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Let Ω ⊂ R
2 denote a bounded Lipschitz domain and consider some portion Γ0 of ∂Ω

representing the austenite–twinned-martensite interface which is not assumed to be a
straight segment. We prove that

inf
u∈W(Ω)

∫
Ω

ϕ(∇u(x, y)) dxdy = 0 (∗)

for an elastic energy density ϕ : R
2 → [0, ∞) such that ϕ(0, ±1) = 0. Here, W(Ω)

consists of all functions u from the Sobolev class W 1,∞(Ω) such that |uy | = 1 almost
everywhere on Ω together with u = 0 on Γ0. We will first show that, for Γ0 having a
vertical tangent, one cannot always expect a finite surface energy, i.e. in the above
problem, the condition

uyy is a Radon measure such that
∫

Ω
|uyy(x, y)| dxdy < +∞

in general cannot be included. This generalizes a result of [12] where Γ0 is a vertical
straight line. Property (∗) is established by constructing some minimizing sequences
vanishing on the whole boundary ∂Ω, that is, one can even take Γ0 = ∂Ω. We also
show that the existence or non-existence of minimizers depends on the shape of the
austenite–twinned-martensite interface Γ0.

1. Introduction

In solid–solid phase transformations, one often observes certain characteristic micro-
structural features involving fine mixtures of the phases. If we consider martensitic
phase transformations, then one usually has a plane interface that separates one
homogeneous phase, called austenite, from a very fine mixture of twins of the other
phase, termed martensite. We now consider a two-dimensional section and assume
that, for some physical reasons, the interface that separates the two phases is not
a segment but a curve, not necessarily being smooth (see figure 1).

For instance, it is known that some applied small loads easily change the austen-
ite–martensite interface. For further details concerning the physical background of
martensitic phase transformation and also the mathematical modelling, we refer the
reader to the papers [2] and [3] and the references quoted therein. To give a more
precise formulation of the problem, let us consider a bounded Lipschitz domain
Ω ⊂ R

2 representing the martensitic configuration and let Γ0 denote a part of
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Figure 1. The austenite–twinned-martensite interface.

∂Ω with positive measure having the meaning of the austenite–twinned-martensite
interface. Let ϕ : R

2 → [0,∞) denote a Borel function such that

ϕ(0, 1) = ϕ(0,−1) = 0. (1.1)

For example, ϕ could be the elastic energy density of the martensite with wells
in (0,±1) corresponding to the stress-free states of two possible variants of the
martensite. We would then like to consider the problem

I∞ := inf
u∈W(Ω)

∫
Ω

ϕ(∇u(x, y)) dxdy (1.2)

in the class of admissible comparison functions

W := W(Ω) := {u ∈ W 1,∞(Ω) : |uy| = 1 a.e. in Ω and u = 0 on Γ0}.

Here, W 1,∞(Ω) is the Sobolev space of all weakly differentiable functions u : Ω → R

such that u, |∇u| ∈ L∞(Ω). Since Ω is a bounded Lipschitz domain, Sobolev’s
embedding theorem implies that W 1,∞(Ω) ↪→ C0(Ω̄), and the requirement u = 0
on Γ0 has to be understood in the pointwise sense. If u = 0 on the whole of ∂Ω, we
just say that u is of class W 1,∞

0 (Ω). For a further discussion of Sobolev spaces, we
refer the reader to [1].

We remark that the boundary condition occurring in W refers to elastic com-
patibility with the austenitic phase in the extreme case of complete rigidity of the
austenite (see [2,3,7]). Problems of the type (1.2) have been investigated by Chipot
and Collins (cf. [4, 5]), but without the constraint |uy| = 1. This constraint was
introduced by Kohn and Müller (see [8,9]): they considered a functional consisting
of an elastic energy plus a surface energy term for the case that the martensitic
configuration is a rectangle like (0, L)×(0, 1) and the austenite–martensite interface
is the segment {0} × (0, 1).

Problem (1.2) was studied in [6] for the case when no loads are applied, i.e. the
austenite–martensite interface is given by a segment Γ0. We proved that the value
of I∞ is zero by constructing suitable minimizing sequences from the class W(Ω),
which represent, according to the Ball–James theory, the microstructure. The min-
imizing sequences discussed in [6] differ for the case when the segment Γ0 is vertical
and for the case when Γ0 is oblique. In particular, for non-vertical segments, we
could even replace the set W(Ω) by a smaller class by adding the additional con-
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straint

uyy is a Radon measure of finite mass, (1.3)

which is not possible in the vertical case (see [12]). In what follows, the term∫
Ω

|uyy(x, y)| dxdy

is addressed as the surface energy and it should be understood as the mass |uyy|(Ω)
of the Radon measure uyy. Here, our terminology follows the paper [9], i.e. we use
the same formula for the surface energy as Kohn and Müller did for the case when
Ω is a rectangle.

In the present paper, we want to extend the results of [6, 12] to the general case
of curved boundary portions; precisely, we have the following theorem.

Theorem 1.1. There exist domains Ω and boundary portions Γ0 that do not con-
tain a vertical straight line for which condition (1.3) cannot be included into prob-
lem (1.2), i.e. there is no function u in W(Ω) satisfying (1.3).

Indeed, we will exhibit in § 2 some ‘bad’ curved boundaries for which one can-
not incorporate condition (1.3); namely, they only have a vertical tangent forcing
the surface energy to tend to infinity. This generalizes a result of [12] where the
domain Ω is chosen to be a rectangle and Γ0 is a vertical straight line. Now, if the
condition of finite surface energy is dropped, one has, for any curved boundary, the
following result.

Theorem 1.2. Let Ω be a bounded Lipschitz domain in R
2 and consider a non-

empty portion Γ0 of ∂Ω having positive measure. If ϕ satisfies (1.1), then we have

I∞ := inf
u∈W(Ω)

∫
Ω

ϕ(∇u(x, y)) dxdy = 0.

Moreover, we can find a minimizing sequence (un)n ⊂ W(Ω) such that un = 0 on
the whole boundary ∂Ω.

For the proof of this result, we will first discuss the case when the Lipschitz
domain Ω is replaced by some elementary domain, e.g. the domain enclosed by
a triangle or a square. Then we consider the general situation by covering every
bounded open set with a countable number of such elementary domains (Vitali’s
covering lemma).

2. Some curved boundaries leading to infinite surface energies:
proof of theorem 1.1

In this section we prove that if the boundary part Γ0 of Ω has a vertical tangent,
one cannot, in general, add the constraint (1.3) to the definition of the class W(Ω).
Without loss of generality, we assume that the origin lies on Γ0 and the tangent at
this point is vertical. To be more precise, we assume that there exists a continuous
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function f : I := [0, T ] → R of class C1 on (0, T ) such that

f(0) = 0, lim
t→0+

f ′(t) = +∞, (2.1)

{(t, f(t)) | t ∈ I} ⊂ Γ0, (2.2)
{(t, y) ∈ [0, T ] × R | 0 � y � f(t)} ⊂ Ω. (2.3)

Notice that, by (2.1) and by eventually reducing the interval I, we can assume
that f is strictly increasing in I. The function f is a bijective mapping [0, T ] →
[0, f(T )] and its inverse f−1 is also strictly increasing, continuous on [0, f(T )] and
of class C1(0, f(T )). Moreover, one has that

(f−1)′(0) exists and is equal to 0.

In order to prove that we cannot, in general, expect the surface energy to be finite,
we first bound it from below. We have the following estimate.

Lemma 2.1. For every u ∈ W(Ω) with (1.3), one has∫ T

0

∫ f(t)

0
|uyy(t, y)| dydt �

∫ f(T )

0

{
s3/2
√

3K

(f−1)′(s)
(
∫ s

0 (f−1(s) − f−1(y))2 dy)1/2
− 2

}
ds,

(2.4)
where

√
K is the Lipschitz constant of u.

Proof. Let u ∈ W(Ω) satisfy (1.3), t ∈ I and y ∈ (0, f(t)). Since (f−1(y), y) ∈ Γ0
and u = 0 on Γ0, one has

u(t, y) = u(t, y) − u(f−1(y), y) =
∫ t

f−1(y)
ux(s, y) ds.

Hence

|u(t, y)| �
∫ t

f−1(y)
|ux(s, y)| ds �

√
K(t − f−1(y)),

and we get ∫ f(t)

0
u(t, y)2 dy � K

∫ f(t)

0
(t − f−1(y))2 dy. (2.5)

Then we use the following lemma.

Lemma 2.2. Let g ∈ W 1,∞(0, l) be such that |g′| = 1 a.e. and g′ changes sign N
times on the open interval (0, l). Then one has∫ l

0
g2(x) dx � 1

12 l3(N + 1)−2 = 1
12 l3

(
1
2

∫ l

0
|g′′(x)| dx + 1

)−2

.

Proof. The above inequality was proved by Kohn and Müller for l = 1 (lemma 2.7
in [9]). One can easily derive the general case by scaling.

Lemma 2.2 then yields∫ f(t)

0
u(t, y)2 dy � 1

12f(t)3
(

1
2

∫ f(t)

0
|uyy(t, y)| dy + 1

)−2

. (2.6)
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Combining (2.5) and (2.6), one gets
∫ f(t)

0
|uyy(t, y)| dy � 1√

3K

f(t)3/2

(
∫ f(t)
0 (t − f−1(y))2 dy)1/2

− 2.

Therefore, one obtains∫ T

0

∫ f(t)

0
|uyy(t, y)| dydt �

∫ T

0

{
1√
3K

f(t)3/2

(
∫ f(t)
0 (t − f−1(y))2 dy)1/2

− 2
}

dt,

from which the claim of lemma 2.1 follows by the change of variables s = f(t).

Remark 2.3. One should observe that, by lemma 2.1, the surface energy that is
bounded from below by ∫ T

0

∫ f(t)

0
|uyy(t, y)| dydt

is infinite whenever f is chosen in such a way that∫ f(T )

0
s3/2 (f−1)′(s)

(
∫ s

0 (f−1(s) − f−1(y))2 dy)1/2
ds = +∞.

Therefore, theorem 1.1 will be a consequence of the following result.

Theorem 2.4. Assume that the function f satisfies, in addition,

s
(f−1)′(s)
f−1(s)

� c

sα
on (0, f(T )) (2.7)

for a positive constant c and some exponent α � 1. Then one has∫ f(T )

0
s3/2 (f−1)′(s)

(
∫ s

0 (f−1(s) − f−1(y))2 dy)1/2
ds = +∞.

Proof. Since
0 < f−1(s) − f−1(y) � f−1(s) ∀y ∈ (0, s),

one has∫ f(T )

0
s3/2 (f−1)′(s)

(
∫ s

0 (f−1(s) − f−1(y))2 dy)1/2
ds �

∫ f(T )

0
s
(f−1)′(s)
f−1(s)

ds.

Using (2.7), one deduces that
∫ f(T )

0
s
(f−1)′(s)
f−1(s)

ds =
∫ f(T )

0

c

sα
ds = +∞

and the theorem is proved. Notice that, for example,

s
(f−1)′(s)
f−1(s)

=
1
sα

, α � 1, f−1(s) > 0 on (0, f(T )), f−1(0) = 0
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if and only if

f−1(s) =

⎧⎪⎨
⎪⎩

c exp
(

− 1
αsα

)
if s �= 0 (c > 0 is a constant),

0 if s = 0,

or, equivalently,

f(t) =

⎧⎪⎨
⎪⎩

(
− 1

α ln(t/c)

)1/α

if s �= 0,

0 if s = 0.

Remark 2.5. Notice that condition (2.7) is equivalent to

f−1(s) exp
(

c

αsα

)
is increasing on (0, f(T )).

Recall that one has

f−1(0) = (f−1)′(0) = 0.

Now if, in addition, f−1 is of class Cn([0, f(T )]), one also has

(f−1)(m)(0) = 0 ∀m ∈ {0, 1, 2, . . . , n}.

This result, which is not a priori evident, follows from theorem 2.4 and the following
lemma.

Lemma 2.6. Let h > 0 and consider a function g of class Cn([0, h]) satisfying

g(0) = g′(0) = · · · = g(n−1)(0) = 0, g(n)(0) �= 0. (2.8)

Then one has ∫ h

0
s3/2 |g′(s)|

(
∫ s

0 (g(s) − g(y))2 dy)1/2
ds < +∞.

Proof. One has∫ s

0
(g(s) − g(y))2 dy = sg(s)2 − 2g(s)

∫ s

0
g(y) dy +

∫ s

0
g(y)2 dy. (2.9)

From the assumption on g(k)(0), it follows that

g̃(k)(0) = 0 for all 0 � k � n,

where we have set

g̃(t) := g(t) − 1
n!

g(n)(0)tn.
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If we write

g̃(t) =
∫ t

0
g̃′(t1) dt1

=
∫ t

0

∫ t1

0
g̃′′(t2) dt2dt1

= · · ·

=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
g̃(n)(tn) dtn · · ·dt1,

then it easily follows that
|g̃(t)| � tn max

[0,T ]
|g̃(n)|

and, in conclusion,

g(s) =
1
n!

g(n)(0)sn + o(sn).

Using this formula on the right-hand side of (2.9), we deduce that
∫ s

0
(g(s) − g(y))2 dy =

(
g(n)(0)

n!

)2[
1 − 2

n + 1
+

1
2n + 1

]
s2n+1 + o(s2n+1).

This implies that

lim
s→0+

s3/2 g′(s)
(
∫ s

0 (g(s) − g(y))2 dy)1/2
= n

g(n)(0)
|g(n)(0)|

(
1 − 2

n + 1
+

1
2n + 1

)−1/2

,

and the lemma is proved.

3. Proof of theorem 1.2

First we prove theorem 1.2 for some special domains having ‘nice’ boundaries. Let
∆ denote the interior of the triangle with vertices in (−1, 0), (1, 0) and (0, 1).

Theorem 3.1. Assume that ϕ satisfies equation (1.1). Then there exists a sequence
vn ∈ W 1,∞

0 (∆) satisfying |∂yvn| = 1 a.e. for each n and such that

lim
n→∞

∫
∆

ϕ(∇vn(x, y)) dxdy = 0.

Proof. Given N ∈ N, we define u ∈ W 1,∞
0 (∆), |uy| = 1, such that∫

∆

ϕ(∇u(x, y)) dxdy

is of order 1/N . Let δ := 1/N and consider the δ-periodic extension to the whole
line of

h(t) :=

{
t if 0 � t � 1

2δ,

δ − t if 1
2δ � t � δ.
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1

1−1

∆'∆ i i

1 + x − y 1 − x − y

(1/N) − y

y

Figure 2. The function u for N = 3.

We then let

u(x, y) :=

{
(x + 1 − y) ∧ h(y) if (x, y) ∈ ∆, −1 � x � 0,

(1 − x − y) ∧ h(y) if (x, y) ∈ ∆, 0 � x � 1.

Here we write α ∧ β for the minimum of two numbers α, β ∈ R. Figure 2 shows the
situation for N = 3.

Clearly, u ∈ W 1,∞
0 (∆) and

∇u(x, y) = (0,±1)

for points (x, y) not belonging to the 2N triangles

∆i =
{

(x, y) ∈
[
−1 +

i − 1
N

,−1 +
i

N

]
×

[
i − 1
N

,
i

N

]
,

1
2

(
x + 1 +

i − 1
N

)
� y � x + 1

}
, i = 1, . . . , N,

and their reflexions ∆′
i, i = 1, . . . , N , with respect to the y-axis. It is easy to check

that

∇u(x, y) = (1,−1) on ∆i,

whereas

∇u(x, y) = (−1,−1) on ∆′
i.

Therefore, |uy| = 1 a.e. on ∆ and (1.1) implies that

∫
∆

ϕ(∇u(x, y)) dxdy =
N∑

i=1

[∫
∆i

ϕ(∇u(x, y)) dxdy +
∫

∆′
i

ϕ(∇u(x, y)) dxdy

]

=
N∑

i=1

[L2(∆i)ϕ(1,−1) + L2(∆′
i)ϕ(−1,−1)]

= 1
4Nδ2[ϕ(1,−1) + ϕ(−1,−1)].
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Thus

0 � I∞ �
∫

∆

ϕ(∇u(x, y)) dxdy =
1

4N
[ϕ(1,−1) + ϕ(−1,−1)],

and theorem 3.1 is established.

Let S now denote the set of points (x, y) such that (x, y) ∈ ∆̄ or (x,−y) ∈ ∆̄,
i.e. S is the closed square with vertices in (±1, 0) and (0,±1). Then we have the
following result.

Corollary 3.2. Assume that ϕ satisfies equation (1.1). Then there exists a se-
quence vn ∈ W 1,∞

0 (Ṡ) satisfying |∂yvn| = 1 a.e. for each n and such that

lim
n→∞

∫
S

ϕ(∇vn(x, y)) dxdy = 0.

Proof. Let us define on S the following function,

v(x, y) :=

{
u(x, y) if (x, y) ∈ ∆,

u(x,−y) if (x, y) ∈ S \ ∆,

where the function u : ∆ → R is defined in the proof of theorem 3.1. One can easily
check that∫

S

ϕ(∇v(x, y)) dxdy =
∫

∆

ϕ(∇u(x, y)) dxdy +
∫

∆

ϕ̃(∇u(x, y)) dxdy,

where
ϕ̃(x, y) = ϕ(x,−y).

Thus∫
S

ϕ(∇v(x, y)) dxdy =
1

4N
[ϕ(1,−1) + ϕ(−1,−1) + ϕ̃(1,−1) + ϕ̃(−1,−1)]

=
1

4N
[ϕ(1,−1) + ϕ(−1,−1) + ϕ(1, 1) + ϕ(−1, 1)],

and corollary 3.2 is proved.

Remark 3.3. Notice that, for the elementary domains we considered above, one
can add the constraint

|uyy| is a Radon measure of finite mass.

Recall that, for domains like squares with sides parallel to the x- and y-axis or
domains as studied in § 2 (with function f satisfying (2.7)), it is not possible to
incorporate the above constraint. For domains with f−1 satisfying (2.8) like discs
the question is still open, since, by lemma 2.6, the right-hand side of (2.4) is finite;
we cannot conclude that the surface energy is +∞ for any u ∈ W(Ω).

In order to prove theorem 1.2 for general domains, we need the following lemmas.
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Lemma 3.4 (Vitali’s covering lemma). Let Ω denote a bounded open subset of R
2.

Then there exist points (xn, yn) ∈ Ω and positive numbers rn such that

Sn := rnS + (xn, yn) ⊂ Ω and Ṡl ∩ Ṡk = ∅ for l �= k,

where S is the square with vertices in (±1, 0) and (0,±1). Moreover, we have

Ω =
+∞⋃
n=0

Sn.

Proof. We refer, for example, to [11] for a proof.

Applying the construction of lemma 3.4, we find rn > 0, (xn, yn) ∈ Ω such that
the sets Sn = rnS + (xn, yn) ⊂ Ω have the stated properties. Given a function
u0 ∈ W 1,∞

0 (Ṡ), we let

un : Sn → R, un(x, y) := rnu0

(
1
rn

(x − xn, y − yn)
)

,

u : Ω → R, u(x, y) :=
∞∑

n=1

(χṠn
un)(x, y),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where χṠn
denotes the characteristic function of the set Ṡn. We make the following

claim.

Lemma 3.5. The function u defined in (3.1) is in the space W 1,∞
0 (Ω), and we have

the following formula:

∇u(x, y) =
∞∑

n=1

(χṠn
∇un)(x, y) =

∞∑
n=1

χṠn
∇u0

(
1
rn

(x − xn, y − yn)
)

a.e. on Ω.

Remark 3.6. If we know that |∂yu0| = 1 a.e. on Ṡ, then we deduce from the
disjointness of the family {Ṡn} that |uy| = 1 is also true a.e. on Ω.

Proof of lemma 3.5. On account of (xn, yn) ∈ Ω, Sn ⊂ Ω, the sequence (rn)n stays
bounded, and thus

‖u‖L∞(Ω) � sup
n∈N

rn‖u0‖L∞(S) < ∞.

In order to prove weak differentiability of the function u, we fix ψ ∈ C∞
0 (Ω) and

get, from Lebesgue’s theorem on dominated convergence, that

∫
Ω

u(x, y)∇ψ(x, y) dxdy =
∞∑

n=1

∫
Ṡn

un(x, y)∇ψ(x, y) dxdy.

Observing that un = 0 on ∂Sn, we can write∫
Ṡn

un(x, y)∇ψ(x, y) dxdy = −
∫

Ṡn

∇un(x, y)ψ(x, y) dxdy,
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and, by the same reasoning as above (note that ‖∇un‖L∞(Sn) = ‖∇u0‖L∞(S), and
therefore ‖

∑M
n=1 χṠn

∇un‖L∞(Ω) = ‖∇u0‖L∞(S) for all M � 1),

−
∞∑

n=1

∫
Ṡn

∇un(x, y)ψ(x, y) dxdy = −
∫

Ω

( ∞∑
n=1

χṠn
∇un(x, y)

)
ψ(x, y) dxdy,

which proves that
∞∑

n=1

χṠn
∇un ∈ L∞(Ω, R2)

is the weak derivative of u. Again, by dominated convergence, it is obvious that

M∑
n=1

χṠn
un → u,

M∑
n=1

χṠn
∇un → ∇u

as M goes to infinity in Lp(Ω) for any finite p. Since the compact sets Sn are
included in Ω, we have

M∑
n=1

χṠn
un ∈ W 1,p

0 (Ω),

thus u ∈ W 1,p
0 (Ω), p < ∞. The Lipschitz boundary of Ω guarantees that

W 1,p
0 (Ω) = {v ∈ W 1,p(Ω) : B(v) = 0},

where B : W 1,p(Ω) → Lp(∂Ω) is the trace operator. Recalling that, for func-
tions v ∈ W 1,p(Ω) ∩ C0(Ω̄), B(v) is the pointwise trace, we finally deduce that
u ∈ W 1,∞

0 (Ω).
The proof of theorem 1.2 can now be carried out as follows. Given N ∈ N,

we constructed in the proof of corollary 3.2 a function u0 ∈ W 1,∞
0 (Ṡ) such that

|∂yu0| = 1 on S and∫
S

ϕ(∇u0(x, y)) dxdy =
1

4N
[ϕ(1,−1) + ϕ(−1,−1) + ϕ(1, 1) + ϕ(−1, 1)].

Let us consider the function u defined in (3.1) for this particular choice of u0.
Lemma 3.5 implies that u ∈ W 1,∞

0 (Ω), and, from the remark after lemma 3.5, we
deduce that |uy| = 1 a.e. on Ω, and thus u ∈ W(Ω). Furthermore, we have

∫
Ω

ϕ(∇u(x, y)) dxdy =
∞∑

n=1

∫
Ṡn

ϕ

(
∇u0

(
1
rn

(x − xn, y − yn)
))

dxdy

=
∞∑

n=1

r2
n

∫
Ṡ

ϕ(∇u0(x, y)) dxdy,

so that∫
Ω

ϕ(∇u(x, y)) dxdy =
1

4N
[ϕ(1,−1) + ϕ(−1,−1) + ϕ(1, 1) + ϕ(−1, 1)]

∞∑
n=1

r2
n.
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Γ0

y

Ω

x

0

Figure 3. Ω = a disc.

Finally, we observe that

L2(Ω) =
∞∑

n=1

L2(rnS + (xn, yn)) = 2
∞∑

n=1

r2
n,

hence∫
Ω

ϕ(∇u(x, y)) dxdy =
1

2N
L2(Ω)[ϕ(1,−1) + ϕ(−1,−1) + ϕ(1, 1) + ϕ(−1, 1)],

and since N was arbitrary, we have shown that I∞ = 0. Moreover, it should be
obvious how to obtain from the above construction a minimizing sequence in the
class W(Ω) ∩ W 1,∞

0 (Ω). This finishes the proof of theorem 1.2.

4. Remarks

In addition to (1.1), let us assume that the integrand ϕ satisfies

ϕ(p, ±1) = 0 ⇒ p = 0. (4.1)

Under this condition, we investigate if the infimum I∞ = 0 is attained by some
function u ∈ W(Ω). This heavily depends on the shape of the boundary portion.
For example, if Γ0 ⊂ R × {b} for some number b ∈ R, then clearly u(x, y) = y − b
vanishes on Γ0, ∂yu ≡ 1 and ∇u(x, y) = (0, 1), and hence ϕ(∇u(x, y)) = 0 by (1.1).
In order to exclude such a behaviour, we let Σ denote the union of all rays starting
from points (x0, y0) ∈ Γ0 into Ω with direction (1, 0), and require that

Ω0 := Ω ∩ Σ is open and non-empty. (4.2)

Of course, condition (4.2) does not hold in case Γ0 ⊂ R × {b} (see figure 3).

Theorem 4.1. Let (1.1), (4.1) and (4.2) hold. Then we have∫
Ω

ϕ(∇u(x, y)) dxdy > 0

for any u ∈ W(Ω).
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Proof. If we assume that ∫
Ω

ϕ(∇u(x, y)) dxdy = 0

for some u ∈ W(Ω), then we get from (4.1) that

ux = 0 on Ω.

This implies the vanishing of u on any ray of the type defined before, and hence,
by (4.2), u = 0 on Ω0, contradicting uy = ±1 a.e.

Next we describe minimizing sequences in terms of Young measures (see [10] for
details about the notion of Young measures).

Theorem 4.2. Let Ω denote a bounded Lipschitz domain in R
2 and assume that

the boundary portion Γ0 is chosen in such a way that Ω0 = Ω (see (4.2)). Suppose
that the integrand ϕ : R

2 → [0,∞) is a continuous function such that

ϕ(p, q) = 0 if and only if (p, q) = (0,±1).

Let (un)n denote a minimizing sequence of problem (1.2) such that

‖un‖L∞(Ω), ‖∇un‖L∞(Ω) � C (4.3)

for a finite constant C independent of n. Then

un → 0 uniformly on Ω. (4.4)

Moreover, the sequence of gradients (∇un)n defines a unique homogeneous Young
measure given by

ν(x,y) = 1
2δ(0,−1) + 1

2δ(0,1) a.e. in Ω, (4.5)

where δ(0,±1) are the Dirac measures at (0,±1).

Proof. One proceeds as in [6]. We refer also to [4] for a proof related to multiple-
wells problems.

Corollary 4.3. Let Ω denote a bounded Lipschitz domain in R
2. Suppose that

the integrand ϕ : R
2 → [0,∞) is a continuous function such that

ϕ(p, q) = 0 if and only if (p, q) = (0,±1).

Let (un)n denote a minimizing sequence of problem (1.2) such that

‖un‖L∞(Ω), ‖∇un‖L∞(Ω) � C.

Suppose further that (4.2) holds. Then

un → 0 uniformly on Ω0.

Moreover, the sequence of gradients (∇un)n defines a Young measure given by

ν(x,y) = α(x)δ(0,−1) + (1 − α(x))δ(0,1) a.e. in Ω,

where α : Ω → [0, 1] is a measurable function such that

α(x) = 1
2 a.e. in Ω0.
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Proof. The restriction of (un) to Ω0 is a minimizing sequence of

I∞(Ω0) := inf
u∈W(Ω0)

∫
Ω0

ϕ(∇u(x, y)) dxdy = 0,

where W(Ω0) is defined with respect to the boundary portion Γ0 ∩ ∂Ω0. Since
(Ω0)0 = Ω0 with an obvious definition of (Ω0)0, one can apply theorem 4.2 to get
corollary 4.3.

Remark 4.4. Note that Ω0 = Ω holds for the particular case Γ0 = ∂Ω. Now, if
Ω0 �= Ω, then the considered minimizing sequences do not necessarily converge
to zero uniformly on the whole domain Ω and the related Young measure is, in
general, not unique. In order to illustrate this, let us first consider the square
Ω := (0, 1) × (0, 1). Then, by § 3, there exists a minimizing sequence (un) of (1.2)
vanishing on the whole boundary of Ω such that (4.3), (4.4) and (4.5) are satisfied.
Now let

Ω := (0, 1) × (0, 2), Γ0 := {0} × [0, 1].

Let (vn) be the sequence in W(Ω) defined as follows:

vn(x, y) =

{
un(x, y) if (x, y) ∈ (0, 1) × (0, 1),
y − 1 if (x, y) ∈ (0, 1) × (1, 2).

It is clear that (vn) is a minimizing sequence of (1.2) that does not converge uni-
formly to zero. Moreover, the sequence of gradients of (vn) generates a Young
measure (µX)X∈Ω such that

µX = 1
2δ(0,−1) + 1

2δ(0,1) a.e. in (0, 1) × (0, 1)

and

µX = δ(0,1) a.e. in (0, 1) × (1, 2).

If we let

wn(x, y) =

{
un(x, y) if (x, y) ∈ [0, 1] × [0, 1],
1 − y if (x, y) ∈ [0, 1] × [1, 2],

we obtain a new minimizing sequence such that

µX = δ(0,−1) a.e. in (0, 1) × (1, 2).

Therefore, there is a lack of uniqueness for the Young measure.
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