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ABSTRACT

The paper is concerned with multiple claim arrays. In recognition of the ex-
tensive use by practitioners of large correlation matrices for the estimation of
diversification benefits in capital modelling, we develop a methodology for the
construction of such correlation structures (to any dimension). Indeed, the lit-
erature does not document any methodology by which practitioners, who often
parameterise those correlations by means of informed guesswork, may do so in
a disciplined and parsimonious manner.

We construct a broad and flexible family of models, where dependency is in-
duced by common shock components. Models incorporate dependencies be-
tween observations both within arrays and between arrays. Arrays are of general
shape (possibly with holes), but include the usual cases of claim triangles and
trapezia that appear in the literature. General forms of dependency are consid-
ered with cell-, row-, column-, diagonal-wise, and other forms of dependency
as special cases. Substantial effort is applied to practical interpretation of such
matrices generated by the models constructed here.

Reasonably realistic examples are examined, in which an expression is ob-
tained for the general entry in the correlation matrix in terms of a limited set of
parameters, each of which has a straightforward intuitive meaning to the practi-
tioner. This will maximise chance of obtaining a reliable matrix. This construc-
tion is illustrated by a numerical example.
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1. INTRODUCTION

1.1. Background and motivation

Calculation of a capital margin for an insurance operation is usually based on
the statistical distributions of the operation’s total assets and liabilities at defined
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points of time. It is usual for the claim liabilities to be estimated business segment
by business segment, where the segments may be lines of business, or subsets of
these.

It is rare that all of the segments will be considered stochastically indepen-
dent, and so their aggregation within a distribution of total liabilities requires
some information on the dependencies between them. The segments may be
numerous; it would not be unusual for those recognised by a large insurer to
number 100 or so.

If each of these is represented by just a single claim triangle of even mod-
est 10 × 10 dimension (i.e., 55 observations), then one requires a dependency
structure that extends over thousands of observations. To the extent that one
might wish to represent dependencies by correlations (this is often the case; see,
for instance, IAA, 2009), the number of independent entries in the correlation
matrix would be of the order of 106 or more.

The selection of these individually is clearly impractical. Moreover, piece-
meal selection may not produce a positive definite matrix. It follows that one
must construct some underlying structure that will generate the required corre-
lation matrix, or other dependency representation, with a manageable number
of parameters.

1.2. Literature review

The literature considering dependencies between claim triangles is relatively re-
cent and small, but is developing rapidly.

The earliest papers considered cell-wise dependence, wherein dependency ex-
ists between the (i, j) cells of different triangles, i.e., between cells with identical
locations in different triangles, but not otherwise (Braun, 2004; Hess et al., 2006;
Taylor and McGuire, 2007). This structure was continued by a number of sub-
sequent authors (Zhang, 2010; Shi and Frees, 2011; Zhang and Dukic, 2013;
Avanzi et al., 2016b).

One might reasonably ask why dependency would exist between cell (i, j)
of triangle m and cell (i, j) of triangle n, but not between cell (i, j) of triangle
m and not say cell (i, j + 1) of triangle n. For this reason, other dependency
structures are examined in the literature.

Happ et al. (2014) introduced row-wise dependence (dependence between
row i of triangle m and row i of triangle n), and diagonal-wise dependence was
examined by De Jong (2012) and Abdallah et al. (2015).

Some authors (Merz et al., 2013; Shi, 2014; Wüthrich and Merz, 2015; Ab-
dallah et al., 2016) have considered more general structures, incorporating mul-
tiple dependencies, e.g., row, column and diagonal. Shi et al. (2012) introduced
time series dependency across diagonals.

All of the above references deal with the dependency across multiple trian-
gles, and some both within and across triangles. The literature contains a num-
ber of others concerned with only dependency within a single triangle.
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In some cases, dependency structures, such as correlation matrices or copu-
las, are introduced with many free parameters, but no indication of the means
of estimation. This does not invalidate the models, but leaves the user with a
substantial estimation problem. The issue of parameter reduction is sometimes
mentioned in the literature (e.g., Wüthrich and Merz, 2015, p. 38), but solutions
are rarely provided. This problem is explicitly considered and addressed in the
current paper.

It is worth noting that issues with excessive parameter numbers also oc-
cur in the area of financial portfolio construction (for instance, specification of
a variance-covariance matrix in a mean-variance portfolio optimisation prob-
lem). In the finance literature, broadly speaking, the covariance matrix is often
constructed via so called “factor models” (see, for example, Sharpe, 1963; Lu-
enberger, 2014). These are similar to the “common shock models” in this paper.
Naturally, the detailed dependence to be introduced via such constructions is
specific to the problem at hand, and the main considerations will differ signifi-
cantly between problems in asset returns modelling and claim loss triangles as
discussed in this paper.

Remark 1.1. In Avanzi et al. (2016b), we illustrated how careful modelling could
explain most of the dependencies appearing in claims triangles, thus, wiping off
most of the apparent correlations. This was also observed by others and with dif-
ferent data sets; see, e.g., Meyers (2016).

However, we also emphasized the fact that this did not relieve us of the need to
specify dependencies for future development of claims, which, due to the effect of
random processes (e.g., inflation), would still display some dependencies.

1.3. Paper aims and structure

The objective of the current paper is to produce a flexible family of models that:
— incorporate dependency both within and across triangles (actually, more

general arrays than triangles);
— include row, column and diagonal dependence, as well as more general

forms of dependency;
— include dependencies of the time series type, in which the strength of depen-

dency (e.g., diagonal) declines as the distance between diagonals increases;
— formulate these dependencies in such a manner as to restrict the number of

parameters involved, and therefore requiring estimation.
A generalisation of common shock models (e.g., Meyers, 2007; Wüthrich

and Merz, 2015; Avanzi et al., 2016a) is used to achieve these objectives. Our
paper generalises Wüthrich and Merz (2015, e.g., first equation on p. 210), who
use a Bayesian model with log normal likelihood, by being model-independent.
Specifically, we move away from the Bayesian and distributional framework
therein, and replace it with distribution-free common shocks. Emphasis is
placed on the algebraic formulation of the models. Although an objective is to
minimise the number of parameters, there is little emphasis on their statistical 
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estimation. However, we discuss how large correlation matrices can be otherwise
specified in a practical setting.

Section 2 establishes the mathematical framework. Section 3 defines the fam-
ily of models, and Section 4 discusses a number of matters relevant to them.
Section 5 comments briefly on parameter estimation, with special emphasis on
heuristic estimation, possibly guesswork, which is of especial interest to practi-
tioners, and a numerical example is provided in Section 5.3. Concluding com-
ments are found in Section 6.

2. FRAMEWORK AND NOTATION

The present paper will be concerned with insurance claim arrays, which are gen-
eralisations of claim triangles, the latter as in standard texts on loss reserving
(Taylor, 2000; Wüthrich and Merz, 2008). The generalisations can be found, for
example, in Kuang et al. (2008) (called “index sets” in their terminology) and
Taylor (2017).

A claim array A will be defined here as a 2-dimensional array of random
variables Xi j , indexed by integers i, j , with 1 ≤ i ≤ I, 1 ≤ j ≤ J for some fixed
integers I, J. For any given pair i, j , the random variable Xi j may or may not
be present.

The subscripts i, j typically index accident period (row) and development pe-
riod (column), respectively, and the Xi j represent observations on claims, com-
monly claim counts or amounts. In the special case I = J and A = {Xi j : 1 ≤
i ≤ I, 1 ≤ j ≤ I − i + 1}, the array reduces to the well-known claim triangle.

Define t = i + j − 1, so that t = 1, 2, . . . , I + J − 1. Observations with
common t lie on the tth diagonal of A.

Subsequent sections will often involve the simultaneous consideration of
multiple business segments with one array for each segment. A segment could
be a line of business.

It will be necessary in this case to consider a collection A = {A(n), n =
1, 2, . . . , N} of claim arrays, where A(n) denotes the array for segment n. It will
be assumed that all A(n) are congruent, i.e., are of the same dimensions I, J, and
that they have missing observations in the same i, j locations.

The i, j observation of A(n) will be denoted X(n)
i j ; the entire i th row of A(n)

denoted R(n)
i ; and the entire j th column C(n)

j .
It will also be useful to consider diagonals of A(n), where the tth diagonal

is defined as the subset {X(n)
i j ∈ A(n) : i + j − 1 = t}, and represents claim

observations from the tth calendar period, t = 1 denoting the calendar period
in which the first accident period falls. The entire tth diagonal of A(n) will be
denoted D(n)

t .
When only a single array A is under consideration, the suffix n will be omit-

ted, yielding the notation Ri , C j , Dt.
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An array, under this general definition, may refer to past or future obser-
vations. Specification of a correlation structure in relation to past observations
may be required for the modelling of them; a correlation structure in relation to
future observations may be required for the forecast of them.

It will be convenient to arrange the observations X(n)
i j as a vector X(n). For the

purpose of the following sections, it will be assumed that, for fixed n, the X(n)
i j are

arranged in dictionary order within X(n). However, the order is fundamentally
irrelevant, and the following sections may be easily adapted to any order of the
X(n)
i j within X(n).

Let I(N) denote the N × N identity matrix, and let I(•) denote the identity
matrix with dimension equal to the number of observations in each array A(n).

Henceforth, X(n)
p , with a single subscript, will be understood to denote the

pth component of the vector X(n). It is, of course, identical to X(n)
i j for some

particular i, j . The array A(n) will then be said to have been represented in array
vector notation.

The vectors X(n) may now be stacked into a vector X:

X =

⎡
⎢⎣
X(1)

...

X(N)

⎤
⎥⎦ .

Similarly, any other array B(n) = {Y(n)
i j } may be represented without com-

ment in following sections in array vector notation Y(n) = {Y(n)
p }, and the

Y(n) = {Y(n)
p } may be stacked into a vector Y without comment.

For a vectorY, D(Y(n)) will denote the diagonal matrix diag(Y(n)
1 ,Y(n)

2 , . . . ),
and D(Y) will denote the diagonal matrix constructed as diagonal block matrix
with blocks D(Y(n)).

Further, for a set of constants c(q), q = 1, . . . , Q, let D(c(•)) denote the ma-
trix diag(c(1), . . . c(Q)). The quantity Q will assume different meanings in dif-
ferent circumstances; for example, it might denote the number of observations
in an array, the number of rows in an array, etc., depending on context.

For the same vector Y, B(Y) will denote the block diagonal matrix as

B(Y) =

⎡
⎢⎢⎢⎢⎣
Y(1) · · · · · · · · ·

... Y(2) · · · ...

...
...

. . .
...

· · · · · · · · · Y(N)

⎤
⎥⎥⎥⎥⎦ .

Thus, three representations of the vector Y have been defined, namely Y it-
self, the diagonal matrix D(Y) and the block diagonal matrix B(Y).

For a set of matrices of constants M(n), n = 1, . . . , N, let B(M(•)) denote
the block diagonal matrix whose block (n, n) is matrix M(n).
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Define �Ri as the diagonal matrix whose (p, p) element is

(eRi )pp =
{

1 if Y(n)
p ∈ R(n)

i for some n;
0 otherwise ;

i.e., the components of the vector �Ri Y
(n) are Y(n)

p whenever Y(n)
p ∈ R(n)

i for
some n, and zero otherwise. Note that �Ri does not depend on n because of the
congruence of the A(n).

Similarly, �C j and �Dt denote matrices that select the j th column and the
tth diagonal, respectively, of the arrays A(n), n = 1, . . . , N.

3. COMMON SHOCK MODELS

3.1. Introduction

The common shock model was adapted to claim triangles in some papers such
as De Jong (2006, 2012) or Avanzi et al. (2016a). In its most basic form, the
model for two variates A, B, subject to common shock, is as follows:

A= αAW+ βAZA, (3.1)

B = αBW+ βBZB, (3.2)

where W is a non-degenerate random variable representing the common
shock, ZA, ZB are random variables contributing to A, B, respectively, and
αA, βA, αB, βB ≥ 0 are constants. The component random variables W, ZA, ZB
are mutually independent.

It is evident that the common shock structure induces positive dependency
between A and B. Indeed, it follows from (3.1) and (3.2) that

Cov[A, B] = αAαBσ
2
W ≥ 0, and hence (3.3)

Corr[A, B] =
[

1 + β2
A

α2
A

σ 2
A

σ 2
W

]− 1
2
[

1 + β2
B

α2
B

σ 2
B

σ 2
W

]− 1
2

≥ 0, (3.4)

where σ 2
W = Var[W], σ 2

A = Var[ZA], and where σ 2
B = Var[ZB].

Models (3.1) and (3.2) will be referred to as a linear common shock model;
strictly, bivariate linear common shock model, as there will be occasion to in-
troduce a more general multivariate version later.

There is an alternative form of common shock which will prove useful in
relation to claim arrays. This is the log-linear common shock model, defined as
follows:

A= exp(αAW+ βAZA), (3.5)

B = exp(αBW+ βBZB). (3.6)
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The expression of covariance of A and B in terms of the moments of W,
ZA, ZB requires that these variates be equipped with distributions. Assume for
the remainder of this subsection that all are normally distributed (such as in
Wüthrich and Merz, 2015, for instance):

W ∼ N(μW, σ 2
W), ZA ∼ N(μA, σ

2
A), ZB ∼ N(μB, σ

2
B).

By elementary calculations,

Var[I] = E
2[I]

{
exp(α2

Iσ
2
W + β2

Iσ
2
I ) − 1

}
for I = A, B, and (3.7)

Cov[A, B] = E[A]E[B]
{
exp(αAαBσ

2
W) − 1

}
, (3.8)

where

E[I] = exp
{
(αIμW + βIμI) + 1

2
(α2

Iσ
2
W + β2

Iσ
2
I )

}
. (3.9)

It then follows that

Corr[A, B] = exp[(αAσW)(αBσW)] − 1

[exp(αAσW)2 exp(βAσA)2 − 1]
1
2 [exp(αBσW)2 exp(βBσB)2 − 1]

1
2

.

(3.10)

3.2. A general model of dependency between corresponding array locations

The present section will be concerned with dependencies between observations
in different regions of a single array. At first, for completeness, a very general
dependency structure will be defined, but the focus will turn very quickly to
special cases of practical interest.

Let P (n) be a partition of A(n) ∈ A, i.e., P (n) = {P (n)
1 , . . . ,P (n)

P }, where the
P (n)
p are subsets of A(n) with P (n)

p ∩P (n)
q = ∅ for all p, q = 1, . . . , P, p �= q and⋃P

p=1 P (n)
p = A(n). Suppose that all partitions are the same in the sense that, for

each p, the (i, j) positions of the elements of A(n) included in P (n)
p are the same

for different n.
Now consider the following dependency structure on the elements X(n)

i j :

X(n)
i j = α

(n)
i j Wπ(i, j) + β

(n)
i j W

(n)
π(i, j) + φ

(n)
i j Z

(n)
i j , (3.11)

where π(i, j) = p such that X(n)
i, j ∈ P (n)

p , a unique mapping; Wπ(i, j),W
(n)
π(i, j), Z

(n)
i j

are independent stochastic variates, and α
(n)
i j , β

(n)
i j , φ

(n)
i j ≥ 0 are fixed and known

constants.
It is evident that Wp is a common shock across all n, but affecting only sub-

sets P (n)
p for fixed p; W(n)

p is similarly a common shock across P (n)
p , but now for

fixed n and p; and Z(n)
i j is an idiosyncratic component of X(n)

i j , specific to i, j .
The common shock W(n)

p creates dependency between observations within
the subset P (n)

p of array A(n). Since the partitions P (n) are the same across n, the
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common shock Wp creates dependency between observations in the subsets P (n)
p

of the same or different arrays.
Indeed, the results of Section 3.1 may be extended to the general case (3.11).

Let σ 2
Wp

= Var[Wp], σ 2
W(n)

p
= Var[W(n)

p ], σ 2
Z(n)
i j

= Var[Z(n)
i j ]. Then, for the linear

common shock model,

Cov
[
X(m)
i j , X(n)

kl

]
= δπ(i, j)π(k,l)α

(m)
i j α

(n)
kl σ 2

Wπ(i, j)

+ δmnδπ(i, j)π(k,l)β
(m)
i j β

(m)
kl σ 2

W(m)

π(i, j)
+ δikδ j lδmn

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

, (3.12)

where δ# is the Kronecker delta defined such that

δAB =
{

1 if A= B;
0 otherwise.

It will be assumed henceforth that σ 2
Wp

, σ 2
W(n)

p
, σ 2

Z(n)
i j

> 0. The case in which any

one of them is zero can be achieved by setting the relevant α, β or φ coefficient
to zero in (3.12). Under this assumption,

Corr
[
X(m)
i j , X(n)

kl

]

=
δπ(i, j)π(k,l) + δmnδπ(i, j)π(k,l)

(
β

(m)
i j

α
(m)
i j

)2 σ 2

W(m)
π(i, j)

σ 2
Wπ(i, j)

+ δikδ j lδmn

(
φ

(m)
i j

α
(m)
i j

)2 σ 2

Z(m)
i j

σ 2
Wπ(i, j)⎡

⎣1 +
(

β
(m)
i j

α
(m)
i j

)2 σ 2

W(m)
π(i, j)

σ 2
Wπ(i, j)

+
(

φ
(m)
i j

α
(m)
i j

)2 σ 2

Z(m)
i j

σ 2
Wπ(i, j)

⎤
⎦

1
2
⎡
⎣1 +

(
β

(n)
kl

α
(n)
kl

)2 σ 2

W(n)
π(k,l)

σ 2
Wπ(k,l)

+
(

φ
(n)
kl

α
(n)
kl

)2 σ 2

Z(n)
kl

σ 2
Wπ(k,l)

⎤
⎦

1
2

.

(3.13)

In the log-linear common shock model corresponding to (3.8),

Cov
[
X(m)
i j , X(n)

kl

]
= E

[
X(m)
i j

]
E
[
X(n)
kl

]

×
{

exp
[
δπ(i, j)π(k,l)α

(m)
i j α

(n)
kl σ 2

Wπ(i, j)
+ δmnδπ(i, j)π(k,l)

(
β

(m)
i j

)2
σ 2
W(m)

π(i, j)

+δikδ j lδmn

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

]
− 1

}
. (3.14)

Remark 3.1. It is evident from (3.11) and the independence of the random compo-
nents that if α(n)

i j = 0, for all i, j, n, the model reduces to within-array dependence.

In this case, Cov[X(m)
i j , X(n)

kl ] = 0 for m �= n.

https://doi.org/10.1017/asb.2018.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.18


COMMON SHOCK MODELS FOR CLAIM ARRAYS 1117

Remark 3.2. It is noteworthy that the parameter σ 2
Wπ(i, j)

in (3.12)may be absorbed

into the associated coefficient by the simple substitution α
(m)
i j ← α

(m)
i j σWπ(i, j) ,

σWπ(i, j) ← 1. The other σ terms in (3.12) may be treated similarly so that, without
loss of generality, (3.12) may be represented in the alternative form

Cov
[
X(m)
i j , X(n)

kl

]
= δπ(i, j)π(k,l)α

(m)
i j α

(n)
kl

+ δmnδπ(i, j),π(k,l)β
(m)
i j β

(m)
kl + δikδ j lδmn

(
φ

(m)
i j

)2
. (3.15)

The σ terms may be similarly eliminated from all covariances set out in the re-
mainder of this section.

3.3. Special cases of dependency between corresponding array locations

A number of special cases derive directly from (3.11). These are discussed in this
subsection.

3.3.1. Array-wide dependence. Define P (n) to be the minimal partition of A(n)

in which P = 1, P (n)
1 = A(n). Then, π(i, j) = 1 for all i, j in which case the

subscript π(i, j) may be omitted from (3.11) and (3.12). Moreover, δπ(i, j)π(k,l) =
1 , and the two relations in question reduce to the following:

X(n)
i j = α

(n)
i j W+ β

(n)
i j W

(n) + φ
(n)
i j Z

(n)
i j , (3.16)

and

Cov
[
X(m)
i j , X(n)

kl

]
= α

(m)
i j α

(n)
kl σ 2

W + δmn

[
β

(m)
i j β

(n)
kl σ 2

W(m) + δikδ j l

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

]
.

(3.17)
Let Var[X] denote the covariance matrix comprising the quantities on the

left side of (3.17), with observations X(n)
i j arranged as a vector X, as described

in Section 2.
In addition, let α, β and φ denote the vectors with entries α

(n)
i j , β

(n)
i j and φ

(n)
i j ,

respectively, arranged in the same order as the X(n)
i j within X. Now write X(m)

i j ,

X(n)
kl , α

(m)
i j , α

(n)
kl , β

(m)
i j , φ

(m)
i j as X(m)

p , X(n)
q , α(m)

p , α(n)
q , β(m)

p , φ(m)
p , respectively, using

the array vector notation established in Section 2.
Then, (3.17) becomes

Cov
[
X(m)
p , X(n)

q

] = α(m)
p α(n)

q σ 2
W+δmn

[
β(m)
p β(n)

q σ 2
W(m) + δpq

(
φ(m)
p

)2
σ 2
Z(m)
p

]
. (3.18)

The covariance matrix can then be expressed as

Var[X] = σ 2
W(ααT) + B

(
σW(.)β(.)

)
B
T (σW(.)β(.)

) + D
2(φ)D

(
σ 2
Z

)
. (3.19)
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1 1
2...

2 1
2...

3 1
2...

i j i =
1 2 3
j =

1 2 . . . 1 2 . . . 1 2 . . .

(a) (b)

FIGURE 1: Schematic covariance matrix for array-wide dependence (AY = i, DY = j ). (a) N = 1. (b) N = 2.

It is helpful to illustrate covariance (3.18) diagrammatically as in Figure 1.
The left half of the diagram illustrates the case N = 1, where the rows and
columns of the covariance matrix are indexed by accident year (AY) and devel-
opment year (DY). The half right of the diagram illustrates the case N = 2. For
fixed n, rows and columns appear in the same order as in the case N = 1 but, in
view of the small scale, have not been labelled. The figure is schematic only, in-
sensitive to small differences in covariances, but broadly heavier shading (darker
grey or black) indicates larger values, with white indicating zero covariance.

3.3.2. Cell-wise dependence. Define each of the P (n)
p to consist of a single ob-

servation, e.g., P (n)
1 = {X(n)

11 }, P (n)
2 = {X(n)

12 }, etc. Then, for given i, j , Wπ(i, j)

appears in (3.11) only for observations X(n)
i j , n = 1, . . . , N. Then, Wπ(i, j) may be

denoted Vi j , indicating the dependence on i, j but not n. Further, W(n)
π(i, j) relates

only to the single observation X(n)
i j , and so functions in the same manner as Z(n)

i j .
It may therefore be omitted, whereupon (3.11) and (3.12) become

X(n)
i j = α

(n)
i j Vi j + φ

(n)
i j Z

(n)
i j , (3.20)

and

Cov
[
X(m)
i j , X(n)

kl

]
= δikδ j l

[
α

(m)
i j α

(n)
i j σ 2

Vi j + δmn

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

]
, (3.21)

where σ 2
Vi j = Var[Vi j ], and it is recognised that δπ(i, j)π(k,l) = δikδ j l . The member

of (3.20) involving the α coefficient creates dependency between individual cells
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FIGURE 2: Schematic covariance matrix for cell-wise dependence.

in the same location of different arrays. This case can be found in Braun (2004)
and Avanzi et al. (2016a).

The matrix representation of (3.21) can be given by

Var[X] = C(α)D(σ 2
V)C(α)T + D

2(φ)D
(
σ 2
Z

)
, (3.22)

where

C(α) =

⎡
⎢⎣

D
(
α(1)

)
...

D
(
α(N)

)
⎤
⎥⎦ .

Figure 2 is the counterpart of the case N = 2 in Figure 1, but this time for
covariances in the presence of cell-wise dependence.

3.3.3. Row-wise dependence. Define each of the P (n)
p to consist of the obser-

vations of a single row of A(n), i.e., P (n)
p = R(n)

i , p = 1, . . . , I. Then, for a

given i , Wπ(i, j) appears in (3.11) for all observations X(n)
i j , n = 1, . . . , N. Then,

Wπ(i, j) may be denoted Ri , indicating the dependence on i , but not j, n. Simi-
larly, W(n)

π(i, j) may be denoted R(n)
i , and (3.11) and (3.12) become

X(n)
i j = α

(n)
i j Ri + β

(n)
i j R

(n)
i + φ

(n)
i j Z

(n)
i j (3.23)
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and

Cov
[
X(m)
i j , X(n)

kl

]
= δik

{
α

(m)
i j α

(n)
i l σ 2

Ri + δmn

[
β

(m)
i j β

(n)
i l σ 2

R(m)
i

+ δ j l

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

]}
,

(3.24)
where Ri is a stochastic variate, common to all arrays but specific to the i th row,
R(n)
i is a similar stochastic variate common to observations on the i th row but

specific to array A(n), σ 2
Ri = Var[Ri ] and σ 2

R(n)
i

= Var[R(n)
i ].

Consider the term δikα
(m)
i j α

(n)
i l for fixed i , i.e., α

(m)
i j α

(n)
kl whenever i = k. These,

and only these, quantities will appear in the matrix �Ri (α
(m)(α(n))T)�Ri , and so

the contribution of the first member of (3.24) to the (m, n) block of the matrix
Var[X] is σ 2

Ri�Ri (α
(m)(α(n))T)�Ri . Then, the contribution of this first member

to the entire matrix Var[X] (still for fixed i ) is σ 2
Ri (�Ri ⊗ I(N))(ααT)(�Ri ⊗ I(N)),

where

�Ri ⊗ I(N) =

⎡
⎢⎢⎢⎣

�Ri · · · · · · · · ·
... �Ri · · · ...
...

...
. . .

...

· · · · · · · · · �Ri

⎤
⎥⎥⎥⎦ . (3.25)

The second member of (3.24) (involving β’s) is similar except that it contributes
only diagonal blocks to Var[X], and the multipliers σ 2

R(m)
i

vary over those blocks.

It may be noted that B(σR(.)
i
β) is a block diagonal matrix whose block (n, n)

is σR(n)
i

β(n). Then, the contribution to Var[X] of the β member of (3.24) is

�RiB(σR(.)
i
β(.))BT(σR(.)

i
β(.))�Ri .

Collection of these contributions to Var[X], with allowance for variation of
i , converts (3.24) to the form

Var[X] =
I∑

i=1

(�Ri ⊗ I(N))
[
σ 2
Ri (ααT) + B

(
σR(.)

i
β(.)

)
B
T
(
σR(.)

i
β(.)

)]

×(�Ri ⊗ I(N)) + D
2(φ)D(σ 2

Z), (3.26)

where the final member is the same as in (3.22), and where �Ri ⊗ I(N) is defined
in (3.25).

Figure 3 is the counterpart of Figure 1, but this time for covariances in the
presence of row-wise dependence (in claim triangles). As in the earlier figure,
the left half of the diagram illustrates the case N = 1, with the same ordering of
rows and columns, and the right half illustrates the case N = 2.

3.3.4. Column-wise dependence. Column-wise dependence is constructed in a
manner similar to row-wise dependence. In this case P (n)

1 = {X(n)
11 , X(n)

21 , . . .},
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1 1
2...

2 1
2...

3 1
2...

i j i =
1 2 3
j =

1 2 . . . 1 2 . . . 1 2 . . .

(a) (b)

FIGURE 3: Schematic covariance matrix for row-wise dependence (AY = i, DY = j ). (a) N = 1. (b) N = 2.

P (n)
2 = {X(n)

12 , X(n)
22 , . . .} etc., and (3.11) and (3.12) become

X(n)
i j = α

(n)
i j Cj + β

(n)
i j C

(n)
j + φ

(n)
i j Z

(n)
i j , (3.27)

where Cj is a stochastic variate, common to all arrays but specific to the j th
column, C(n)

j is a similar stochastic variate, common to observations on the j th

column but specific to array A(n), σ 2
Cj

= Var[Cj ] and σ 2
C(n)
j

= Var[C(n)
j ].

The expression for the covariance Cov[X(m)
i j , X(n)

kl ] is similar to that of row-
wise dependence in (3.24), except that the indicator function is now used for
the selection of cells in a common column j = l, and common shocks Cj and
C(.)
j to column j replace common row shocks Ri and R(.)

i . Similarly, the co-
variance matrix is the same as (3.26) except that rows are replaced by columns.
Figure 3, with rows and columns interchanged, illustrates the covariance matrix
in this context.

3.3.5. Diagonal-wise dependence. Diagonal-wise dependence is constructed in
a manner similar to row-wise and column-wise. In this case, P (n)

1 = {X(n)
11 },

P (n)
2 = {X(n)

12 , X(n)
21 , . . .} etc., with P (n)

t consisting of the tth diagonal, and (3.11)
and (3.12) become

X(n)
i j = α

(n)
i j Dt + β

(n)
i j D

(n)
t + φ

(n)
i j Z

(n)
i j , (3.28)

where Dt is a stochastic variate, common to all arrays but specific to the tth
diagonal, D(n)

t is a similar stochastic variate, common to observations on the
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1 1
2 1

2
3 1

2
3

4 1
2
3
4

5 1
2
3
4
5

6 1
2
3
4
5
6

7 1....

t i t =
1 2 3 4 5 6 7 ..
i =

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 ..

(a) (b)

FIGURE 4: Schematic covariance matrix for diagonal-wise dependence (AY = i, CY = t). (a) N = 1. (b)
N = 2.

tth diagonal but specific to array A(n), all variates Dt and D(n)
t are independent

for all t and n, σ 2
Dt

= Var[Dt] and σ 2
D(n)
t

= Var[D(n)
t ].

The expression for the covariance Cov[X(m)
i j , X(n)

kl ] is similar to that of row-
wise dependence in (3.24), except that the indicator function is now used for
the selection of cells in a common diagonal t = i + j − 1 = k + l − 1, and
common shocks Dt and D(.)

t to diagonal t replace common row shocks Ri and
R(.)
i . Similarly, the covariance matrix is the same as (3.26) except that rows are

replaced by diagonals.
Figure 4 is the counterpart of Figure 1, but now for covariances in the pres-

ence of diagonal-wise dependence. As in the earlier figure, the left half of the
diagram illustrates the case N = 1, and the right half N = 2. Cells have been
ordered according to AY within calendar year (CY).

3.4. Adding structure with multiple shocks

3.4.1. Simultaneous array, cell, row, column and diagonal shock. It is evident
that array, cell, row, column and diagonal shocks can be all present simulta-
neously. One simply adds the cell, row, columns and diagonal effects in (3.16),
(3.20), (3.23), (3.27) and (3.28) into a single representation of X(n)

i j , thus,

X(n)
i j = α

(n)
(w)i jW+ β

(n)
(w)i jW

(n) + α
(n)
(v)i j Vi j + α

(n)
(r)i j Ri + β

(n)
(r)i j R

(n)
i + α

(n)
(c)i jCj

+ β
(n)
(c)i jC

(n)
j + α

(n)
(d)i j Dt + β

(n)
(d)i j D

(n)
t + φ

(n)
i j Z

(n)
i j , (3.29)
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where it is now assumed that all the W, W(n),Vi j , Ri , R
(n)
i ,Cj ,C

(n)
j , Dt, D

(n)
t ,

Z(n)
i j are stochastically independent, and the α and β coefficients are now specific

to array, cell, row, column and diagonal shocks.
Because of the independence of the variates appearing on the right side

of (3.29), the covariance structure follows easily from variance expressions of
array-wide, cell-, row-, column-, diagonal-wise dependence and the result is ob-
tained simply by addition of summands from these relations. Although obvious,
it is tedious to write out, and is not given here.

3.4.2. Shocks creating time series effects. One may require that the row, col-
umn or diagonal effects illustrated in Section 3.3 exhibit time series depen-
dency. For example, the diagonal effect might exhibit AR(1) dependency (see
also Wüthrich and Merz, 2015, p. 154). This could be achieved by defining Dt

and D(n)
t from (3.28) as follows:

Dt = θDt−1 + εt, E[εt] = 0, Var[εt] = σ 2
εt
, (3.30)

D(n)
t = θ(n)D(n)

t−1 + ε
(n)
t , E[ε(n)

t ] = 0, Var[ε(n)
t ] = σ 2

ε
(n)
t

, (3.31)

for t = −v, −v + 1, . . . , 0, 1, 2, . . . , where v is an arbitrary natural number,
0 < θ# < 1, σ 2

ε#
t

constant with t, all εt and ε
(n)
t stochastically independent, and

independent of all variates on the right side of (3.29).
For brevity henceforth, let D#

t denote either Dt or D(n)
t according to whether

# takes the value (n) or is absent. Introduce similar notation for other quantities
appearing in (3.30) and (3.31). In this case,

D#
t =

t∑
u=s+1

(θ#)t−uεu + (θ#)t−s D#
s , t > s, (3.32)

whence

Cov
[
D#
s , D#

t

] = (θ#)t−sVar[D#
s ] → (θ#)t−s

σ 2
ε#

1 − (θ#)2
, t > s, v → ∞. (3.33)

If (3.32) is substituted into (3.28), then the covariance is given by the following
approximation:

Cov
[
X(m)
i j , X(n)

kl

]
= α

(m)
i j α

(n)
kl θ |(i+ j)−(k+l)| σ 2

ε

1 − θ2

+ δmn

[
β

(m)
i j β

(n)
kl

(
θ(m)

)|(i+ j)−(k+l)| σ 2
ε(m)

1 − (θ(m))2
+ δikδ j l

(
φ

(m)
i j

)2
σ 2
Z(m)
i j

]
. (3.34)

https://doi.org/10.1017/asb.2018.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.18


1124 B. AVANZI, G. TAYLOR AND B. WONG
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5 1
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7 1....

t i t =
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i =

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 ..

(a) (b)

FIGURE 5: Schematic covariance matrix for diagonal-wise AR(1) dependence (AY = i, CY = t). (a) N = 1.
(b) N = 2.

Note that this result is not obtained by direct substitution for σ 2
Di+ j−1

in the co-
variance expression for diagonal-wise dependence, since Di+ j−1, Dk+l−1 are no
longer independent as in that case.

Figure 5 is the counterpart of Figure 4 but now for the AR(1) case of
diagonal-wise dependence. As in the earlier figure, the left half of the diagram
illustrates the case N = 1, and the right half N = 2. Cells have been ordered
according to AY within CY.

4. DISCUSSION

4.1. Positive definiteness

The covariance matrices associated with claim arrays are typically large. For an
isolated n×n triangle, the number of observations is n(n+1)/2, in which case the
number of independent entries in the covariance matrix is n(n+1)(n2+n+2)/8.
Even in the fairly basic case n = 10, this amounts to 1,540 independent entries.
It is evident that this count increases rapidly as additional triangles, with covari-
ances between them, are added. Indeed, the issue is even larger than this when
the claim arrays are modelled for the purpose of loss reserving. The number of
covariances per triangle is then n2, rather than n(n + 1)/2, with corresponding
increasing in dimension of the large covariance matrix.

If covariance matrices of this type are to be constructed for analysis of multi-
ple business segments, it is necessary to ensure that they are at least non-negative
definite, and, for all practical purposes, positive definite. Undisciplined, or piece-
meal, construction may not achieve this.
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It is useful, therefore, to note that the common shock models are assured
of producing positive definite covariance structures. This occurs simply be-
cause the models formulate all observations as functions of other latent random
variables, in which case any vector of observations must have a genuine (non-
negative definite) covariance structure. In the absence of zero-variance latent
variables, the covariance matrix of the vector of observations must be positive
definite.

4.2. Model coefficient

Now consider a simple model such as (3.16). No word has been said about the
nature of the coefficients α

(n)
i j , β

(n)
i j , φ

(n)
i j ≥ 0 other than to note that they are

fixed and known constants. Their purpose will be discussed further in the next
couple of sub-sections. The discussion will extrapolate readily to other models
in Section 3.

4.2.1. Compatibility of common shock and idiosyncratic components in linear
common shock models. One possible purpose of the coefficients is the adjust-
ment of members of (3.16) to produce a tractable distribution of X(n)

i j . An ex-
ample of this occurs in Avanzi et al. (2016a), in which the components of (3.20)
are Tweedie distributed. They define a special case of the model of cell-wise
dependence in (3.16) (see their equations (2.11) and (2.19)), in which β

(n)
i j = 0,

φ
(n)
i j = 1:

X(n)
i j = α

(n)
i j W+ Z(n)

i j . (4.1)

In that case, it was assumed that

W ∼ Tweediep(ξ, η), (4.2)

Z(n)
i j ∼ Tweediep

(
κ

(n)
i ν

(n)
j , φ(n)

)
, (4.3)

where Tweediep(μ, φ) denotes the member of the Tweedie family with mean μ

and variance φμp (Tweedie, 1984).
It is shown in Jørgensen (1997, ch. 3 and 4) that

α
(n)
i j W ∼ Tweediep

(
α

(n)
i j ξ,

[
α

(n)
i j

]2−p
η

)
.

It then follows also from Jørgensen (1997, ch. 3 and 4) that, for X(n)
i j defined by

(4.1) and (4.3),

X(n)
i j ∼ Tweediep

(
α

(n)
i j ξ + κ

(n)
i ν

(n)
j , φ∗

)
,

with φ∗ =
(
α

(n)
i j η/ξ 1−p

) (
α

(n)
i j ξ + κ

(n)
i ν

(n)
j

)1−p
,
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provided that α
(n)
i j η/ξ 1−p = φ(n)/

(
κ

(n)
i ν

(n)
j

)1−p
, i.e.,

α
(n)
i j =

(
ξ

κ
(n)
i ν

(n)
j

)1−p
φ(n)

η
. (4.4)

Even though other choices may be allowed for some special cases of the Tweedie
family, this choice of α

(n)
i j will always ensure that a neat Tweedie distribution is

obtained for X(n)
i j . Thus, the coefficients α

(n)
i j may be used to scale W relative to

Z(n)
i j in order to achieve this distributional result.

4.2.2. Variation of common shock magnitude over columns in linear common
shock models. In a typical array, the column factors ν

(n)
j peak at some low value

of j , and decline over higher values. These factors at high j may become small
relative to the peak value and other values at low j .

In this situation, it may be desirable for α
(n)
i j to vary over i, j in a manner

similar to κ
(n)
i ν

(n)
j . Consider the alternative, e.g., α

(n)
i j = 1 so that (4.1) yields

E
[
X(n)
i j

]
= E[W] + E[Z(n)

i j ] = E[W] + κ
(n)
i ν

(n)
j .

In case of an E[W] comparable with the larger values of κ
(n)
i ν

(n)
j , Wwill swamp

the cells with smaller values of κ
(n)
i ν

(n)
j . If this is corrected by setting E[W] com-

parable with the smaller values of κ
(n)
i ν

(n)
j , then Wwill contribute almost imma-

terially to the cells with larger values of κ
(n)
i ν

(n)
j , creating low dependency, and

the purpose of the common shock for generating dependency will be lost.
One possible course of action to rectify this situation is to form rough esti-

mates κ̃
(n)
i , ν̃

(n)
j of the κ

(n)
i , ν

(n)
j . A simple alternative would be to adopt those es-

timates κ̃
(n)
i , ν̃

(n)
j obtained in the case α

(n)
i j = 0. This is the case of no dependency,

and so the estimates are obtained by application of the chain ladder separately
to each claim array 1, . . . , N.

Once the κ̃
(n)
i , ν̃

(n)
j have been found, it is possible to set, for example,

α
(n)
i j = κ̃

(n)
i ν̃

(n)
j , (4.5)

in which case

E[X(n)
i j ] = α

(n)
i j E[W] + κ

(n)
i ν

(n)
j = ξ κ̃

(n)
i ν̃

(n)
j + κ

(n)
i ν

(n)
j

= κ
(n)
i ν

(n)
j

[
1 + ξ

κ̃
(n)
i ν̃

(n)
j

κ
(n)
i ν

(n)
j

]
, (4.6)
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and the common shock term (the second member inside the square bracket)
is seen to vary in rough proportion with the idiosyncratic term over the entire
array.

4.2.3. Log-linear common shock models. Return to the log-linear common
shock model, whose prototype appears as (3.5) and (3.6), and take the log-linear
parallel of (3.11):

ln X(n)
i j = α

(n)
i j lnWπ(i, j) + β

(n)
i j lnW(n)

π(i, j) + φ
(n)
i j ln Z(n)

i j , (4.7)

where
lnWπ(i, j) ∼ N

(
μWπ(i, j) , σ

2
Wπ(i, j)

)
, (4.8)

lnW(n)
π(i, j) ∼ N

(
μW(n)

π(i, j)
, σ 2

W(n)
π(i, j)

)
, (4.9)

ln Z(n)
i j ∼ N

(
μZ(n)

i j
, σ 2

Z(n)
i j

)
. (4.10)

The covariance structure is given by (3.14). One may also note the cell mean

E[X(n)
i j ] = exp

{
α

(n)
i j μWπ(i, j) + 1

2

(
α

(n)
i j

)2
σ 2
Wπ(i, j)

}

× exp
{
β

(n)
i j μW(n)

π(i, j)
+ 1

2

(
β

(n)
i j

)2
σ 2
W(n)

π(i, j)

}
× exp

{
φ

(n)
i j μZ(n)

i j
+ 1

2

(
φ

(n)
i j

)2
σ 2
Z(n)
i j

}
.

(4.11)

A noteworthy special case is that discussed in Section 3.3.2 in which the P (n)
p

consist of a single observation, e.g., P (n)
1 = {X(n)

11 }, P (n)
2 = {X(n)

12 }, etc., and the
following additional properties hold:

β
(n)
i j = 0 for all i, j, n, (4.12)

φ
(n)
i j = 1 for all i, j, n, (4.13)

E[Z(n)
i j ] = κ

(n)
i ν

(n)
j . (4.14)

One property of this model is that a cell mean (4.11) takes the multiplicative
form

E[X(n)
i j ] = γ

(n)
i j κ

(n)
i ν

(n)
j , (4.15)

where γ
(n)
i j denotes the first of the three factors on the right side of (4.11) and,

as noted in Section 3.3.2, is dependent on i, j, n.
If the γ

(n)
i j term is removed (i.e., α

(n)
i j = 0), then (4.15) reduces to cross-

classified form of the chain ladder, as in Renshaw (1989) and many subsequent
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papers, with independence between all arrays. The γ
(n)
i j factor is induced by

Wπ(i, j) — the common shock that creates the dependency between the arrays
since Wπ(i, j) is the same for all n. This produces a multiplicative version of the
additive cell-wise dependency model of Section 3.3.2.

Similar multiplicative versions of the other models of Section 3.3 can be de-
veloped. As a single example, set π(i, j) to be the (i + j −1)th diagonal in (4.7),
as the diagonal-wise dependence examples of Section 3.3.5 and Section 3.4.2.

Assume, further that (4.12)–(4.14) continue to hold and that α
(n)
i j depends

only on i + j . In this case, (4.15) is replaced by the following

E[X(n)
i j ] = γ

(n)
t κ

(n)
i ν

(n)
j , (4.16)

which is a generalisation of the chain ladder model that takes account of di-
agonal effects as well as row and column, and with diagonal-wise dependency
between arrays.

5. ESTIMATION OF DEPENDENCE STRUCTURES IN A PRACTICAL SETTING

While parameter estimation should be based on data wherever possible, there
may be some forecast models for which data-based estimation is difficult. This
is particularly true of dependency models, which may involve numerous param-
eters. Consider formal estimation, the rigorous statistical process by which pa-
rameters estimates are derived from a data set. As explained in Section 1, such
estimation, for the models formulated in Section 3, is not the primary purpose
of the present paper.

Instead, one of the prime objectives of this paper is to address the practical
issue of specifying large correlation matrices for the modelling needs of practice,
in a way that is as disciplined and rigorous as possible. In this section, we explain
how the models developed in the previous section can be used to achieve that
aim.

Notwithstanding the abovementioned goal, we start with a brief discussion
of formal estimation dealt with in the literature in Section 5.1. Section 5.2 pro-
vides a practical and parsimonious heuristic estimation procedure, which is il-
lustrated in Section 5.3.

5.1. Formal estimation

First, let us consider linear common shock models. Section 4.2.1 mentions
Avanzi et al. (2016a) in connection with the model (4.1). Section 4 of the same
paper discussed parameter estimation by means of Markov Chain Monte Carlo
(MCMC) when the model parameters are random subject to prior distribu-
tions. Sometimes, these estimates can be made to approach non-Bayesian (fixed
effects) estimates by allowing the priors to approach to uninformative forms,
although this strategy may be defeated by difficulties with convergence. Other
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linear common shock models, such as those considered in Section 3, can be dealt
with similarly, subject again to timely convergence of the MCMC algorithm.

The case of log-linear common shock models is considered in detail in
Wüthrich and Merz (2015, ch. 5). In particular, their Corollary 5.3 deals with
parameter estimation.

5.2. Heuristic estimation

Irrespective of whether (formal) estimation difficulties arise, many practitioners
base their dependency models on educated guesswork. The present section is
intended to provide comment that will assist this heuristic estimation of param-
eters in the models of Section 3.

Parameter estimation will vary according to the form of model under con-
sideration, and it is difficult to formulate a fully general protocol. However, rea-
sonable generality may be obtained by considering first the general model of
Section 3.2, and then grafting on time series dependencies of the sort introduced
in Section 3.4.2.

It will be assumed in the following that each array has already been thor-
oughly modelled in isolation and that, as a consequence estimates of Var[X(n)

i j ]
are available for all i, j, n. The estimation of only covariances now requires con-
sideration.

Consider the model (3.11), with covariance structure (3.12). It is timely to
issue a reminder here that (3.12) decomposes the covariance into three compo-
nents (in order):
— within-subset covariance (subsets defined in Section 3.2 by the function

π(., .));
— within-subset within-segment covariance;
— variance of individual observations.

For formal expression of this, recall covariance (3.15), a special case of which is

Var[X(m)
i j ] = V(m)

i j (sub)
+ V(m)

i j (seg) + V(m)

i j (cell), (5.1)

where

V(m)

i j (sub)
=
(
α

(m)
i j

)2
, relating to the subset that corresponds to π(i, j),

V(m)

i j (seg) =
(
β

(m)
i j

)2
, relating to the subset that corresponds to π(i, j),

within segment m,

V(m)

i j (cell) =
(
φ

(m)
i j

)2
, relating to cell (i, j) within segment m.
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Then, (3.15) may be re-expressed in the form

Cov
[
X(m)
i j , X(n)

kl

]
= δπ(i, j)π(k,l)

(
V(m)

i j (sub)
V(n)
kl(sub)

) 1
2

+ δmnδπ(i, j)π(k,l)

(
V(m)

i j (seg)V
(m)

kl(seg)

) 1
2 + δikδ j lδmnV

(m)

i j (cell), (5.2)

or, equivalently, with due allowance for the Kronecker deltas,

Cov
[
X(m)
i j , X(n)

kl

]
=
{

Var[X(m)
i j ]Var[X(n)

kl ]
} 1

2

{
δπ(i, j)π(k,l)

(
γ

(m)

i j (sub)
γ

(n)
kl(sub)

) 1
2

+ δmnδπ(i, j)π(k,l)

(
γ

(m)

i j (seg)γ
(m)

kl(seg)

) 1
2 + δikδ j lδmnγ

(m)

i j (cell)

}
, (5.3)

where
γ

(m)

i j (S) = V(m)

i j (S)/Var[X(m)
i j ], S= sub, seg, or cell. (5.4)

Hence,

Corr
[
X(m)
i j , X(n)

kl

]
= δπ(i, j)π(k,l)

(
γ

(m)

i j (sub)
γ

(n)
kl(sub)

) 1
2

+ δmnδπ(i, j)π(k,l)

(
γ

(m)

i j (seg)γ
(m)

kl(seg)

) 1
2 + δikδ j lδmn

(
1 − γ

(m)

i j (sub)
− γ

(m)

i j (seg)

)
, (5.5)

where it has been recognised that γ
(m)

i j (sub)
+ γ

(m)

i j (seg) + γ
(m)

i j (cell) = 1.
The inclusion of AR(1) dependencies between subsets leads to a simple mod-

ification of (5.5). For example, it was seen in Section 3.4.2, specifically (3.34),
that an AR(1) dependency between diagonals across all segments led to the ap-
pearance of the factor θ |(i+ j)−(k+l)|; a similar dependency between diagonals in
just segment m led to the appearance of the factor (θ(m))|(i+ j)−(k+l)|.

If these dependencies are included in the present case, then (5.5) is replaced
by the following:

Corr
[
X(m)
i j , X(n)

kl

]
=
(
γ

(m)

i j (sub)
γ

(n)
kl(sub)

) 1
2
θ |(i+ j)−(k+l)|

+δmn

(
γ

(m)

i j (seg)γ
(m)

kl(seg)

) 1
2 (

θ(m)
)|(i+ j)−(k+l)|

+δikδ j lδmn

(
1 − γ

(m)

i j (sub)
− γ

(m)

i j (seg)

)
. (5.6)

This result, though relatively simple, provides a rich correlation structure. It
depends on only four families of parameters, whose interpretations are sum-
marised in Table 1.

Other variations of (5.6), e.g., AR(1) structures on rows of the arrays are
easily constructed.
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TABLE 1

INTERPRETATION OF QUANTITIES REQUIRED FOR CORRELATION CONSTRUCTION.

Quantity Applicable To Interpretation

γ
(m)

i j (sub)
Contribution to variance of cell (i, j) of

business segment m specific to the subset
to which (i, j) belongs

Proportion of total cell variance

γ
(m)

i j (seg) Contribution to variance of cell (i, j) of
business segment m specific to that
segment

Proportion of total cell variance

θ AR(1) structure on subsets in relation to
the component of dependency that runs
across all segments

Autoregression parameter

θ(m) AR(1) structure on subsets in relation to
the component of dependency specific to
segment m

Autoregression parameter

5.3. Numerical illustration

The present section will provide a simple numerical example of formula (5.6) at
work. Simplicity is necessary if display of the correlation matrix is to be feasible,
since even the modest case I = J = 4, N = 2 (two segments, each represented
by 4 × 4 claim triangles) generates a 20 × 20 correlation matrix; see also Table
3 below. Note that only upper triangles are dealt with in this illustration. In
practical cases, unlimited by display on a page, much larger correlation matrices
could, and should, be produced.

As noted in Section 5.2, the parameters requiring estimation are θ ; θ(m),m =
1, . . . , N, γ (m)

i j (S), S= sub, seg; i = 1, . . . , I, j = 1, . . . , J,m = 1, . . . , N. In some

cases, it may be considered reasonable to assume that γ
(m)

i j (S) = γ
(m)

(S) , independent
of i, j . Then, (5.6) simplifies slightly:

Corr
[
X(m)
i j , X(n)

kl

]
=
(
γ

(m)

(sub)
γ

(n)
(sub)

) 1
2
θ |(i+ j)−(k+l)|

+ δmnγ
(m)

(seg)

(
θ(m)

)|(i+ j)−(k+l)| + δikδ j lδmn

(
1 − γ

(m)

(sub)
− γ

(m)

(seg)

)
. (5.7)

The number of parameters to be estimated is now 3N+ 1.
The example below will involve two 4×4 claim triangles (I = J = 4, N = 2),

and so total of 7 parameters, all of which have a highly intuitive interpretation.
The triangles will relate to Property and Liability classes, denoted m = 1, 2,
respectively. It will be assumed that:
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TABLE 2

ASSUMED PARAMETER VALUES.

Parameter Assumed Value

γ
(1)

(sub)
0.1

γ
(2)

(sub)
0.1

γ
(1)

(seg) 0.3
γ

(2)

(seg) 0.1

θ 0.2
θ(1) 0.3
θ(2) 0.6

— simple process error (i.e., unrelated to dependencies) accounts for a lesser
proportion of cell variance in the Property class than in the Liability(that
is, 1 − γ

(1)

(sub)
− γ

(1)

(seg) < 1 − γ
(2)

(sub)
− γ

(2)

(seg));
— diagonals are subject to positive AR(1) dependency both within and be-

tween classes (that is, θ(m) > 0 and θ > 0);
— the within-Property dependency between diagonals is stronger than the

within-Liability dependency (that is, γ
(1)

(seg) > γ
(2)

(seg));
— the between-class dependency with respect to diagonals is weak (that is,

γ
(m)

(sub)
are close to 0);

— the within-class AR(1) dependency decays (within increasing distance be-
tween diagonals) more rapidly in the Property class than the Liability (that
is, θ(1) < θ(2)).

The specific parameter values assumed for the example are set out in Table
2, and reflect the above properties.

Table 3 displays the correlation matrix obtained on application of (5.7) with
parameter values as assumed in Table 2. For maximum clarity of the trends in
the matrix, entries are ordered by AY within CY. Matrix entries that correlate
observations from the same diagonal (CY), or diagonals that are identically lo-
cated in the two triangles, are indicated by shading.

6. CONCLUSION

This paper is concerned with multiple claim arrays, with observations indexed
by array number n, accident period i and development period j . It constructs
a number of models that incorporate dependencies between observations both
within arrays and between arrays. Arrays are of general shape (possibly with
holes), but include the usual cases of claim triangles and trapezia that appear in
the literature.
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TABLE 3

CORRELATION MATRIX (AY = i, CY = t).

Class # 1 2

t = 1 2 2 3 3 3 4 4 4 4 1 2 2 3 3 3 4 4 4 4
Class # t = i = i = 1 1 2 1 2 3 1 2 3 4 1 1 2 1 2 3 1 2 3 4

1 1 1 1.00 0.11 0.11 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.10 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1 0.11 1.00 0.40 0.11 0.11 0.11 0.03 0.03 0.03 0.03 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00
2 2 0.11 0.40 1.00 0.11 0.11 0.11 0.03 0.03 0.03 0.03 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00
3 1 0.03 0.11 0.11 1.00 0.40 0.40 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02
3 2 0.03 0.11 0.11 0.40 1.00 0.40 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02
3 3 0.03 0.11 0.11 0.40 0.40 1.00 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02
4 1 0.01 0.03 0.03 0.11 0.11 0.11 1.00 0.40 0.40 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10
4 2 0.01 0.03 0.03 0.11 0.11 0.11 0.40 1.00 0.40 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10
4 3 0.01 0.03 0.03 0.11 0.11 0.11 0.40 0.40 1.00 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10
4 4 0.01 0.03 0.03 0.11 0.11 0.11 0.40 0.40 0.40 1.00 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10

2 1 1 0.10 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.08 0.08 0.04 0.04 0.04 0.02 0.02 0.02 0.02
2 1 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.08 1.00 0.20 0.08 0.08 0.08 0.04 0.04 0.04 0.04
2 2 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.08 0.20 1.00 0.08 0.08 0.08 0.04 0.04 0.04 0.04
3 1 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 1.00 0.20 0.20 0.08 0.08 0.08 0.08
3 2 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 0.20 1.00 0.20 0.08 0.08 0.08 0.08
3 3 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 0.20 0.20 1.00 0.08 0.08 0.08 0.08
4 1 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 1.00 0.20 0.20 0.20
4 2 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 1.00 0.20 0.20
4 3 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 0.20 1.00 0.20
4 4 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 0.20 0.20 1.00
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The dependencies are defined in reasonable generality. At the most
general level, each claim array is partitioned into a collection of subsets, and
dependencies between observations are defined in terms of the subsets to which
the observations belong.

The subsets are quite general, and may be chosen arbitrarily. Specific exam-
ples are cells, rows, columns and diagonals. These choices yield cell-wise, row-
wise, column-wise and diagonal-wise forms of dependency. Combinations of
these forms of dependency are also permitted.

At the most basic level of (say) diagonal-wise dependency, observations are
dependent if they belong to the same diagonal within an array, or the same
diagonals in different arrays, but are independent otherwise. Further, structure
is introduced to incorporate dependency between different diagonals. This
would usually be structured so that dependency diminishes as the distance
between the diagonals increases.

The dependency structures are constructed, for the most part, by means of
common shocks. The explicit forms of covariance are given in the case of each
model.

As remarked in Section 1, a model of dependency between such a large
number of observations is likely to involve a large number of parameters, es-
timates of all of which will be required if the model is to be operationalised.
Section 5.1 makes a very brief discussion of parameter estimation in general
but, as also pointed out in Section 1, this is not the major emphasis of the
paper.

Instead, some attention is paid to “heuristic estimation” in Section 5.2. This
is the kind of guesswork by practitioners that one encounters, usually involving
a large correlation matrix with respect to all observations. These matrices are
often of dubious provenance, with construction lacking rigour, and potentially
even lacking positive definiteness. This is not to express disapproval of the prac-
titioner’s approach, but rather to seek more organised correlation matrix con-
struction, while accepting that parameter values will be obtained heuristically.
Section 5.2 considers a reasonably generic model, and obtains an expression for
the general entry in the correlation matrix in terms of a limited set of parameters,
each of which will have a straightforward intuitive meaning to the practitioner.
This will maximise the likelihood of a reliable matrix.

This approach to estimation is illustrated by a numerical example in Section
5.3. In this example, it is shown that the correlation matrix over N claims trian-
gles, each of dimension J, can be constructed on the basis of 3N+1 parameters
even though the matrix contains NJ(J + 1)[NJ(J + 1) − 2]/8 free entries. In
the specific numerical example, N = 2, J = 4 so that 190 free correlations are
specified by 7 parameters, and all 7 with strong intuitive meaning.

Finally, the correlation matrix is combined with estimates of tail dependency
to arrive at a multivariate tmodel for the construction of capital margins dealing
with the extreme right tail of liabilities.
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