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Turbulence measurements for a zero pressure gradient boundary layer over a two-
dimensional roughness are presented and compared to previous results for a smooth
wall and a three-dimensional roughness (Volino, Schultz & Flack, J. Fluid Mech.,
vol. 592, 2007, p. 263). The present experiments were made on transverse square bars
in the fully rough flow regime. The turbulence structure was documented through the
fluctuating velocity components, two-point correlations of the fluctuating velocity and
swirl strength and linear stochastic estimation conditioned on the swirl and Reynolds
shear stress. The two-dimensional bars lead to significant changes in the turbulence in

the outer flow. Reynolds stresses, particularly v′2
+

and −u′v′+, increase, although the
mean flow is not as significantly affected. Large-scale turbulent motions originating at
the wall lead to increased spatial scales in the outer flow. The dominant feature of the
outer flow, however, remains hairpin vortex packets which have similar inclination
angles for all wall conditions. The differences between boundary layers over two-
dimensional and three-dimensional roughness are attributable to the scales of the
motion induced by each type of roughness. This study has shown three-dimensional
roughness produces turbulence scales of the order of the roughness height k while
the motions generated by two-dimensional roughness may be much larger due to
the width of the roughness elements. It is also noted that there are fundamental
differences in the response of internal and external flows to strong wall perturbations,
with internal flows being less sensitive to roughness effects.

1. Introduction
The importance of surface roughness is well known for wall-bounded flows. The

fluid must move around and over the roughness elements, so the near-wall flow
structure is clearly altered. Roughness typically increases drag in turbulent boundary
layers due to pressure forces on the roughness elements. The near-wall streaks
documented by Kline et al. (1967) in smooth-wall boundary layers typically have
a spacing of about 100 wall units, and are undoubtedly disrupted by roughness
elements of this size or larger. While the flow structure near the roughness elements
must be affected, Jiménez (2004) notes that as long as the roughness height k is
not too large relative to the boundary layer thickness δ most of the evidence in
the literature shows outer layer similarity between rough and smooth wall boundary
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layers. Roughness will alter the wall shear and the growth of the boundary layer, but
when the outer flow is normalized using the friction velocity uτ and δ similarity is
observed. This similarity was said to hold as long as k/δ < 1/50. This is consistent with
Townsend’s (1976) Reynolds number similarity hypothesis. Schultz & Flack (2007)
critically tested this hypothesis for the conditions proposed by Townsend (k � δ and
high Reynolds numbers), experimentally studying the boundary layer over a sanded
surface. They considered cases ranging from the hydrodynamically smooth to the
fully rough regimes and found excellent agreement in the Reynolds stresses and
velocity triple products outside the near-wall region. Other studies since the Jiménez
(2004) review include Flack, Schultz & Shapiro (2005), Kunkel & Marusic (2006) and
Wu & Christensen (2007). All found outer layer similarity for boundary layers over
various rough surfaces. Large roughness elements have also been tested. Castro (2007)
conducted experiments with very large three-dimensional roughness (mesh, staggered
cubes, gravel chips) and found that mean flow similarity held for k/δ < 1/10. Flack,
Schultz & Connelly (2007) observed outer layer similarity in turbulence quantities.
They conducted experiments with three-dimensional mesh and sandpaper surfaces
with a large range of roughness heights. They observed that roughness effects were
confined to a roughness sublayer within 5k or 3ks of the surface, where ks is the
equivalent sandgrain height. No critical value of k/δ was observed for breakdown of
similarity. Effects of roughness were seen farther from the wall as 5k or 3ks became
a larger faction of δ.

Similarity in turbulence structure was reported by Volino, Schultz & Flack
(2007) who experimentally studied boundary layers over a smooth wall and a wall
covered with three-dimensional mesh. The turbulence structure was quantified through
turbulence spectra, the probability density function of the swirl strength, two-point
spatial correlations of turbulence quantities and swirl, structure angles and length
scales of correlations. The dominant structure in both the rough-wall and smooth-
wall outer layers was the vortex packet. Wu & Christensen (2007) reported similarity
in the outer layer turbulence structure for flows over smooth walls and walls with
replicated turbine blade roughness. The similarity observed in boundary layers has
also been found in channel flows. Flores & Jiménez (2006), for example, conducted
a direct numerical simulation (DNS) study of a symmetric channel flow with three-
dimensional disturbances on both bounding walls. The effect of the disturbances was
confined to a layer near the wall. The structure and dynamics of the turbulence in
the outer flow was virtually unchanged by the nature of the wall.

The studies noted above all considered three-dimensional k-type roughness. The
consensus of most studies is that outer layer similarity with smooth-wall boundary
layers holds for a large range of three-dimensional roughness types and sizes.
Two-dimensional k-type roughness may, however, cause different behaviour. Two-
dimensional transverse rods were studied by Krogstad & Antonia (1999). They
reported an increase in the Reynolds stresses in the outer layer in comparison to
smooth-wall results. The Reynolds stress profile shapes were significantly altered
over the two-dimensional rods. The streamwise rod spacing, p, in this case was
four times the rod diameter. Keirsbulck et al. (2002) reported results for boundary
layer experiments with two-dimensional transverse bars and p/k = 3.33. They found
reasonable similarity with smooth-wall flows for the Reynolds stresses in the outer
flow. Djenidi et al. (2008) conducted experiments with two-dimensional transverse
square bars and p/k ranging from 8 to 16. They noted differences in the turbulence
structure and larger Reynolds stresses in the outer layer than for smooth-wall cases.
Results varied with bar spacing, with the strongest effect at larger spacing. This
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variation may explain the lesser effect of roughness observed by Keirsbulck et al.
(2002), who used a smaller spacing. Lee & Sung (2007) conducted a DNS for
a turbulent boundary layer over a wall with two-dimensional disturbances. The
disturbances modelled two-dimensional transverse square bars with p/k = 8. Lee &
Sung (2007) reported an increase of all the Reynolds normal stresses and the Reynolds
shear stress across most of the boundary layer. Velocity triple products in the outer
layer, particularly the vertical transport of the Reynolds shear stress, were also affected
by the roughness.

In turbulent channel flows, two-dimensional roughness does not appear to produce
the differences observed in boundary layers. Krogstad et al. (2005) conducted
experiments and DNS for symmetric channel flow with two-dimensional k-type
transverse square bars and p/k =8 on both bounding walls. Differences from the
smooth-wall case were not observed in the outer flow. Effects on the Reynolds stresses
were confined to within 5k of the wall. Burattini et al. (2008) conducted experiments
and DNS for an asymmetric channel with two-dimensional transverse square bars on
only one wall. The bar spacing was p/k = 4. The turbulence structure was similar to
that on a smooth wall, with the exception of differences in the streamwise component
of the turbulence near the rough wall. Ikeda & Durbin (2007) conducted DNS and
RANS simulations for asymmetric channels with two-dimensional square transverse
bars spaced at p/k = 10. Their focus was mainly on the near-wall region, where they
observed significant differences in the near-wall structure between smooth and rough
cases. They noted differences between their results and the expected results for a
symmetric channel, which may help explain differences observed in other asymmetric
channel studies. They also noted the limitations of RANS calculations with rough-wall
flows.

The present study addresses two general questions raised by the above discussion.
First, do two-dimensional and three-dimensional roughness affect turbulent boundary
layers differently? The existing evidence suggests that the answer is yes, which
raises the questions of why and how they differ. Second, do the outer layers of
turbulent boundary layers and turbulent channel flows react differently in response to
surface roughness and why? These questions are addressed through documentation
of turbulence statistics, swirl and spatial correlations in turbulent boundary layers
over walls with two-dimensional and three-dimensional roughness.

2. Experiments and data processing
Experiments were conducted in the water tunnel described by Volino et al. (2007).

The test section was 2m long, 0.2 m wide and nominally 0.1 m tall. The lower wall
was a flat plate which served as the test wall. The upper wall was adjustable and set
for a zero streamwise pressure gradient with the free stream velocity set to 0.5 m s−1.
Although the boundary layer was as thick as 54 mm on the rough test wall, the
displacement of the upper wall required to maintain a zero pressure gradient (30 mm)
and the thin boundary layer on the smooth upper wall resulted in a free stream
between the upper and lower boundary layers that was at least 50 mm thick. The
acceleration parameter, defined as

K =
ν

U 2
e

dUe

dx
(2.1)

was less than 5 × 10−9. The upper wall and sidewalls provided optical access. The test
wall was an acrylic plate machined with two-dimensional transverse square bars, as
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Figure 1. Schematic illustration of two-dimensional bar roughness.

shown in figure 1. The bar height was k =1.7 mm. The bar spacing was p/k = 8. This
geometry is expected to behave as k-type roughness according to Perry, Schofield &
Joubert (1969) in which the downward shift in the log law, �U+, scales on the
roughness Reynolds number k+. The roughness geometry is identical to that used in
the DNS boundary layer study of Lee & Sung (2007) and the channel flow study of
Krogstad et al. (2005). The wall was painted black to facilitate optical measurements.
The boundary layer was tripped near the leading edge with a 0.8 mm diameter
wire, ensuring a turbulent boundary layer. Smooth and three-dimensional rough wall
comparison cases were documented in Volino et al. (2007). An acrylic test plate was
used for the smooth-wall case. A woven wire mesh was affixed to a similar plate
for the three-dimensional rough-wall case. The mesh spacing was t =1.69 mm, and
the mesh wire diameter was 0.26 mm, resulting in a peak to trough roughness height
of k = 0.52 mm. The height of the mesh roughness is considerably smaller than the
present bar height. Flack et al. (2007) studied the flow over sandgrain and mesh
roughness for a wide range of roughness sizes, and observed similarity with smooth-
wall results in all cases. Included were cases with the ratio of the roughness height
to boundary layer thickness smaller than the mesh of Volino et al. (2007) and cases
with this ratio larger than that of the bars in the present study. The difference in
roughness height between the mesh and the bars is not, therefore, expected to affect
the results. Mesh and sandgrain roughness produced similar results in Flack et al.
(2007), suggesting that the shape of the three-dimensional roughness elements also
does not play a significant role. To further investigate the role of roughness size and
shape, a comparison case is taken from Cheng & Castro (2002) with three-dimensional
cube roughness.

Flow was supplied to the test section from a 4000 L cylindrical tank. Water was
drawn from the tank to two variable speed pumps operating in parallel and then sent
to a flow conditioning section consisting of a diffuser containing perforated plates,
a honeycomb, three screens and a three-dimensional contraction. The test section
followed the contraction. The free stream turbulence level was less than 0.5 %. Water
exited the test section through a perforated plate emptying into the cylindrical tank.
The test fluid was filtered and deaerated water. A chiller was used to keep the water
temperature constant to within 1◦C during all tests.

Boundary layer velocity measurements were obtained with a TSI FSA3500 two-
component laser Doppler Velocimeter (LDV). The LDV consists of a four-beam fibre
optic probe that collects data in backscatter mode. A custom-designed beam displacer
was added to the probe to shift one of the four beams, resulting in three co-planar
beams that can be aligned parallel to the wall. Additionally, a 2.6:1 beam expander
was located at the exit of the probe to reduce the size of the measurement volume.
The resulting probe volume diameter (d) was 45 μm with a probe volume length (l)
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of 340 μm. The corresponding measurement volume diameter and length in viscous
length scales were d+ = 1.5 and l+ = 11.6.

Measurements were made 1.0 m downstream of the trip, where the turbulent
Reynolds number matched the value of the smooth-wall comparison case. For the
velocity profile, the LDV probe was traversed to approximately 40 locations within
the boundary layer with a Velmex three-axis traverse unit. The virtual origin for
the velocity profiles was 1.6 mm below the top of the bars. The traverse allowed the
position of the probe to be maintained to ±5 μm in all directions. A total of 50 000
random velocity samples were obtained at each location in the boundary layer. The
data were collected in coincidence mode. The flow was seeded with 3 μm diameter
alumina particles. The seed volume was controlled to achieve acceptable data rates
while maintaining a low burst density signal (Adrian 1983). Measurements were made
at three streamwise stations over one roughness bar spacing as shown in figure 1.
Station I was located at the centre of a roughness element, station II was located 3k

downstream of station I, and station III was located 5.75k downstream of station I.
These are the same locations used by Lee & Sung (2007).

Flowfield measurements were acquired using particle image velocimetry (PIV). A
streamwise-wall normal (xy) plane was acquired at the spanwise centreline of the
test section. Streamwise–spanwise (xz) planes were acquired at y/δ = 0.1 and 0.4.
The flow was seeded with 3 μm diameter alumina particles. The light source was a
Nd:YAG laser set for an 850 μs interval between pulses for each image pair. The
field of view in the xy-plane was 135 mm × 100 mm, extending from near the wall
into the free stream. In the xz -plane the field of view was 112 mm × 84 mm, centred
about the midspan of the test section. A CCD camera with a 1376 × 1024 pixel
array was used. Image processing was done with TSI Insight 3G software. Velocity
vectors were obtained using 16 pixel square windows with 50 % overlap. For each
measurement plane, 2000 image pairs were acquired for processing. For consistency in
comparison, the raw image pairs acquired by Volino et al. (2007), which had originally
been processed with TSI Insight 6.0 software, were reprocessed with the Insight 3G
software. Changes in the results due to the reprocessing were not significant.

The data processing techniques used to compute the mean velocity, turbulence
statistics and wall shear are described in detail in Schultz & Flack (2007). The
techniques used to compute spatial correlations and swirl strength are described in
Volino et al. (2007) and defined again below.

Two-point spatial correlations were done for each measurement plane. In the xy-
plane the correlation is defined at the wall normal position yref as

RAB(yref ) =
A(x, yref )B(x + �x, yref + �y)

σA(yref )σB(yref + �y)
, (2.2)

where A and B are the quantities of interest at two locations separated in the stream-
wise and wall normal directions by �x and �y, and σA and σB are the standard
deviations of A and B at yref and yref + �y, respectively. At every yref , the overbar
indicates the correlations were averaged among location pairs with the same �x and
�y, and then time averaged over the 2000 vector fields. Correlations of u, v, the swirl
strength and all cross-correlations were considered.

For the xz-planes, the correlation is defined as

RAB =
A(x, z)B(x + �x, z + �z)

σAσB

, (2.3)
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where A and B are the quantities of interest at two locations separated in the
streamwise and spanwise directions by �x and �z, and σA and σB are the standard
deviations of A and B based on data in the full plane for the 2000 vector fields.
The correlations were averaged among all locations with the same �x and �z, and
then time averaged. The same averaging techniques were used by Tomkins & Adrian
(2003) and Ganapathisubramani et al. (2005).

The swirl strength λ can be used to locate vortices. It is closely related to the
vorticity, but discriminates between vorticity due only to shear and vorticity resulting
from rotation. It is defined as the imaginary part of the complex eigenvalue of the
local velocity gradient tensor, and is defined as follows (Zhou et al. 1999):

[dij ] = [ vr vcr vci ]

⎡
⎣
λr

λcr λci

−λci λcr

⎤
⎦ [ vr vcr vci ]

−1, (2.4)

where [dij ] is the velocity gradient tensor. It is used in the present study in a two-
dimensional form as explained in several studies including Hutchins, Hambleton &
Marusic (2005). A more complete discussion is available in Chong, Perry & Cantwell
(1990). By definition, λ is always � 0, but a sign can be assigned based on the local
vorticity to show the direction of rotation. Swirl strength λ is assumed signed in the
present work. In the xy-plane, λ can be used to identify the heads of hairpin vortices,
and in the xz-plane λ can identify the legs of these vortices.

Linear stochastic estimation (LSE) was used to estimate the average velocity
field associated with specific conditioning events in the flow. The application of
the technique is similar to that used by Hambleton, Hutchins & Marusic (2006) and
Christensen & Adrian (2001). A complete derivation is available in Adrian & Moin
(1988). The LSE in the xy-plane was computed as

〈u′
j (x + �x, yref + �y) | B(x, yref )〉

=
〈B(x, yref )u

′
j (x + �x, yref + �y)〉

〈B(x, yref )B(x, yref )〉
B(x, yref ), (2.5)

where u′
j is the fluctuating velocity vector at the distances �x and �y from the

conditioning event B . At a given yref , averaging was done among location pairs with
the same �x and �y, and then over the 2000 vector fields. The result is the average
velocity vector field associated with the conditioning event. Several conditioning events
were considered, and results for two that were found most useful are presented below.
Prograde swirl (B = λp), as used by Hambleton et al. (2006) and Christensen & Adrian
(2001), was useful for identifying the velocity field associated with a hairpin vortex
head at the reference location. The term prograde, as used by Wu & Christensen
(2006), refers to vortices rotating in the direction exhibited by the hairpin heads, as
induced by the mean shear. Vortices rotating in the opposite direction are termed
retrograde. The other conditioning event for LSE was u′v′ < 0 (B = u′v′

n). This criteria
uses the combination of quadrants Q2 (ejections) and Q4 (sweeps) to determine the
average vector field associated with events contributing towards the mean Reynolds
shear stress.

3. Results
The boundary layer thickness, friction velocity and other quantities from the velocity

profile of the present case and the comparison cases are presented in table 1. The
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x U e δ uτ Reθ Reτ = δ+ k+
s

Wall (m) (m s−1) (mm) (m s−1) = Ueθ/ν = uτ δ/ν = ksuτ /ν k/δ

Smooth 1.50 1.255 35.2 0.0465 6069 1772
Three-dimensional 1.08 1.247 36.8 0.0603 7663 2438 112 0.014

rough (mesh)
Two-dimensional 1.00 0.50 54.6 0.0341 4260 1790 755 0.031

rough (bars)

Table 1. Boundary layer parameters.

results presented were taken at station II (figure 1). No significant variation was
observed in the results from the three stations except for a region within about 3k
of the wall. For the rough-wall cases, the skin friction coefficient was found to be
invariant with Reynolds number, indicating fully rough conditions. This is consistent
with the roughness Reynolds numbers based on the equivalent sand roughness
height, k+

s = ksuτ /ν, which are 112 (three-dimensional) and 755 (two-dimensional).
The roughness Reynolds number is given by the following (Schlichting 1979):

�U+ =
1

κ
ln k+

s − 3.5, (3.1)

where �U+ is the roughness function. The friction velocity uτ was determined using
the Clauser chart method with κ = 0.41 and B = 5.0. The uncertainty in uτ was ±3 %
and ±6 % for the smooth- and rough-wall cases, respectively. The total stress method
was also used to evaluate uτ , and the resulting values agreed with those from the
Clauser chart method to within 2 %. Details of both methods are given in Flack et al.
(2005). The uncertainties in the boundary layer thickness (based here on U/Ue = 0.99)
and momentum thickness were 7% and 4 %, respectively.

3.1. Mean velocity and turbulence profiles

Before acquisition of data at the condition shown in table 1, a velocity profile was
acquired with the facility set for a free stream velocity corresponding to Reτ = 520.
This allowed a comparison to the DNS of Lee & Sung (2007), who considered two-
dimensional bars of the same size and spacing at Reτ = 550. The mean velocity profile
in defect coordinates and the Reynolds stresses in inner scaling are shown in figure 2.

The mean velocity and u′2+
profiles of the experiment and DNS agree well at all

locations. Some differences are visible in v′2+
and −u′v′+ for y+ < 50, but agreement

in the outer layer is very good for these quantities as well. Lee & Sung (2007) noted
higher Reynolds stresses in the outer region than for a smooth wall boundary layer,
and the present results agree.

Mean velocity profiles for the cases in table 1 are shown in figure 3 in both inner
and defect coordinates. The inner normalized coordinates show a much larger shift for
the two-dimensional roughness. No clear differences are visible in defect coordinates.
Similarity in the mean profiles was also noted by Krogstad & Antonia (1999) for
two-dimensional and three-dimensional roughness. These results indicate that the
mean flow in the outer layer is fairly insensitive to surface conditions.

The Reynolds stresses for the two-dimensional and three-dimensional roughness
cases in outer coordinates are compared to the smooth-wall results in figures 4–6.
Also shown are the two-dimensional roughness results of Krogstad & Antonia
(1999), who used rods spaced at p/k =4, and the three-dimensional roughness
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Figure 2. Low Reynolds number (Reτ = 520) comparison of present experiments to DNS of
Lee & Sung (2007), (a) mean velocity, (b) streamwise Reynolds normal stress, (c) wall-normal
Reynolds stress and (d ) Reynolds shear stress.

results of Cheng & Castro (2002), who used staggered rows of cubes spaced at
p/k = 2 in both the streamwise and spanwise directions. The cubes resulted in
Reθ = 10 473, Reτ = 4670, k/δ =0.083 and ks/k = 1.90. For all the Reynolds stresses,
the smooth and three-dimensional mesh cases agree, as previously shown in Volino
et al. (2007). The results with the three-dimensional cubes also agree reasonably well.
Some differences are visible very near the wall, which is expected since different types
of roughness can affect the roughness sublayer differently. Differences near the edge
of the boundary layer may result from different free stream turbulence levels or the

higher Reynolds numbers in the case with cubes. The u′2+
normal stress is shown

in figure 4. The present two-dimensional roughness values in the outer layer are
somewhat higher than in the comparison cases, but the differences are not large. The

v′2+
normal stress is shown in figure 5. The two-dimensional roughness results of the

present study and Krogstad & Antonia (1999) agree, and are roughly 20 % higher
than those in the three-dimensional rough- and smooth-wall cases. The difference
extends well into the outer region to y/δ of about 0.7. Similar differences are present

in the Reynolds shear stress, shown in figure 6. Differences in v′2+
and −u′v′+ were

also noted in the outer layer by Lee & Sung (2007), however they also noted similar

increases in u′2+
. The differences which are present between the three-dimensional

cube and three-dimensional mesh cases are opposite in sign to the differences between
the three-dimensional mesh and two-dimensional bar cases. Since the two-dimensional
bar height is between the cube and mesh heights in terms of k/δ, and the cubes have
the same square-edged shape as the bars, the differences between the two-dimensional
and three-dimensional cases are not due to the size or square-edged nature of the
roughness. The differences must be due to the change from two to three-dimensional
elements.
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Figure 3. Mean velocity profiles in (a) inner variables and (b) velocity defect form.

The present results along with the body of literature show that two-dimensional
roughness affects the boundary layer differently than three-dimensional roughness.
As noted above, Flack et al. (2007) found that for three-dimensional roughness, the
roughness sublayer was confined to within about 5k or 3ks of the wall. For the
three-dimensional cases noted above, 5k and 3ks are within a factor of 2 of each
other, and similarity with the smooth wall case is observed in the outer layer. For the
two-dimensional case, however, 3ks is 8 times larger than 5k. If the roughness sublayer
is taken as 5k, outer layer similarity with the smooth-wall case is disrupted. If 3ks is
used as the criteria, then the two-dimensional bars cause the roughness sublayer to
extend to the edge of the boundary layer, thereby eliminating the outer layer. This
is considered further in § 4. Whether by changing the outer layer or extending the
roughness sublayer, the two-dimensional bars must affect the turbulence structure far
from the wall. The structure is considered next.

3.2. Velocity fields: xy-plane

Typical instantaneous velocity vector fields in the streamwise-wall normal plane are
shown in figure 7 for the two-dimensional and three-dimensional rough-wall cases. A
Galilean decomposition has been applied, with the uniform convection velocity 0.7Ue

subtracted from each field. The hairpin vortices in a packet become visible if their
common convection velocity is subtracted from the instantaneous field. Hairpin heads
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Figure 4. Streamwise Reynolds normal stress profiles.
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Figure 5. Wall-normal Reynolds normal stress profiles.

exhibit prograde rotation, which is clockwise in figure 7. Superimposed on the vectors
in figure 7 are contours of signed swirl strength. Hairpin packets typically appear
as a line of vortices, inclined at about 10◦–15◦ to the wall. In the three-dimensional
rough-wall case (figure 7a) a field has been chosen which shows the end of a mature
hairpin packet on the left (x/δ < 0.6) with another hairpin packet extending nearly
the entire width of the image (0 < x/δ < 1.9). Such packets did not appear in every
instantaneous field, but they were very common for both the three-dimensional rough-
and smooth-wall cases, as shown in Volino et al. (2007). Similar packets were also
observed in the two-dimensional rough-wall case, but they were also accompanied by
larger scale events, as shown in figure 7(b). Figure 7(b) shows large-scale eruptions of
fluid extending to the edge of the boundary layer. Events extending this far into the
outer part of the boundary layer were very rare in the smooth- and three-dimensional
rough-wall cases, but they were fairly common in the two-dimensional rough-wall
case, appearing in roughly 10 % of the instantaneous velocity fields.

The large-scale events are believed to originate on the wall at the bars. In the
various studies listed above with close-packed three-dimensional roughness, large
contiguous open spaces between the roughness elements were not present, so recovery
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Figure 6. Reynolds shear stress profiles.
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Figure 7. Typical instantaneous velocity field in xy-plane with prograde swirl (red shading)
and retrograde swirl (blue shading) superimposed, (a) three-dimensional rough wall and (b)
two-dimensional rough wall.
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of the instantaneous velocity profile in the valleys between roughness elements seems
unlikely. The flow would tend to move around and over the top of the three-
dimensional roughness elements, with low velocity or stagnant fluid near the base
of the elements. In cases with sparse three-dimensional roughness (e.g. the coarsest
sandgrain roughness cases of Flack et al. 2007), some separation would occur from
individual elements, but much of the flow could remain attached to the surface as
it moved around the sides of the elements. With the two-dimensional bars, flow
around the sides of the bars is impossible since they block the entire span. Also,
one might imagine that after the boundary layer is disrupted by a bar, it has a
chance to at least approach reattachment between bars. Such behaviour was shown
through flow visualization by Furuya, Miyata & Fujita (1976), who investigated the
flow around two-dimensional rods with various streamwise spacings. In instances
where the reattachment is somewhat complete, fluid with non-zero velocity could
impact the full face of the subsequent bar instead of just the top of the element.
The bar would then act as a trip and produce a larger disturbance than a field of
three-dimensional elements of the same height. This scenario is supported by the ratio
of ks/k, which is 3.3 for the three-dimensional mesh case, but much larger at 13.6 for
the two-dimensional bars. The large-scale events shown in figure 7(b) may explain
the differences in the Reynolds stress profiles observed in figures 4–6. Below, more
quantitative comparisons of the flow structure are presented.

The average extent and shape of the hairpin packets can be quantified through
two-point correlations of the fluctuating velocity. Figure 8(a–c) shows contours of the
two-point correlations of the streamwise fluctuating velocity Ruu with the correlation
centred at yref /δ =0.4. The three-dimensional rough- and smooth-wall results appear
similar. The correlation for the two-dimensional rough case has the same shape as in
the other cases, but has a noticeably larger extent in both the streamwise and wall
normal directions.

The angle of inclination of Ruu is related to the average inclination of the hairpin
packets. It was determined, as in Volino et al. (2007), using a least squares method
to fit a line through the points farthest from the self-correlation peak on each of the
five Ruu contour levels 0.5, 0.6, 0.7, 0.8 and 0.9 both upstream and downstream of
the self-correlation peak. For the present cases, the inclination angle remains nearly
constant for reference points between y/δ = 0.2 and 0.5. For y/δ < 0.2 the angle drops
somewhat as the contours begin to merge with the wall. For y/δ > 0.5 the angle
decreases towards zero, as these points tend to be above the hairpin packets which
produce the inclination. For 0.2 < y/δ < 0.5, the angles are 10.2◦ ± 2.7◦, 11.3◦ ± 2.2◦

and 10.6◦ ± 1.2◦ for the smooth, three-dimensional rough and two-dimensional rough
walls, respectively. The range in each case indicates the span about the average
observed between y/δ = 0.2 and 0.5. The difference between the cases is comparable
to the scatter in the data and the range reported in the literature for smooth-wall
boundary layers (e.g. Adrian, Meinhart & Tomkins 2000). Therefore the large-scale
events noted in figure 7 do not significantly affect the structure angle.

The streamwise and wall normal extent of Ruu are shown in figures 8(d ) and 8(e) as
a function of the reference point. The distance Lxuu is defined as in Christensen & Wu
(2005) as twice the distance from the self-correlation peak to the most downstream
location on the Ruu =0.5 contour. The three-dimensional rough- and smooth-wall
results agree very well, but the two-dimensional rough-wall value averages 42 %
larger. The wall normal extent of the Ruu correlation, Lyuu, is determined based on
the wall normal distance between the points closest and farthest from the wall on a
particular contour. Figure 8(e) shows Lyuu/δ as a function of y/δ using the Ruu = 0.5
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Figure 8. Contours of Ruu centred at y/δ = 0.4, outermost contour Ruu = 0.5, contour spacing
0.1, (a) smooth wall, (b) three-dimensional rough wall, (c) two-dimensional rough wall, (d )
streamwise extent of Ruu =0.5 contour as function of y/δ and (e) wall normal extent of
Ruu = 0.5 contour as function of y/δ.

contour. Due to the contours merging with the wall, Lyuu drops towards zero for
y/δ < 0.2. As with Lxuu, the three-dimensional rough- and smooth-wall results agree
well. The Lyuu value averages 39 % higher for the two-dimensional rough wall case.

Figure 9 shows Rvv contours centred at y/δ = 0.4 along with Lxvv and Lyvv as
functions of y/δ. The length Lxvv is determined based on the streamwise distance
between the most upstream and downstream points on the Rvv = 0.5 contour. The
length Lyvv is defined as above for the Ruu results. The streamwise extent of Rvv

is considerably less than that of Ruu, since Ruu is tied to the common convection
velocity of each hairpin packet. The ratio Lxvv/Lyvv is about 0.8 for all walls. Both
the streamwise and wall normal length scales are essentially equal for the smooth
and three-dimensional rough walls, and average 35 % and 40 % larger on the two-
dimensional rough wall for Lxvv and Lyvv , respectively. The outer layer similarity in
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Figure 9. Contours of Rvv centred at y/δ = 0.4, outermost contour Rvv = 0.5, contour spacing
0.1, (a) smooth wall, (b) three-dimensional rough wall, (c) two-dimensional rough wall, (d )
streamwise extent of Rvv = 0.5 contour as function of y/δ, (e) wall normal extent of Ruu = 0.5
contour as function of y/δ.

the spatial correlations of the streamwise velocity and wall-normal velocity were also
noted by Wu & Christensen (2007) for smooth and three-dimensional rough walls.

Contours of the cross-correlation Ruv centred at y/δ = 0.4 are shown in figure 10
along with Lxuv and Lyuv as functions of y/δ. The lengths are computed as for
Rvv , but are based on the −0.15 contour. As with Ruu and Rvv , the smooth- and
three-dimensional rough-wall results are essentially equal. For the two-dimensional
rough wall, Lxuv averages 36 % larger and Lyuv averages 45 % larger than that in the
comparison cases.

Contours of the auto-correlation of the signed swirl strength Rλλ at y/δ = 0.4 are
shown in figure 11 along with Lxλλ and Lyλλ, which are based on the Rλλ = 0.5
contour. The three-dimensional rough- and smooth-wall results are again in very
close agreement. As with the other correlations, the spatial extent is larger in the
two-dimensional rough-wall case, by an average of 55 % in Lxλλ and 64 % in Lyλλ.
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Figure 10. Contours of Ruv centred at y/δ = 0.4, outermost contour Ruv = − 0.15, contour
spacing −0.05, (a) smooth wall, (b) three-dimensional rough wall, (c) two-dimensional rough
wall, (d ) streamwise extent of Ruv = − 0.15 contour as function of y/δ and (e) wall normal
extent of Ruv = − 0.15 contour as function of y/δ.

Both Lxλλ and Lyλλ rise slightly with y/δ in the two-dimensional rough case, while
they decrease for the other two cases. The difference is lower for the higher valued
contours.

In summary, the shapes of the two-point correlations are similar for all three walls,
but the spatial extent of the correlations is about 40 % larger for the two-dimensional
rough-wall case. This is consistent with the presence of the large-scale motions noted
in figure 7(b) for the two-dimensional rough-wall case. The rise in the extent of the
swirl strength correlation towards the edge of the boundary layer in this case is also
consistent with the large-scale motion of fluid to the outer part of the boundary layer.

The LSE conditioned on prograde swirl events at y/δ =0.4 are shown in figure 12.
Each vector in the field is normalized for presentation by its own magnitude, so
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Figure 11. Contours of Rλλ centred at y/δ = 0.4, outermost contour Rλλ =0.5, contour spacing
0.1, (a) smooth wall, (b) three-dimensional rough wall, (c) two-dimensional rough wall, (d )
streamwise extent of Rλλ = 0.5 contour as function of y/δ and (e) wall normal extent of
Rλλ = 0.5 contour as function of y/δ.

the arrows are all the same length and indicate only the average flow direction.
This normalization prevents domination of the field by the vectors very close to
the reference point. Qualitatively, the vector fields for all three walls are alike. As
expected, the vectors show a prograde swirl at the reference location, as this was
the conditioning event. There is a ‘crease’ extending both upstream and downstream
of the reference point which is inclined at 13◦ ± 0.5◦ to the wall in all three cases.
Along the crease are other prograde rotations spaced roughly 0.5 to 1δ apart in the
streamwise direction, suggesting a hairpin packet. The 13◦ angle is in good agreement
with the hairpin packet angle of Adrian et al. (2000), the channel flow LSE results
of Christensen & Adrian (2001) and the boundary layer LSE results of Hambleton
et al. (2006). The angle is within 3◦ of the Ruu inclination angle presented in figure 9.
Surrounding the inclined crease is a region of organized motion. The vectors below
the crease are pointing generally upstream and towards the crease. Those above the
crease are pointing generally downstream towards the crease. Outside the organized
region, the vector orientations appear random. The shape of the organized region
is similar for all cases. The organized region in the three-dimensional rough- and
smooth-wall cases extends about 1.5δ upstream of the reference point and about
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Figure 12. LSE conditioned on prograde swirl events at y/δ = 0.4, (a) smooth wall,
(b) three-dimensional rough wall and (c) two-dimensional rough wall.

1.25δ downstream. In the vertical direction it extends from the wall to about 0.8δ

above the reference point. In the two-dimensional rough-wall case the extent of the
organized region is larger, extending from about −2.25δ to 1.75δ in the horizontal
direction and from the wall to about 1.1δ in the vertical direction. Matching the
correlation results presented in figures 8–11, the LSE results indicate that the extent
of the average hairpin packet is about 40 % larger in the two-dimensional rough case
than in the other two cases.

LSE results conditioned on u′v′ < 0 events at y/δ =0.4 are shown in figure 13. In
all three cases the vectors around the reference location point away from the wall and
upstream, indicating that ejections (Q2) dominate sweeps (Q4). The crease described
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Figure 13. LSE conditioned on u′v′ < 0 events at y/δ = 0.4, (a) smooth wall,
(b) three-dimensional rough wall and (c) two-dimensional rough wall.

in figure 12 does not cross through the reference location in figure 13, but is visible
to either side. Its inclination angle varies between 14◦ and 17◦, which is close to the
angle in figure 12. This is in agreement with Marusic & Heuer (2007) who found an
average angle of 14.4◦ based on correlations of the wall shear and the streamwise
velocity which spanned three decades in Reynolds number. Prograde vortices lie along
the crease, most clearly in the two-dimensional rough-wall case and least clearly in
the smooth-wall case. In the two-dimensional rough-wall case, a vortex along the
crease is visible as far as 1.5δ upstream of the reference location and within 0.25δ of
the wall. A prograde vortex appears 0.27δ downstream and 0.32δ above the reference
point in the three-dimensional rough-wall case, and a similar vortex appears 0.42δ

downstream and 0.46δ above the reference point in the two-dimensional rough-wall
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case. The distance from the reference point to this downstream vortex is about 45 %
larger in the two-dimensional rough-wall case, which is consistent with the larger
scales in the case noted above. The slope of a line between the reference location and
the downstream vortex is about 48◦ in both cases. These are hairpin vortex signatures
which Adrian et al. (2000) noted are inclined at about 45◦ on a smooth wall. Above
and below the crease in figure 13, the region of organized flow appears somewhat
larger than that in figure 12. The organized region extends farther upstream and
downstream, and farther from the wall, extending beyond 1δ above the reference
point in all cases.

The correlation of the vector field to a prograde swirl event in figure 12 is expected,
as hairpin packets are the dominant outer layer structure in turbulent boundary layers
and hairpin heads have prograde swirl. The large spatial extent of the correlation to
u′v′ in figure 13 is striking. It appears that vortex packets are very closely associated
with Reynolds shear in the boundary layer, in agreement with the findings of Guala,
Hommema & Adrian (2006) and Ganapathisubramani, Longmire & Marusic (2003).
This is illustrated again in figure 14, which shows the LSE conditioned on u′v′ < 0
with the reference location at y/δ = 0.7. Even this far from the wall, the extent of
the organized flow region is very large, extending past the edges of the field of view.
As in figure 13, the vectors point away from the wall and upstream at the reference
point indicating a dominance of ejections. The dominant feature in all three cases is
a prograde vortex located above and downstream of the reference location. In the
smooth-wall case it is located 0.2δ downstream and 0.25δ above the reference point.
In the three-dimensional rough-wall case it is 0.17δ downstream and 0.16δ above. In
the two-dimensional rough-wall case the vortex is 0.3δ downstream and 0.3δ above
the reference location. The slope of a line between the reference location and the
vortex in all three cases is again close to the expected 45◦ inclination angle for a
hairpin vortex. A feature nearer the wall can be seen in the fields in figure 14 as a
crease starting near the wall at �x/δ between 0 and 0.5 and extending upward and
downstream at about a 22◦ inclination. It is clearer in the rough-wall cases than in
the smooth-wall case. Although no complete vortices are visible along these creases,
the sense of rotation is retrograde. Similar features are visible (figure 13), starting near
the wall at �x/δ near 1. Possibly this near-wall crease indicates motion induced by the
packet on its underside. That an event at y/δ = 0.7 should be correlated to an event
very near the wall suggests the importance of the outer flow structure in determining
the boundary layer behaviour. It supports the findings of Wark, Naguib & Robinson
(1991), Tomkins & Adrian (2005) and Hutchins & Marusic (2007), who noted that
the influence of the outer layer structures extends all the way to the near-wall region.

3.3. Velocity fields: xz-plane

Instantaneous vector fields in the xz-plane were essentially the same as those shown
for the three-dimensional rough- and smooth-wall cases in Volino et al. (2007). The
fields included irregular streamwise stripes of high- and low-speed fluid with typical
lengths of the order of the measurement field or larger, and typical widths were about
0.4δ. Such stripes have been described by several researchers (e.g. Hutchins & Marusic
2007). The low-speed stripes were flanked by oppositely signed swirl on either side. As
described in Ganapathisubramani et al. (2003), Tomkins & Adrian (2003) and Volino
et al. (2007), the vortices associated with the swirl are presumed to be the legs of
hairpin or cane vortices, with the low-speed region caused by the hairpin packet above.
The relationship between the low-speed regions, the hairpin legs and the hairpin
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Figure 14. LSE conditioned on u′v′ < 0 events at y/δ = 0.7, (a) smooth wall,
(b) three-dimensional rough wall and (c) two-dimensional rough wall.

heads was clearly shown by Hambleton et al. (2006) who acquired simultaneous
measurements in streamwise-wall normal and streamwise–spanwise planes.

To quantify any differences between the smooth- and rough-wall cases, contours of
the two-point correlation, Ruu, are shown in figure 15 for the three cases at y/δ = 0.1
and 0.4. The streamwise extent of the high peak centred at the self-correlation point
is about the same at y/δ = 0.1 and 0.4. The streamwise extents agree with those
found in the xy-plane (figure 8) to within 15 %. The spanwise extent of the central
peak, Lzuu, is about 40 % larger at y/δ = 0.4 than at y/δ = 0.1. The negative peaks
to either side of the central peak show the correlation between adjacent high- and
low-speed regions. The negative peaks also have larger spacing farther from the wall.
Comparing the cases for the three different walls, Lzuu agrees very closely for the
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Figure 15. Contours of Ruu in xz-plane, contour magnitudes Ruu = 0.02, 0.06, 0.1, 0.3, 0.5,
0.7, 0.9, contour signs black: positive, grey: negative, (a) smooth wall y/δ = 0.1, (b) smooth
wall y/δ = 0.4, (c) three-dimensional rough wall y/δ =0.1, (d ) three-dimensional rough wall
y/δ = 0.4, (e) two-dimensional rough wall y/δ = 0.1 and (f ) two-dimensional rough wall
y/δ = 0.4.

three-dimensional rough- and smooth-wall cases. It is 10 %–15 % larger for the two-
dimensional rough-wall case. The larger extent for the two-dimensional rough-wall
case agrees with the results for the xy-plane presented above, but the difference in
the xz-plane is smaller. Correlations for the spanwise component of the velocity and
the swirl show similar differences. The Rλu correlation is shown as an example in
figure 16. The peaks to either side of the centre show the correlation of oppositely
signed swirl on each side of a high- or low-speed stripe. The peaks farther from the
centre show the swirl corresponding to the negative Ruu peaks in figure 15. As with
Ruu, the spanwise lengths, Lzλu, in figure 16 are equal for the three-dimensional rough-
and smooth-wall cases, and about 15 % larger for the two-dimensional rough-wall
case.
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Figure 16. Contours of Rλu in xz-plane, contour magnitudes Rλu = 0.001, 0.005, 0.01, 0.02,
0.05, 0.1, 0.2, contour signs black: positive, grey: negative, (a) smooth wall y/δ = 0.1, (b) smooth
wall y/δ = 0.4, (c) three-dimensional rough wall y/δ = 0.1, (d ) three-dimensional rough wall
y/δ = 0.4, (e) two-dimensional rough wall y/δ =0.1 and (f ) two-dimensional rough wall
y/δ = 0.4.

4. Discussion
Qualitatively, the correlation results indicate that although their average size may

vary, the same type of hairpin packet structure is present in the outer layer in all
cases. The LSE results show that shear stress in the outer layer structure correlates
well with outer layer vortices. This supports the idea that the wall sets the boundary
condition on which the outer flow scales, but the outer flow structure plays a large
role in determining the turbulence throughout the boundary layer as pointed out by
Hutchins & Marusic (2007).

The above results also show a clear difference between flows over three-dimensional
and two-dimensional roughness due to the large-scale ejections into the outer
boundary layer caused by two-dimensional roughness. This has been quantified
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Figure 17. Distance from wall to closest point on Ruu = 0.4 contour, Lymin,uu , as a function
of the reference point for the contour.

through the large ks/k ratio associated with the two-dimensional roughness. As
discussed above and shown through flow visualization by Furuya et al. (1976), the
flow between two-dimensional bars is able to recover and approach reattachment,
resulting in a large event when it impacts the next bar. Furuya et al. (1976) showed
that if the bars are close together, the recovery is less complete, and the disturbances
created are smaller. There is an optimal p/k for creating large disturbances as
frequently as possible, and as noted by Krogstad et al. (2005), it is near the p/k =8
used in the present study. Since the large structures in the two-dimensional case are
believed to originate at the bars, they indicate a direct connection of the outer flow
to the wall. They would be attached eddies in the terminology of Perry & Chong
(1982). In the smooth-wall and three-dimensional rough-wall cases, the outer part
of the boundary layer contains only detached eddies (Perry & Marusic 1995), which
have been separated from the wall. Hutchins et al. (2005) used a plot of Lymin,uu/δ

versus yref /δ, where Lymin,uu is the distance from the wall to the closest point on a
particular Ruu contour and yref is the reference point for the contour, to quantify the
distance that attached eddies extended into the boundary layer. For the Ruu = 0.4
contour used in figure 17, a change in the slope of Lymin,uu is clear at yref /δ = 0.11 for
the smooth- and three-dimensional rough-wall cases, and at yref /δ =0.17 for the two-
dimensional rough-wall case. The change in slope is an indicator of the demarcation
between attached and detached eddies. Its location depends on the choice of Ruu

contour. Following the example of Hutchins et al. (2005), the demarcation is shown
as a function of Ruu in figure 18. The smooth- and three-dimensional rough-wall
results agree with each other and the results of Hutchins et al. (2005). Attached
eddies extend roughly 40 % farther into the boundary layer for the two-dimensional
rough-wall case. If the detached eddies are similar in all turbulent boundary layers
while the attached eddies depend on the wall condition, the extent of the attached
eddies into the outer flow could explain the lack of similarity in the two-dimensional
rough-wall case. The large-scale eddies, shown in figure 7, lead to more mixing in the
outer flow and higher Reynolds stresses, as seen in figures 4–6.

The Reynolds-averaged boundary layer momentum equation

ρu
∂u

∂x
+ ρv

∂u

∂y
− ∂τ

∂y
+

dP

dx
= 0 (4.1)
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Figure 18. Location of slope change in Lymin,uu (as in figure 17) as a function of Ruu.

helps to explain the change in the Reynolds stresses. In a zero pressure gradient
boundary layer, dP/dx = 0 by definition. Near the wall, in the Couette flow region,
ρu∂u/∂x and ρv∂u/∂y are both small. The result is ∂τ/∂y = 0, where τ is the total
shear stress. Thus τ is constant in the Couette flow region. Outside the very near-wall
region, τ is essentially equal to the Reynolds shear stress. If large-scale events (attached
eddies) extend farther into the boundary layer, the region of ρu∂u/∂x = ρv∂u/∂y = 0
may extend farther as well, resulting in a longer constant stress region, as seen in
figure 6.

The lack of outer layer similarity in the two-dimensional rough-wall case may
simply be due to the large effective roughness height relative to the boundary layer
thickness. Flack et al. (2007) give 5k or 3ks as a rule of thumb for the roughness
sublayer thickness. For a wide range of three-dimensional roughness, k and ks are of
the same order of magnitude, so 5k and 3ks are nearly equivalent criteria. For the
present two-dimensional roughness, ks/k = 13.6. In terms of 5k, the present boundary
layer is more than thick enough to expect similarity with the smooth-wall case in the
outer layer. In terms of ks , however, the entire boundary layer is within the roughness
sublayer and there is no reason to expect similarity at any location. If the boundary
layer was allowed to grow until δ became sufficiently larger than ks , outer layer
similarity might be observed for the two-dimensional rough-wall case. An experiment
or calculation with very small two-dimensional bars, or an experiment with bars
of the present size in a very long test section could provide an interesting test of
this hypothesis. Another interesting test case would involve large three-dimensional
roughness that is comparable in size to δ. Castro (2007) has presented mean flow
results for three-dimensional rough-wall cases with very large k/δ. Roughness effects
in the outer layer were not very large, but as shown in figure 3(b), the mean flow
is not as strongly influenced by roughness as the Reynolds stresses (figures 4–6).
Documentation of the turbulence in such cases could be helpful.

The differences observed in boundary layers over two-dimensional roughness have
not been seen in channel flow. In a fully developed symmetric channel flow, the wall
condition sets the wall shear, and the shear stress must go to zero at the centreline
of the channel. In (4.1), the first two terms are zero when the flow is fully developed,
and since dP/dx is constant, one can show that outside the very near-wall region,
the u′v′ profile must be linear between the limits at the wall and the centreline. This
is true independent of the wall condition. Since the mean velocity profile depends on
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u′v′, the mean profile will also be independent of the wall condition when normalized
using uτ and the channel height. A boundary layer grows, so u′v′ is not constant at
a fixed distance from the wall and the u′v′ profile is not linear. Instead, there is a
constant stress region near the wall, which can be affected by the wall roughness, as
discussed above.

Discussions presented by Adrian (2007) and Krogstad et al. (2005) along with the
above observations are useful for considering the differences between boundary layer
and channel flows in terms of turbulence structure. At the edge of a boundary layer,
fluid is entrained, the boundary layer grows, and turbulent events that reach the outer
part of the boundary layer can change the mean flow and Reynolds stresses there.
In a channel, large-scale events generated by two-dimensional roughness may still
occur, but their effect will be limited by the boundary conditions. Since the mean
shear must be zero at the channel centreline, any large eddies near the centreline will
be limited in their ability to produce Reynolds stresses in the mean. Also, any fluid
ejected beyond the centreline of the channel will promote shear of opposite sign to
the local mean shear. The result will be a cancelling of the effect of the large eddies
originating on the far wall. Outer layer similarity will be maintained in spite of any
large-scale events generated by the two-dimensional roughness.

5. Conclusions
An experimental study has been carried out in a turbulent boundary layer over

two-dimensional roughness. Comparison with previous results indicates the present
roughness leads to significant changes in the turbulence in the outer flow. An increase

in the Reynolds stresses, particularly v′2+
and −u′v′+, was observed. The mean

flow was not as significantly affected. These results are consistent with the two-
dimensional roughness results of Krogstad & Antonia (1999). The difference in the
Reynolds stresses was due to large-scale turbulent motions emanating from the
wall. These motions are associated with attached eddies, as described by Perry &
Chong (1982). The large-scale attached eddies lead to an increasing spatial scale in
the outer flow. The turbulence structure, however, was qualitatively similar to that
observed over smooth and three-dimensional rough walls. The dominant feature of
the outer flow was hairpin vortex packets having similar inclination angles in all
cases. The differences observed between boundary layers over two-dimensional and
three-dimensional roughness are attributable to the scales of the motion induced in
each case. The largest scale motions generated by three-dimensional roughness are of
the order of the roughness height k while the motions generated by two-dimensional
roughness may be much larger than k due to the width of the roughness elements.
This difference is exemplified by the ratio of ks to k, where ks is a length scale which
indicates the effect of the roughness on the mean flow. For most three-dimensional
roughness, k and ks are of the same order, while for the present two-dimensional
roughness ks/k = 13.6. It would also appear that there are fundamental differences in
the response of internal and external flows to strong wall perturbations. Internal flows
are less sensitive to roughness effects due to their boundary conditions. The boundary
condition at the centreline of an internal flow fixes the shape of the turbulent shear
stress profile and through the shear stress fixes the shape of the mean velocity profile.
This occurs independently of the wall boundary condition. In an external flow, there
is no similar constraint on the outer boundary, so wall effects can have a larger
influence in the outer flow.
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