2013). However, the unsteady linear potential theory of Theodorsen (1935) and von
Kármán and Sears (1938), which assumes small amplitude in the airfoil oscillations,
with an almost flat wake vortex sheet and no LEV generation, is surprisingly quite
accurate in predicting the unsteady lift force and moment of thin flapping airfoils
(McGowan et al. 2011; Baik et al. 2012; Mackowski & Williamson 2015, 2017;
Cordes et al. 2017) and also the thrust force and propulsion efficiency when using
the correct vortex impulse formulation (Fernandez-Feria 2016, 2017). This is so even
for low Reynolds number and for not so small amplitude of the oscillations, when
LEV generation and shedding constitutes a relevant feature of the actual fluid motion
around the airfoil. Thus, it would be of interest to explore the possibility of including
the formation of weak LEVs into the linear potential theory to improve its predictive
capabilities when the angle of attack is not very small.

In the present paper, we analyse the interaction of arbitrary travelling point vortices
with a heaving and pitching foil within the framework of the unsteady linear potential
theory, and obtain general expressions for their contributions to the lift, thrust and
moment on the foil by using a vortical impulse formulation (von Kármán & Sears
1938; Wu 1981; Fernandez-Feria 2016). To that end, we solve the integral equation
for the vortex-sheet strength of the bound vortex sheet around the foil which takes
into account the effect of the point vortices in addition to the free wake vortex sheet.
The resulting expressions for the forces and moment contain additional integral terms
that depend on the temporal evolution of the point vortices and that, in general, have
to be solved numerically.

As a difference from some previous related works, we maintain the continuous
trailing vortex wake of the linearized potential theory and add the generation of an
LEV during each half-stroke as a point vortex, instead of considering the generation
and shedding of both LEVs and trailing-edge vortices (TEVs) as a succession of point
vortices. For instance, Tchieu & Leonard (2011) used a vortex theory formulation
quite similar to the present one, but considering the trailing wake as a succession of
point vortices instead of the continuous distribution of von Kármán & Sears (1938),
and without considering the effect of the LEVs, to obtain the lift force and moment
of an unsteady thin airfoil. Ramesh et al. (2013) extended this approach to large
amplitudes, combining the vortex formulation with standard potential theory. Xia &
Mohseni (2013) employed conformal mapping and the unsteady Blasius equation
to model the force on a pitching flat plate by considering the effect of the LEVs
and TEVs as successive point vortices emanating from their respective edges. These
authors validated their results against experiments for the starting plate problem and
for a non-sinusoidal pitching motion for which our oscillating model is not valid.
The starting plate problem, or Wagner problem, was also analysed by Li & Wu
(2015) in the presence of additional LEVs/TEVs using a vortical impulse formulation
very similar to that developed here. These authors, who only computed the lift force,
considered an unsteady developing TEV instead of the long-time infinite trailing
vortex wake of an oscillating plate considered here. However, as discussed below in
§ 3, the general expression for the lift force of a point vortex in terms of the temporal
evolution of its circulation and its position, as derived in more detail by Li, Bai &
Wu (2015), is equivalent to the general expression developed here. The results for the
Wagner problem were generalized by the same authors (Li & Wu 2016) to account
for high angles of attack, and for the residual vortex sheet at both the leading and
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trailing edges, representing vortices being shed yet not represented by point vortices.
A similar general vortex force formulation, without the thin-airfoil assumption, and
considering the vortex shedding from a general-shaped airfoil with non-sharp leading
edge, was more recently considered by Xia & Mohseni (2017).

To simplify the problem and be able to obtain closed approximate expressions for
the forces and moment, we introduce several approximations. First, we assume that
the vortices remain sufficiently close to the foil, in accordance with the linearized
approximation, and that the thin airfoil has a sharp leading edge, in addition to a sharp
trailing edge (as in a flat plate). Then, knowing that the main contribution to the forces
and moment is produced while the LEV is still developing close to the leading edge
(Pullin & Wang 2004; Martín-Alcántara, Fernandez-Feria & Sanmiguel-Rojas 2015),
we consider only the effect of a single developing LEV during each half-stroke, up
to the point where it is shed. The last assumption constitutes a strong simplification
of the problem, both because all the other already shed LEVs are not taken into
account and because the effect of the growing LEV on the wake vorticity is negligible.
As a consequence, closed simple expressions for the contribution of the LEV to the
forces and moment on the flapping foil can be obtained, constituting a lowest-order
correction to the analytical results of the linearized potential theory when the LEV is
included in the formulation.

To model the developing LEV, we assume that vorticity is released at the sharp
leading edge, with an unsteady Kutta condition to remove the singularity of the
bound vortex-sheet strength at the leading edge, similar to the condition applied at
the sharp trailing edge where the free wake vortex sheet is released. Then, we use
the Brown–Michael model (1954), which ensures momentum conservation (Michelin
& Llewellyn Smith 2009) and assumes that the vortex is shed when its circulation
reaches an extremum value to avoid discontinuities in temporal forces. More realistic
models for the growing and shedding of the vortices could have been used (Tchieu &
Leonard 2011; Wang & Eldredge 2013; Hemati, Eldredge & Speyer 2014), but they
need additional parameters and equations that would complicate the formulation. The
present approximation is in accordance with the simplicity of the linear potential
theory, providing closed-form expressions for the contributions of the LEV to
the lift, thrust and moment that depend only on flapping kinematics parameters.
These results are compared with available experimental data for slender airfoils with
small-to-medium maximum angle of attack.

2. Formulation of the problem
We consider the two-dimensional (2D), incompressible and nearly inviscid flow over

a heaving and pitching thin airfoil of chord length c that moves with constant speed
U along the negative x-axis (see figure 1). The vertical amplitudes of the heaving and
pitching motions are both very small compared with c, so that the airfoil and every
point of the trail of vortices that it leaves behind may be considered to be on the
x-axis in first approximation. In addition to the continuous wake, we shall consider
the effect of individual concentrated (point) vortices generated at the leading edge and
moving downstream (only one such vortex is depicted in the sketch of figure 1).

For simplicity, we select c = 2, so that all lengths are scaled with the half-chord
c/2, and the plate, or slender airfoil with two sharp ends, extends from x = −1 to
x = 1 in a reference frame translating with it at speed U along the x-axis. In this
reference frame, the motion of the airfoil is given by the vertical displacement of its
mean-camber line (see the sketch in figure 2),

zs(x, t)= h(t)− (x− a)α(t), −1 6 x 6 1, (2.1)
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FIGURE 1. (Colour online) Schematic of the problem.
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FIGURE 2. (Colour online) Schematic of the oscillating airfoil with an LEV.

with

h(t)=Re[h0eiωt
], α(t)=Re[α0eiωt

], (2.2a,b)

where ω is the frequency of the oscillations of both the heaving motion, h(t), and the
pitching rotation, α(t), around the horizontal axis x= a (i.e. the dimensional pivoting
distance from the leading edge is sp = (1 + a)c/2), and Re means real part. The
amplitudes h0 and α0 are in general complex constants (to account for any phase shift
between the two oscillations) satisfying |h0|�1 and |α0|�1. For simplicity, we select
h0 real and

α0 = a0eiφ, (2.3)

with φ the phase shift between the plunging and pitching motions and a0 the
maximum pitching amplitude. In what follows, we shall work with the complex
functions, knowing that we have to take the real part of the results. The vertical
velocity of the rigid airfoil is

v0(x, t)= ḣ− (x− a)α̇ −Uα, (2.4)

where a dot denotes the time derivative.

2.1. General expressions for the lift, drag or thrust, and moment
The vortical impulse theory for an incompressible and unbounded flow is used to
obtain the forces and moment on the airfoil. Neglecting the volume (section) of the
airfoil, one may write (Wu 1981; Saffman 1992; Wu, Ma & Zhou 2006)

F≡Dex + Lez =−ρ
dI
dt
, (2.5)

where D is the drag (or minus the thrust) force, L is the lift force, ρ is the fluid
density, and the vortical impulse (or vorticity moment) I is defined as

I=
∫
V

x∧ω dV, (2.6)
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where ω = ∇ ∧ v is the vorticity field and V is the entire volume (plane in this
case) occupied by the fluid plus the airfoil. In writing (2.5), it is assumed that V
is unbounded and that the flow is potential far from the airfoil. In fact, we shall
assume that the vorticity, which is directed along the normal ey to the plane of the
fluid motion, is concentrated at the airfoil surface, at the trailing wake, both considered
as vortex sheets, and at the locations [xj(t), zj(t)], j= 1, . . . ,N, of the N point vortices
(e.g. LEVs) present in the flow at each instant of time. Thus,

I'
N∑

j=1

Γj(−zjex + xjez)+

∫ 1

−1
(−zs$sex + x$sez) dx+

∫
∞

1
(−ze$eex + x$eez) dx, (2.7)

where Γj is the circulation (positive clockwise) of the jth point vortex, $s(x, t), −16
x6 1, is the vorticity density distribution on the airfoil, $e(x, t) is the vorticity density
distribution in the trailing wake and ze(x, t) is the vertical position of each point in
this vortex wake. We consider the large-time behaviour in which the vortex wake sheet
extends many chord lengths downstream of the airfoil, so that, in first approximation,
1 6 x 6 ∞ for both $e(x, t) and ze(x, t), with |ze| � 1, as commented on above.
Moreover, although the following derivations will be for arbitrary locations of the
point vortices (xj, zj), we shall simplify them afterwards, retaining only the lowest-
order approximations for |zj|� 1 to be consistent with the present linearized approach.

Consequently, under the assumptions made, the drag (or minus the thrust) and lift
forces on the airfoil are given by

D= ρ
N∑

j=1

d
dt
(zjΓj)+ ρ

d
dt

∫ 1

−1
zs$s dx+ ρ

d
dt

∫
∞

1
ze$e dx, (2.8)

L=−ρ
N∑

j=1

d
dt
(xjΓj)− ρ

d
dt

∫ 1

−1
x$s dx− ρ

d
dt

∫
∞

1
x$e dx. (2.9)

Similarly, the vortical impulse theory also provides the moment on the airfoil (Wu
1981; Saffman 1992; Wu et al. 2006),

M=−Mey =−ρ
dA
dt
, (2.10)

where

A=−
1
2

∫
V
|x− aex|

2ω dV (2.11)

is the angular impulse in relation to the pitching axis x = a moving with speed U
along the x-axis (it should be noted that the distance Ut is also scaled with c/2).
Thus,

M '
1
2
ρ

d
dt

[
N∑

j=1

(xj −Ut+ ai)
2Γj +

∫ 1

−1
(x−Ut+ ai)

2$s dx

+

∫
∞

1
(x−Ut+ ai)

2$e dx

]
, (2.12)

with a = Ut − ai in a stationary reference frame with the fluid at rest far from the
airfoil.
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Without considering the effect of the individual point vortices Γj, the lift and
moment were computed by von Kármán and Sears (1938) using similar expressions
to (2.9) and (2.12), while the thrust/drag was recently computed using (2.8) in
Fernandez-Feria (2016). Reference to these works will be made for some particular
results needed in the following computations. It should be noted that the general
expressions (2.5) and (2.10) were derived by Wu (1981) for any unsteady vorticity
distribution in an incompressible flow, including unsteady point vortices. They have
already been used for a distribution of unsteady point vortices by Tchieu & Leonard
(2011) and Li et al. (2015), among others, in similar problems, and (2.5) has also
been used for unsteady point vortices to estimate forces from experimental data by
Graham, Pitt Ford & Babinsky (2017).

2.2. Vorticity distribution on the airfoil
Following von Kármán and Sears (1938) and invoking the linearity of the problem,
we separate the contributions of the vortex-sheet wake and the N point vortices to $s
from the bound circulation that would be produced by the motion of the airfoil as if
the wake and the point vortices had no effect,

$s(x, t)=$0(x, t)+$1e(x, t)+
N∑

j=1

$1j(x, t), −1 6 x 6 1, (2.13)

with

Γ0(t)=
∫ 1

−1
$0(x, t) dx (2.14)

being the circulation that would be obtained from the quasisteady airfoil theory,
without moving vortices or unsteady wake, such that the corresponding lift would
be ρUΓ0. The vorticity density $1e is the contribution to $s induced by the wake
vortex-sheet strength $e, and $1j is the contribution from the point vortex j. Kelvin’s
total-circulation conservation theorem requires that

Γ0 + Γ1e +

N∑
j=1

(Γj + Γ1j)+

∫
∞

1
$e dx= 0, (2.15)

with

Γ1e(t)=
∫ 1

−1
$1e(x, t) dx and Γ1j(t)=

∫ 1

−1
$1j(x, t) dx. (2.16a,b)

To obtain $0, $1e and $1j, one has to apply the boundary condition of the vertical
velocity (2.4) at z = 0, −1 6 x 6 1, induced by the whole distribution of vorticity.
On separating the three sources, one is led to the following integral equations (e.g.
Newman 1977):

1
2π
−

∫ 1

−1

$0(ξ , t)
ξ − x

dξ = v0(x, t), (2.17)

1
2π
−

∫ 1

−1

$1e(ξ , t)
ξ − x

dξ =−
1

2π

∫
∞

1

$e(ξ , t)
ξ − x

dξ, (2.18)
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1
2π
−

∫ 1

−1

$1j(ξ , t)
ξ − x

dξ =
Γj

2π

x− xj

(x− xj)2 + z2
j
, j= 1, . . . ,N, (2.19)

where −
∫

denotes Cauchy’s principal value of the integral. The contribution from the
unsteady planar wake, $e, was derived by von Kármán and Sears (1938) using the
circle plane from Joukowski conformal mapping, instead of solving (2.18), to obtain,
after applying the Kutta condition at the trailing edge, x= 1,

$1e(x, t)=
1
π

∫
∞

1

√
ξ + 1
ξ − 1

√
1− x
1+ x

$e(ξ , t)
(ξ − x)

dξ, (2.20)

which, integrated between x=−1 and x= 1, yields

Γ1e(t)=
∫
∞

1

(√
ξ + 1
ξ − 1

− 1

)
$e(ξ , t) dξ . (2.21)

The solutions to (2.17) and (2.19) satisfying (2.14) and (2.16a,b) can be formally
written as (e.g. Newman 1977; Carrier, Krook & Pearson 2005)

$0(x, t)=
2

π
√

1− x2

[
Γ0(t)

2
−−

∫ 1

−1

√
1− ξ 2

ξ − x
v0(ξ , t) dξ

]
, (2.22)

$1j(x, t)=
2

π
√

1− x2

[
Γ1j(t)

2
−
Γj(t)
2π
−

∫ 1

−1

√
1− ξ 2

ξ − x
ξ − xj(t)

[ξ − xj(t)]2 + zj(t)2
dξ

]
. (2.23)

On the other hand, the Kutta condition at the trailing edge, i.e. the regularity of $s
at the trailing edge, implies that the terms in brackets vanish, so that

Γ0(t)=−2−
∫ 1

−1

√
1+ ξ
1− ξ

v0(ξ , t) dξ = 2π

[
Uα − ḣ−

(
a−

1
2

)
α̇

]
, (2.24)

Γ1j(t)=Cj(t)Γj(t), with Cj(t)≡−
1
π
−

∫ 1

−1

√
1+ ξ
1− ξ

ξ − xj(t)
[ξ − xj(t)]2 + zj(t)2

dξ . (2.25)

On substituting (2.21) and (2.25) into (2.15), the following relation between Γ0, Γj
and $e is obtained:

Γ0(t)+
N∑

j=1

Γj(t)[1+Cj(t)] +
∫
∞

1

√
ξ + 1
ξ − 1

$e(ξ , t) dξ = 0. (2.26)

The general expression for the vorticity distribution on the airfoil is obtained by
substituting (2.20), (2.22) and (2.23), together with (2.24) and (2.25), into (2.13),

$s(x, t) =
1
π

√
1− x
1+ x

{
−−

∫ 1

−1

[
2v0(ξ , t)+

N∑
j=1

Γj(t)
π

ξ − xj(t)
(ξ − xj(t))2 + z2

j (t)

]√
1+ ξ
1− ξ

dξ
ξ − x

+

∫
∞

1

√
1+ ξ
ξ − 1

$e(ξ , t)
ξ − x

dξ

}
. (2.27)
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It should be noted that this bound vortex-sheet strength is singular at the leading edge,
x=−1. However, we will apply in § 4.1 below the Kutta condition at the leading edge
while an LEV (Γ1, say) is developing, so that $s will also be regular at x=−1 during
the fraction of the half-stroke when the LEV is growing from the leading edge.

Kelvin’s theorem (2.26) provides an integral equation for the trailing-edge vortex-
sheet strength $e in terms of the quasisteady circulation Γ0(t), given by (2.22) as a
function of the foil motion v0(x, t), and the circulation Γj(t) and trajectory [xj(t), zj(t)]
of each point vortex present in the flow, which have to be modelled independently (see
§ 4 below). Thus, (2.26)–(2.27) suffice to obtain general expressions for the lift, thrust
and moment on the foil in terms of v0(x, t), Γj(t) and [xj(t), zj(t)], j= 1, . . . ,N, which
are derived next. A comment on the above particular application of the Kutta condition
at the trailing edge and the general validity of (2.26)–(2.27) is given in appendix A.

3. Force and moment for arbitrary movements of the point vortices and foil
Before simplifying the above expressions for the oscillatory motion (2.1)–(2.2) of

the airfoil and before implementing models for the generation and evolution of the
LEVs in each stroke of the airfoil, it is instructive to write the general expressions
for the forces and moment within the present linearized approximation.

To compute the temporal derivatives of terms containing $e and ze, one assumes
that the vorticity in the wake is convected downstream with velocity U, so that both
remain constant in a reference frame moving with the fluid (von Kármán & Sears
1938; Newman 1977),

$e(ξ , t)=$e(X), ze(ξ , t)= ze(X), with X = ξ −Ut. (3.1a,b)

Consequently, the time derivatives of the terms containing the wake vorticity $e may
be easily computed using Leibniz’s rule. Taking also into account the circulation
conservation (2.26) and the integrals given in appendix B, one obtains the following
expression for the lift (2.9):

L= L0 + L1 + L2 +

N∑
j=1

Llj, (3.2)

where

L0 = ρUΓ0, L1 =πρ(Uα̇ − ḧ− aα̈), L2 = ρU
∫
∞

1

$e√
ξ 2 − 1

dξ (3.3a−c)

are the quasisteady lift, the apparent mass lift and the unsteady wake lift respectively
obtained by von Kármán & Sears (1938), and the contribution from each jth point
vortex is

Llj = ρ

{
UΓj(1+Cj)−

d
dt
[Γj(xj +Dj)]

}
, (3.4)

with Dj defined in (B 3) in appendix B. This last expression coincides with that
derived by Li et al. (2015) for point vortices when Dj is interpreted as the x
coordinate of the image of the vortex j inside the foil. With this proviso, although
obtained from a quite different approach, it also agrees with the results of Xia
& Mohseni (2013) under the constant circulation assumption, with the vortices
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contributing to the force through vortex convection (including the image vortices)
and vortex variation. The first term of (3.4) is basically the Kutta–Joukowski theorem
applied to the circulation Γj of the individual vortex itself plus its induced circulation
Γ1j = ΓjCj around the foil. The second term is the unsteady contribution to the
lift force due to the motion of the vortex and its variation in intensity, including the
induced vorticity on the foil. It says that positive lift on the airfoil is generated if Γjxj
decreases in time, as happens, for instance, at the initial stages of the formation of the
LEV at the beginning of each downstroke, when the LEV starts to move upstream
of the leading edge (xj 6 −1, see § 4.1 below for the details) with its circulation
Γj growing in time. The opposite happens in the initial stages of the formation
of the LEV during the beginning of the upstroke, where Γj < 0 and decreases (it
should be remembered that we use Γ > 0 for a clockwise vortex), moving also
upstream of the leading edge. When Γj is constant, the expression coincides with the
well-known vortex force produced by a free vortex (Saffman 1992; Alaminos-Quesada
& Fernandez-Feria 2017). If the free vortex (Γj independent of time) is far away from
the foil (x2

j + z2
j →∞), and therefore moving with the free stream velocity, dxj/dt=U,

one has that Llj→ 0 since both Cj and Dj tend to zero with the distance from the
foil. Incidentally, this is the reason why we can disregard the effect on the lift force
of the starting vortex at infinity in the present impulse formulation.

The lift expression (3.2) can be rewritten in a more convenient form by grouping
together L0 and the first term in Lli after using the total circulation conservation
(2.26),

L= La + Le +

N∑
j=1

Lj, (3.5)

where La ≡ L1 is the added mass term given in (3.3) and the net contributions from
the wake and each point vortex j are respectively

Le =−ρU
∫
∞

1

ξ$e√
ξ 2 − 1

dξ, (3.6)

Lj =−ρ
d
dt
[Γj(xj +Dj)]. (3.7)

It should be noted, however, that the effect of the point vortices on the wake vorticity
distribution $e has to be obtained from (2.26).

Similarly, by using some of the integrals given in appendix B, the drag (2.8) can
be written as

D = ρ

N∑
j=1

d
dt
{Γj[zj + (h+ aα)Cj − αDj]} + ρ

d
dt
[(h+ aα)Γ0] −πρ

d
dt
[α(ḣ+ aα̇ −Uα)]

+ ρ
d
dt

∫
∞

1
$e

[(√
ξ + 1
ξ − 1

− 1

)
(h+ aα)− (

√
ξ 2 − 1− ξ)α + ze

]
dξ . (3.8)

For the vertical displacement of the wake ze, we assume that it coincides with the
trailing-edge location at the time t′= t+ (1− ξ)/U when it was shed from the airfoil,
zs(x= 1, t′), i.e.

ze(X)= h
(

1− X
U

)
− (1− a)α

(
1− X

U

)
. (3.9)
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Thus,

d
dt

∫
∞

1
ze$e dξ =U[h(t)− (1− a)α(t)]$e(ξ = 1, t). (3.10)

Using also (2.26) and (3.3)–(3.4), the thrust T =−D from (3.8) can be written as

T =−αL+ T1 + T2 +

N∑
j=1

Tlj, (3.11)

where

T1 =πρα̇(ḣ+ aα̇ − αU), T2 = ρ

∫
∞

1
[ḣ+ α̇(

√
ξ 2 − 1− ξ + a)− αU]$e dξ,

(3.12a,b)

Tlj = ρ
d
dt
[Γj(h+ aα − zj − αxj)] + ρα̇Γj(xj +Dj). (3.13)

The first term in (3.11) is the component in the flight direction of the force normal
to the airfoil, with L given by (3.2). The second and third terms are the contributions
to the thrust from the apparent mass and the vorticity distribution in the wake
respectively, already obtained in Fernandez-Feria (2016), while the fourth term is the
contribution from the point vortices. It should be noted that the length in the first
term of (3.13), h+ aα− zj− αxj, is minus the vertical position of the point vortex in
relation to the plate, zs(xj)− zj, if −1 6 xj 6 1.

Part of the contribution from the vortex j is actually included in the first term of
(3.11) (inside L). Thus, it is convenient to use (3.5) and rewrite the thrust in a similar
fashion to the lift (3.5),

T = Ta + Te +

N∑
j=1

Tj, (3.14)

where

Ta =−αLa + T1 =πρ
d
dt
[α(ḣ+ aα̇ − αU)] (3.15)

is the added mass thrust,

Te =−αLe + T2 = ρ

∫
∞

1

[
ḣ+ α̇(

√
ξ 2 − 1− ξ + a)− αU

(
1+

ξ√
ξ 2 − 1

)]
$e dξ

(3.16)

is the contribution from the unsteady wake and

Tj = ρ
d
dt
{Γj[zs(xj)− zj + α(xj +Dj)]} (3.17)
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is the contribution from the point vortex j (it should be noted that there is an
additional contribution of the point vortices in $e through the total circulation
conservation (2.26)). For a free vortex (Γj constant), Tj is proportional to minus
the temporal variation of the vertical distance of the vortex from the plate, plus a
similar contribution coming from the induced vorticity on the plate, whose vertical
distance is represented by −αDj. In general, this term Tj contributes to positive thrust
when −Γjzj increases, so that the formation of the LEV generates negative thrust at
the initial stages of both the downstroke and the upstroke (see § 5 below for more
details).

Finally, using the above expressions and some integrals from appendix B, the
moment (2.12) can be written as

M =Ma +Me +

N∑
j=1

Mj, (3.18)

where

Ma =−ρ
d
dt

[
a
2
(πα̇ − Γ0)+

πα̇

8

]
(3.19)

is the contribution from the added mass,

Me =
1
2
ρU
∫
∞

1

1− 2aξ√
ξ 2 − 1

$e dξ (3.20)

is the contribution from the unsteady wake and

Mj = ρ
d
dt

{
Γj

[
x2

j

2
+

Ej

2
−

1
4
− a(xj +Dj)

]}
(3.21)

is the contribution from the point vortex j, with Ej defined in (B 4) in appendix B.

4. Evolution of the point vortices, including the developing LEV
4.1. General model

In the above general expressions, the contribution of each point vortex j to the
lift, thrust and moment on the airfoil depends on time through the vortex intensity
Γj(t) and its trajectory [xj(t), zj(t)]. Part of this dependence is inside the integrals
Cj[xj(t), zj(t)], Dj[xj(t), zj(t)] and Ej[xj(t), zj(t)] defined in (2.25), (B 3) and (B 4)
respectively. In addition, the wake vorticity $e is also affected by the evolution
of this point vortex j through Kelvin’s theorem (2.26). Therefore, one needs three
additional equations for each point vortex to obtain Γj(t), xj(t) and zj(t), which have
to be solved together with the integral equation (2.26) for $e(x, t), with Γ0(t) given
by (2.24), once the vertical movement of the airfoil v0(x, t) is prescribed.

As a first simplification to the problem, it is assumed that, during each half-stroke,
there is only one developing LEV, labelled by j = 1. The remaining vortices, j =
2, . . . ,N, have already been shed, so that they move with the Kirchhoff velocity and
their intensities are frozen (Tchieu & Leonard 2011; Wang & Eldredge 2013),

dΓj

dt
= 0 ,

dxj

dt
− i

dzj

dt
= v∗[zj(t)], j= 2, 3, . . . , (4.1)
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where zj = xj + izj is the position of the point vortex j on the complex plane and

v∗[zj(t)] ≡ ūj − iv̄j =U −
i

2π

∫ 1

−1
$s(x, t)

dx
x− zj

−
i

2π

∫
∞

1
$e(x, t)

dx
x− zj

+

∑
k 6=j

iΓk

2π(zj − zk)
(4.2)

is the complex conjugate velocity at the vortex centre zj excluding the self-contribution
of the vortex. The initial conditions for these differential equations are the values of
Γj, xj and zj at the shedding instant tjs, j= 2, 3, . . . .

Since Γ1 is developing from the sharp leading edge, one has to apply the Kutta
condition at x=−1 to remove the singularity of $s given by (2.27). It should be noted
that this condition has already been applied at the trailing edge, where the unsteady
wake is continuously generated, in the derivation of $0, $1j and $1e, so that $s given
by (2.27) is not singular at x= 1. Thus, (2.27) has to be regular also at the leading
edge while |Γ1| is growing, which means that the term inside brackets has to vanish
at x=−1,

−

∫ 1

−1

[
2v0(ξ , t)+

N∑
j=1

Γj(t)
π

ξ − xj(t)
(ξ − xj(t))2 + z2

j (t)

]
dξ√

1− ξ 2
=

∫
∞

1

$e(ξ , t)√
ξ 2 − 1

dξ . (4.3)

This additional relation is similar to (2.26) and can be written as

Γ0 −πα̇ +

N∑
j=1

ΓjBj +

∫
∞

1

$e(ξ , t)√
ξ 2 − 1

dξ = 0, (4.4)

where

Bj ≡−
1
π
−

∫ 1

−1

ξ − xj

(ξ − xj)2 + z2
j

dξ√
1− ξ 2

. (4.5)

With this new condition, the vorticity distribution (2.27) is now also regular at the
leading edge, x=−1, and can be written as

$s(x, t) =
1
π

√
1− x2

[
2πα̇ −

N∑
j=1

Γj(t)
π
−

∫ 1

−1

ξ − xj(t)
(ξ − xj(t))2 + z2

j (t)
dξ√

1− ξ 2(ξ − x)

+

∫
∞

1

$e(ξ , t)√
ξ 2 − 1(ξ − x)

dξ

]
. (4.6)

As the two additional conditions for Γ1, x1 and z1 we shall use the Brown–Michael
(1954) equation, which ensures the momentum conservation around the vortex and
the branch cut between the point vortex and the leading edge (Michelin & Llewellyn
Smith 2009),

dz1

dt
+

z1 − z10

Γ1

dΓ1

dt
= v(z1), (4.7)
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where v(z1) = ū1 + iv̄1 is given by (4.2) for z1 = x1 + iz1. These are two differential
equations which have to be solved with the initial condition at the beginning of each
half-stroke, t= ti,

Γ1(ti)= 0, x1(ti)= x10 =−1, z1(ti)= z10(ti)= zs(−1, ti), (4.8a−c)

where ti is given by

dzs

dt

∣∣∣∣
x=−1,t=ti

= ḣ(ti)+ (1+ a)α̇(ti)= 0. (4.9)

The point vortex with growing circulation Γ1(t) is shed when Γ1 reaches an
extremum value, dΓ1/dt = 0. After that, the circulation remains constant and,
according to (4.7), the vortex travels with the Kirchhoff velocity. This shedding
criterion is that when the strength of a vortex reaches an extremum, it is frozen at
that value and the vortex subsequently moves according to the Kirchhoff velocity,
avoids a discontinuity in the temporal variation of the impulse, and therefore in the
force. One could have used, instead of the Brown–Michael equation (4.7), the impulse
matching model of Wang and Eldredge (2013), which avoids this discontinuity even
when the vortex is shed without reaching an extremum intensity. However, it would
need an additional, experimentally or numerically based, shedding condition which
would have complicated the formulation.

On the other hand, any vortex-shedding model based on just three parameters, like
the present one, namely the circulation Γ1 of a point vortex moving with trajectory
[x1(t), z1(t)] from the leading edge, cannot satisfy at the same time the Kutta condition
at the sharp edge, and the conservation around the vortex and branch cut between
the leading edge and the vortex of the linear momentum in both directions and
the angular momentum. The Brown–Michael (1954) model satisfies the conservation
of linear momentum (Michelin & Llewellyn Smith 2009), avoiding a spurious net
force on the foil, but introducing a spurious torque (Brown & Michael 1954; Howe
1996; Michelin & Llewellyn Smith 2009; Tchieu & Leonard 2011). Howe (1996)
developed an alternative approach satisfying the conservation of angular momentum,
more appropriate to determine sound generation. We think that the Brown–Michael
model is more appropriate here where the main aim is to determine the forces on
the foil.

4.2. Simplified model. Non-dimensional variables
To simplify the problem, we shall only consider the effect of the growing LEV with
circulation Γ1(t) at each half-stroke, disregarding the effect of the remaining, already
shed, vortices. In addition, to simplify the notation, we shall only use, from this point
on, non-dimensional variables. All lengths are already scaled with the semichord c/2.
The remaining non-dimensional variables are (the same letter is used in most of them
for the sake of simplicity)

t←
2tU

c
, ū1, v̄1←

ū1

U
,
v̄1

U
, Γ1←

Γ1

Uc/2
, etc. (4.10a−c)

From (4.9) and (2.2)–(2.3), the non-dimensional initial time ti at the beginning of each
half-stroke is given by

kti = arctan
[
−

(1+ a)a0 sin φ
h0 + (1+ a)a0 cos φ

]
± nπ, n= 0, 1, 2, . . . , (4.11)
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where

k=
cω
2U

(4.12)

is the reduced frequency (it should be noted that kti with ti non-dimensional is equal
to ωti with ti dimensional). For a pure heaving motion, kti =±nπ, while for a pure
pitching motion, kti = −φ ± nπ, but we may set φ = 0 since there is no combined
motion. It should be noted that the non-dimensional half-period is π/k.

For each half-stroke, we reset the non-dimensional time by using

τ = t− ti (4.13)

and define

θ(τ )= x10 − x1 =−1− x1(t), ζ (τ )= z1(t)− z10(t)= z1(t)− [h(t)+ (1+ a)α(t)],
(4.14a,b)

with initial conditions

θ(0)= ζ (0)= 0. (4.15)

For the initial stages of the developing LEV, it is assumed that

0 6 θ� 1, |ζ | � 1, (4.16a,b)

the last condition being implied by the present linearized formulation, where |z1|� 1.
In fact, we shall use below z1, and then substitute it by ζ according to (4.14).

From (2.25), neglecting terms of order z2
1, one obtains

C1 '−1+

√
x1 + 1
x1 − 1

'−1+

√
θ

2
. (4.17)

Consequently, from Kelvin’s circulation theorem (2.26), the growing LEV has a
negligible effect on the wake vorticity $e when θ � 1, so that $e depends, in first
approximation, only on Γ0,∫

∞

1

√
ξ + 1
ξ − 1

$e(ξ , t) dξ '−Γ0(t). (4.18)

From (2.24), and for the oscillatory motion (2.2)–(2.3), Γ0 can be written in non-
dimensional form as

Γ0(t)=G0eikt, G0 = 2π[α0 − ikh0 − ik(a− 1/2)α0]. (4.19a,b)

Thus, (A 2) has the well-known solution (Theodorsen 1935; von Kármán & Sears
1938)

$e(ξ , t)= geik(t−ξ), (4.20)

g=−
G0∫

∞

1

√
ξ + 1
ξ − 1

e−ikξ dξ

=
2G0

π

1

iH(2)
0 (k)+H(2)

1 (k)
, (4.21)

where H(2)
n (z) = Jn(z) − iYn(z), n = 0, 1, are Hankel functions, related to the Bessel

functions Jn and Yn (see, e.g., Olver & Maximon 2010).
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From the Kutta condition (4.4) at the leading edge, one can obtain Γ1 as a function
of the position of the vortex and the parameters of the problem. To that end, one has
first to compute the integral (4.5) defining B1 and the integral involving $e in (4.4).
Neglecting terms of O(z1)

2, B1 is given by

B1 '−
1
√

2θ
, (4.22)

while ∫
∞

1

$e(ξ , t)√
ξ 2 − 1

dξ =−iΓ0
H(2)

0 (k)

iH(2)
0 (k)+H(2)

1 (k)
, (4.23)

which, after substituting in (4.4), yields

Γ1(t)'
√

2θ(t)[Γ0(t)C(k)−πα̇] =
√

2θ(t)G(t), (4.24)

where

G ≡ Γ0C−πα̇ = 2π[α − ḣ− (a− 1
2)α̇]C(k)−πα̇ (4.25)

and

C(k)≡
H(2)

1 (k)

iH(2)
0 (k)+H(2)

1 (k)
≡ F(k)+ iG(k) (4.26)

is the Theodorsen function (Theodorsen 1935; Garrick 1938). (It is understood that
one has to take the real parts of all of the complex quantities separately.) This
expression for Γ1 says that, at the initial stages, the LEV approximately grows as the
square root of the distance from the leading edge θ , but modulated by the oscillatory
motion of the airfoil through G(t).

To write the equations for x1(t) and z1(t) (or ζ (t)) from the Brown–Michael
equation (4.7), we need the Kirchhoff velocity components ū1 and v̄1, which are
obtained from the non-dimensional form of (4.2). Since the single LEV is very close
to the leading edge, we shall only consider the effect of the vorticity distribution
(4.6) on the foil generated by the foil movement, i.e. $s(x, t)≈$0(x, s)= 2α̇

√
1− x2.

Thus,

v∗[z1(t)] ≡ ū1 − iv̄1 ' 1−
iα̇
π

∫ 1

−1

√
1− x2

x− z1
= 1+ iα̇z1

(
1−

√
1−

1
z2

1

)
. (4.27)

To be consistent with the present linearized theory, one may neglect terms of order z2
1

to write

ū1 − iv̄1 ' 1+
z1α̇√
x2

1 − 1

(
x2

1

|x1|
−

√
x2

1 − 1
)
+ iα̇

(
x1 −

x1

|x1|

√
x2

1 − 1
)
. (4.28)

On substituting these expressions for ū1 and v̄1, together with (4.24) and (4.14), into
the Brown–Michael equation (4.7), two differential equations for θ(τ ) and ζ (τ ) result,

d
dτ
(θ 3/2G)=−Gθ 1/2ū1,

d
dτ
(ζ θ 1/2G)= Gθ 1/2

(
v̄1 −

dz10

dτ

)
, (4.29)
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which have to be solved numerically with the initial conditions (4.15). For small θ ,
(4.28) can be approximated by

ū1 ' 1+
z1α̇
√

2θ

(
1−
√

2θ +
3
4
θ

)
, v̄1 ' α̇(1−

√
2θ + θ). (4.30a,b)

Since τ = 0 is a singular point of the equations, the numerical integration has to be
started from an analytical approximation for τ � 1. Retaining only the leading terms
in (4.30) for θ� 1 and ζ � 1 (see (4.14)), the lowest order of (4.29) can be written
as

d
dτ
(θ 3/2G)'−

Gz10α̇
√

2
,

d
dτ
(ζ θ 1/2G)' θ 1/2G(α̇ − ż10), (4.31a,b)

which have to be solved with the initial conditions (4.15). These equations can be
formally integrated to yield

θ '

(
−

1
√

2G

∫ τ

0
Gz10α̇ dτ

)2/3

, ζ '
1

θ 1/2G

∫ τ

0
θ 1/2G(α̇ − ż10) dτ . (4.32a,b)

The initial approximation to start the numerical integration of (4.29) can be obtained
by approximating the above analytical solution for τ = t− ti� 1 using the expansions
of z10(τ ), α(τ) and G(τ ) for τ � 1 given in appendix C. On substituting these
expansions into (4.32), at the lowest order for τ � 1, one obtains

θ '

(
−

z100αi1
√

2

)2/3

τ 2/3
=

(
kh0a0 sin φ
√

2

)2/3

τ 2/3, ζ '
3αi1

4
τ , (4.33a,b)

where z100 and αi1 are given in appendix C. The time dependences in these
expressions, and the corresponding Γ1 ∝ τ

1/3 after substituting into (4.24), coincide
with those at the leading order of the solution for the growth of a vortex sheet from
the leading edge of a starting flat plate when considered as a point vortex (Pullin &
Wang 2004). These expressions are not valid, and therefore cannot be used to start
the numerical integration, if h0, a0 or sin φ vanishes. These particular cases will be
considered separately below.

Figures 3 and 4 show some results for h0 = 0.1, a0 = 20◦, a = 0 and k = 5, with
φ=10◦ and φ=90◦ respectively. In figures 3(a) and 4(a), we plot the trajectories ζ (τ )
versus x1(τ ) (it should be noted that the initial value of x1 is −1, and z1(τ )= z10(τ )+

ζ (τ )). We integrate (4.29)–(4.30) numerically starting from a sufficiently small value
of τ with (4.33) until Γ1(τ ), plotted in figures 3(b) and 4(b), reaches a maximum
value, marked with circles in the vortex trajectories. From this point on, the circulation
Γ1 remains constant and we integrate (4.7) without the second term. For the numerical
integrations, we use the general expression (4.28) for ū1 and v̄1, valid for any x1, and
the solver ode15s from MATLAB. Since most of the vortex contribution to the forces
and moment occurs, as we shall see, before the vortex is shed, and this event happens
in both plotted cases before the vortex passes above (below) the foil, we only plot
results for x1 < 0. A perfect symmetry is observed in figures 3 and 4 between the
downstroke and the upstroke, with Γ1 > 0 for the downstroke (in our sign convection
where Γ1 is positive when clockwise) and Γ1 < 0 during the upstroke.
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FIGURE 3. (Colour online) The LEV trajectory (a) and circulation (b) for h0= 0.1, a0= 20◦,
a = 0, k = 5 and φ = 10◦. The continuous lines correspond to the downstroke and the
dashed lines to the upstroke. The circles in (a) mark the position at which Γ1 reaches a
maximum and the LEV is shed, whose instant is marked with a dotted vertical line in (b).
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FIGURE 4. (Colour online) As figure 3, but for φ = 90◦.

For h0 = 0, i.e. for a pure pitching motion, αi0 =±a0, αi1 = 0, αi2 =∓a0k2/2 and
z10'±a0(1+ a)(1− k2τ 2/2) according to the expressions given in appendix C. Thus,
(4.32) yields, at the lowest order,

θ ' [(1+ a)a2
0k2
]

2/3 τ
4/3

2
, ζ '±

3
8

a0ak2τ 2, τ � 1, (4.34a,b)

which have to be used to start the numerical integration of (4.29)–(4.30). Figure 5
shows results for this case when a0 = 20◦, a= 0 and k= 5. Comparing with figure 3,
which is a similar case but with h0 = 0.1, the maximum of Γ1 and the largest |ζ |
travelled by the vortex are both significantly smaller.

For sin φ = 0, i.e. for a combined motion without phase shift (φ = 0), or with a
phase shift φ = 180◦, hi1 = αi1 = 0, hi0 = ±h0, αi0 = ±a0 cos φ from the expressions
given in appendix C, where it has been taken into account that cos φ = ±1. At the
lowest order, when τ � 1, one obtains

θ ' (k2a0[(1+ a)a0 + h0 cos φ])2/3
τ 4/3

2
, ζ '±

3
8

k2(h0 + a0a cos φ)τ 2. (4.35a,b)

Although this starting behaviour is very different from (4.33), the results as τ increases
are quite similar in both cases for small φ or for φ close to 180◦. For instance, the
curves for φ = 0 when h0 = 0.1, a0 = 20◦, a= 0 and k= 5 are very similar to those
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FIGURE 5. (Colour online) As figure 3, but for h0 = 0.
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FIGURE 6. Plot of Φ, defined in (4.36), versus k for several values of φ.

depicted in figure 3 for φ= 10◦, except for very small τ . For this reason, these results
are not plotted here.

Finally, for a pure heaving motion (a0= 0), the equations have no solution with the
present approximation (4.28), which needs the presence of some pitching motion with
α̇ 6= 0 to generate an LEV. One would have to consider the next-order effects of $11
in (4.6), but these second-order effects are neglected in the present approximation.

More generally, no LEV is produced within the present approximation when Γ1
is negative at the beginning of the downstroke (or positive at the beginning of the
upstroke), i.e. when Gi0=G(τ = 0)< 0 for the downstroke (or Gi0> 0 for the upstroke).
From (C 3)–(C 8) in appendix C, this condition for the formation of the LEV can be
written as

h0

(1+ a)a0
<Φ(k, φ)≡

2F(k)
k[3F(k)− 1] sin φ − 2F(k) cos φ

, (4.36)

valid for both the downstroke and the upstroke. This condition excludes the pure
heaving motion already commented on, and allows any pure pitching motion (h0= 0)
for any value of k or a. Any pitching of the foil pivoting at the leading edge (a=−1)
is also excluded by this inequality.

Figure 6 shows Φ as a function of k for several values of φ. A solution exists,
i.e. an LEV is generated, for values of k and h0/[(1+ a)a0] below the corresponding
curve for a given phase shift φ. When φ is close to zero, the solution exists for
practically any value of k and h0/[(1 + a)a0]. However, as φ increases, the range
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shrinks to smaller values of both parameters. If one starts to increase h0/[(1+ a)a0]

(by decreasing the pitch angle a0, say) for given values of k and h0/[(1+ a)a0] below
the curve corresponding to a given value of the phase shift φ, what it is found is that
τm decreases and the maximum circulation tends to zero as one approaches the curve,
corresponding to a vanishing contribution of the LEV to the force and moment.

Condition (4.36) is the mathematical expression of the known physical condition
that the effective angle of attack has to be sufficiently large for the flow to separate
at the leading edge and develop an LEV that moves as a point vortex away from the
edge (Dickinson & Götz 1993; Jones 2003; Xia & Mohseni 2013). It is a consequence
of the Kutta condition imposed at the sharp leading edge while the LEV is growing.
In fact, G(t), as defined in (4.24) proportional to the LEV circulation, is a measure
of the average slip between the plate and the fluid adjacent to the plate (Jones 2003),
which has to be positive at the beginning of the downstroke (negative for the upstroke)
to generate an LEV that begins to move away from the plate. What it is remarkable
here is that this condition can be written in terms of a single parameter h0/[(1+ a)a0]

for given k and φ.

5. Results for the contribution of the LEV to the forces and moment
According to (3.7), (3.17) and (3.21), the contributions of the LEV with circulation

Γ1(t) developed during each half-stroke to the lift, thrust and moment are given, in
non-dimensional form, by

CL1 =
d
dt

FL1, FL1 ≡−Γ1(x1 +D1), (5.1)

CT1 =
d
dt

FT1, FT1 ≡ Γ1[zs(x1)− z1 + α(x1 +D1)], (5.2)

CM1 =
d
dt

FM1, FM1 ≡
1
2
Γ1

[
x2

1

2
+

E1

2
−

1
4
− a(x1 +D1)

]
, (5.3)

where, as usual, the forces are scaled with ρU2c/2 and the moment with ρU2c2/2.
All of the magnitudes in these expressions are dimensionless (see (4.10)).

The quantities D1 and E1, which are integrals defined in (B 3) and (B 4) of
appendix B respectively, are obtained in the present linear approximation by neglecting
terms of order z2

1,

D1 '−x1 −

√
x2

1 − 1, E1 '
1
2 − x2

1 − x1

√
x2

1 − 1, for x1 6−1. (5.4a,b)

They can also be obtained for x1 >−1 with errors of O(z2
1). However, since we are

considering only the effect of the growing LEV up to the point where its intensity
|Γ1| reaches a maximum, and this maximum occurs in all significant cases for x1 6−1
(see, e.g., figures 3–5), these expressions suffice in the present approximation. On
substituting into (5.1)–(5.3), and using (4.14) and (4.24), one obtains

FL1 = Γ1

√
x2

1 − 1' 2Gθ
(

1+
θ

4

)
, (5.5)

FT1 = Γ1
[
zs(x1)− z1 − α

√
x2

1 − 1
]
'−2Gθ

[
ζ + α

(
1−

√
θ

2
+
θ

4

)]
, (5.6)
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FIGURE 7. (Colour online) The functions (5.5)–(5.7) (a), and the force and moment
coefficients (5.1)–(5.3) (b) for the case depicted in figure 3 (h0 = 0.1, a0 = 20◦, a = 0,
k= 5 and φ = 10◦), for both the downstroke (continuous lines) and the upstroke (dashed
lines). The vertical dotted line marks the instant where |Γ1| reaches a maximum value.

FM1 =
1
2
Γ1

√
x2

1 − 1
(

a−
x1

2

)
' Gθ

[
a+

1
2
+
θ

4

(
a+

5
2

)]
. (5.7)

It should be noted that we use the approximation θ � 1, which is quite accurate in
all of the cases considered (e.g. figures 3–5). At the initial stages of each half-stroke
(τ � 1), one may use (4.33) to find, at the leading order, FL1 ∝ τ

2/3, FT1 ∝ τ
4/3 and

FM1 ∝ τ
2/3, which yield, after using (5.1)–(5.3), the lift singularity at the start of the

impulsive motion of a flat plate discussed by Graham (1983), CL1 ∝ τ
−1/3, together

with CT1 ∝ τ
2/3 and CM1 ∝ τ

−1/3.
These functions (5.5)–(5.7) are very relevant because, according to (5.1)–(5.3),

their values up to a given instant τ within each half-stroke are proportional to the
corresponding time-averaged force or moment up to that instant. Figure 7 shows
FL1, FT1 and FM1 , as well as CL1, CT1 and CM1 , for the downstroke and the upstroke
of a typical case (that of figure 3) up to the point where |Γ1| reaches a maximum.
The main feature of this and all of the cases considered is that CL1(τ ) and CM1(τ )

for the upstroke are symmetrical in relation to the downstroke, so that the developing
LEV does not contribute to the time-averaged lift and moment during a whole stroke.
It only contributes to the instantaneous lift and moment, especially at the beginning
of each half-stroke, by the contribution cancelling out with the next half-stroke.
However, the evolution of CT1(τ ) (and FT1(τ )) for the upstroke coincides with its
evolution during the downstroke. Thus, the growing LEV contributes to both the
instantaneous thrust force and its time-averaged value. In addition, for most of the
cases considered, the contribution to the time-averaged thrust is negative, i.e. the
growing LEV generates drag in the mean, within the present approximation. This
is consistent with the discussion on the general expression for Tj given in § 3, just
below (3.17).

According to (5.2), the time-averaged thrust (actually drag in most cases) produced
by the LEV during each half-stroke is given by the final value of the function FT1 at
the half-period τ = π/k. However, since we are considering only the contribution of
the LEV up to the instant τm where |Γ1| reaches a maximum value, the time-averaged
thrust coefficient can be written as

CT1 '
2
τm

∫ τm

0
CT1 dτ =

2
τm

FT1(τ = τm), (5.8)
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FIGURE 8. (Colour online) Plot of kτm/π versus k for a pure pitching motion with a= 0
(a) and a = 0.5 (b), and increasing values of a0, from 10◦ (bottom curve) to 30◦ (top
curve) with increments of 4◦.

where it has been taken into account that CT1(t) coincides for the downstroke and the
upstroke, and that FT1(τ = 0) = 0 (it should be remembered that τ = 0 corresponds
to t= ti for each half-cycle). Thus, one has only to compute numerically the function
FT1 at τ = τm from (5.6),

FT1(τ = τm)'−2Gmθm

[
ζm + αm

(
1−

√
θm

2
+
θm

4

)]
, (5.9)

where the subscript m means at τ = τm. Figure 8 shows kτm/π, i.e. the fraction of
each half-stroke during which |Γ1| increases, as a function of k for a pure pitching
motion with several values of a0 and two pitching axis locations. It is observed that
kτm/π scales, approximately, as (a0k)1/4 for sufficiently large frequencies, with the
proportionality constant slightly increasing with a.

Figure 9 shows CT1 for a pure pitching motion as a function of the reduced
frequency k for different values of the pitching amplitude a0 and three values of
the pitching axis location a. For small k and a0, |CT1 | is negligible, as expected.
As commented on above, CT1 is usually negative, i.e. the LEV produces drag in
most cases within the present approximation. If this is the case, CT1 is found to be
roughly proportional to −a2

0k3 for sufficiently large k, with a proportionality constant
that depends on a. This constant is significantly larger for a = 0.5 than for a = 0
(compare panels (a) and (b) in figure 9). Thus, the LEV correction to the thrust is
more important when the pitching axis is downstream of the midchord point. For
a = −0.5, CT1 is positive and small for low a0 and k (see the inset in figure 9c),
being negative as in the other two cases for larger a0 and k (it should be noted that
the scale of CT1 in figure 9(c) is not logarithmic to allow for this change of sign).
For combined heaving and pitching motions that satisfy (4.36), it is found that CT1

behaves in a similar fashion to the pure pitching motion in relation to k and a0, with
a weaker dependence on h0 and φ.

6. Total time-averaged thrust and propulsion efficiency

From (3.14), the total time-averaged thrust coefficient is then

CT 'CTf +CT1, (6.1)
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FIGURE 9. (Colour online) Plot of CT1 versus k for a pure pitching motion for increasing
values of a0, from 10◦ (top curves) to 30◦ (bottom curves) with increments of 4◦, for a=0
(a), a= 0.5 (b) and a=−0.5 (c). (It should be remembered that the non-dimensional pivot
axis ranges from a=−1 at the leading edge to a= 1 at the trailing edge.)

where CTf ≡CTa +CTe is the sum of the time-averaged values of the non-dimensional
forms of Ta and Te given by (3.15)–(3.16) over a whole stroke of period 2π/k (the
subscript f is for ‘free’ of leading-edge, or any other point, vortex). The expression
for CTf as a function of k, h0, a0, a and φ can be found in Fernandez-Feria (2016,
2017), which modifies previous expressions by Garrick (1936).

Of particular interest in forward flight flapping aerodynamics is the time-average
propulsion efficiency, defined as

η=
CT

CP
, (6.2)

where CP is the time-averaged power coefficient, given by the lift force times heave
velocity plus the pitching moment times pitch angular velocity,

CP =−CLḣ−CMα̇. (6.3)

It must be noted that, although the LEV does not contribute to the averaged lift and
moment in the present approximation, i.e. CL1 =CM1 = 0, so that CL=CLf ≡CLa +CLe ,
with CLa and CLe the non-dimensional forms of La and Le given in (3.5)–(3.6), and
similarly for the moment with Ma and Me given by (3.19)–(3.20), the LEV does
contribute to the averaged input power coefficient because it comes from the time
averaging of the products in (6.3). By writing

CPf ≡−CLf ḣ−CMf α̇, (6.4)
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FIGURE 10. (Colour online) Plot of CP1 versus k for a pure pitching motion for increasing
values of a0, from 10◦ (top curves) to 30◦ (bottom curves) with increments of 4◦, for a=0
(a) and a=−0.5 (b).

averaged over the whole period 2π/k, and

CP1 ≡−CL1 ḣ−CM1 α̇ '−
2
τm

∫ τm

0
(CL1 ḣ+CM1 α̇) dτ , (6.5)

(6.3) can be written as

CP 'CPf +CP1 . (6.6)

Closed expressions for CPf in terms of k, h0, a0, a and φ were originally derived
by Theodorsen (1935) and Garrick (1936) and can be found in many references. To
obtain CP1 , one has to use the expressions (5.1) and (5.3) for CL1 and CM1 in (6.5).
Alternatively, by integrating by parts, it can be written in terms of FL1 and FM1 as

CP1 '
2
τm

[∫ τm

0
(FL1 ḧ+ FM1 α̈) dτ − (FL1 ḣ+ FM1 α̇)τ=τm

]
. (6.7)

Figure 10 shows CP1 for a pitching motion versus the reduced frequency k
for different values of the pitching amplitude a0 and two values of the pitching
axis location a. For large k, |CP1 | is approximately proportional to a4

0k3, with the
proportionality constant increasing with a. As in the case of CT1 (figure 9), the effect
of the LEV is larger for a pivot location downstream of the midchord point (a> 0),
especially as a0 and k increase.

7. Comparison with experimental results
Here, we first compare the above theoretical results with the recent experimental

data for a pitching foil reported by Mackowski & Williamson (2017). These authors
measured CT and η directly for different pivot point locations and several values of
the reduced frequency at a Reynolds number of 17 000. To account for the viscous
effects, especially relevant at low frequencies, we add a quasisteady thrust coefficient
CT0 < 0 (actually a drag coefficient), which was experimentally computed by these
authors by averaging the airfoil static drag over the pitch angles encountered during a
cycle of oscillation. By adding this CT0 to CT , the results of the potential theory based
on the vortical impulse agree quite well with experimental data for sufficiently small
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FIGURE 11. Quasisteady drag CT0 versus a measured by Mackowski & Williamson (2017)
for an NACA 0012 foil at Re= 17 000 for a0 = 8◦. It should be remembered that −1 6
a 6 1 for a pivot location inside the foil.
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FIGURE 12. (Colour online) Comparison of the experimental data of Mackowski &
Williamson (2017) for CT (a) and η (b) versus a for k = 2 and a0 = 8◦ (dots, from
figures 6 and 7 of Mackowski and Williamson) with the present results (dashed and dotted
lines), with the results without the LEV effect (continuous lines) and with Garrick’s (1936)
results (dashed lines). The different theoretical results are presented in two ways, adding
the experimental value of CT0(a) given in figure 11 to CT , and without adding it.

amplitude of the oscillations (Fernandez-Feria 2017). This CT0 depends, for a pitching
foil, on the maximum pitch angle a0 and the pivot location a. Figure 11 shows the
measured values for a0 = 8◦ as a function of a.

Figure 12 compares the experimental results for the thrust coefficient and propulsive
efficiency obtained by Mackowski & Williamson (2017) for k = 2, a0 = 8◦ and
different values of the pivot location a with the present results for CT and η. Also
included are the results obtained without considering the LEV effect, i.e. CTf and
ηf ≡CTf /CPf , as well as Garrick’s (1936) results for CT and η. The theoretical results
are presented in two ways: with the addition of the quasisteady constant drag CT0(a),
as given in figure 11, to correct CT , and also without adding the experimentally based
CT0(a). The main feature arising from this figure is that the LEV effect is relevant,
within the present approximation, when a > 0: the LEV corrections to CT and η

are negligible when the pivot location is ahead of the midchord point (a< 0), while
they are increasingly important as the pivot point approaches the trailing edge or is
located further downstream. The differences between Garrick’s classical results and
the present ones based on the vortical impulse theory are also more pronounced in
these cases with a> 0. The correction provided by this theory, already discussed in
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FIGURE 13. (Colour online) Comparison of the theoretical results with the experimental
data of Anderson et al. (1998) for CT versus the Strouhal number based on the total
excursion of the trailing edge, StTE, for a combined plunging and pitching motion of an
NACA 0012 airfoil with a = −1/3 in two cases: h0 = 1.5, αmax = 21◦, φ = 75◦ (case 1
from figure 1 of Anderson et al.) (a) and h0 = 1.5, α0 = 15◦, φ = 75◦ (from figure 9a of
Anderson et al.) (b). The theoretical results are presented adding a constant quasisteady
drag CT0 to CT , given in the legend (estimated from Mackowski & Williamson (2017) for
a similar amplitude), and also without adding it.

Fernandez-Feria (2016), is here increased when the LEV effect is taken into account,
so that the agreement of the present propulsive efficiency with the experimental data
is overall better for all pivot locations.

Figure 13 compares the theoretical results with the experimental data for CT
obtained by Anderson et al. (1998) for a combined pitching and plunging motion
in two of the optimal cases where experiment provides very high efficiency for an
NACA 0012 airfoil pivoting at one-third-chord point. These two cases, both with
φ = 75◦, are among the few of those reported by Anderson et al. (1998) that satisfy
the condition (4.36). It is observed that the agreement with the experimental data
improves when the present LEV effect is taken into account, almost independently of
whether we add, or not, a constant quasisteady drag CT0 , which has to be estimated
from experimental data.

8. Conclusion
We have developed general expressions for the contribution of travelling point

vortices to the lift, thrust, moment and propulsion efficiency of a two-dimensional
pitching and heaving airfoil from a vortical impulse formulation within the linear
potential theory. Although these general formulae need additional information about
the temporal evolution of the vortices, both circulation and trajectory, they provide
useful qualitative information about their effect on the airfoil unsteady aerodynamics.

Starting from these general formulae, we have derived closed-form expressions for
the LEV contribution to the unsteady forces and moment on the airfoil. To that end,
we have used several simplifying assumptions for the development and shedding of
the LEV. We have considered only one point vortex during each half-stroke, an LEV
that is released from the sharp leading edge where one can apply the unsteady Kutta
condition that regularizes the bound vortex-sheet strength at the leading edge, and
used the Brown–Michael equation for the developing LEV, which ensures momentum
conservation. With these assumptions, the symmetry of the problem shows that the
LEV does not contribute to the time-averaged lift and moment, but only to the time-
averaged thrust and the propulsion efficiency, which are in general lowered in relation
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to the case without LEV. Further, by considering the effect of the developing LEV just
up to its shedding point, when its circulation reaches an extremum value according to
the Brown–Michael model, we are able to obtain quite simple relations for the LEV
effect on the thrust force and propulsion efficiency, which constitutes a lowest-order
correction to the analytical results from the linear potential theory. The resulting thrust
coefficient and propulsion efficiency corrected by the LEV agree reasonably well with
recent experimental results for a foil pitching at different pivot locations when the
pitching amplitude is small enough for the linear theory to be valid.

As a general trend, it is found that the LEV lowest-order corrections to the thrust
force and propulsion efficiency are more significant when the pitching axis location
is behind the midchord point (a > 0), the more so the larger the pitching amplitude
and the reduced frequency are. These are, in fact, the conditions where the classical
Garrick expressions for the thrust and efficiency are in greater disagreement with
experimental results for a pure pitching motion. In addition, no LEV corrections are
found within the present linear approximation for a pure heaving motion (a0 = 0), or,
more generally, when h0/(1+ a)a0 is larger than a quantity that depends on k and φ.

The present contribution of the effect of the LEV on the unsteady aerodynamics of
a two-dimensional airfoil is limited to thin rigid airfoils with small-to-medium angles
of attack. It may complement the large amount of information already existing in the
literature about the LEV effect on the unsteady aerodynamics of flapping wings in a
great variety of kinematics and flow conditions. We provide closed-form corrections
to the very useful and long-time used analytical expressions from the linear potential
theory. Better approximations can be obtained from more complete models for the
development and shedding of the LEV, but at the cost of more parameters to be
adjusted experimentally and probably not in a closed simple form.
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Appendix A. A note on the Kutta condition at the trailing edge and the general
validity of (2.26)–(2.27)

In § 2.2, we applied the Kutta condition at the trailing edge separately to each
component of $s defined in (2.13), satisfying the integral equations (2.17)–(2.19).
However, in fact, it has to be applied just once to the whole vorticity distribution on
the foil, which has to be regular at x= 1. In doing this, the following relation results
for the circulations Γ0, Γ1e and Γ1j of the components of $s, which are arbitrary
‘constants’ from the integral equations (2.17)–(2.19):

Γ0(t)+ Γ1e(t)+
N∑

j=1

Γ1j(t)=−2−
∫ 1

−1

√
1+ ξ
1− ξ

v0(ξ , t) dξ

+

∫
∞

1

(√
ξ + 1
ξ − 1

− 1

)
$e(ξ , t) dξ +

N∑
j=1

Γj(t)Cj(t), (A 1)

where the Cj(t) are given by (2.25) in terms of Γj(t) and [xj(t), zj(t)]. On substituting
into (2.13), one obtains the same vorticity distribution (2.27), but without identifying
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Γ0(t) with the first term on the right-hand side of (A 1), Γ1e with the second term,
and so on. Moreover, on substituting into Kelvin’s theorem (2.15), one obtains∫

∞

1

√
ξ + 1
ξ − 1

$e(ξ , t) dξ = 2−
∫ 1

−1

√
1+ ξ
1− ξ

v0(ξ , t) dξ −
N∑

j=1

Γj(t)[1+Cj(t)], (A 2)

which, again, is the same as (2.26) if the first term on the right-hand side is called
−Γ0(t). Therefore, since the force and moment on the foil depend only on the
vorticity distributions $s(x, t) and $e(x, t), the same expressions are obtained if we
apply the Kutta condition at the trailing edge to the whole vorticity distribution $s,
or independently to each of its components in which we have separated $s, which
is a consequence of the linearity of the problem.

The purely formal advantage of denoting the first term on the right-hand side of
(A 1) as Γ0(t), i.e. of using (2.24), is that Γ0(t) corresponds to the quasisteady bound
circulation around the foil in the absence of unsteady trailing wake and point vortices,
as cleverly shown by von Kármán & Sears (1938). Thus, it is also useful to denote
the second term on the right-hand side of (A 1) as Γ1e and the N terms associated with
Γj on the right-hand side of (A 1) as Γ1j, as done in (2.21) and (2.25) respectively.

Appendix B. Some integrals involving $s

To compute (2.8), (2.9) and (2.12), one needs several moments of $s (i.e. of $0,
$1j and $1e),

−

∫ 1

−1
x$0(x, t) dx=π(ḣ+ aα̇ −Uα)=

1
2
(πα̇ − Γ0), (B 1)

−

∫ 1

−1
x2$0(x, t) dx=

Γ0

2
−

π

4
α̇ =π

[
Uα − ḣ−

(
a−

1
4

)
α̇

]
, (B 2)

−

∫ 1

−1
x$1j(x, t) dx=Dj(t)Γj(t), Dj ≡

1
π
−

∫ 1

−1

√
1− ξ 2

ξ − xj

(ξ − xj)2 + z2
j

dξ, (B 3a,b)

−

∫ 1

−1
x2$1j(x, t) dx=

[
Cj(t)

2
+ Ej(t)

]
Γj(t), Ej ≡

1
π
−

∫ 1

−1
ξ
√

1− ξ 2
ξ − xj

(ξ − xj)2 + z2
j

dξ,

(B 4a,b)

−

∫ 1

−1
x$1e(x, t) dx=

∫
∞

1
(
√
ξ 2 − 1− ξ)$e(ξ , t) dξ, (B 5)

−

∫ 1

−1
x2$1e(x, t) dx=

∫
∞

1

(
1
2

√
ξ + 1
ξ − 1

+ ξ
√
ξ 2 − 1− ξ 2

)
$e(ξ , t) dξ . (B 6)

Appendix C. The terms h(τ ), α(τ), z10(τ ) and G(τ ) for τ � 1

For τ � 1, one may write

h' hi0 + hi1τ + hi2τ
2, α ' αi0 + αi1τ + αi2τ

2, (C 1a,b)
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with hi0 and αi0 the values of h and α at t= ti respectively and

hi1 + (1+ a)αi1 = 0 (C 2)

to satisfy (4.9) at τ = 0. From (4.11), one obtains, after some algebra,

hi0 =
±h0[h0 + (1+ a)a0 cos φ]

[h2
0 + (1+ a)2a2

0 + 2h0a0(1+ a) cos φ]1/2
, (C 3)

hi1 =
±kh0(1+ a)a0 sin φ

[h2
0 + (1+ a)2a2

0 + 2h0a0(1+ a) cos φ]1/2
, h12 =−

k2

2
hi0, (C 4a,b)

αi0 =
±a0[h0 cos φ + (1+ a)a0]

[h2
0 + (1+ a)2a2

0 + 2h0a0(1+ a) cos φ]1/2
, αi1 =−

hi1

1+ a
, αi2 =−

k2

2
αi0,

(C 5a−c)

where the upper sign is for the downstroke and the lower sign for the upstroke. On
the other hand,

z10 ' hi0 + (1+ a)αi0 + [hi2 + (1+ a)αi2]τ
2
≡ z100 + z102τ

2 (C 6)

and

G ' Gi0 + Gi1τ , (C 7)

with

Gi0 = 2π
[
αi0 − hi1 −

(
a− 1

2

)
αi1
]

F(k)−παi1, (C 8)

Gi1 = 2π
[
αi1 − hi2 −

(
a− 1

2

)
αi2
]

F(k)− 2παi2. (C 9)
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