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1. Introduction
In 1840 C. L. Lehmus sent the following problem to Charles Sturm: 'If

two angle bisectors of a triangle have equal length, is the triangle necessarily
isosceles?' The answer is 'yes', and indeed we have the reverse-
comparison theorem: Of two unequal angles, the larger has the shorter
bisector (see [1, 2]).

Sturm passed the problem on to other mathematicians, in particular to
the great Swiss geometer Jakob Steiner, who provided a proof. In this paper
we give several proofs and discuss the old query: 'Is there a direct proof?'
before suggesting that this is no longer the right question to ask.

We go on to discuss all cases when an angle bisector (internal or
external) of some angle is equal to one of another.

2. The schizoid scissors - an indirect proof
A

c

B

FIGURE 1: The Schizoid Scissors

The following proof is simplified from one in Coxeter and Greitzer's
Geometry revisited [1]. We find our vivid title helps us to recall both the
construction and the proof.
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Suppose that one of the bisected angles A and B of triangle ABC, say the
one above, 2a at A, is strictly larger than the one below, 2/3 at B, as in
Figure l. Then we can cut off a proper part of size /3 from the angle bisector
AA' towards the side AC. This yields the shaded 'scissors' of the figure,
whose cutting edges are the equal angle bisectors. Then the blades above
and below, namely the triangles AA'X and BB'X share an angle y at X and
have another angle /3 at A or B and so are similar. We easily reach two
opposite conclusions!

On the one hand, the blade above is clearly smaller that the one below
since AX is opposite the smaller angle 2/3 and BX opposite the larger one
a + /3 in the triangle ABX that they span. (Note that this proves
AA' < BB' < BY giving the reverse-comparison theorem.)

On the other hand. the blade above is larger than the one below because
AA' > BB', the former being a complete bisector and the latter only a proper
part of one. (Note that this is the first time we have used the hypothesis that
the bisectors are equal.)

This contradiction shows the bisected angles cannot be different, and so
proves the theorem. However, this synthetic proof is blatantly indirect.
Before discussing the directness question, we give a simple algebraic proof.

3. An algebraic proof
Let the lengths of the three bisectors be Ya, Yb, Ye' Then it is not too hard

to see that

and from this some tedious algebra tells us that

(a + deb + d(Y~ - Y~)= c(b - a)(a + b + c){(a + b + c)(c2 + ab) + 2abc}.
In this the factor

(a + b + c)(c2 + ab) + 2abc

cannot vanish, proving the theorem. Also if b > a, then Ya > Yb, proving
the Comparison Theorem.

Coxeter and Greitzer mention the algebraic proof and say that 'Several
allegedly direct proofs have been proposed, but each of them is really an
indirect proof in disguise.' It is clear from these words that they regard this
algebraic proof as indirect. We now restrict ourselves to the question of
whether there can be a direct proof. First we show that:

4. There cannot be a direct proof ...
We define a process called extraversion ('turning inside out') of a

triangle. Extraversion is a smooth process that transforms a triangle into its
mirror image as in Figure 2, in which we have taken the edge AB which
joins the two bisected angles (the joining edge) as base.

https://doi.org/10.1017/S0025557200001236 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200001236


THE STEINER-LEHMUS ANGLE-BISECTOR THEOREM 195

We start by moving A and B towards each other as hinted at by the bold
arrows, then they pass through each other and continue until they form the
reflected triangle. The numbers a and b smoothly vary but return to their
initial positive values since they never pass through O. However, c
decreases uniformly, passing through zero and fmishing at -c. In a similar
way we can find what happens to the angles. When c passes through 0 so
does C, and ends at -C, while A and B become their supplements.

C C

B

FIGURE 2: Extraverting the joining edge

Summary: c-extraversion replaces:
a, b, c by a, b, -c and A, B, C by z - A, .7l - B, -C

c c

through to

A B B A

FIGURE 3: Snapshot as B passes through A so C passes through 0

Figure 3 is a snapshot of what happens as c passes from being small and
positive to being small and negative. The internal bisectors at the ends A
and B of the joining edge pass smoothly to external bisectors, while the
bisector at C stays internal.

The direct proofs of various theorems about angle bisectors extravert to
corresponding proofs of similar theorems in which some internal bisectors
have been swapped with external ones. For instance, the proof that three
internal bisectors meet (at an incentre) becomes a proof that one internal and
two external bisectors meet (at an excentre). However we shall see later that
no proof of the Steiner-Lehmus theorem can survive all such extraversions'.
Under b-extraversion, our formula for Ia - It, becomes the following:

(a + d(c - b)2(X~ - y~) = -c(a + b)(a - b + c){(a - b + c)(c2 - 00) - 2abc}

where Xa is the length of the external bisector segment for the angle at A.
However, this does not prove that a + b = 0; now the sign of b has

• J.H.C. confesses to having made stronger assertions that now seem unjustified.
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changed we can have:

(a - b + c) (c2
- ab) - 2abc = O.

c

FIGURE 4: The inequilateral triangle

Indeed, the slanting external bisectors of the triangle in Figure 4 with sides

1, 1 and -2 cos 28 are -2 cos 28 times as long as the vertical one. So if 8 is
sin 38

th I' f . . 38 2 28 0 I' -1 Vf7 - Ie acute ang e satis ying sin + cos =, name y sm 4

= 51.332°, it has three bisectors (one internal and two external) of equal
length, and so if Steiner-Lehmus survived extraversion, it would be
equilateral. However, clearly it isn't - we call it the inequilateral triangle (it
has angles of 77.336 ... , 77.336 ... and 25.328 ... degrees).

5. ... or can there?
However, some proofs that don't survive extraversion have been

considered direct. We have already remarked for instance that the algebraic
proof might be considered direct. Here we consider some other plausibly
direct proofs.

The schizoid scissors proof shows that both
above < below and above> below,

where above and below are any two corresponding edges of the scissor
blades. Everybody will agree that use of this blatant contradiction makes
the proof indirect.

But it is surely a positive statement that for any two lengths above and
below we have either

above .;;;below or above ;;;,below.
Now if in the scissors proof we replace '<' and '>' by'';;;' and ';)' and make
a similar replacement of 'proper part' by 'part or whole', this modifies the
proof to show that both

above .;;;below and above ;) below,
which is no longer a contradiction, but a seemingly direct proof that

above = below.
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6. The direct proof that was there all along
C

F

FIGURE 5: Hesse's construction

Just pOSSibly F. G. Hesse was one of the mathematicians that Sturm
wrote to in 1840. In any case he produced the following proof by 1842. It
uses the now generally forgotten fact (criterion OSS in the Appendix) that
two triangles are congruent if they agree at two pairs of corresponding sides
and a pair of corresponding non-included but obtuse angles.

In Figure 5 we picture Hesse's construction using some multiply-ruled
lines. Letting AD and BE be the (I-ruled) equal angle bisectors in triangle
ABC, Hesse constructs a 3, 2 and l-ruled triangle ADF congruent to the
similarly ruled triangle EBA with B and F on opposite sides of AD. The
proof will show that the 3 and 2-ruled quadrilateral ABDF is a
parallelogram.

We let 0 be the intersection of the two bisectors. Then the angle 0 at 0
of the triangle OAB is the supplement of a + {3. Now, because 2a + 2{3is
less than 2 right angles, a + {3is less than 1 right angle and so 0 is obtuse.
Since it is the external angle of both the triangles OAE and OBD we have:

o = a + 8 = {3 + {jJ.
The forgotten fact now shows that ABDF is a parallelogram, since its (0-

ruled!) diagonal BF divides it into two 3,2, a-ruled triangles that share this
diagonal, and have two equal sides AB and DF and the obtuse angle 0 at
corresponding vertices A and D.

Now by Hesse's construction AE equals AF which equals BD from the
parallelogram so the triangles ABE and BAD are congruent, showing that
2a = 2{3,and so ABC is isosceles.

We find it surprising that in Coxeter's long life (9 February, 1907 -
31 March, 2003) he does not seem to have commented on this proof, which
in our opinion is the most 'direct' one.
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7. External SoL theorems?
In the usual discussions of the Steiner-Lehmus theorem it is often

supposed tacitly that angle bisectors are internal. If they are both external,
there are three possible cases (MAX, MID, MIN), distinguished by whether
C is the maximal, middle, or minimal one of the three angles (or
equivalently whether c is the maximal, middle, or minimal one of the three
edges), illustrated in Figure 6. (The switch between these cases is when C
equals A or B because then the external B or A bisector is parallel to the
opposite side.)

Case MAX: Theorem
true by scissor proof

A

c

B

Case MID: Theorem
false

Case MIN: Theorem true;
needs new proof

FIGURE 6: The three cases

7.1 Case MAX: The backward external SoL theorem
In this case, the two given bisector segments point backward (from the

joining edge AB into the half-plane containing C). The theorem and scissors
proof remain valid, provided that all inequalities are reversed. We suppose
a > /3 as in Figure 7, so that we can choose X between A' and C to make
the angle A'AX equal /3. Then for the two similar triangles AXA' and BXB',
we reach two opposite conclusions (as in the internal case, but now with
reversed inequalities).

A'

B

A

FIGURE 7: Case MAX:Backward Bisectors

In the triangle AXB, AX is opposite the larger angle st - 2/3 while BX is
opposite the smaller one jf - a - /3 so AXA' is bigger. On the other hand,
AA' = BY < BB' so BXB' is bigger. The comparison theorem in this case
is that the larger exterior angle has the longer bisector.
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7.2 Case MID: The non-theorem
When C is between the two other angles, one external bisector is

forward and the other backward. In this case, the theorem fails, a famous
counterexample having been found by Oene Bottema.

C

A WA B

12

(a) Bottema's integral
triangle

(b) The extra integral
triangle

(c) The 30-30-120
Triangle with four
equal bisectors

FIGURE 8: Integral triangles

There is in fact just a I-parameter family of counter-examples
'Bottema's variable triangles'. The equation that governs these is

(a + b - c}{c2 + 00) - 2abc = 0,

in which the left-hand side is found by c-extraverting the displayed formula
from Section 3. In trigonometric form this becomes

sin i(A + B) cos!CA - B) = sin! (A + B) cos i(A - B)

or equivalently

sin2(A ~ B) = cos2(A: B)[4 sin2(A : B) - IJ.
The last form shows that for each value of C (or equivalently A + B), there
is a unique value of IA - Bi (or equivalently the pair {A, BJ). This means
that if 4 sin? (! (A + B») ;;, I, that is C E;; 60°, there is a unique triangle for
which the theorem fails. (Really this triangle is only unique up to
interchange of A and B, but we shall abuse the word 'unique' in this sense
whenever convenient.)

One obvious solution to the first trigonometric form of the equation has
i(A + B) = 180° and i(A - B) = 90°, yielding A = 132°, B = 12° and
C = 36°. This is Bottema's triangle, or more specifically Bottema's
integral triangle, because its angles are integral in degrees. In it, the
external bisectors at A and B have the same length as the joining edge, as is
evident from the indicated isosceles triangles in Figure 8(a).
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C = 180

AGURE 9: The triangle of triangles

7.3 The triangle of triangles
In our 'triangle of triangles', Figure 9, each point corresponds to a triple

of numbers A, Band C that add to 180, and so to a shape of triangle. In the
figure, A is constant on downward sloping lines, B on upward sloping ones,
and C on horizontals. Isosceles triangles lie along the medians.

The approximately circular arc in the lower part of the figure contains
Bottema's variable triangles and the lowest marked points on it are
Bottema's integral triangle (and its A-B reflection). Above the Bottema
curve the comparison theorem is direct (the larger bisector bisects the larger
angle). Below it the comparison theorem is reversing (as in the internal
case).

By a- and b-extraverting the equation of the Bottema curve we obtain
the equations

(a - b + c)(c2 - ab) - 2abc = 0 and (a - b - C)(c2 - 00) + 2abc = 0,
for the two other curves of the figure, corresponding to triangles for which
an internal bisector of either A or B is equal to an external bisector of the
other.

Working upwards on either of these extraverted curves, we find that
after narrowly missing the Bottema integral triangle it crosses the Bottema
curve at a marked point corresponding to a triangle for which the external
bisector at one of A and B is equal to both bisectors at the other. (The
squares of the sides of such a triangle are proportional to 1, a5 and a, where
a = Hv'5 - 1).)
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It then passes through a marked point corresponding to another triangle
with integral angles, the 'extra integral triangle'. This is analogous to
Bottema's, with bisected angles of 24° and 84°. Again the equal bisectors
have the same length as the joining edge, see Figure 8(b).

The next marked point (on a median) is our inequilateral triangle, with
three equal bisectors, and the last one (on both extraverted curves and the
vertical median) corresponds to the 30, 30, 120 triangle, which has four
equal bisectors (Figure 8(c».

7.4 Case MIN: Theforward external S-L theorem

~
C B A' X

X

FIGURE 10: The MIN case diagram changes as X passes infinity

In this case, the usual scissor diagram takes two forms according to
where the point X lies on the line Be. In the upper part of Figure 10 (where
X is to the right of B) the proof for the internal case continues to work
without changing a word. In particular the comparison theorem is reversing.

However, in the bottom part, X has 'passed infinity' to reappear at the
left of e. Now the scissor proof argument fails because it gives AA' > BB'
and BY > BB' which do not contradict the equality AA' = BY.

The boundary between the two cases is given by 2C = IA - Bi, the
dashed line in the triangle of triangles. The scissor proof works only below
this line, however the theorem continues to hold on and above this dashed
line by the folIowing continuity argument.

The triangle of triangles is divided into six triangular parts by its
medians; inside anyone of these the bisector lengths change continuously.
So unless a path between two points in the same part crosses the Bottema
curve, the triangles they represent must have the same comparison status
(reversed or not). Since the Bottema curve lies entirely in the MID parts,
this implies the comparison status is reversing everywhere in the MIN parts
and direct in the MAX parts.

y
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8. Conclusion
Our friend Richard Parker says that a significant mathematical assertion

can be regarded as a definition of the one word you do not know in terms of
the ones you do. Parker's principle suggests that when a proof of the
Steiner-Lehmus theorem is described as direct, this merely tells us how the
author is using the term 'direct'. More than 170 years of discussion has
taught us only that there is no agreed meaning to this term. The directness
question is therefore outmoded and we should ask instead whether and
where proofs involve inequalities as the extraversion argument suggests they
will.

Hesse's proof does so (0 is obtuse), as does the algebraic proof (a, b, c
are positive), the scissors proofs (blatantly); so too do all proofs in Sherri
Gardner's recent collection [3].

Our first proof makes no attempt to be direct: we call it the strictly-
schizoid proof and, whether direct or not, the second proof certainly remains
schizoid, so we call it the still-schizoid proof Since it seems that every
proof must involve inequalities, we are inclined to disquote George Orwell:

all proofs are inequal, but some are more inequal than others.

Appendix: Some forgotten facts
Students are warned not to be ASSes by using the ASS condition in

which the angle is not included between the two sides, since this can fail as
in the first part of Figure 11, which shows that there two such triangles can
be different. The forgotten fact used by Hesse is that a deduction is still
pOSSible when the given angle is obtuse (the ass criterion).
ASS does not surnce: OSS does:
Given angle PQR, side PQ and radius q Given obtuse angle PQR, side PQ and radius q
U4 RW

eQR R'~R

SSRdoes:
Given right angle PQR, side PQ and radius q
R, K yield congruent triangles

eR' Q R

ASLdoes:
Given angle PQR, side PQ and larger radius q > r
R works, R' fails

P

~
R'~R

AGURE 11: When do two sides and a non-included angle imply congruence?

The SSR case of two sides and a non-included right angle is still taught,
so we call it the 'claSSRoom' criterion. It is interesting that this criterion
with a right angle does not specialize either the acute ASS case (being valid)
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or the obtuse OSS one (since it permits two triangles, but these are
congruent).

Figure I I finishes with a short and simple condition that covers all valid
cases' of ASS (two sides and a non-included angle), see also [4]. This is the
ASL criterion, standing for 'Angle, Side, Longer (or equal) side', meaning
that the given angle is opposite the longer of the two sides. Here 'longer' is
to be interpreted so as to include equality. Our name for this is the
'ULTRASLIcK' criterion, in which the middle-sized 'I' hints at the
inclusive interpretation of 'longer' .

To include SAS along with these, we should use the ABLE condition -
that (the given) Angle Belongs to a Longest Edge (of the two given ones) -
note the inclusive sense. This covers absolutely all cases in which one is
ABLE to deduce congruence from two sides and an angle!
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• Like the referee we hope that ASS can be brought back from 'the outer darkness
with weeping and gnashing of teeth' to which it is usually relegated.
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