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Asymptotics of Hele-Shaw flows with
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We study the asymptotic behaviour of a Hele-Shaw flow produced by the injection of
fluid from a finite number of points at different speeds. We prove that, as time tends
to infinity, the boundary of the fluid domain approaches the circle centred at the
barycentre of the injection points with weights proportional to the injection rates.
The distances from the barycentre to the boundary points are estimated from both
above and below.

1. Introduction

Hele-Shaw flows are viscous fluid flows in an experimental device that consists of two
closely placed parallel plates. Since the gap between two plates is sufficiently narrow,
one can regard them as two-dimensional flows. One of the significant features of the
Hele-Shaw flow is that the flow, despite being viscous fluid flow, is characterized
as a two-dimensional potential flow with its potential being the pressure of the
fluid [9, pp. 581–582].

We consider a Hele-Shaw flow produced by the injection of incompressible viscous
fluid into the device from multiple points. Let the fluid initially occupy a bounded
domain Ω(0) ⊂ C and let c1, . . . , cl ∈ Ω(0) be the injection points. From each point
cj , more fluid is injected at the rate αj > 0 per unit time. The fluid domain at time
t > 0 is denoted by Ω(t) and its boundary by ∂Ω(t). We write n for the unit outer
normal vector to ∂Ω(t). To formulate the mathematical problem we now introduce a
function T that is defined by T (z) := inf{t � 0 | z ∈ Ω(t)} for each z ∈ C, i.e. T (z)
denotes the first time when the boundary ∂Ω(t) touches z. Let p = p(z, t) be the
pressure of the fluid at position z = x + iy ∈ Ω(t) and time t > 0, where i =

√
−1.

By the theory of Hele-Shaw flows (see, for example, [7, 11]), p and T are assumed
to satisfy the following equation and boundary conditions:

−∆p =
l∑

j=1

αjδcj
for z ∈ Ω(t), t > 0; (1.1)

p = 0 for z ∈ ∂Ω(t), t > 0; (1.2)

∂p

∂n

∂T

∂n
= −1 for z ∈ ∂Ω(t), t > 0, (1.3)
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where ∆ := ∂2/∂x2 + ∂2/∂y2 is the Laplacian in R2 and δc is the Dirac measure
at c. From (1.1) and (1.2), for each time t > 0 the function p can be represented by

p(z, t) =
l∑

j=1

αjGcj ,Ω(t)(z) for z ∈ Ω(t), (1.4)

where Gcj ,Ω(t) is the Green’s function of Ω(t) for the Laplacian under the homo-
geneous Dirichlet boundary condition with pole at cj . By substituting (1.4) into
(1.3), we obtain

( l∑
j=1

αj

∂Gcj ,Ω(t)

∂n

)
∂T

∂n
= −1 for z ∈ ∂Ω(t), t > 0. (1.5)

Thus, the Hele-Shaw problem is characterized by finding a monotone increasing
family of domains {Ω(t)}t>0 with smooth boundaries such that the corresponding
function T is smooth and satisfies (1.5). We call such a family {Ω(t)}t>0 a classical
solution of the Hele-Shaw problem [13, § 13].

The problem has been investigated by many researchers with different methods.
Elliott and Janovský [2] adopted a variational inequality approach to the Hele-
Shaw problem and proved the global-in-time existence and the uniqueness of a
weak solution. Sakai [13, 14] developed the theory of quadrature domains [6] and
applied it to the Hele-Shaw problem to obtain the existence and the uniqueness of
a weak solution and its several properties. With this approach, Sakai [16] was able
to obtain an estimate for the distances from a fixed point to the boundary points
of Ω(t), which is stated as follows: let Ω(0) ⊂ D(c, r) and

t
l∑

j=1

αj + m(Ω(0)) � 4πr2,

where D(c, r) denotes the disc of radius r with centre c and m two-dimensional
Lebesgue measure. Then it holds that√√√√ t

π

l∑
j=1

αj +
m(Ω(0))

π
− r � |z − c| �

√√√√ t

π

l∑
j=1

αj +
m(Ω(0))

π
+ r (1.6)

for all z ∈ ∂Ω(t), t > 0. As a matter of fact, Sakai proved this result as a more
general estimate on quadrature domains, which we will define in the next section.
By the estimate (1.6), we see that

max
z∈∂Ω(t)

|z − c| − min
z∈∂Ω(t)

|z − c| � 2r.

Another approach was taken by Escher and Simonett [3]. They converted the prob-
lem into a nonlinear evolution equation on a fixed domain and constructed a unique
classical solution locally in time. Following this approach, in the case of a single
injection point, Vondenhoff [18] recently proved the existence of a classical solution
globally in time when the initial domain is sufficiently close to a disc centred at
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the injection point. Detailed information on the asymptotic behaviour of the Hele-
Shaw flow was also obtained by means of spectral analysis. However, the method of
spectral analysis [3,18] seems to need non-trivial refinement in the case of multiple
injection points in order to study the asymptotic behaviour, since it depends on
the linearization of the evolution operator around an explicit solution.

We are interested in the shape of the interface ∂Ω(t) of the Hele-Shaw flow
for sufficiently large time t > 0. To treat general domains we work within the
framework of quadrature domains. In particular, we do not impose any restriction
on the smoothness or the connectivity of the initial domain. We present a precise
estimate for the asymptotic behaviour of the interface of the Hele-Shaw flow in
the case when l � 2, in terms of the distances from a fixed point to the boundary
points of Ω(t). To state our main theorem, we introduce the following important
quantities:

wl :=

∑l
j=1 αjcj∑l
j=1 αj

, (1.7)

r0 := inf{r � 0 | Ω(0) ⊂ D(c, r) for some c ∈ C}, (1.8)

Λ :=
√

π∑l
j=1 αj

min
σ∈Sl

( l∑
k=2

ασ(k)
∑k−1

j=1 ασ(j)

(
∑k

j=1 ασ(j))2

∣∣∣∣
∑k−1

j=1 ασ(j)cσ(j)∑k−1
j=1 ασ(j)

− cσ(k)

∣∣∣∣
2)

, (1.9)

where the minimum is taken over the symmetric group Sl on the finite set {1, . . . , l}.
Note that wl is the barycentre of the injection points c1, . . . , cl with weights propor-
tional to the respective injection rates α1, . . . , αl, and r0 is the smallest one among
the radii of all discs containing Ω(0). The following is the main result in this paper.

Theorem 1.1. Let Ω(0), cj and αj be as in the above setting and define wl, r0
and Λ by (1.7), (1.8) and (1.9), respectively. Suppose that {Ω(t)}t>0 is a classical
solution of the Hele-Shaw problem. Then there exist non-negative functions ε−(t)
and ε+(t) such that the inequality√√√√ t

π

l∑
j=1

αj − ε−(t) � |z − wl| �

√√√√ t

π

l∑
j=1

αj + ε+(t) (1.10)

holds for all z ∈ ∂Ω(t), t > 0, and they have the following asymptotic behaviour:

ε−(t) = Λt−1/2 + O(t−1),

ε+(t) =
(

Λ +
r0

2

2

√
π∑l

j=1 αj

)
t−1/2 + O(t−1)

⎫⎪⎪⎬
⎪⎪⎭ (1.11)

as t → ∞.

By the estimate (1.10), we have

max
z∈∂Ω(t)

|z − wl| − min
z∈∂Ω(t)

|z − wl| � ε+(t) + ε−(t) = O(t−1/2) as t → ∞.
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Therefore, for the Hele-Shaw flow with multiple injection points we see that the
interface ∂Ω(t) of the fluid domain approaches the circle centred at the barycentre
wl as t → ∞.

This paper is organized as follows. In § 2 we observe that a classical solution
of the Hele-Shaw problem (1.5) satisfies an integral inequality for subharmonic
functions. By the inequality, Ω(t) can be regarded as a quadrature domain of a
positive measure, so we will be concerned with the shapes of quadrature domains
in subsequent sections. The definition of quadrature domains and their elementary
properties are also presented. In § 3 we introduce the notion of the Schwarz function
and show relations between the Schwarz function and quadrature domains. We see
that the problem of finding a certain quadrature domain can be reduced to the
construction of a domain with the corresponding Schwarz function. Section 4 deals
with the quadrature domain of the two Dirac measures. We construct rational
mappings which map the unit disc onto the quadrature domains by means of the
Schwarz functions. With the rational mappings we can estimate the distances from
a certain point to the boundary points of each quadrature domain. The estimate is
the key to the proof of theorem 1.1. In § 5 we complete the proof of theorem 1.1 by
induction on l, after proving some technical lemmas.

2. Weak formulation and quadrature domains

In equation (1.5), the smoothness of the boundary ∂Ω(t) and of the function T
is required. This is a difficulty in dealing with equation (1.5). Following [13] we
generalize the notion of classical solution so that it does not require any regularity
of the boundary. Let {Ω(t)}t>0 be a classical solution of the Hele-Shaw problem.
Then, for any subharmonic function s defined in Ω(t) which is integrable with
respect to Lebesgue measure m, we see that∫

Ω(t)\Ω(0)
s dm =

∫ t

0

∫
∂Ω(τ)

s
1

∂T/∂n
dσ dτ

=
l∑

j=1

αj

∫ t

0

∫
∂Ω(τ)

s

(
−

∂Gcj ,Ω(τ)

∂n

)
dσ dτ

�
l∑

j=1

αj

∫ t

0
s(cj) dτ = t

l∑
j=1

αjs(cj).

Therefore, any classical solution {Ω(t)}t>0 satisfies, for each t > 0,

∫
Ω(0)

s dm + t

l∑
j=1

αjs(cj) �
∫

Ω(t)
s dm (2.1)

for all integrable subharmonic functions s defined in Ω(t). In particular, since the
constant functions s = ±1 are integrable and subharmonic in Ω(t), we have

m(Ω(t)) = t
l∑

j=1

αj + m(Ω(0)). (2.2)
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In general, for a given finite (positive Borel) measure ν with compact support, a
bounded open set Ω is called a quadrature domain of ν for subharmonic functions
if ν(C \ Ω) = 0 and ∫

s dν �
∫

Ω

s dm

holds for all integrable subharmonic functions s defined in Ω. Quadrature domains
for harmonic functions and for analytic functions are defined in the same way, but
we take equality instead of inequality in these definitions. From (2.1), for a classical
solution {Ω(t)}t>0 of the Hele-Shaw problem, each Ω(t) can be interpreted as a
quadrature domain of the measure

χΩ(0) + t

l∑
j=1

αjδcj

for subharmonic functions, where χΩ(0) denotes the characteristic function of Ω(0)
and we regard it as the measure χΩ(0)m.

Here we summarize some elementary properties of quadrature domains [13, §§ 1–
3].

(i) A quadrature domain for subharmonic functions is also one for harmonic
functions. A quadrature domain for harmonic functions is also one for analytic
functions.

(ii) For any finite measure ν which is singular with respect to m, there exists a
quadrature domain of ν for subharmonic functions. For any finite measure ν
being of the form ν = χΩ +µ, where Ω is a bounded domain and µ is a finite
measure satisfying µ(Ω) > 0 and µ(C \ Ω) = 0, there exists a quadrature
domain of ν for subharmonic functions.

(iii) If a measure ν satisfies one of the conditions in (ii), then a quadrature
domain of ν for subharmonic functions is uniquely determined up to a null set
with respect to m. Moreover, the minimum quadrature domain Ω(ν) exists,
i.e. Ω(ν) ⊂ Ω holds for all quadrature domains Ω of ν for subharmonic func-
tions.

(iv) If measures ν1 and ν2 satisfy one of the conditions in (ii) and ν1 � ν2, then
Ω(ν1) ⊂ Ω(ν2).

(v) For α > 0 and c ∈ C, a quadrature domain of the measure αδc for subharmonic
(also for harmonic and for analytic) functions is uniquely determined and is
equal to D(c,

√
α/π).

By the above properties of quadrature domains we see that, for each t > 0, there
exists the minimum quadrature domain of the measure

χΩ(0) + t

l∑
j=1

αjδcj
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for subharmonic functions. Sakai [13] defined a weak solution of the Hele-Shaw
problem as the family of the minimum quadrature domains

{
Ω

(
χΩ(0) + t

l∑
j=1

αjδcj

)}
t>0

.

There is another weak solution that is defined by using variational inequalities [2,4],
but it was proved by Sakai [14] that these two weak solutions are equivalent. In the
rest of the paper we work within the framework of quadrature domains and estimate
them to prove theorem 1.1. One of the advantages of dealing with quadrature
domains is that we do not need to be concerned about the smoothness of the free
boundary ∂Ω(t) or topological changes of the domains {Ω(t)}t>0.

We conclude this section with an easy consequence of the above-mentioned prop-
erties of quadrature domains. The following proposition corresponds to the asymp-
totic behaviour of a Hele-Shaw flow with a single point source.

Proposition 2.1. Let Ω(0) be a bounded domain with Ω(0) ⊂ D(c, r), where c ∈
Ω(0) and r > 0, and let Ω(t) be a quadrature domain of the measure χΩ(0) + tδc

for subharmonic functions. Then the inequality√
t

π
� |z − c| �

√
r2 +

t

π
(2.3)

holds for all z ∈ ∂Ω(t), t > 0.

Proof. Let Ω(tδc), Ω(χΩ(0) + tδc) and Ω(χD(c,r) + tδc) be the minimum quadrature
domains of the measures tδc, χΩ(0)+tδc and χD(c,r)+tδc for subharmonic functions,
respectively. Then we have

Ω(tδc) ⊂ Ω(χΩ(0) + tδc) ⊂ Ω(χD(c,r) + tδc). (2.4)

Note that Ω(tδc) = D(c,
√

t/π) by property (v) of quadrature domains. On the
other hand, since

(πr2 + t)s(c) �
∫

D(c,r)
s dm + ts(c) �

∫
Ω(χD(c,r)+tδc)

s dm

holds for any integrable subharmonic function s defined in Ω(χD(c,r) + tδc), the
domain Ω(χD(c,r) + tδc) is a quadrature domain of the measure (πr2 + t)δc for sub-
harmonic functions. Hence, we have Ω(χD(c,r) + tδc) = D(c,

√
r2 + t/π). Therefore,

(2.4) is equivalent to the estimate

D

(
c,

√
t

π

)
⊂ Ω(χΩ(0) + tδc) ⊂ D

(
c,

√
r2 +

t

π

)
, (2.5)

which shows (2.3) for Ω(t) = Ω(χΩ(0) + tδc).
Let Ω(t) be any quadrature domain of χΩ(0) + tδc for subharmonic functions.

Then, by (2.5) we see that D(c,
√

t/π) ⊂ Ω(t). Let us prove

Ω(t) ⊂ D(c,
√

r2 + t/π).
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Assume the contrary. Then there exists an open disc D �= ∅ such that D ∈ Ω(t) \
D(c,

√
r2 + t/π). Hence, m(Ω(t) \ Ω(χΩ(0) + tδc)) � m(D) > 0. This contradicts

the uniqueness of quadrature domains for subharmonic functions. Therefore, (2.3)
holds for any quadrature domain Ω(t).

Note that
√

r2 + t/π −
√

t/π = (r2√π/2)t−1/2 + O(t−3/2) as t → ∞. Thus, for
the Hele-Shaw problem with one injection point c, the boundary ∂Ω(t) of the fluid
domain approaches the disc centred at c as t → ∞. An essential fact that we have
used in the proof of proposition 2.1 is that a quadrature domain of the measure αδc

is uniquely and explicitly determined as the disc D(c,
√

α/π). This indicates that
an explicit representation of the quadrature domains of the measure t

∑l
j=1 αjδcj

for subharmonic functions is the key to proving theorem 1.1.

3. The Schwarz function

To prove theorem 1.1, as a first step, we construct an explicit representation of
the minimum quadrature domain of the measure π(αδi + βδ−i) for subharmonic
functions, where α, β > 0. It will be given as a univalent rational mapping from
the unit disc onto the quadrature domain, and we estimate the distances from the
barycentre (α−β)i/(α+β) to the boundary points of the quadrature domain. The
construction of the rational mapping and its estimate will be discussed in the next
section.

Let us introduce the notion of the Schwarz function. The Schwarz function S =
S(z) of a curve Γ is defined as a holomorphic function on a neighbourhood of Γ
which satisfies

S(z) = z̄ for z ∈ Γ,

where z̄ is the complex conjugate of z. Note that the Schwarz function of Γ is
uniquely determined for a given curve Γ by its analyticity.

Let us explain how the Schwarz function relates to quadrature domains (see [1,
ch. 14] and [17, ch. 3]). Let Ω ⊂ C be a bounded domain with smooth boundary
and let f be a holomorphic function in a neighbourhood of Ω̄, where Ω̄ denotes the
closure of Ω. By the analyticity of f and Stokes’s theorem, we see that∫

Ω

f dm =
1
2i

∫
∂Ω

f(z)z̄ dz,

where ∂Ω is positively oriented. Now assume that there exists the Schwarz function
S of ∂Ω and that it can be extended to a holomorphic function in Ω \ {c1, . . . , cl}
such that cj ∈ Ω is a simple pole with residue tαj/π for j = 1, . . . , l. Then we have

∫
∂Ω

f(z)z̄ dz =
∫

∂Ω

f(z)S(z) dz = 2it
l∑

j=1

αjf(cj).

Thus, ∫
Ω

f dm = t

l∑
j=1

αjf(cj) (3.1)
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holds for all holomorphic functions f defined in a neighbourhood of Ω̄. From (3.1), Ω
is expected to be a quadrature domain of the measure t

∑l
j=1 αjδcj for subharmonic

functions.
To obtain such a candidate for the quadrature domain, we therefore find a domain

Ω such that the Schwarz function of ∂Ω has simple poles at c1, . . . , cl ∈ Ω with
respective residues tα1/π, . . . , tαl/π. As we will see later, the domain Ω that we
found is, in fact, a quadrature domain of the measure t

∑l
j=1 αjδcj

for subharmonic
functions. In order to find such a domain Ω, we assume that Ω can be represented
as the image of the unit disc D(0, 1) by a rational function ϕ, i.e. Ω = ϕ(D(0, 1)),
where ϕ is holomorphic and injective in a neighbourhood of D(0, 1). Then the
Schwarz function of ∂Ω is given by

S(z) := ϕ

(
1

ϕ−1(z)

)
for z in a neighbourhood of ∂Ω. (3.2)

Moreover, if ϕ has only the simple poles at w1, . . . , wl ∈ (C ∪ {∞}) \ D(0, 1), then S
can be meromorphically extended into Ω with simple poles at ϕ(1/w1), . . . , ϕ(1/wl).
Hence, our task is to choose a rational function ϕ appropriately so that ϕ(1/wj) = cj

and that the residue of the corresponding function S at cj is tαj/π.
However, in general it is quite difficult to construct such a rational function ϕ.

In particular, for l � 3, there are infinitely many possibilities of the disposition of
c1, . . . , cl. As we will see later, in the case when l = 2, by using translation, rotation
and dilation we only have to consider the case where c1 = i and c2 = −i.

4. Quadrature domains of two point masses

In this section we deal with quadrature domains of the measure π(αδi +βδ−i). Note
that the measure π(αδi +βδ−i) corresponds to a Hele-Shaw flow with two injection
points. When the injection rates are the same, i.e. α = β, Richardson [12] showed
that the interface of the Hele-Shaw flow is a curve formed by inverting an ellipse
with respect to the unit circle. Such a curve is called an elliptic lemniscate of Booth,
which is named after the Reverend James Booth. Here we are also concerned with
the case α �= β.

In chapter 3 of [17], the rational function ϕ0(w) := 2Rw/(w2 + R2), R > 1, is
used to construct such a quadrature domain. To treat the case where α �= β we
introduce a new rational function ϕ defined by

ϕ(w) = ϕa,R,η(w) :=
aR(w − iη)
w2 + R2 + ηR. (4.1)

Here, the function ϕ = ϕa,R,η is parametrized by a > 0, R > 1 and η ∈ R. For
given α, β > 0, we choose a, R and η appropriately so that the domain Ω(a, R, η) :=
ϕa,R,η(D(0, 1)) is a quadrature domain of the measure π(αδi + βδ−i).

4.1. Construction of a rational mapping

Lemma 4.1. Let α and β be positive numbers such that α + β is sufficiently large.
Then, by taking some a > 0, R > 1 and η ∈ R and defining a rational function
ϕ by (4.1), the Schwarz function S of ∂Ω(a, R, η), where Ω(a, R, η) := ϕ(D(0, 1)),
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is meromorphic in a neighbourhood of Ω(a, R, η) having only simple poles at i, −i
with residues α and β, respectively.

Proof. Step 1. We determine a > 0, R > 1 and η ∈ R after some observations.
For the time being let us assume that ϕ is holomorphic and injective in the disc
D(0, 2). Then the Schwarz function S is given by (3.2). Since ϕ has two simple poles
at ±iR, the function S is meromorphic in Ω(a, R, η) with only two simple poles at

ϕ

(
1

∓iR

)
=

iaR2(±1 − ηR)
R4 − 1

+ iηR.

Hence, we take a > 0 to be (R4 − 1)/R2 so that the poles of S are at ±i. Let us
calculate the residues of S at ±i. Now we have a parametric representation of S as
follows:

z = ϕ(w), S(z) = S̃(w), w ∈ D(0, 2),

where

S̃(w) = ϕ

(
1
w̄

)
=

R4 − 1
R

w + iηw2

w2R2 + 1
.

By some computations we see that if S̃ has a simple pole at w0 with residue ρ, then
S has a simple pole at ϕ(w0) with residue ρϕ′(w0). In the present case, w0 = ±iR−1,
ρ = (R4 − 1)(R ∓ η)/(2R4) and

ϕ(w0) = ±i,

ϕ′(w0) =
R(R4 ∓ 2ηR + 1)

R4 − 1
,

ρϕ′(w0) =
1

2R3 (R5 + R + 2η2R ∓ ηR4 ∓ η ∓ 2ηR2).

Therefore, S has simple poles at ±i with residues

ρ1 :=
1

2R3 (R5 + R + 2η2R − ηR4 − η − 2ηR2),

ρ2 :=
1

2R3 (R5 + R + 2η2R + ηR4 + η + 2ηR2),

respectively.

Step 2. By the above observations, for given α, β > 0 we choose R > 2 and η ∈ R

appropriately so that ρ1 = α, ρ2 = β and so that ϕ is injective in the disc D(0, 2).
This means that we have to solve the following system of equations:

α + β = ρ1 + ρ2 =
1

R2 (R4 + 1 + 2η2); (4.2)

β − α = ρ2 − ρ1 =
η

R3 (R2 + 1)2 (4.3)

for R and η. By (4.3),

η =
(β − α)R3

(R2 + 1)2
. (4.4)
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Substituting (4.4) into (4.2), we see that

(α + β)R2 = R4 + 1 +
2(α − β)2R6

(R2 + 1)4
. (4.5)

Let us solve the algebraic equation (4.5) for R, and then substitute a solution R
into (4.4) to obtain η. Dividing both sides of equation (4.5) by R2 gives us

α + β = (R + R−1)2 − 2 +
2(α − β)2

(R + R−1)4
.

Putting x := (R + R−1)2 into the above equation, we have the cubic equation

x3 − (2 + α + β)x2 + 2(α − β)2 = 0. (4.6)

Moreover, we set ξ := x − (α + β + 2)/3 and substitute it into (4.6), obtaining

ξ3 + 3pξ + 2q = 0, (4.7)

where

p = − (α + β + 2)2

9
and q =

−(α + β + 2)3 + 27(α − β)2

27
.

According to Cardano’s method for solving cubic equations, if q2 + p3 � 0, the
solutions of (4.7) can be represented as follows:

ξ1 := 2 3
√

r cos
θ

3
, ξ2 := 2 3

√
r cos

θ + 2π

3
, ξ3 := 2 3

√
r cos

θ + 4π

3
,

where r > 0 and −π < θ � π are defined by eiθ = −q +
√

q2 + p3. Observe that,
for α, β > 0,

272(q2 + p3) = (−(α + β + 2)3 + 27(α − β)2)2 − (α + β + 2)6

= 27(α − β)2(−2(α + β + 2)3 + 27(α − β)2)

� 27(α − β)2 max
λ�0

(−2(λ + 2)3 + 27λ2)

= 0

by simple computations. We also have

r = | − q +
√

q2 + p3| =
√

q2 − (q2 + p3) =
√

−p3 =
(α + β + 2)3

27

and

cos θ = −q

r
=

(α + β + 2)3 − 27(α − β)2

(α + β + 2)3
= 1 − 27(α − β)2

(α + β + 2)3
,

so that

0 � 1 − cos
θ

3
� 1 − cos θ =

27(α − β)2

(α + β + 2)3
.
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Thus, the solution ξ1 of (4.7) satisfies

0 � 2(α + β + 2)
3

− ξ1 � 18(α − β)2

(α + β + 2)2

and, consequently, x1 := ξ1 + (α + β + 2)/3, a solution of (4.6), satisfies

0 � α + β − (x1 − 2) � 18(α − β)2

(α + β + 2)2
� 18. (4.8)

When α + β > 0 is sufficiently large, the solution x1 is a large positive number and
satisfies

0 �
√

α + β −
√

x1 − 2 � 9√
x1 − 2

� 9√
α + β − 18

.

Now we define R > 2 by

R :=
√

x1 +
√

x1 − 4
2

. (4.9)

Then R satisfies equation (4.5) and the following estimate:

0 �
√

α + β − R

= (
√

α + β −
√

x1 − 2) +
(√

x1 − 2 −
√

x1 +
√

x1 − 4
2

)

� (
√

α + β −
√

x1 − 2) +
1
2

(
− 1

√
x1

+
1√

x1 − 4

)

� 9√
α + β − 18

+
1

2
√

α + β − 20
. (4.10)

In particular,

R =
√

α + β + O

(
1√

α + β

)
as α + β → ∞. (4.11)

By using R defined by (4.9), we define η by (4.4). Then R and η solve the system
of equations (4.2), (4.3). Note that

η =
(β − α)R

(R + R−1)2

=
(β − α)R

x1
=

(β − α)(
√

α + β + O(1/
√

α + β))
α + β + O(1)

= (β − α)
{

1√
α + β

+ O((α + β)−3/2)
}

as α + β → ∞. (4.12)

Step 3. We are now in a position to prove the injectivity of ϕ in D(0, 2) when α+β
is sufficiently large. Suppose that ϕ(w1) = ϕ(w2) with w1, w2 ∈ D(0, 2). Then

(w1 − iη)(w2
2 + R2) = (w2 − iη)(w2

1 + R2),

and hence

(w1 − w2)(R2 + iη(w1 + w2) − w1w2) = 0. (4.13)
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However, by (4.11) and (4.12),

|R2 + iη(w1 + w2) − w1w2| � R2 − |iη(w1 + w2) − w1w2|
= α + β + O(

√
α + β) as α + β → ∞.

Therefore, from (4.13) it follows that w1 = w2 if α + β is sufficiently large. Conse-
quently, ϕ is injective in D(0, 2). Thus, when α+β is sufficiently large, by choosing
a, η ∈ R and R > 2 as above, we have shown that the Schwarz function S of
∂Ω(a, R, η) satisfies the desired conditions.

Remark 4.2. We make some observations on the shapes of the domains Ω(a, R, η)
constructed in lemma 4.1. From Ω(a, R, η) = ϕ(D(0, 1)) we can see that Ω(a, R, η)
is a simply connected bounded domain with analytic boundary. We also observe
that Ω(a, R, η) is symmetric with respect to the imaginary axis, i.e. if X + iY ∈
Ω(a, R, η), then −X + iY ∈ Ω(a, R, η). Indeed, substituting w = x + iy into (4.1)
yields

ϕ(x + iy)

=
aR(x + iy − iη)
(x + iy)2 + R2 + iηR

=
aR(x + i(y − η))

x2 − y2 + R2 + 2ixy
+ iηR

=
aR{x(x2 − y2 + R2 + 2y(y − η)) + i((x2 − y2 + R2)(y − η) − 2x2y)}

(x2 − y2 + R2)2 + 4x2y2 + iηR,

so that

Re ϕ(x + iy) =
aRx(x2 − y2 + R2 + 2y(y − η))

(x2 − y2 + R2)2 + 4x2y2 ,

Im ϕ(x + iy) =
aR((x2 − y2 + R2)(y − η) − 2x2y)

(x2 − y2 + R2)2 + 4x2y2 + ηR.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.14)

For any X + iY ∈ Ω(a, R, η), there exists x + iy ∈ D(0, 1) such that ϕ(x + iy) =
X + iY . Then, by (4.14) we see that ϕ(−x + iy) = −X + iY , which implies that
−X + iY ∈ Ω(a, R, η).

By virtue of lemma 4.1 we see that the domain Ω(a, R, η) satisfies∫
Ω(a,R,η)

f dm = παf(i) + πβf(−i) (4.15)

for all holomorphic functions f defined in a neighbourhood of Ω(a, R, η). Now we
confirm that the domain Ω(a, R, η) is indeed a quadrature domain for subharmonic
functions.

Lemma 4.3. Let α and β be positive numbers such that α + β is sufficiently large.
Then the domain Ω(a, R, η) constructed in lemma 4.1 is a unique quadrature do-
main of the measure π(αδi + βδ−i) for subharmonic functions.
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Proof. First we prove that Ω(a, R, η) is a quadrature domain of the measure π(αδi+
βδ−i) for harmonic functions. Let h be a harmonic function defined in a neighbour-
hood of Ω(a, R, η). Choosing ε > 0 so small that h is harmonic in the simply
connected domain ϕ(D(0, 1+ε)), we see that there exists a holomorphic function f
defined in ϕ(D(0, 1 + ε)) whose real part is h. Then the function f satisfies (4.15).
Taking the real part of each side of (4.15), we have∫

Ω(a,R,η)
h dm = παh(i) + πβh(−i). (4.16)

According to the approximation theorem by Sakai [13, lemma 7.3], any integrable
harmonic function h defined in Ω(a, R, η) can be approximated in L1(Ω(a, R, η))
by some linear combinations of Re(1/(· − ζ)), Im(1/(· − ζ)) and log | · −ζ| with
ζ ∈ C \ Ω(a, R, η). Hence, we only have to check that equality (4.16) holds for
Re(1/(· − ζ)), Im(1/(· − ζ)) and log | · −ζ| for ζ ∈ C \ Ω(a, R, η). When ζ ∈ C \
Ω(a, R, η), it follows from the argument in the previous paragraph. So we will prove
it for ζ ∈ ∂Ω(a, R, η).

By the smoothness of ∂Ω(a, R, η), we can take an open right-spherical cone Vζ

with vertex ζ, angle 0 < 2ψ < π and height ρ which lies in C \ Ω(a, R, η). Then, by
taking a sequence {ζj} on the axis of Vζ such that ζj → ζ, we have∫

Ω(a,R,η)

∣∣∣∣ Re
(

1
z − ζj

)
− Re

(
1

z − ζ

)∣∣∣∣ dm(z) → 0 as j → ∞. (4.17)

To verify this we may assume ζj ∈ D(ζ, 1
2ρ). Then, from |z − ζ| � |z − ζj |+ |ζj − ζ|,

it follows that

1
|z − ζj |

� 1
|z − ζ| +

|ζj − ζ|
|z − ζ||z − ζj |

� 1
|z − ζ|

(
1 +

1
sin ψ

)
for z ∈ Ω(a, R, η).

(4.18)
Hence, by Lebesgue’s convergence theorem, (4.17) holds. By (4.17) we see that
(4.16) holds for h(z) = Re(1/(z − ζ)) with ζ ∈ ∂Ω(a, R, η). The same argument
shows that (4.16) holds also for Im(1/(z − ζ)) and log |z − ζ| with ζ ∈ ∂Ω(t, α).
Here we have used the fact that

− log |z − ζj | � − log |z − ζ| + log
(

1 +
1

sin ψ

)
for z ∈ Ω(a, R, η),

which is deduced from (4.18).
By now we have shown that Ω(a, R, η) is a quadrature domain of π(αδi+βδ−i) for

harmonic functions. Next we show that Ω(a, R, η) is, in fact, a unique quadrature
domain for subharmonic functions. As has been mentioned in the previous section,
there exists the minimum quadrature domain of π(αδi + βδ−i) for subharmonic
functions. We denote it by Ω0 and show that Ω(a, R, η) = Ω0. Since Ω0 is also
a quadrature domain for harmonic functions, it suffices to show the uniqueness of
quadrature domains of π(αδi + βδ−i) for harmonic functions.

The following fact is due to [13] (see also [17, proposition 4.8 and theorem 4.9]
for the proof). Let ν be a finite measure whose support is a compact subset of a
line L in C. If there exists a quadrature domain Ω of the measure ν for harmonic
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functions which satisfies the following conditions, then Ω is a unique quadrature
domain of ν for harmonic functions:

(i) C \ Ω̄ is connected;

(ii) the interior of Ω̄ is identical with Ω;

(iii) Ω is symmetric with respect to L;

(iv) the support of ν is contained in L ∩ Ω.

Since the domain Ω(a, R, η) and the measure π(αδi +βδ−i) satisfy conditions (i)–
(iv) with L being the imaginary axis, we see that Ω(a, R, η) is a unique quadrature
domain of π(αδi + βδ−i) for harmonic functions. Therefore, Ω(a, R, η) = Ω0 and
hence Ω(a, R, η) is a unique quadrature domain of π(αδi + βδ−i) for subharmonic
functions.

4.2. Estimates of quadrature domains

By lemma 4.3 we see that a unique quadrature domain Ω(α, β) of the measure
π(αδi + βδ−i) for subharmonic functions is represented by

Ω(α, β) = ϕa,R,η(D(0, 1)).

On the other hand, a > 0, R > 1 and η ∈ R are estimated in the proof of lemma 4.1.
In the following theorem, we proceed to the calculation of the distance from the
point (α−β)i/(α+β) to a boundary point z ∈ ∂Ω(α, β) and obtain the asymptotics
of the quadrature domain Ω(α, β) when (α + β) min{α, β} → ∞. Note that√

(α + β) min{α, β} � α + β.

Hence, (α + β) min{α, β} → ∞ implies α + β → ∞.

Theorem 4.4. For α, β > 0 such that α + β is sufficiently large, let Ω(α, β) be a
unique quadrature domain of the measure π(αδi +βδ−i) for subharmonic functions.
Then, as (α + β) min{α, β} → ∞,

min
z∈∂Ω(α,β)

∣∣∣∣z − α − β

α + β
i
∣∣∣∣ =

√
α + β − 2 +

(α − β)2

(α + β)5/2 + (α − β)2O((α + β)−7/2),

(4.19)

max
z∈∂Ω(α,β)

∣∣∣∣z − α − β

α + β
i
∣∣∣∣ =

√
α + β + 2 − (α − β)2

(α + β)5/2 +
8αβ|α − β|
(α + β)4

+ (α − β)2O((α + β)−7/2) + (α − β)O((α + β)−3).
(4.20)

Proof. Step 1. In view of the representation ∂Ω(α, β) = ϕ(∂D(0, 1)), where ϕ =
ϕa,R,η with a > 0, R > 1 and η ∈ R as defined in the proof of lemma 4.1, it is
sufficient to calculate the minimum and the maximum of the function

d(w) :=
∣∣∣∣ϕ(w) − α − β

α + β
i
∣∣∣∣ for w ∈ ∂D(0, 1),
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which is the distance from the point i(α − β)/(α + β) to a boundary point ϕ(w) ∈
∂Ω(α, β). For simplicity we set K := (α − β)/(α + β). Here we have

d(w)2 = (ϕ(w) − Ki)(ϕ(w) − Ki)

=
(

R4 − 1
R

w − iη
w2 + R2 + i(ηR − K)

)(
R4 − 1

R

w̄ + iη
w̄2 + R2 − i(ηR − K)

)

=
(

R4 − 1
R

)2 1 + iη(w − w̄) + η2

R4 + R2(w2 + w̄2) + 1
+ (ηR − K)2

− R4 − 1
R

w − iη
w2 + R2 (ηR − K)i +

R4 − 1
R

w̄ + iη
w̄2 + R2 (ηR − K)i

=
(

R4 − 1
R

)2 1 + iη(w − w̄) + η2

R4 + R2(w2 + w̄2) + 1
+ (ηR − K)2

+
R4 − 1

R
(ηR − K)

i(w − w̄) − η(w2 + w̄2) + iR2(w̄ − w) − 2ηR2

|w2 + R2|2 .

Substituting w = eiψ into the above equality, we see that

d(eiψ)2 =
(

R4 − 1
R

)2 1 − 2η sin ψ + η2

R4 + 2R2 cos 2ψ + 1
+ (ηR − K)2

+
R4 − 1

R
(ηR − K)

−2 sin ψ − 2η cos 2ψ + 2R2 sin ψ − 2ηR2

R4 + 2R2 cos 2ψ + 1
.

Hence,

R2(R4 + 2R2 cos 2ψ + 1)
R4 − 1

(d(eiψ)2 − (ηR − K)2)

= R4 − η2R4 − η2 + 2η sin ψ − 1

+ 2KR((1 − R2) sin ψ + η cos 2ψ + ηR2) − 2ηR2(sin ψ + η cos 2ψ)

= (4η2R2 − 4KηR) sin2 ψ − 2(R2 − 1)(η + KR) sin ψ

− η2(R2 + 1)2 + (R2 − 1 + 2KηR)(R2 + 1). (4.21)

To estimate the minimum and the maximum of d(w), we introduce a function F
defined by

F (λ) :=
Aλ2 + Bλ + C

(R2 + 1)2 − 4R2λ2 for − 1 � λ � 1,

where

A := 4η2R2 − 4KηR,

B := −2(R2 − 1)(η + KR),

C := −η2(R2 + 1)2 + (R2 − 1 + 2KηR)(R2 + 1).
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By (4.21) we see that

F (sin ψ) =
R2

R4 − 1
(d(eiψ)2 − (ηR − K)2). (4.22)

In view of relation (4.22), we first find points where the function F attains its
minimum or maximum instead of the function d. Then we calculate the minimum
and the maximum of d(w).

Step 2. In the case when α = β, by (4.4) and (4.8) we have η = 0 and (R+R−1)2 =
x1 = α + β + 2. Since

F (λ) =
(R2 − 1)(R2 + 1)

(R2 + 1)2 − 4R2λ2 ,

F attains its minimum at λ = 0 and its maximum at λ = ±1. Consequently, by
(4.22), we see that d(eiψ) attains its minimum when sinψ = 0 and its maximum
when sin ψ = ±1. Therefore, we deduce that

min
|w|=1

d(w) = d(±1) =

√
R4 − 1

R2 F (0) =

√
(R2 − 1)2

R2 =
√

x1 − 4 =
√

α + β − 2,

max
|w|=1

d(w) = d(±i) =

√
R4 − 1

R2 F (±1) =

√
(R2 + 1)2

R2 =
√

x1 =
√

α + β + 2,

which satisfy (4.19) and (4.20).

Step 3. To treat the case where α �= β we prove that R > |η|. By (4.2), (4.11) and
(4.12) we see that(

R +
1
R

)2

= α + β + 2 − 2η2

R2

= α + β + 2 − 2(β − α)2

(α + β)2
+ (β − α)2O((α + β)−3) as α + β → ∞.

(4.23)

Hence, from (4.11), (4.12) and (4.23) it follows that

R − |η| =
R

(R + R−1)2
((R + R−1)2 − |α − β|)

=
R

(R + R−1)2

{
α + β +

8αβ

(α + β)2
+ O((α + β)−1) − |α − β|

}

=
2R

(R + R−1)2

{
min{α, β} +

4αβ

(α + β)2
+ O((α + β)−1)

}
as α + β → ∞.

(4.24)

Therefore, we have R > |η| when (α + β) min{α, β} is sufficiently large.

Step 4. Let us consider the case α �= β. Here we may assume that α < β; otherwise
we change the roles of α and β. We first claim that B > 0. To prove this, we note
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that η > 0 and

K =
α − β

α + β

= − η(R2 + 1)2

R(R4 + 2η2 + 1)

= − η

R
− 2η(R2 − η2)

R(R4 + 2η2 + 1)
(4.25)

by (4.2) and (4.3). Combining (4.24) with (4.25), we see that

B = −2(R2 − 1)(η + KR) =
4η(R2 − 1)(R2 − η2)

R4 + 2η2 + 1
> 0. (4.26)

In order to find a maximum point and a minimum point of F , we differentiate F
and obtain

F ′(λ)((R2 + 1)2 − 4R2λ2)2 = 4R2Bλ2 + 2((R2 + 1)2A + 4R2C)λ + (R2 + 1)2B

= 4R2B(λ − λ+)(λ − λ−), (4.27)

where

λ± =
−(R2 + 1)2A − 4R2C ±

√
((R2 + 1)2A + 4R2C)2 − 4R2(R2 + 1)2B2

4R2B
,

respectively. For sufficiently large (α + β) min{α, β}, let us prove that λ− � −1 �
λ+ � 0. By (4.24) and (4.25), we have

(R2 + 1)2A + 4R2C = 4(R2 + 1)(R2 − 1)(R2 + KηR)

= 4(R2 + 1)(R2 − 1)
(

R2 − η2 − 2η2(R2 − η2)
R4 + 2η2 + 1

)

=
4(R2 + 1)(R2 − 1)(R4 + 1)(R2 − η2)

R4 + 2η2 + 1
> 0. (4.28)

Then (4.26) and (4.28) show that

((R2 + 1)2A + 4R2C)2 − 4R2(R2 + 1)2B2

=
16(R2 + 1)2(R2 − 1)2(R2 − η2)2

(R4 + 2η2 + 1)2
((R4 + 1)2 − 4η2R2) > 0, (4.29)

which implies that λ+, λ− ∈ R. From (4.24), (4.26), (4.28) and (4.29) it follows that

λ− < − (R2 + 1)2A + 4R2C

4R2B
= − (R2 + 1)(R4 + 1)

4ηR2 < −R3

4
< −1
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and

0 > λ+ =
R2 + 1
4ηR2 (−(R4 + 1) +

√
(R4 + 1)2 − 4η2R2)

=
R2 + 1
4ηR2

(
− 2η2R2

R4 + 1
+ O(η4R−8)

)

= −η(R2 + 1)
2(R4 + 1)

+ (β − α)3O((α + β)−11/2)

= (β − α)
{

− 1
2(α + β)3/2 + O((α + β)−5/2)

}
as α + β → ∞. (4.30)

Hence, we have λ− < −1 < λ+ < 0 when (α + β) min{α, β} is sufficiently large.
Consequently, by (4.27), F ′(λ) � 0 if −1 � λ � λ+, and F ′(λ) � 0 if λ+ � λ � 1.
Therefore, F attains its minimum at λ = λ+ and its maximum at λ = 1 or −1. By
the definition of F and (4.26), it is easy to see that F (−1) � F (1), so that F attains
its maximum at λ = 1. Hence, by (4.22), we see that d(eiψ) attains its minimum
when sin ψ = λ+ and its maximum when sinψ = 1.

Let us calculate the maximum of d(w). Since

ϕ(i) =
(R4 − 1)(1 − η)i

R(R2 − 1)
+ iηR =

(
R +

1
R

− η

R

)
i,

it follows from (4.25) that

max
|w|=1

d(w) = d(i) = |ϕ(i) − Ki|

= R +
1
R

− η

R
− K

= R +
1
R

+
2η(R2 − η2)

R(R4 + 2η2 + 1)
.

Here, by (4.11), (4.12) and (4.23),

R +
1
R

=
√

α + β + 2 − (β − α)2

(α + β)5/2 + (β − α)2O((α + β)−7/2),

2η(R2 − η2)
R(R4 + 2η2 + 1)

=
8αβ(β − α)
(α + β)4

+ (β − α)O((α + β)−3)

as α + β → ∞. Therefore,

max
|w|=1

d(w) =
√

α + β + 2 − (β − α)2

(α + β)5/2 +
8αβ(β − α)
(α + β)4

+ (β − α)2O((α + β)−7/2) + (β − α)O((α + β)−3)

as α + β → ∞, which proves (4.20).
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Next we turn to the calculation of the minimum of d(w). By (4.22), we see that

(
min
|w|=1

d(w)
)2

=
(

R2 − 1
R2

)
F (λ+) + (ηR − K)2

=
(

R2 − 1
R2

)
F (0) + (ηR − K)2 +

(
R2 − 1

R2

)
(F (λ+) − F (0))

= d(1)2 +
(

R2 − 1
R2

)
(F (λ+) − F (0)). (4.31)

Observe that, by (4.11), (4.12), (4.26), (4.28) and (4.30),

F (λ+) − F (0)

=
Aλ2

+ + Bλ+ + C

(R2 + 1)2 − 4R2λ2
+

− C

(R2 + 1)2

=
((R2 + 1)2A + 4R2C)λ2

+ + (R2 + 1)2Bλ+

(R2 + 1)2((R2 + 1)2 − 4R2λ2
+)

=
(β − α)2{16αβ(α + β) + O((α + β)2)}{1/(4(α + β)3) + O((α + β)−4)}

(α + β)4 + O((α + β)3)

−

(β − α)2{16αβ/
√

α + β + O(
√

α + β)}
×{1/(2(α + β)3/2) + O((α + β)−5/2)}

(α + β)4 + O((α + β)3)

= (β − α)2
{

− 4αβ

(α + β)6
+ O((α + β)−5)

}
as α + β → ∞,

and hence(
R2 − 1

R2

)
(F (λ+) − F (0)) = (β − α)2

{
− 4αβ

(α + β)5
+ O((α + β)−4)

}
= (β − α)2O((α + β)−3) as α + β → ∞. (4.32)

On the other hand, since

ϕ(1) =
(R4 − 1)(1 − iη)

R(R2 + 1)
+ iηR = R − 1

R
+

η

R
i,

it follows from (4.11), (4.12), (4.23) and (4.25) that

d(1)2 = |ϕ(1) − Ki|2 =
(

R − 1
R

)2

+
(

η

R
− K

)2

=
(

R +
1
R

)2

− 4 +
4η2

R2

(
1 +

R2 − η2

R4 + 2η2 + 1

)2

= α + β − 2 +
2(β − α)2

(α + β)2
+ (β − α)2O((α + β)−3) as α + β → ∞. (4.33)
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Therefore, we deduce from (4.31), (4.32) and (4.33) that

min
|w|=1

d(w) =

√
α + β − 2 +

2(β − α)2

(α + β)2
+ (β − α)2O((α + β)−3)

=
√

α + β − 2 +
(β − α)2

(α + β)5/2 + (β − α)2O((α + β)−7/2)

as α + β → ∞, which proves (4.19).

By an argument similar to the proof of theorem 4.4, we estimate the distance
from the point −i to a boundary point of the quadrature domain Ω(α, β) and show
that the quadrature domain Ω(α, β) approaches the disc centred at −i when α > 0
is fixed and β → ∞.

Theorem 4.5. Suppose that α is a fixed positive number. For sufficiently large
β > 0, let Ω(α, β) be a unique quadrature domain of the measure π(αδi + βδ−i) for
subharmonic functions. Then, as β → ∞,

min
z∈∂Ω(α,β)

|z + i| =
√

β +
α

2
√

β
− 2α

β
+

(
4α − α2

8

)
β−3/2 + O(β−2), (4.34)

max
z∈∂Ω(α,β)

|z + i| =
√

β +
α

2
√

β
+

2α

β
+

(
4α − α2

8

)
β−3/2 + O(β−2). (4.35)

Proof. We shall calculate the minimum and the maximum of the function

d̃(w) := |ϕ(w) + i| for w ∈ ∂D(0, 1)

in an analogous way to the proof of lemma 4.4. We define a function F̃ by

F̃ (λ) :=
Ãλ2 + B̃λ + C̃

(R2 + 1)2 − 4R2λ2 for − 1 � λ � 1,

where

Ã := 4η2R2 + 4ηR,

B̃ := 2(R2 − 1)(R − η),

C̃ := −η2(R2 + 1)2 + (R2 − 1 − 2ηR)(R2 + 1).

Note that B̃ > 0 by (4.24). After some computations we see that

F̃ (sin ψ) =
R2

R4 − 1
(d̃(eiψ)2 − (ηR + 1)2).

Let us find a minimum point and a maximum point of F̃ . By differentiating F̃ ,
we obtain

F̃ ′(λ)((R2 + 1)2 − 4R2λ2)2

= 4R2B̃λ2 + 2((R2 + 1)2Ã + 4R2C̃)λ + (R2 + 1)2B̃. (4.36)
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However, we have

((R2 + 1)2Ã + 4R2C̃)2 − 4R2(R2 + 1)2B̃2 = 0.

This implies that F̃ ′ � 0. Consequently, F̃ attains its minimum at λ = −1 and
maximum at λ = 1.

In order to calculate the minimum and the maximum of d(w), we note that

R =
√

β + O

(
1√
β

)
, η =

√
β + O

(
1√
β

)
as β → ∞ (4.37)

by (4.11) and (4.12). In view of (4.24), we also have

R − η =
2R

(R + R−1)2
{α + O((α + β)−1)}

=
2α√

β
+ O(β−3/2) as β → ∞. (4.38)

Therefore, from (4.23), (4.37) and (4.38) it follows that

min
|w|=1

d(w) = |ϕ(−i) + i| = R +
1
R

+
η

R
− 1

=

√
α + β +

2(R2 − η2)
R2 +

η − R

R

=
√

α + β +
8α

β
+ O(β−2) − 2α

β
+ O(β−2)

=
√

β +
α

2
√

β
− 2α

β
+

(
4α − α2

8

)
β−3/2 + O(β−2) as β → ∞

and

max
|w|=1

d(w) = |ϕ(i) + i| = R +
1
R

− η

R
+ 1

=

√
α + β +

2(R2 − η2)
R2 +

R − η

R

=
√

α + β +
8α

β
+ O(β−2) +

2α

β
+ O(β−2)

=
√

β +
α

2
√

β
+

2α

β
+

(
4α − α2

8

)
β−3/2 + O(β−2) as β → ∞.

5. Application to the Hele-Shaw problem

In this section we apply the results of the previous section to the Hele-Shaw problem.
We give an estimate for quadrature domains of a linear combination of the Dirac
measures by applying theorem 4.4. Theorem 1.1 is obtained as a consequence of
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the estimate combined with theorem 4.5. In what follows we write Ω(ν) for the
minimum quadrature domain of the measure ν for subharmonic functions. First we
prove the following two lemmas.

Lemma 5.1. Let β1, β2 and κ be positive numbers and c1, c2 ∈ C. Then

Ω(κ2β1δκc1 + κ2β2δκc2) = {κz ∈ C | z ∈ Ω(β1δc1 + β2δc2)}

holds.

Proof. First we prove that the domain

κΩ := {κz ∈ C | z ∈ Ω(β1δc1 + β2δc2)}

is a quadrature domain of the measure κ2β1δκc1 + κ2β2δκc2 for subharmonic func-
tions. For each subharmonic and integrable function f defined in κΩ, we set g(z) :=
f(κz). Then g is subharmonic and integrable in Ω(β1δc1 + β2δc2). Hence, we have

β1g(c1) + β2g(c2) �
∫

Ω(β1δc1+β2δc2 )
g dm,

so that

β1f(κc1) + β2f(κc2) � 1
κ2

∫
κΩ

f dm.

Therefore, κΩ is a quadrature domain of κ2β1δκc1 + κ2β2δκc2 for subharmonic
functions, and hence Ω(κ2β1δκc1 + κ2β2δκc2) ⊂ κΩ holds.

Now assume Ω(κ2β1δκc1 + κ2β2δκc2) � κΩ. Then we have

{κ−1z ∈ C | z ∈ Ω(κ2β1δκc1 + κ2β2δκc2)} � Ω(β1δc1 + β2δc2).

However, an argument similar to the previous paragraph shows that

{κ−1z ∈ C | z ∈ Ω(κ2β1δκc1 + κ2β2δκc2)}

is a quadrature domain of the measure β1δc1 + β2δc2 for subharmonic functions.
This contradicts the assumption that Ω(β1δc1 + β2δc2) is the minimum quadrature
domain.

The next lemma shows that minimum quadrature domains possesses the semi-
group property. Gustafsson and Sakai [5] have already proved this property for more
general measures, but it is established for saturated (or maximum) quadrature
domains (see [5, theorem 2.2] for details). On the other hand, Sakai [13] proved
the property for the minimum quadrature domains. We improve the result [13,
proposition 3.10] and give a detailed proof for completeness.

Lemma 5.2. Let µ and ν be finite measures with compact support such that there
exist the bounded minimum quadrature domains Ω(µ), Ω(µ + ν) and Ω(χΩ(µ) + ν)
of the measures µ, µ + ν and χΩ(µ) + ν for subharmonic functions, respectively. In
addition, we assume that ν is of the form

ν = f +
l∑

j=1

αjδcj ,
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where f ∈ L∞(C), αj > 0 and cj ∈ C. Then it holds that

Ω(µ + ν) = Ω(χΩ(µ) + ν).

Proof. Since the inequality∫
s dµ +

∫
s dν �

∫
Ω(µ)

s dm +
∫

s dν �
∫

Ω(χΩ(µ)+ν)
s dm

holds for all integrable subharmonic functions s defined in Ω(χΩ(µ)+ν), we see that
Ω(χΩ(µ) + ν) is a quadrature domain of µ + ν for subharmonic functions. Hence,
Ω(µ + ν) ⊂ Ω(χΩ(µ) + ν) and χΩ(χΩ(µ)+ν) = χΩ(µ+ν) hold. Therefore, we need to
prove Ω(µ + ν) ⊃ Ω(χΩ(µ) + ν).

First we prove that Ω(χΩ(µ) + ν) = {z ∈ C|0 < u(z) � ∞}, where

u(z) :=
∫

Ω(χΩ(µ)+ν)
log |z − ζ| dm(ζ)

−
( ∫

Ω(µ)
log |z − ζ| dm(ζ) +

∫
log |z − ζ| dν(ζ)

)
. (5.1)

Since s(ζ) = log |z−ζ| with z ∈ C and s(ζ) = − log |z−ζ| with z ∈ C\Ω(χΩ(µ)+ν)
are integrable subharmonic functions in Ω(χΩ(µ) + ν), we see that u(z) � 0 in C

and u(z) = 0 in C \ Ω(χΩ(µ) + ν). Hence,

Ω(χΩ(µ) + ν) ⊃ {z ∈ C | 0 < u(z) � ∞}.

Let us assume Ω(χΩ(µ) + ν) � {z ∈ C | 0 < u(z) � ∞} and derive a contradiction.
Then, by taking z0 ∈ Ω(χΩ(µ) + ν) \ {z ∈ C | 0 < u(z) � ∞}, we will deduce that
Ω(χΩ(µ) + ν) \ {z0} is also a quadrature domain of χΩ(µ) + ν. To verify this, we
take z ∈ C\ (Ω(χΩ(µ) +ν)\{z0}). Then u(z) = 0, and hence u attains its minimum
there. On the other hand, by the form

ν = f +
l∑

j=1

αjδcj ,

we see that z ∈ C\{c1, . . . , cl} and u is of C1 in a neighbourhood of z. Consequently,
∇u(z) = 0. Therefore, by (5.1),∫

Ω(µ)
s dm +

∫
s dν �

∫
Ω(χΩ(µ)+ν)\{z0}

s dm (5.2)

holds for functions such as

(i)

s(ζ) = ± log |z − ζ|,

s(ζ) = ±∂(log |z − ζ|)
∂zx

,

s(ζ) = ±∂(log |z − ζ|)
∂zy

with z ∈ C \ (Ω(χΩ(µ) + ν) \ {z0}).
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Moreover, since u(z) � 0 in C, (5.2) holds for

(ii) s(ζ) = log |z − ζ| with z ∈ C.

According to Sakai [15, lemma 5.1], the family of all the linear combinations of the
functions s(ζ) such as (i) and (ii) with positive coefficients is dense in the space of
all integrable subharmonic functions in Ω(χΩ(µ) + ν) \ {z0} with respect to the L1

norm. Therefore, (5.2) holds for any integrable subharmonic functions s defined in
Ω(χΩ(µ) + ν) \ {z0}, i.e. Ω(χΩ(µ) + ν) \ {z0} is a quadrature domain of χΩ(µ) + ν.
This is a contradiction. Therefore, Ω(χΩ(µ) + ν) = {z ∈ C | 0 < u(z) � ∞} is
verified.

Next let us assume Ω(µ + ν) � Ω(χΩ(µ) + ν) and derive a contradiction. Take
z1 ∈ Ω(χΩ(µ) + ν) \ Ω(µ + ν). Then, by the argument in the previous paragraph,
u(z1) > 0, i.e.∫

Ω(µ)
log |z1 − ζ| dm(ζ) +

∫
log |z1 − ζ| dν(ζ) <

∫
Ω(χΩ(µ)+ν)

log |z1 − ζ| dm(ζ).

(5.3)

On the other hand,∫
log |z1 − ζ| dµ(ζ) +

∫
log |z1 − ζ| dν(ζ) =

∫
Ω(µ+ν)

log |z1 − ζ| dm(ζ) (5.4)

since log |z1 − ζ| is harmonic in Ω(µ + ν). Therefore, by (5.3), (5.4) and the fact
that χΩ(χΩ(µ)+ν) = χΩ(µ+ν), we obtain∫

Ω(µ)
log |z1 − ζ| dm(ζ) <

∫
log |z1 − ζ| dµ(ζ).

This contradicts the definition of Ω(µ).

With the above lemmas and theorem 4.4 we give the following estimate for the
distances from the barycentre wl defined by (1.7) to the boundary points of quadra-
ture domains of a linear combination of the Dirac measures.

Theorem 5.3. Let α1, . . . , αl be positive numbers and let c1, . . . , cl ∈ C with l � 2,
and define w1, . . . , wl by (1.7). Then there exists a non-negative function εl(t) such
that, for any quadrature domain Ω∆(t) of the measure t

∑l
j=1 αjδcj

for subharmonic
functions, the inequality√√√√ t

π

l∑
j=1

αj − εl(t) � |z − wl| �

√√√√ t

π

l∑
j=1

αj + εl(t) (5.5)

holds for all z ∈ ∂Ω∆(t), t > 0, and it has the following asymptotic behaviour:

εl(t) =
√

π∑l
j=1 αj

( l∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2

)
t−1/2 + O(t−1) as t → ∞.

(5.6)

https://doi.org/10.1017/S0308210509000766 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509000766


Asymptotics of Hele-Shaw flows with multiple point sources 1241

Proof. As in the proof of proposition 2.1, it is sufficient to prove estimate (5.5) for
the minimum quadrature domain

Ω∆(t) = Ω

(
t

l∑
j=1

αjδcj

)
.

We prove the theorem by induction on l.

Step 1. In the case where l = 2, first we assume that κ := |c1 − c2|/2, c1 = κi,
c2 = −κi. We note here that

α1tδc1 + α2tδc2 = κ2π

(
α1t

πκ2

)
δκi + κ2π

(
α2t

πκ2

)
δ−κi.

By lemma 5.1 we see that κ−1Ω∆(t) := {κ−1z | z ∈ Ω∆(t)} is the minimum quadra-
ture domain of the measure π{(α1t/(πκ2))δi + (α2t/(πκ2))δ−i} for subharmonic
functions. Hence, by applying theorem 4.4 with α = α1t/(πκ2) and β = α2t/(πκ2),
we obtain

min
z∈∂(κ−1Ω∆(t))

∣∣∣∣z − α1 − α2

α1 + α2
i
∣∣∣∣ =

√
(α1 + α2)

t

πκ2 − 4α1α2

(α1 + α2)5/2

√
πκ2

t
+ O(t−1),

(5.7)

max
z∈∂(κ−1Ω∆(t))

∣∣∣∣z − α1 − α2

α1 + α2
i
∣∣∣∣ =

√
(α1 + α2)

t

πκ2 +
4α1α2

(α1 + α2)5/2

√
πκ2

t
+ O(t−1)

(5.8)

as t → ∞. Noting that κi(α1 − α2)/(α1 + α2) = w2, we multiply both sides of the
equalities (5.7), (5.8) by κ, and obtain

min
z∈∂Ω∆(t)

|z − w2| =

√
t

π
(α1 + α2) −

√
π

α1 + α2

(
α1α2

(α1 + α2)2
(2κ)2

)
1√
t

+ O(t−1),

max
z∈∂Ω∆(t)

|z − w2| =

√
t

π
(α1 + α2) +

√
π

α1 + α2

(
α1α2

(α1 + α2)2
(2κ)2

)
1√
t

+ O(t−1)

as t → ∞. We define a function ε2(t) by

ε2(t) := max
{√

t

π
(α1 + α2)− min

z∈∂Ω∆(t)
|z−w2|, max

z∈∂Ω∆(t)
|z−w2|−

√
t

π
(α1 + α2)

}
.

(5.9)
Note that m(Ω∆(t)) = t(α1 + α2) by (2.2), so that ε2(t) has to be non-negative. It
also holds that√

t

π
(α1 + α2) − ε2(t) � |z − w2| �

√
t

π
(α1 + α2) + ε2(t)

for all z ∈ ∂Ω∆(t), t > 0, and

ε2(t) =
√

π

α1 + α2

(
α1α2

(α1 + α2)2
|c1 − c2|2

)
1√
t

+ O(t−1) as t → ∞.
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For general c1, c2 ∈ C and α1, α2 > 0, by using a suitable rotation or translation,
we can reduce the case to the previous one. Hence, ε2 defined by (5.9) satisfies (5.5)
and (5.6) in the case where l = 2.

Note that, in view of theorem 4.4, the above argument is applicable even if α1 or
α2 depends on t > 0 in the case where αj(t) → αj,0 > 0 as t → ∞.

Step 2. Assuming that the assertion of the theorem holds for l − 1, we prove it for
case l. Then we have a non-negative function εl−1(t) which satisfies

√√√√ t

π

l−1∑
j=1

αj − εl−1(t) � |z − wl−1| �

√√√√ t

π

l−1∑
j=1

αj + εl−1(t) (5.10)

for all

z ∈ ∂Ω

(
t

l−1∑
j=1

αjδcj

)
, t > 0,

and

εl−1(t) =
√

π∑l−1
j=1 αj

( l−1∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2

)
1√
t

+ O(t−1) as t → ∞.

Let us prove the estimate (5.5) for |z − wl| from above. By lemma 5.2 and the
estimate (5.10), we see that

Ω∆(t) = Ω(χΩ(t
∑l−1

j=1 αjδcj
) + tαlδcl

)

⊂ Ω
(
χ

D(wl−1,
√

tπ−1 ∑l−1
j=1 αj+εl−1(t))

+ tαlδcl

)
= Ω(tα̂(t)δwl−1 + tαlδcl

), (5.11)

where

α̂(t) :=
1
t
m

(
D

(
wl−1,

√√√√ t

π

l−1∑
j=1

αj + εl−1(t)
))

=
l−1∑
j=1

αj +
2π

t

√√√√ t

π

l−1∑
j=1

αj

×
√

π∑l−1
j=1 αj

( l−1∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2

)
1√
t

+ O(t−3/2)

=
l−1∑
j=1

αj + 2π

( l−1∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2

)
1
t

+ O(t−3/2) as t → ∞.
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In the case where wl−1 = cl, it is easy to see that wl = wl−1, and hence

Ω(tα̂(t)δwl−1 + tαlδcl
) = Ω(t(α̂(t) + αl)δwl

)

= D

(
wl,

√
t

π
(α̂(t) + αl)

)
, (5.12)

where

√
t

π
(α̂(t) + αl) =

√√√√ t

π

l∑
j=1

αj +
√

π∑l
j=1 αj

( l−1∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2

)
1√
t

+ O(t−1) as t → ∞.
(5.13)

Noting that α̂(t) �
∑l−1

j=1 αj , we define a non-negative function ε+
l (t) by

ε+
l (t) :=

√
t

π
(α̂(t) + αl) −

√√√√ t

π

l∑
j=1

αj .

Then, by (5.11)–(5.13), we see that ε+
l (t) satisfies the second inequality of (5.5) and

(5.6) with εl(t) = ε+
l (t).

Next we consider the case where wl−1 �= cl. As mentioned at the end of step 1,
we can apply the result for the case where l = 2 to the quadrature domain
Ω(tα̂(t)δwl−1 + tαlδcl

) and obtain a non-negative function ε̂(t) which satisfies

∣∣∣∣z − α̂(t)wl−1 + αlcl

α̂(t) + αl

∣∣∣∣ �
√

t

π
(α̂(t) + αl) + ε̂(t) (5.14)

for all z ∈ ∂Ω(tα̂(t)δwl−1 + tαlδcl
), t > 0, and

ε̂(t) =
√

π

α̂(t) + αl

(
α̂(t)αl

(α̂(t) + αl)2
|wl−1 − cl|2

)
1√
t

+ O(t−1)

=
(√

π∑l
j=1 αj

+ O(t−1)
)(

αl

∑l−1
j=1 αj

(
∑l

j=1 αj)2
+ O(t−1)

)
|wl−1 − cl|2

1√
t

+ O(t−1)

=
√

π∑l
j=1 αj

(
αl

∑l−1
j=1 αj

(
∑l

j=1 αj)2
|wl−1 − cl|2

)
1√
t

+ O(t−1) as t → ∞. (5.15)

We now define a non-negative function ε+
l (t) by

ε+
l (t) :=

∣∣∣∣ α̂(t)wl−1 + αlcl

α̂(t) + αl
− wl

∣∣∣∣ +
(√

t

π
(α̂(t) + αl) −

√√√√ t

π

l∑
j=1

αj

)
+ ε̂(t). (5.16)

https://doi.org/10.1017/S0308210509000766 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509000766


1244 M. Onodera

Then, from (5.14) and (5.16), it follows that

|z − wl| �
∣∣∣∣z − α̂(t)wl−1 + αlcl

α̂(t) + αl

∣∣∣∣ +
∣∣∣∣ α̂(t)wl−1 + αlcl

α̂(t) + αl
− wl

∣∣∣∣
=

√√√√ t

π

l∑
j=1

αj + ε+
l (t) for all z ∈ ∂Ω(tα̂(t)δwl−1 + tαlδcl

), t > 0.

Hence, by (5.11) we see that ε+
l (t) satisfies the second inequality of (5.5) with

εl(t) = ε+
l (t). On the other hand, since

∣∣∣∣ α̂(t)wl−1 + αlcl

α̂(t) + αl
− wl

∣∣∣∣ = O(t−1) as t → ∞,

by (5.13) and (5.15) we see that (5.6) holds with εl(t) = ε+
l (t).

The same argument shows that there exists a non-negative function ε−
l (t) which

satisfies the first inequality of (5.5) and (5.6) with εl(t) = ε−
l (t). Therefore, εl(t) :=

max{ε+
l (t), ε−

l (t)} satisfies (5.5) and (5.6). This completes the proof.

Finally, we prove theorem 1.1 by combining theorem 5.3 with theorem 4.5.

Proof of theorem 1.1. It is sufficient to prove the estimate (1.10) for the minimum
quadrature domain

Ω(t) = Ω

(
χΩ(0) + t

l∑
j=1

αjδcj

)
.

Let ε−(t) := εl(t), where εl(t) is obtained by theorem 5.3. Then, by the inclusion
relation

Ω

(
t

l∑
j=1

αjδcj

)
⊂ Ω(t)

we see that √√√√ t

π

l∑
j=1

αj − ε−(t) � |z − wl| for all z ∈ ∂Ω(t), t > 0. (5.17)

Next we estimate |z − wl| from above. In definition (1.8) of r0, we can take the
minimum instead of the infimum. To show this, we take sequences {c(k)}, {r(k)}
such that r(k) → r0 and Ω(0) ⊂ D(c(k), r(k)). Then {c(k)} is bounded since {r(k)}
is bounded. Hence, there exists a subsequence {c(kp)} of {c(k)} that converges to a
point c0 ∈ C. Therefore,

Ω(0) ⊂
∞⋂

p=1

D(c(kp), r(kp)) ⊂
∞⋂

p=1

D(c0, r
(kp) + |c(kp) − c0|) ⊂ D(c0, r0),
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so that Ω(0) ⊂ D(c0, r0). Observe that, by lemma 5.2 and theorem 5.3,

Ω(t) ⊂ Ω

(
χD(c0,r0) + t

l∑
j=1

αjδcj

)
= Ω(χD(c0,r0) + χΩ(t

∑l
j=1 αjδcj

))

⊂ Ω(χD(c0,r0) + χD(wl,R(t))) = Ω(πr0
2δc0 + πR(t)2δwl

), (5.18)

where

R(t) :=

√√√√tπ−1
l∑

j=1

αj + εl(t).

In the case where c0 = wl, we see that

Ω(πr0
2δc0+πR(t)2δwl

) = Ω(π(r2
0 + R(t)2)δwl

)

= D(wl,
√

r2
0 + R(t)2) (5.19)

and√
r2
0 + R(t)2

= R(t) +
r0

2

2R(t)
+ O(R(t)−2)

=

√√√√ t

π

l∑
j=1

αj + εl(t) +
r0

2

2

√
π∑l

j=1 αj

1√
t

+ O(t−1)

=

√√√√ t

π

l∑
j=1

αj +
√

π∑l
j=1 αj

( l∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2 +

r0
2

2

)
1√
t

+ O(t−1)

(5.20)

as t → ∞. Therefore, we define ε+(t) by

ε+(t) :=
√

r2
0 + R(t)2 −

√√√√ t

π

l∑
j=1

αj .

Then, by combining (5.18) with (5.19) we see that

|z − wl| �

√√√√ t

π

l∑
j=1

αj + ε+(t) for all z ∈ ∂Ω(t), t > 0. (5.21)

Here ε+(t) satisfies

ε+(t) =

√√√√ t

π

l∑
j=1

αj +
√

π∑l
j=1 αj

( l∑
k=2

αk

∑k−1
j=1 αj

(
∑k

j=1 αj)2
|wk−1 − ck|2 +

r2
0

2

)
1√
t

+ O(t−1) as t → ∞.
(5.22)
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Let us consider the case where c0 �= wl. As in the proof of theorem 5.3, we may
assume that κ := |c0 − wl|/2, c0 = κi and wl = −κi. Note that

πr0
2δc0 + πR(t)2δwl

= κ2π

(
r0

κ

)2

δκi + κ2π

(
R(t)
κ

)2

δ−κi.

Hence, by lemma 5.1 we see that Ω̂(t) := {κ−1z | z ∈ Ω(πr0
2δc0 + πR(t)2δwl

)} is
the minimum quadrature domain of the measure π((r0/κ)2δi + (R(t)/κ)2δ−i) for
subharmonic functions. Since (R(t)/κ)2 → ∞ as t → ∞, applying theorem 4.5
yields

max
z∈∂Ω̂(t)

|z + i| =

√(
R(t)
κ

)2

+
1
2

(
r0

κ

)2
κ

R(t)
+ O(R(t)−2) as t → ∞.

Consequently,

max
z∈∂Ω(πr02δc0+πR(t)2δwl

)
|z − wl| = R(t) +

r0
2

2R(t)
+ O(R(t)−2) as t → ∞, (5.23)

which can be calculated as in (5.20). Therefore, we define a non-negative function
ε+(t) by

ε+(t) := max
z∈∂Ω(πr02δc0+πR(t)2δwl

)
|z − wl| −

√√√√ t

π

l∑
j=1

αj

Then, by combining (5.18) with (5.23), we obtain (5.21) and (5.22) again.
For any σ ∈ Sl, the above argument can clearly be applied to obtain the estimates

(5.17) and (5.21) for the case where j is replaced by σ(j). Therefore, by taking the
minima of ε−(t) and ε+(t) over σ ∈ Sl and writing them as ε−(t) and ε+(t) again,
we obtain the desired estimate (1.10) with (1.11), since Ω(t) is irrelevant to the
way of numbering the injection points.

6. Concluding remarks

In the case of spatial dimension 3, the same problem (1.5) appears for the flow
of viscous fluid through a porous medium, since, by Darcy’s law, its velocity field
can be characterized as a potential flow with the potential being its pressure [8].
For other phenomena modelled by (1.5) we refer to the reader to [10]. Therefore,
studying the problem in higher-dimensional spaces is also important in applications.

Quadrature domains for subharmonic functions or for harmonic functions in arbi-
trary dimensions are also defined in the same way. Basic properties such as the
existence and the uniqueness of a quadrature domain for subharmonic functions
were established [14]. Hence, we can define the weak solution of the problem in a
higher-dimensional space by using the same form as (2.1), and the existence and the
uniqueness of the weak solution follow. However, the method of this paper depends
heavily on two-dimensional structure when we construct the rational mappings from
the unit disc onto quadrature domains of the two Dirac measures (lemma 4.1). The
explicit representations or the precise estimates of quadrature domains of the two
Dirac measures in higher-dimensional spaces, to the best of our knowledge, have

https://doi.org/10.1017/S0308210509000766 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509000766


Asymptotics of Hele-Shaw flows with multiple point sources 1247

not been found. Therefore, we need a new idea in estimating quadrature domains
to obtain analogous results in higher-dimensional spaces.

Acknowledgements

The author expresses his deepest gratitude to Professor Izumi Takagi for his encour-
agement and valuable advice. This research is partly supported by the Global COE
programme ‘Weaving Science Web beyond Particle-Matter Hierarchy’ at Tohoku
University.

References

1 P. J. Davis. The Schwarz function and its applications, Carus Mathematical Monographs,
no. 17 (Buffalo, NY: Mathematical Association of America, 1974).
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