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Measurements of passive scalar diffusion
downstream of regular and fractal grids
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first published online 7 July 2016)

The diffusion of heat injected from a line source into turbulence generated by
regular and fractal grids with the same solidity and inlet velocity was investigated
experimentally with particular interest in the effects of grid geometry and relative
location of the source on the width of the thermal plume and the mixing efficiency.
These grids included one fractal square grid (FSG) and three regular square grids
with mesh sizes that were comparable to the first (RG160), second (RG80) and
fourth (RG18) iterations of the fractal grid. The heated line source was inserted on
the centre plane of the grids, spanning the entire width of the wind tunnel at either of
two downstream locations, an upstream location or a location nearly coincident with a
grid. It was found that, in all cases examined, RG160 produced the strongest diffusion
of the thermal plume and the highest level of scalar mixing. These observations were
consistent with the evolution of the corresponding turbulent diffusivities, which,
according to Taylor’s theory of diffusion, are the product of the transverse turbulence
intensity and the integral length scale. We argue that to maximise scalar diffusion
and mixing of a scalar released from a concentrated source inside a duct, one should
prefer a regular grid over a fractal square grid; we also recommend the use of a
grid with a mesh size roughly equal to half the height of the duct and placed at
approximately one duct height upstream of the source.
Key words: homogeneous turbulence, turbulent flows, turbulent mixing

1. Introduction
One of the main characteristics of turbulence is its ability to increase drastically

the rate of diffusion of scalar admixtures. The first physical and analytical description
of turbulent diffusion was published by Taylor (1922). In this paper, Taylor proved
that the variance of the displacement of fluid particles in one-dimensional, stationary
homogeneous turbulence can be expressed in terms of the variance of the turbulent
velocity fluctuations in a Lagrangian frame of reference and their autocorrelation
coefficient. Taylor further identified two regimes for which simple expressions for the
mean squared particle displacement can be derived: one in which the travel time of
the particle is sufficiently small for the correlation coefficient to be nearly unity, and
another in which the travel time is large enough for the autocorrelation coefficient
to approach zero. By differentiating these expressions, he determined corresponding
rates of particle dispersion in the two regimes.
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‡ Present address: Department of Mechanical Engineering, McGill University, Montreal,
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Taylor’s analysis has been extended to three-dimensional turbulence (Batchelor
1949) and has served as a starting point for the study of diffusion of heat and the
concentration of scalar admixtures introduced as point and line sources in various
canonical turbulent flows. Examples include point sources in channel flow (Webster,
Rahman & Dasi 2003; Rahman & Webster 2005), uniformly sheared flow (Nakamura
et al. 1986; Vanderwel & Tavoularis 2014), fan-generated flows (Halloran, Wexler &
Ristenpart 2014), line sources in channel flow (Lavertu & Mydlarski 2005; Germaine,
Mydlarski & Cortelezzi 2014), uniformly sheared flow (Tavoularis & Corrsin 1981;
Karnik & Tavoularis 1989) and grid generated turbulence (Taylor 1935; Uberoi &
Corrsin 1952; Townsend 1954; Warhaft 1984; Stapountzis et al. 1986; Li & Bilger
1996). The interest of the present study focusses on the diffusion of a scalar injected
passively from a line source into grid-generated turbulence, and so the following
discussion will be restricted to this configuration.

Early studies presented measurements of basic properties of the scalar field, such as
the mean and fluctuating temperature profiles, as well as estimates of the Lagrangian
velocity autocorrelation function from dispersion measurements (Taylor 1935; Uberoi
& Corrsin 1952; Townsend 1954; Shlien & Corrsin 1974). All available measurements
showed that the transverse profile of the mean temperature had a Gaussian shape, from
which it follows that the ‘width’ σ of this profile (namely, the standard deviation of
a Gaussian random process with the same probability density function (PDF) shape
as the mean temperature profile) would be equal to the root mean squared particle
displacement (Arya 1999). Later studies, in particular those by Warhaft (1984) and
Stapountzis et al. (1986) further examined the various stages of the thermal plume,
including the range very near to the thermal source, which would be dominated by
molecular diffusion.

The majority of grid turbulence studies were concerned with ‘regular’ (namely,
having a uniform spacing of the grid elements) grids and turbulence sufficiently
far from the grid for its structure to evolve in a self-similar manner. Under such
conditions, turbulence properties would maintain constant values when normalised by
appropriate local scales, and the coefficient of turbulent kinetic energy dissipation

Cε = εL11,1

(2k/3)3/2
(1.1)

would be constant. In this expression, ε is the turbulent kinetic energy dissipation rate
per unit mass, L11,1 is the streamwise integral length scale (the first two subscripts
denote the correlated velocity components and the last subscript denotes the direction
of the separation vector) and k is the turbulent kinetic energy. Although the constancy
of Cε in grid turbulence away from the grid was confirmed experimentally a long time
ago (Batchelor 1953), recent studies of decaying grid turbulence (Seoud & Vassilicos
2007; Valente & Vassilicos 2012; Vassilicos 2015) have identified the presence of
a region within which the coefficient of turbulent kinetic energy dissipation is not
constant but scaled as Cε ∝ Re−1

λ , where the turbulence Reynolds number based on
the Taylor microscale, λ, may be defined as

Reλ = λ(2k/3)1/2

ν
. (1.2)

Few studies have investigated scalar transport and mixing in regions of grid
turbulence in which Cε 6= constant. Suzuki et al. (2010a,b) investigated the mixing
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360 J. Nedić and S. Tavoularis

layer of a high Schmidt number passive scalar in a water tunnel behind regular and
fractal grids with the same solidity and inlet Reynolds number based on effective
mesh size. They also performed direct numerical simulations of a thermal mixing layer
with a Prandtl number of 0.71 in a similar set-up. These authors demonstrated that the
fractal grids produced stronger turbulent mixing and that an increase in the thickness
ratio of the fractal grid enhanced the mixing further. A theoretical framework on the
subject was undertaken by Laizet & Vassilicos (2012), who attributed the increase in
turbulent diffusion to the fractal space-scale unfolding (SSU) mechanism, a presumed
peculiarity of the multiscale nature of the fractal grids. The essence of this mechanism
is that, close to the grid, fluid particle dispersion would be mainly affected by the
wakes generated by the smallest bars of the grid, but, with increasing downstream
distance, effects of the wakes of larger bars would dominate, effectively increasing
the rate of dispersion. This mechanism has recently been used to explain the higher
scalar variance and turbulent diffusivity for a scalar field with a uniform transverse
mean gradient passing through a fractal grid by comparison to scalar fields behind
various regular grids (Laizet & Vassilicos 2015). In all previous studies of this
topic, the scalar field filled the entire flow domain and was introduced upstream of
the turbulence generator, in contrast to conditions that would be prevalent in urban
environments and many industrial systems, in which scalars would be introduced
locally in evolving turbulent streams.

The present work addresses the practical problem of finding a passive device that
would produce the highest possible levels of scalar diffusion and mixing behind it.
Towards this end, we inserted several grids, both of regular and fractal shapes, in
a wind tunnel also containing a passive line source of heat and investigated the
dependence of mixing performance on the grid design and mesh size, as well as its
location relative to the source. Comparisons were based on the spreading rates of the
heated plumes and the spreads of temperature values, as mixing indicators.

2. Taylor diffusion
2.1. Dispersion in one-dimensional, zero-mean, stationary and homogeneous

turbulence
Considering dispersion of fluid particles in a one-dimensional, zero-mean, stationary
and homogeneous turbulent velocity field, Taylor (1922) expressed the variance of the
particle displacement X as

〈X2(t)〉 = 2〈v2〉
∫ t

0
(t− ξ)R(ξ) dξ, (2.1)

where t is the travel time of the particle, 〈v2〉 is the velocity variance and R(ξ) is the
velocity autocorrelation coefficient, both in a Lagrangian frame of reference.

Taylor also identified two regimes for which simple estimates of the mean squared
particle displacement can be derived: one in which the travel time t of the particle
is sufficiently small for the correlation coefficient to be nearly unity, and another
in which the travel time is much larger than the time it takes the autocorrelation
coefficient to approach zero. Defining the Lagrangian integral time scale as T =∫ t

0 R(ξ) dξ , one may then derive the following asymptotic expressions

〈X2(t)〉 ≈ 〈v2〉t2 for t�T , (2.2)
〈X2(t)〉 ≈ 2〈v2〉T t for t�T . (2.3)
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By differentiating these expressions one can obtain the corresponding rates of particle
dispersion in the two regimes as

1
2

d〈X2(t)〉
dt

≈ 〈v2〉t for t�T , (2.4)

1
2

d〈X2(t)〉
dt

≈ 〈v2〉T for t�T . (2.5)

As equations (2.4) and (2.5) demonstrate, the rate of scalar dispersion would
initially have a linear ballistic range, in which it would depend exclusively on
the variance of the Lagrangian velocity fluctuations, followed by an intermediate
range, which leads to a long-time range, in which the rate of dispersion would
be independent of time and would depend on both the variance of the Lagrangian
velocity fluctuations and the Lagrangian integral time scale of the turbulent field. The
product D= 〈v2〉T of the latter two quantities is known as the turbulent diffusivity,
which in the following will also be referred to as the Taylor diffusivity.

2.2. Growth of a plume in homogeneous turbulence
Taylor’s dispersion theory may be adapted for the study of turbulent diffusion of a
passive scalar injected from a line source in stationary and homogeneous turbulence
that is convected by a mean stream. Consider a flow in which x1 is the streamwise
direction, x3 is the ‘spanwise’ direction parallel to the axis of the source and x2
is the ‘transverse’ direction normal to the two others. As usual, overlines will
denote time averages, primes will denote standard deviations and one may consider
diffusion in a frame convected with the mean speed U1 to estimate the diffusion
time as t≈ (x1− x1s)/U1≡1x1/U1, where x1s is the streamwise distance between the
source and the arbitrary origin of the coordinate system and 1x1 is the streamwise
distance from the source. Ensemble averages may be replaced by time averages,
Lagrangian velocity variances may be approximated by Eulerian ones (Corrsin 1975),
the Lagrangian integral time scale may be estimated as T ≈ L22,2/u′2 and the Taylor
diffusivity may be approximated as

D= u′2L22,2, (2.6)

where L22,2 is the integral length scale of transverse velocity fluctuations separated
along the transverse direction.

One may then also transform Taylor’s dispersion estimates to the following
expressions for the plume half-width in an Eulerian frame of reference

σ 2(1x1)≈ u′22 (1x1/U1)
2 for 1x1� L22,2U1/u′2, (2.7)

σ 2(1x1)≈ 2u′2L22,2(1x1/U1) for L22,2U1/u′2�1x1. (2.8)

A more meaningful specification of the ranges of validity of the two asymptotic
expressions for σ would be in terms of the relative width of the plume in comparison
to the size of the dominant turbulent eddies, rather than distance from the source. This
can be easily achieved by solving the corresponding diffusion expressions for x1 and
rearranging the terms in the two inequalities. The result is

σ 2(1x1)≈ u′22 (1x1/U1)
2 for σ � L22,2, (2.9)

σ 2(1x1)≈ 2u′2L22,2(1x1/U1) for L22,2� σ . (2.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.385


362 J. Nedić and S. Tavoularis

Using (2.8) (or, equivalently, (2.10)), one may estimate the Taylor diffusivity from
the rate of plume growth, in the form of the so-called apparent turbulent diffusivity

K = U1

2
dσ 2

d1x1
. (2.11)

In the previous description, we have not considered the very early stage of
plume development, during which the size of the plume is extremely small and
its spreading is due to molecular diffusion alone; this range has been termed as the
molecular–diffusive range (Anand & Pope 1985). As the thermal plume grows, but
still remains significantly narrower than the integral length scale of the turbulence, it
is the amplitude of the transverse velocity fluctuations that dictates its growth rate;
this region is known as the turbulent–convective range. Eventually, when the thermal
plume width becomes sufficiently larger than the integral length scale of the flow, its
growth rate is dictated by the variance of the transverse velocity fluctuations and the
magnitude of the integral length scale; this range is known as the turbulent-diffusive
range.

3. Apparatus and measurement procedures
3.1. Experimental facility

Measurements of the scalar and turbulent velocity field were taken in an open circuit,
blowing wind tunnel that had a 16:1 contraction and a test section with a height
h= 0.305 m, a nominal width of 1.5h and a working length of approximately 16.6h.
All measurements were taken at a fixed inlet velocity of U∞ = 10 m s−1, which was
calculated from the measured pressure difference across the wind tunnel contraction;
this speed was maintained constant by controlling the fan speed through an electronic
feedback loop. The background turbulence levels were found to be 0.1 % in the
streamwise direction and 0.2 % in the transverse direction at an inlet velocity of
U∞ = 10 m s−1. The test section was equipped with four insertion ports (‘slots’) for
the insertion of the turbulence-generating grid and the heated line source, which was
used to generated the scalar field. The first of these slots was located at a distance of
2.5h from the start of the test section, with the next three slots located at distances
of 1h, 1.5h and 2h from the first slot, as shown in figure 1. The upstream part of
the test section, up to the farthest downstream slot, had parallel walls, whereas the
remainder had vertical walls that diverged slightly in order to compensate roughly for
boundary layer growth along the four walls and so reduce the variation of the mean
velocity in the core of the test section.

The turbulent field for each test was generated using one of the four planar grids
shown in figure 2. All grids were machined from US 16 gauge sheets of metal (steel
for the regular grids and, for higher strength, titanium for the fractal grid) with a
standard thickness of 1.59 mm and having the specifications listed in table 1. It is well
known from the literature that, for a given grid design, the turbulence characteristics
depend mainly on the solidity (namely, the ratio between the solid cross-sectional
area of the grid and the cross-sectional area of the test section) and the mesh size
(namely, the spacing between the elements) of the grid; the cross-sectional shape
of grid elements, their thickness in the direction of the flow and the separation of
their centreplanes, if present (e.g. for biplanar square grids), also play a role, as
they influence the grid’s ‘effective’ solidity. When comparing the performances of
grids of different designs, it is not immediately apparent which parameters should be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.385


Passive scalar diffusion in grid turbulence 363

A DB C

h 1.5h 2h2.5h
16.6h

Grid
Source

FIGURE 1. Scaled drawing of the wind tunnel used for the measurements. In the
configuration shown here, a turbulence-generating grid was inserted in Slot A and the
heated line source was placed in Slot B, but experiments were also conducted with the
grid and the source inserted in different slots. In all cases, the origin of the coordinate
system was located at the centre of the grid and x1, x2, x3 were, respectively, the
streamwise, transverse and spanwise axes. The distance from the turbulence grid to the
heated line source, marked in this figure for one representative case, was denoted as x1s
and could be positive or negative.

h

h h

h

(a) (b)

(c) (d )

FIGURE 2. Scaled drawings of the turbulence-generating grids. Note that the origin of the
coordinate system is the centre of the grid. (a) FSG, (b) RG160, (c) RG80, (d) RG18.

matched. To begin with, the dimensions of our wind tunnel cross-section imposed
an upper bound for the mesh size of a regular grid and the spacing of the largest
elements of the fractal grid. Consequently, we constructed grids of both designs with
corresponding spacings that were as large as possible for these devices to qualify
as grids and not to consist of isolated elements; it goes without saying that the two
spacings were matched. We expected that each of these two grids would produce the
strongest possible turbulence by comparison to smaller grids with similar geometrical
features. We further conjectured that, for a meaningful comparison of the performance
of grids of different sizes, and even different designs, one must also match their
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Grid FSG RG160 RG80 RG18

L0 (mm) 162.56 160.00 80.00 18.00
t0 (mm) 15.24 24.00 10.00 2.40
tr 22.3 1 1 1
x∗ (m) 1.730 1.110 0.710 0.135
xpeak/x∗ 0.35 0.63 0.63 —
Symbol E @ A I

TABLE 1. Main characteristics of the turbulence-generating grids. L0 and t0 are the length
and thickness of the largest bars, as shown in figure 2. The fractal grid (FSG) used here
has N= 4 iterations and a thickness ratio defined as tr≡ t0/tN−1 where tN−1 is the thickness
of the smallest bar; the thickness ratio for the regular grids is trivially equal to 1, as N= 1
for these grids. x∗= L2

0/t0 is the wake interaction length scale and xpeak is the downstream
distance from the grid at which the turbulence intensity reached its highest value before
starting to decay.

solidities, as this would ensure that the pressure drop behind all grids would be
roughly the same; we note that this is true not only for regular grids, but also for
fractal square grids (Laizet & Vassilicos 2015). The solidity of all our grids was set
to 0.25 ± 0.02, in line with values used in previous studies of fractal grids. Finally,
to minimise element thickness effects, we machined all grids from metallic sheets of
the same standard thickness, which was actually chosen to be the smallest one that
would ensure their structural integrity. One of the grids (‘fractal square grid’ – FSG)
was multiscale, which is a geometry known to produce extended downstream regions
of Cε 6= constant. This grid, which had N= 4 levels of partially overlapping elements,
was made of titanium to ensure sufficient stiffness of the smallest elements and was
sanded following machining to remove edge roughness. The length and the frontal
thickness of the largest elements in FSG were, respectively, indicated as L0 and t0,
and those of subsequent levels as L1, t1 etc. FSG was designed such that the thickness
ratio, tr, between the largest and smallest bars was tr= t0/t3= 22.3. Consequently, the
ratio between subsequent elements were determined as Rt = t1/(1−N)

r = 0.355. As with
previous fractal grid designs (Valente & Vassilicos 2011, 2012; Gomes-Fernandes,
Ganapathisubramani & Vassilicos 2012; Hearst & Lavoie 2014; Valente & Vassilicos
2014, 2015), the ratio between the length of subsequent elements was set to 0.5;
as an example, L1 = 0.5L0. The three other grids (RG160, RG80 and RG18) were
‘regular’ square grids, each with elements closely matching the first-, second- and
fourth-level elements of FSG. RG18 also matched the effective mesh size (Hurst &
Vassilicos 2007) of FSG.

Based on previous literature of FSG (Valente & Vassilicos 2011, 2012; Gomes-
Fernandes et al. 2012; Hearst & Lavoie 2014; Valente & Vassilicos 2014, 2015) one
would expect to observe Cε 6= constant for downstream distances of less than 2x∗,
where x∗=L2

0/t0 is the wake interaction length scale for the largest elements (Mazellier
& Vassilicos 2010). A recent study by Valente & Vassilicos (2014) showed that regular
grids would also produce regions of the flow in which Cε 6= constant. As a possible
indicator of such regions, we have listed the corresponding values of x∗ in table 1.

The passive scalar field was generated by electrically heating a thin ribbon made
of Nichrome alloy (toaster element) and stretched horizontally across the width of
the tunnel. The ribbon was kept taut while at a high temperature by having one
of its ends fixed to its wooden frame and the other end spring mounted, with the
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tension adjusted by turning two nuts along a threaded bar. The heating ribbon had a
frontal thickness of 0.13 mm and a streamwise width of 1.59 mm and supplied with a
constant power of 180 W. In this article, we present tests with the heat source inserted
at four different slots, two of which were downstream of the turbulence-generating
grid, one was upstream of the grid and one was on the same slot as the grid. As
shown for a representative case in figure 1, the distance between the source and the
grid is denoted as x1s. For convenience, these tests will be referred to as HS1 (for the
x1s = h case), HS2.5 (for the x1s = 2.5h case), HS–1 (for the x1s =−h case) and HS0
(for the x1s ≈ 0 case; to be precise, x1s = −0.02h). The locations of grid insertion
slots in our wind tunnel fortuitously permitted us to introduce the scalar at two
structurally distinct regions of grid turbulence: as shall be shown in § 4.2, the HS2.5
cases correspond to decaying turbulence fields for all the grids, whereas the HS1
cases correspond to the ‘production regions’ of the turbulence fields (i.e. where the
turbulence intensity increases with streamwise distance) for FSG, RG160 and RG80.
In summary, the present four choices of source locations are expected to enable us
to obviate the effects of turbulence history on the diffusion of the thermal plume.

3.2. Instrumentation
The streamwise and transverse velocity components were measured simultaneously
with a cross-wire probe having sensors made of tungsten with a diameter of 2.5 µm,
sensing length of 0.85 mm and a distance between sensors of 0.5 mm. Therefore,
the sensor length-to-diameter ratio was 340, which is deemed to be sufficiently large
for conduction effects to be negligible (Li et al. 2004). The probe was operated with
AALabs1004 Constant Temperature Anemometers. The signals were low pass filtered
by analogue filters with cutoff frequencies of 14 kHz, digitised at a rate of 30 kHz
and recorded over 60 s for each test. The cross-wire probe was calibrated in situ using
a velocity-pitch-map calibration method, also referred to as look-up table calibration
(Lueptow, Breuer & Haritonidis 1988). Measurements were taken along the centreline
(x2 = 0, x3 = 0) for downstream distances of h 6 x1 6 12h in 0.25h increments.
Transverse profiles, ranging between −h/36 x2 6 h/3, were also measured at selected
downstream distances. All measurements were acquired with an inlet velocity of
U∞= 10 m s−1, so that the large element Reynolds numbers for FSG, RG160, RG80
and RG18 were, respectively, ReL0 =U∞L0/ν ≈ 104 000, 102 000, 51 000 and 11 500.

The local mean flow temperature was measured with a glass-coated thermistor probe
(EPCOS(TDK), B57540 series, manufacturer part number: B57540G1103F, 10 kΩ
1 % RAD). The thermistor was connected to a homemade circuit that provided a
low excitation current of 50 µA; the self-heating of the thermistor was estimated
to raise its temperature by 0.06 ◦C. Temperature fluctuations were measured with
a cold-wire probe, having a sensor made of platinum with a diameter of 1 µm
and a length-to-diameter ratio of 500. The sensor was etched from Wollaston wire
and spot welded onto a DANTEC 55P31 temperature probe tip, which was then
plugged into a DANTEC 55H21 probe holder. The cold wire was operated at a
constant current of 0.3 mA, provided by a low noise and high gain homemade circuit.
The thermistor and cold-wire probes were positioned at the same streamwise and
transverse positions and were separated by 5 mm in the spanwise direction. The two
signals were sampled simultaneously at a rate of 20 kHz for 30 or 60 s, depending
on the heating configuration. The signal from the cold wire was passed through
an 8 kHz analogue low pass filter before being digitised. The flow temperature
upstream of the heated source was monitored with a precalibrated 100 Ω resistance
temperature detector (29348-T01-B-48, RDF Corp.); this temperature was subtracted
from the downstream flow temperature to account for room temperature variation.
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Temperature measurements were taken in the vertical plane of the wind tunnel at
the same downstream positions as the turbulence measurements, but the two sets of
measurements were made at different times. All data were digitised using a 16-bit
data acquisition system (national instruments, PCI 6143).

3.3. The measurement of turbulence properties

The turbulent kinetic energy parameter k was estimated as k ≈ 0.5u2
1 + u2

2, under the
assumption that the turbulence was axisymmetric, which is fair for grid turbulence
(Comte-Bellot & Corrsin 1966; Nagata et al. 2013). The streamwise integral time
scale T11 was determined by integrating the temporal autocorrelation coefficient of
the streamwise velocity fluctuations to its first zero; then the streamwise integral
length scale was estimated as L11,1≈ T11U1. The streamwise Taylor microscale λ was
determined with the use of Taylor’s frozen flow approximation as

λ=
[

U2
1

2k/3

(∂u1/∂t)2

]1/2

, (3.1)

the turbulent Taylor Reynolds number was calculated from (1.2) and the rate of kinetic
energy dissipation per unit mass was estimated as

ε= 10νk/λ2. (3.2)

Possible measurement errors introduced by the limited spatial resolution of the cross-
wire were estimated using procedures suggested by Burattini (2008). It was found that
such errors in the measured Reynolds stresses and integral length scales would be at
most of the order of 1 %, which are deemed to be negligible and part of the overall
measurement uncertainty. On the other hand, parameters calculated from measurements
of the streamwise velocity derivative were subjected to appreciable biases: λ and Reλ
appeared to be underestimated by approximately 12 %–2 % along the measurement
section, whereas ε and Cε appeared to be overestimated by approximately 22 %–4 %
in the same range. These biases were removed in the reported results by applying
appropriate corrections. It is noted, however, that the corrections proposed by Burattini
(2008) were meant to apply to decaying homogeneous and isotropic turbulence, which,
as shall be shown in the following section, is not the case in the regions close to
our grids. Nevertheless, we considered that application of these corrections removed
a major portion of the bias and absorbed any remaining (positive or negative) bias
into the overall measurement uncertainty, which includes precision uncertainty and the
effects of imperfect match of theoretical and experimental conditions. In any case,
as will be discussed later, our main conclusions are not affected by small errors in
velocity derivatives.

4. The velocity fields
4.1. The mean flow fields and transverse turbulence inhomogeneity levels

The streamwise variation of the centreline mean velocity, normalised by the inlet
velocity, is shown in figure 3 for the four grid configurations. In all cases (if one
employs a plausible extrapolation of the RG18 data towards the grid) this ratio
exceeded unity in a range close to each grid and then decreased, eventually settling
to near-unity values further downstream. For the three sets of results that extended to
that location, slight kinks may be observed at approximately x1/h= 4.5, where wall
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FIGURE 3. Measurements of the dimensionless mean velocity along the centreline of the
wind tunnel downstream of the four grids (connected by solid lines); the maximum (open
symbols) and minimum (closed symbols) normalised velocities on selected transverse
planes are also shown.

divergence commenced. The far downstream level of U1/U∞ was somewhat smaller
than unity for FSG and RG160 and somewhat larger than unity for RG80 and RG18.
This difference is compatible with the expectation that the boundary layers would be
thinner for the larger grids, as the result of more thorough mixing with core flow
transported by large eddies. In the region near each grid, the local mean velocity was
significantly larger than U∞; this may be confidently attributed to the fact that the
wind tunnel centreline passed through unobstructed regions of all grids, which would
have jet-like velocity profiles.

In figure 3, we also show the maximum and minimum normalised mean velocities
on selected transverse planes. These results show that, for all grids, the mean
velocity became essentially uniform for 4.5 6 x1/h. A more complete analysis
of the homogeneity level of the velocity field is given in figure 4, which shows
transverse profiles of the mean velocity, the standard deviation of the transverse
velocity fluctuations and the streamwise integral length scale downstream of the four
grids. Values at each downstream location were normalised with the corresponding
local centreline value in order to obviate the local level of transverse non-uniformity.
At the two closest downstream locations, there were clear signs of mean flow
non-uniformity for FSG, RG160 and RG80, but these became negligible further
downstream. All measured mean flow profiles downstream of the RG18 were
essentially uniform. The turbulence behind FSG, RG160 and RG80 was clearly
transversely inhomogeneous at x1/h = 1.00, but the inhomogeneity was reduced to
negligible levels further downstream.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.385


368 J. Nedić and S. Tavoularis

FSG

RG160

RG80

RG18

FSG

RG160

RG80

RG18

FSG

RG160

RG80

RG18

10 2

10 2 10 2

10 2

10 2 3 10 2 3

10 2 3 10 2 3

0.5 1.0 1.5 0.5 1.0 1.5

0.5 1.0 1.5 0.5 1.0 1.5
0.5

0.2
0.1

0

0.3
0.4

 –0.4
 –0.5

–0.3
–0.2
–0.1

0.5

0.2
0.1

0

0.3
0.4

 –0.4
 –0.5

–0.3
–0.2
–0.1

0.5

0.2
0.1

0

0.3
0.4

 –0.4
 –0.5

–0.3
–0.2
–0.1

(a)

(b)

(c)

FIGURE 4. Transverse profiles of the streamwise mean velocity (a), standard deviation of
the transverse turbulent velocity (b) and streamwise integral length scale (c), all normalised
with the corresponding local centreline values; measurements downstream of the four grids
are marked using the symbols shown in table 1 with increasing darkness for the three
larger grids at x1/h= 1.00, 2.50, 4.50, 5.75, 7.00 and 8.50, but for RG18 only at x1/h=
1.00, 2.50 and 4.50.

4.2. The evolution of turbulence properties

Figures 5 and 6 present the evolution of pertinent turbulence properties along the
centreline downstream of the four grids. An important point to keep in mind when
comparing the results is that, unlike those used by previous investigators, all of our
grids had the same solidity. Another general note is that because the near field of
RG18 was not of much interest in this work, our measurements for this grid did
not include the ‘production region’, where the turbulence was generated and which
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FIGURE 5. Streamwise evolution of turbulence properties downstream of FSG (a) and
RG160 (b). Crosses denote measured values before the application of corrections; cases
with indistinguishable corrected and uncorrected values are not differentiated in these plots.

would extend to a much shorter downstream distance than the production regions
of the three larger grids. For brevity, we will exclude this grid from some of the
following discussion; nevertheless, all available evidence indicates that its turbulence,
when properly scaled, follows the same trends as those downstream of the two other
regular grids.

For the three larger grids, u′1 (as well as u′2, not shown in the figure) presented a
distinct peak at a downstream distance xpeak that was smallest for RG80, intermediate
for FSG and largest for RG160. When normalised by the wake interaction length scale
x∗, the peak distances were xpeak/x∗≈ 0.63 for the two regular grids and 0.35 for the
fractal grid. These values are generally consistent with the available literature. Valente
& Vassilicos (2012) also reported values xpeak ≈ 0.63x∗ for two square grids with
solidity 0.17 and mesh sizes of 230 and 115 mm. Moreover, Mazellier & Vassilicos
(2010) reported xpeak≈ 0.45x∗ for their SFG17 square fractal grid, which had a solidity
of 0.25, a thickness ratio of tr = 17 and a length of the largest bar L0 = 237.8 mm,
as well as three other fractal grids, all of which had the same solidity but smaller
thickness ratios; it is noted, however, that more recent measurements for the same
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FIGURE 6. Streamwise evolution of turbulence properties downstream of RG80 (a) and
RG18 (b). Crosses denote measured values before the application of corrections; cases
with indistinguishable corrected and uncorrected values are not differentiated in these plots.

SFG17 grid by Laizet, Nedić & Vassilicos (2015) have shown the peak to be at
xpeak ≈ 0.41x∗. The observed small differences in peak location for the fractal grids
in the present and previous studies may be attributed to differences in grid design.

In all cases, and throughout the measurement range, the anisotropy ratio u′1/u
′
2 was

greater than unity, in agreement with the vast literature on grid turbulence. This ratio
first reached a peak at some distance from the grid and then decreased gradually
towards values in the vicinity of 1.25, in conformity with previous studies using
similar grids (Valente & Vassilicos 2011; Gomes-Fernandes et al. 2012; Hearst &
Lavoie 2014); for RG18, the anisotropy ratio tended towards values much closer to
unity, which is attributed to fact that the turbulence produced by this grid decayed
much faster than in the other cases.

It is interesting to note that the locations of the peaks of u′1 and u′1/u
′
2 coincided

for each of the three larger grids; these locations may be used to divide each flow
field into an upstream region, where the effects of the grid elements dominated the
turbulence structure, and a downstream region, where the mean shear was negligible,
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the turbulence was nearly transversely homogeneous and isotropic and the turbulent
kinetic energy decayed. It is the latter region, to be referred to hereafter as ‘decaying
grid turbulence’ (DGT), which is of main interest in this work. The streamwise
evolution of Reλ, also shown in figures 5 and 6, demonstrates that this property
also had a peak, whose location coincided with the peak location for u′1 for each
of the three larger grids, and then decreased monotonically in the DGT region. This
behaviour is well known for grid turbulence, but is noted here as it implies that the
function Reλ(x1) would be single valued only if DGT were considered in isolation
from the upstream region. This is an important reason to focus on DGT when
investigating the possible dependence of Cε on Reλ.

Now, let us compare the magnitudes of some relevant turbulence characteristics
behind the four grids at a fixed downstream location in the DGT region. The ranking
of the grids was always in the order R160, FSG, RG80 and RG18, irrespective of
which parameter was used for such comparison and which location was selected. This
ranking corresponds to decreasing u′1 (and k), Reλ and L11,1 and increasing λ/L11,1
and η/L11,1. This order is not surprising when considering the three regular grids, as
it is well known that the previous parameters are monotonic functions of the mesh
size. However, the observation of the performance of FSG relative to RG160 is rather
novel, as the literature contains no specific studies of turbulence generated by regular
and fractal grids with the same solidity and L0. One exception is the study by Laizet
et al. (2015), in which one of the fractal square grids had comparable L0 and solidity
to a grid composed solely of the central square element of the fractal square grid.
This study, however, presented no comparisons between the streamwise evolution of
the turbulence behind the two grids, as its main focus was the behaviour of the energy
spectrum.

The bottom panels in figures 5 and 6 show the streamwise evolution of the
dissipation parameter Cε. It is evident that Cε ≈ const. in substantial regions of all
panels, which extended over the furthest downstream part of the corresponding DGT
region. We shall refer to the Cε≈ const. region as the ‘fully developed region’ (FDR),
as it is the region in which not only k and ε, but also L11,1 evolved in consistent and
self-similar manners, which rendered the dissipation parameter constant. The values
of Cε in the FDR were 1.4 for FSG and RG160, 1.7 for RG80 and 2.0 for RG18.
It is noted that our definition of this parameter and those of the turbulent kinetic
energy, dissipation rate, integral length scale and microscale differ from definitions
used by previous researchers; when we applied the same definitions, we obtained
estimates of Cε in the FDR that were close to values in the literature (Valente &
Vassilicos 2012; Hearst & Lavoie 2014). The upstream boundary of the FDR was
in the range 1.3 . x1/x∗ . 3, depending on the grid, in conformity with previous
findings (Valente & Vassilicos 2012; Isaza, Salazar & Warhaft 2014). Upstream of
the FDR, but still within the DGT region, Cε grew monotonically with increasing
streamwise distance, while Reλ decreased monotonically. This observation points to
a possible inverse relationship between these two parameters. For the three larger
grids, we could fit the data quite well with power laws of the type Cε ∝ Re−1

λ in
a substantial upstream subregion of DGT. We shall refer to this subregion by the
term ‘developing region’ (DR), under the postulate that it contained turbulence whose
structure gradually developed towards the scaling found in the FDR. Regions of grid
turbulence described by this power law have been recently discovered by several
previous investigators (see review by Vassilicos (2015)); the state of the flow in such
regions has been referred to by the name ‘non-equilibrium turbulence dissipation law’.
Besides the fact that equilibrium turbulence, in the manner described by Vassilicos
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(2015), may be unachievable behind grids and so all grid turbulence may be viewed
to be in non-equilibrium, the restriction of the term ‘non-equilibrium’ to this specific
power law would not permit its use to other flows, or even other subregions of grid
turbulence, in which a power law with an exponent that is different from −1 may be
found to hold (see our recent study of uniformly sheared flows (Nedić & Tavoularis
2016)). For these reasons, we chose to introduce the term ‘developing region’ for the
initial part of decaying grid turbulence, where Cε ∝ Re−1

λ .
Of course, there is also a subregion between the DR and the FDR, in which

smooth transition was achieved from the DR expression for Cε to the one in FDR;
we shall refer to this as ‘partially developed region’ (PDR). This subregion was
significantly wider for FSG than for RG160 and RG80, presumably because the
turbulence structure behind FSG was more complex. Although not attaching much
significance to this finding, as it is not central to the present objectives, we found
that, for the FSG, RG160 and RG80 cases, the data in much of the PDR could be
approximately fitted with the power law Cε ∝ Re−0.6

λ .
Note that figures 5 and 6 present both corrected and uncorrected values of Reλ and

Cε. Despite the significance of corrections in the developing region, the observation
that Cε ∝ Re−1

λ applies equally well to both the corrected and uncorrected results.

4.3. Turbulence decay rates
The decay of turbulent kinetic energy generated by grids and similar regularly spaced
obstructions with a spacing L0 has been conventionally described by a power law of
the normalised streamwise distance from an effective origin x10, namely as

k
U2∞
= a
(

x1 − x10

L0

)−m

. (4.1)

Despite considerable effort over many decades to devise a theoretical justification
for this relationship, it remains empirical and the parameters a, x10 and m are
determined by curve fitting to measurements. Previously determined values of the
exponent m for data in the fully developed region of decaying grid turbulence
(FDR-DGT), typically between 1.1 and 1.4 (Comte-Bellot & Corrsin 1966; Gad-el
Hak & Corrsin 1974; Mohamed & LaRue 1990; Lavoie, Djenidi & Antonia 2007;
Sinhuber, Bodenschatz & Bewley 2015) are lower than those in the developing
region of decaying grid turbulence (DR-DGT), which are typically between 2.4 and
3.0 (Valente & Vassilicos 2011; Hearst & Lavoie 2014; Isaza et al. 2014; Valente &
Vassilicos 2015). When the ranges of measurements are relatively narrow, however, the
sensitivity of curve fits to the value of x10 may be high and so several combinations
of parameter values may end up producing good fits. Indeed, this was the case for the
present results and so we found that it would be more meaningful to adopt the same
value of x10/L0 for each of the states of turbulence produced by all grids, rather than
determining specific values of this parameter by low-sensitivity optimal fitting. In
accordance with established sources, we chose the values x10/L0 = 3.5 for FDR-DGT
(Comte-Bellot & Corrsin 1966) and −3.5 for DR-DGT (Valente & Vassilicos 2011).

As shown in figure 7, all data in the ranges of both states produced by our grids
were fitted well by power functions. The ranges used for fitting the data in the DR and
the FDR, in terms of x1/x∗ and x1/L0, have been listed in table 2. The exponents of
these functions, also listed in table 2, were within the ranges of values encountered in
the literature for both FDR-DGT and DR-DGT. We have also fitted alternative power
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FIGURE 7. Decay of the kinetic energy, normalised by L0 (a) and x∗ (b), downstream of
the grids. Circles, squares, triangles and stars denote data for, respectively, FSG, RG160,
RG80 and RG18. Open symbols denote measurement points in the DR-DGT and closed
symbols denote measurement points in the FDR-DGT. Solid lines are power functions
fitted to the data with exponents as listed in table 2.

Fully developed region of decaying grid turbulence
Grid x1/L0 x1/x∗ x10/L0 x10/x∗ m (m with x10 = 0)

FSG 14.06–18.75 1.32–1.76 3.50 0.33 1.18 (1.50)
RG160 12.86–19.05 1.93–2.86 3.50 0.53 1.15 (1.48)
RG80 23.81–38.10 2.98–4.76 3.50 0.44 1.30 (1.48)
RG18 29.63–76.20 3.95–10.16 3.50 0.47 1.31 (1.41)

Developing region of decaying grid turbulence

FSG 4.69–8.91 0.44–0.84 −3.50 −0.33 2.57 (1.67)
RG160 5.24–10.00 0.79–1.50 −3.50 −0.53 2.87 (1.93)
RG80 7.62–19.05 0.95–2.38 −3.50 −0.44 2.34 (1.82)

TABLE 2. Determined boundaries of the developing and fully developed regions of
decaying grid turbulence and the corresponding effective origins and decay exponents.

functions to the same data, under the assumption that their effective origins were on
the grid, namely that x10 = 0; these functions also fitted very well to all our data but
their exponents, also listed in table 2, were significantly higher than the previous ones
in FDR-DGT and lower in DR-DGT. These results also conform with the literature
(Valente & Vassilicos 2011; Isaza et al. 2014). We refrained from presenting power
laws in the PDR, because their ranges were too narrow for meaningful fits and
the fitted exponents were overly sensitive to the choice of effective origin. In the
remainder of this article, we shall mainly focus on the DR and the FDR of DGT.

5. The scalar fields
5.1. Measurements of plume growth

Transverse profiles of the local mean temperature rise 1T above the unheated flow
temperature were measured at several locations downstream of all four grids and with
the source located upstream of the grid (HS-1), at the grid (HS0) or downstream of
the grid (HS1 and HS2.5). All profiles, irrespective of the grid used, location of the
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FIGURE 8. Transverse profiles of the normalised mean temperature for all grids and
source locations. Data taken within the range 2.561x1/h6 3.0; a fitted Gaussian function
is shown by a white dashed line.

source and location of measurement, could be fitted well by Gaussian functions. In the
following, the local mean temperature rise will be normalised by the corresponding
centreline value 1Tc and transverse distances in the plume will be normalised by
the ‘standard deviation’ σ of the fitted Gaussian function, to be referred to as the
plume half-width. An assortment of representative measurements for all our grids
and source locations, together with the Gaussian fit, are shown in figure 8. Several
previous investigators (Uberoi & Corrsin 1952; Townsend 1954; Warhaft 1984) have
also reported Gaussian passive scalar plumes downstream of line sources in grid
turbulence, while plume Gaussianity is a common assumption of previous diffusion
models (Stapountzis et al. 1986; Viswanathan & Pope 2008; Pope 2011). The present
results complement these studies, but also introduce a novel finding: the mean
temperature profile was Gaussian not only in the FDR-DGT, but also in the DR-DGT
in which Cε ∝ Re−1

λ , including locations where the mean velocity was non-uniform
and the turbulence was transversely inhomogeneous. Based on this observation, we
may postulate that passive scalar plume Gaussianity is robust and may persist even in
mildly non-uniform mean velocity fields. Support for this postulate is also provided
by the observed Gaussianity of scalar plumes in uniformly sheared turbulence (Karnik
& Tavoularis 1989) and in a channel flow (Lavertu & Mydlarski 2005).

The downstream evolution of the thermal plume half-width σ for all examined cases
are shown in figure 9. Because a main objective of this study is to identify conditions
that lead to the widest possible plume spreading at a fixed streamwise location, both σ
and the streamwise distance from the source have been normalised by the test section
height h and not by grid-related scales; an additional benefit of this normalisation is
that it would readily demonstrate a possible confinement of the plume by the test
section walls.

If we first compare results downstream of the three regular grids, it becomes
evident that, in general, plume spreading increased with increasing grid mesh size.
This is hardly a surprise, as larger grids produced turbulence with both larger intensity
and larger scale at downstream positions that were far enough from all grids for the
corresponding flows to be fully turbulent. This, however, is not necessarily the case
for the close-to-the-grid fields of sources located upstream of the grid. An example
is the (x1 − x1s)/h 6 3 range for the HS-1 case, where σ for RG80 was larger than
that for RG160; it is noted that, in the near field, RG80 generated turbulence that
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FIGURE 9. Evolution of the thermal plume half-width σ downstream of FSG, RG160,
RG80 and RG18; (a) HS1; (b) HS2.5; (c) HS-1; (d) HS0. For all cases, error bars indicate
the 95 % confidence level of Gaussian fitting to the transverse mean temperature profiles.
Circles, squares, triangles and stars denote data for, respectively, FSG, RG160, RG80 and
RG18.

had a higher intensity than those produced by FSG or RG160, which resulted in
a larger initial plume spreading. It should be noted that the RG160 mesh size was
roughly equal to half the test section height. Consequently, over a considerable range
of the HS-1 and HS0 measurements, plume spreading would be very sensitive to the
transverse location of the source; in the present case, in which the source was along
the centre plane of the grid and measurements were taken along a line passing through
the (unobstructed) centre of the grid, scalar diffusion would be subjected to relatively
low turbulence over a part of its shown history that was much more significant for
RG160 than for the smaller grids. This effect was aggravated when the source was
placed upstream of the grid (HS-1 and HS0 cases). As a note of precaution to future
users, we would like to mention that, while attempting to position the source closely
downstream of the grid (namely, within the recirculating parts of the wakes of the
grid elements), we observed that sections of the heated ribbon were overheating,
which indicated poor convective heat transfer; no such problem was encountered
when the source was located closely upstream of the grid elements.

The next practical question that we addressed was to identify the position of the
grid with respect to the source that would produce the largest plume spreading.
While comparing the measurements for different grid positions, we excluded the
plume region close to the source ((x1 − x1s)/h . 1), where plume spreading would
depend strongly on the transverse location of the source. As figure 10 shows for the
RG160 case, for all plume positions examined, it was the HS1 case that produced the
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FIGURE 10. Plume spreads at different distances from the source for four different
positions of RG160 relative to the source; results have been normalised by the plume
spread for HS1. Streamwise distances are, from light to dark symbols, x1− x1s= 2.5, 3.5,
4.5, 5.5, 6.5 and 7.5h.

largest plume spreading at a given distance from the source. The observation that the
HS1 plume was wider than the HS2.5 plume is consistent with the fact that, although
the turbulence intensity at x1/h = 1 was lower than at 2.5, it increased to a peak
intensity that was higher than at 2.5 before decaying, hence exposing the scalar to an
overall more intense turbulence field. A similar, although more complex, logic may be
employed to explain why the HS1 plume was wider than the HS0 plume; whereas the
HS1 plume was exposed to strong turbulence from the start, spanwise sections of the
HS0 plume were exposed to no turbulence in the initial phase of plume development,
which essentially shifted the effective origin of the plume downstream. In summary,
our results demonstrate that there is an optimum position of the grid relative to the
plume source, which is likely to be somewhere around the HS1 location; we shall
revisit this issue later in the paper.

Now, let us compare the results for RG160 and FSG, which had approximately
the same values of L0 and the same solidity. Figure 9 shows clearly that, when the
source was placed downstream of the grid (HS1 and HS2.5), RG160 produced wider
plumes from their start to the last measuring station. This was predictable on intuitive
grounds, because the turbulence produced by RG160 in the measurement ranges was
stronger than that produced by FSG in both intensity and length scale. With the source
located upstream of the grid (HS-1 and HS0), the plume widths behind RG160 and
FSG were indistinguishable for (x1 − x1s)/h 6 2.75 for HS-1 and (x1 − x1s)/h 6 2 for
HS0. Further downstream, the plume spread more behind RG160 than behind FSG,
in the same manner as for the downstream source locations. One might reasonably
expect, however, that FSG would produce a marginally wider plume than RG160 in
the near field, a postulate which is compatible with physical intuition concerning the
effects of the second-, third- and fourth-level elements in FSG on the production of
turbulence and the spreading of the plume. Whereas the plume along the centreline in
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FIGURE 11. Streamwise variation of the Taylor diffusivity D for all the grids for the
HS2.5 case. Circles, squares, triangles and stars denote data for, respectively, FSG, RG160,
RG80 and RG18.

the near field of RG160 spread mainly by molecular diffusion, the plume behind FSG
was subjected to turbulent diffusion produced by the higher-level elements. As soon
as the smaller-scale turbulence of higher-level elements, however, started interacting
with the turbulence in the wakes of the first-order elements, it effectively broke down
the largest eddies and so it contributed to the faster decay in the far field of FSG
and the lower plume spreading rate. At first glance, the present findings appear to
contradict a past assertion that the SSU mechanism, which is activated by fractal
grids, generally enhances scalar diffusion (Suzuki et al. 2010a,b; Laizet & Vassilicos
2015). Nevertheless, a closer examination of the conditions in previous studies that
led to this assertion proves that this is not the case. These studies, which include both
experimental and numerical ones, found that scalar diffusion behind fractal grids was
more efficient than diffusion behind regular grids with mesh sizes that were much
smaller than the spacing L0 of the largest elements of the fractal grids. This finding
is identical to our own observation that FSG diffused the scalar more efficiently than
RG18. Our investigation is the first to compare scalar diffusion and mixing behind
a fractal grid and a regular grid with the same solidity and roughly the same mesh
size as the largest fractal element spacing, which we believe to be a more appropriate
comparison than those made in the past.

Thus far, we have justified our observations on the intuitive notion that turbulent
diffusion would generally be enhanced by increases in the turbulence intensity and the
size of energy containing eddies. The product of these two parameters is essentially
the (turbulent) Taylor diffusivity, which is a cornerstone of Taylor’s diffusion theory. It
seems therefore worthwhile to investigate the degree by which this simplified theory,
as outlined in § 2.2, may provide theoretical support for the present observations.
Representative examples of the Taylor diffusivity are presented in figure 11 for the
HS2.5 case, but it is noted that similar results for the other locations of the source
would lead to the same qualitative observations. For this figure, the Taylor diffusivity
was estimated as D= u′2L11,1/2, which introduces considerable uncertainty in view of
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FIGURE 12. Streamwise variation of the average Taylor diffusivities along the centreline
(solid line) and in the core of the test section (dashed line), for RG160 and a mixing
length of 7.5h.

a possible streamwise variation of the ratio L22,2/L11,1. Nevertheless, it is clear that
the Taylor diffusivity was largest for RG160, followed by FSG, RG80 and RG18,
and so followed the same order as the spreading of the thermal plume.

In view of the results shown in figure 11, we may now revisit the search for an
optimum position of the grid relative to the plume source. On intuitive grounds, we
may argue that the widest plume at a given distance from the source would be the
one that experienced the strongest turbulence cumulatively during its evolution. In
other words, one would expect that the grid that produced the highest average Taylor
diffusivity in the entire plume would also produce the largest spreading of the plume.
To test this hypothesis, we define the average centreline Taylor diffusivity at a location
that was 7.5h downstream of the source as

Dav,c(x1s)= 1
7.5h

∫ x1s+7.5h

x1s

D(x1)|x2=0 dx1. (5.1)

This average diffusivity is a function of the distance x1s between the grid and the
source and it is reminded that the origin of the coordinate system was on the grid
centreplane. To account for the transverse variation of the Taylor diffusivity, we may
further define an average Taylor diffusivity in the core of the test section as

Dav,core(x1s)= 1
7.5h

1
0.67h

∫ x1s+7.5h

x1s

∫ h/3

−h/3
D(x1, x2) dx2 dx1. (5.2)

Figure 12 shows both average diffusivities for RG160 as functions of grid location
in the range 1 6 x1s/h 6 2.5 and a mixing length of 7.5h (namely the part of the
plume in the range 0 6 (x1 − x1s)/h 6 7.5). We focused on this range of grid source
distances because it includes the peak of turbulence intensity (figure 5), which
complicates intuitive predictions. From the shapes of the two diffusivities, both of
which decreased monotonically with increasing x1s/h, we may infer that the optimal
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location of the grid relative to the source is likely to be in the range 0 < x1s/h < 1
and rather closer to 1 than to 0. It is worth mentioning that the same observations
were made when decreasing the mixing length to 5h, but further decrease to 2.5h
resulted in a peak of the centreline average Taylor diffusivity at approximately 1.5h,
but no such peak in the core average Taylor diffusivity. All things considered, we
may suggest that the optimal location of the grid was at about one test section height
upstream of the source.

5.2. Temperature fluctuations
As mentioned previously, all measured mean temperature profiles had essentially
Gaussian shapes and so their inspection can say little about the state of development
of the plume and the relative effects of initial conditions upon the scalar field. Scalar
fluctuation profiles are more sensitive indicators of the local state of the plume
than mean profiles. In both decaying grid turbulence and uniformly sheared flows,
transverse profiles of the variance of the temperature fluctuations downstream of a line
source have been known to exhibit dual peaks very close to the source (Warhaft 1984;
Stapountzis et al. 1986; Karnik & Tavoularis 1989). Slightly further downstream, the
two peaks gave way to a single one, but, as these plumes evolved further, the dual
peaks re-emerged. Karnik & Tavoularis (1989) attributed the emergence of dual peaks
near the two inflection points of the mean scalar profiles to the increasing actions
of gradient transport (see, for example, Sreenivasan, Tavoularis & Corrsin (1982)),
which became significant as the plume width became large by comparison to the local
turbulent length scale. The scalar field very close to the source was not of interest
in the present study and so we present no measurements in this range. On the other
hand, we examined carefully the dual peaks in the scalar fluctuations far from the
source, as their the presence could be viewed as an indicator for the existence of
a turbulent-diffusive range. In contrast to the line source plume, the plume of dye
injected from a point source in uniformly sheared flow never exhibited dual peaks, but
maintained a single peak of fluctuations along its centreline (Vanderwel & Tavoularis
2014); this phenomenon was associated with the extreme slenderness of that plume
with respect to the turbulent length scale.

Figure 13 shows representative transverse distributions of the variance θ 2 of the
temperature fluctuations, normalised with the local centreline value θ 2

c , for the three
larger grids and the thermal source located in the decaying region of the flow, i.e. for
the HS2.5 case. The transverse distance has been normalised with the plume width σ .
In the profiles that were closest to the source, the profiles had a single peak, but in
the remainder of the profiles dual peaks could be clearly seen.

Finally, in figure 14 we show the streamwise variations of the centreline values
of the mean temperature rise 1Tc, the standard deviation θ ′c of the temperature
fluctuations and the ratio between the two for the three larger grids with the thermal
source located at HS2.5. With the possible exception of regions very close to the
source, 1Tc was lowest behind RG160, followed by FSG and RG80, as expected by
considering the energy equation in a control volume surrounding the test section up
to the measuring plane and the fact that plume spreading was highest behind RG160,
followed by FSG and RG80. θ ′c followed the same order as 1Tc, which indicates
that RG160 produced better mixing than the other grids; we shall return to this issue
in the following section.

In all cases examined, the ratio θ ′c/1Tc decreased monotonically with distance
from the thermal source, and seemed to approach asymptotically constant values for
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FIGURE 13. Normalised transverse profiles of the mean squared temperature fluctuations
for (a) FSG, (b) RG160 and (c) RG80 at nine downstream locations of (x1 − x1s)/h =
0.75, 1.75, 2.50, 3.25, 4.00, 4.75, 5.50, 6.25 and 7.00. Curves shifted by one for each
downstream location. The thermal source is located at HS2.5 i.e. x1s = 2.5h.
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FIGURE 14. Streamwise variation of the centreline mean temperature rise 1Tc (open
symbols), root mean square of the temperature θ ′c (grey symbols) and the ratio between
these two values (solid symbols) for the FSG, RG160 and RG80 cases. The thermal source
is located at HS2.5 i.e. x1s = 2.5h.

10L0 . (x1 − x1s). For the HS2.5 case shown in figure 14, we found these values to
be approximately 0.41, 0.39 and 0.37 for RG80, FSG and RG160, respectively; we
also found that this ratio for RG18 approached an asymptote of about 0.6. Warhaft
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(1984) and Stapountzis et al. (1986) also found that θ ′c/1Tc approached asymptotes
at about 0.7 and 0.6, respectively. When we moved the thermal source closer to the
grid (case HS1), we found that the asymptotic values of θ ′c/1Tc slightly decreased for
all the grids (they were 0.25, 0.29, 0.30 and 0.58 for RG160, FSG, RG80 and RG18,
respectively); this trend is also in agreement with the results of Warhaft (1984). The
fact that this ratio reached constant values suggests that the scalar fields achieved
a form of self-similarity. The differences in the asymptotic values are attributed to
differences in the turbulence that the scalar fields experienced during their evolution.

5.3. Mixing of the temperature fields
The previous performance evaluations of the different grids were based on comparisons
of the spreads of the corresponding time-averaged plumes; the observed rankings may
not necessarily coincide with rankings based on the completeness of mixing of the
scalar fields. For example, consider an idealised plume that is free of relative diffusion,
namely, one that maintains the same instantaneous scalar profile as it wanders
transversely due to large-scale turbulent motions. The scalar in this plume would
remain unmixed, although the mean plume width would increase in the streamwise
direction. Therefore, it seems possible that, at least in principle, a turbulent field may
produce a larger mean plume spread and a lower mixedness than another field with
a different large-scale structure. A particular cause for concern in the present tests
is that the bars of RG160 were somewhat wider than the largest bars of FSG and
so were expected to shed stronger and larger vortices, which might be more likely
to trap warm fluid in their cores and impede its mixing with ambient fluid. The
level of mixedness at a particular location may be characterised by the appearance
of the local PDF of the scalar fluctuations. All other conditions being the same,
a relatively wide PDF would indicate poor mixing, whereas perfect mixing would
be characterised by a delta-function-like PDF. Another property that is important in
safety considerations is the maximum instantaneous value that the scalar may achieve
at a given location. This section provides comparisons of the PDF and maximum
local temperatures downstream of our grids. We performed two types of comparisons,
each of which may be relevant for different applications. One was to compare these
properties at a fixed distance from the source, which could be positioned at different
distances from the grid, and another was to compare the same properties at a fixed
distance from the grid, irrespective of the location of the source.

Figure 15 shows the PDF of the temperature rise 1T on the centrelines of the
plumes behind the three larger grids at x1≡ x1− x1s=7.5h and at x1=10h for the HS0,
HS1 and HS2.5 thermal source locations. Note that for the HS2.5 case, these particular
downstream locations are the same. In all cases, RG160 produced the narrowest PDF,
which is indicative of better mixing at the molecular level compared to the other
grids. It is also clear from these plots that the maximum instantaneous temperature
for RG160 was lower than that for FSG, especially for the HS2.5 case, for which the
scalar source was inserted in the DGT regions of both grids. As one would expect,
moving the thermal source closer to the grid increased the level of scalar mixing,
due to the higher turbulence levels that the scalar experienced. While comparing the
lowest instantaneous temperatures, one may wonder at the lack of data at the ambient
temperature (1T=0). It is noted that this does not necessarily mean that no fluid from
the unheated region of the flow reached the measurement position, because such fluid
would take considerable time to reach the plume centreline, during which it would be
warmed by conduction to its warmer surroundings (Behnamian 2015).
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FIGURE 15. Probability density functions of the instantaneous temperature rise at the
centrepoint of the plume for the thermal source located at HS0 (a,d), HS1 (b,e) and HS2.5
(c, f ). (a–c) Compares cases at the same distance from the source, whereas (d–f ) compares
cases at the same distance from the grid. Circles, squares and triangles denote data for,
respectively, FSG, RG160 and RG80.

In summary, all present results demonstrate that, in terms of scalar diffusion and
mixing, and for the specific transverse location of our thermal source, a regular
grid had a superior performance than a fractal grid with comparable geometrical
specifications.

6. Concluding remarks

In this paper, we have presented velocity and temperature measurements in passive
thermal plumes downstream of each of several turbulence generating grids (perforated
plates) having the same solidity and with the same upstream velocity. We used three
regular grids, having equally spaced square perforations with mesh sizes equal to
160 mm (RG160), 80 mm (RG80) and 18 mm (RG18), and one fractal grid (FSG)
with a spacing of its largest elements approximately equal to that of RG160.

In conformity with previous studies, we identified two distinct regions of decaying
grid turbulence: a DR-DGT, in which Cε ∝ Re−1

λ , and a fully developed region
(FRD-DGT), where Cε ≈ constant. A novel result of this study is that a regular grid
produced higher turbulence intensity than a fractal square grid with the same solidity
and largest element mesh size. We believe that this comparison is more meaningful
than past comparisons of the turbulent fields produced by regular and fractal grids
with approximately equal ‘effective’ mesh sizes, which were achieved by making the
mesh size of the regular grid much smaller than the largest element spacing of the
fractal grid. Our claim is supported by evidence that it is the largest element of the
grid that contributes the most to turbulence properties (Zhou et al. 2014).
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We have shown that the profiles of mean temperature rise in all plumes were
Gaussian shaped not only in FDR-DGT, but also in DR-DGT, including locations
where the mean velocity was non-uniform and the turbulence was transversely
inhomogeneous. This proves that the Gaussianity assumption for the mean temperature
profile is quite robust. We examined the effects of grid geometry and source location
(vis-à-vis the two regions of grid turbulence) on heat diffusion by placing the thermal
source at four locations relative to each grid; two of these were downstream, a third
one was upstream and a fourth one was nearly coincident with the grid. We found
that the thermal plume was spread the most by RG160 for all four thermal source
locations, followed by FSG, RG80 and RG18. These findings are consistent with
Taylor’s diffusion analysis, even for the upstream source location. Moreover, we were
able to show that the largest regular grid produced better mixing of the warm fluid
and lower maximum instantaneous local temperatures than either of the two smaller
regular grids, as well as our fractal grid.

In closing, we would like to reiterate that this work was motivated by the practical
need to design passive devices that would maximise turbulent diffusion and mixing
in ducts. We have so far examined only cases with a scalar released passively from
a line source into a flow and some standard designs of turbulence-generating grids;
nevertheless, our results, complemented by logical inference, allow us to suggest a
plausible optimal approach. Let us consider the common case of a scalar released
from a concentrated source (e.g. an injector) at a given location in a duct with a
given cross-sectional height and a given flow velocity. Our goal is to choose the
design, dimensions and location of a device that would maximise scalar diffusion and
mixing in the intermediate and far fields. Our observations suggest that such a device
would be one that generates the largest product of turbulence intensity and integral
length scale, in other words the Taylor diffusivity. It is common knowledge that the
characteristics of turbulence produced by a regular grid would depend on several of
its geometrical features. Although in our study we kept most of these features the
same for all our test grids, we are confident that our main conclusions would not have
changed, had we performed parametric tests by varying the solidity, thickness or other
geometrical features of the grids. For example, the turbulence intensity is known to
increase with an increase in solidity up to a certain limit (Roach 1987). So, it seems
likely that a regular grid would produce stronger turbulence than another with a lower
solidity and a somewhat larger mesh size. This does not mean that one should prefer
the first grid, but rather that, to maximise turbulence, one should use the grid with
the largest mesh that fits in the given facility and the highest tolerable solidity (in
terms of pressure losses and flow stability, see Corrsin (1963)). The same logic applies
to grid design (for example, whether to use a perforated plate or an array of bars
with a circular or cylindrical cross-section etc.), as one can optimise independently
each geometrical feature for each design and select the case that produces the best
mixing. All available evidence indicates that this approach can also be applied to
fractal grids, but our experimental findings indicate that such a grid would not likely
have a mixing performance that would be superior to that of the optimal regular grid.
In consideration of all previous observations, our choice of optimal device would be
a regular square grid with a mesh size that is approximately equal to half the duct
size, a solidity that is approximately 0.40–0.45 (depending on the thickness and other
geometrical features of the grid), and positioned at about one duct height downstream
of the source.
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