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Instabilities of finite-width internal wave beams:
from Floquet analysis to PSI

Boyu Fan1 and T.R. Akylas1,†
1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

(Received 23 July 2020; revised 27 November 2020; accepted 21 December 2020)

The parametric subharmonic instability (PSI) of finite-width internal gravity wave beams
is revisited using a formal linear stability analysis based on Floquet theory. The Floquet
stability eigenvalue problem is studied asymptotically in the limit where PSI arises, namely
for a small-amplitude beam of frequency ω subject to fine-scale perturbations under
nearly inviscid conditions. It is found that, apart from the two dominant subharmonic
perturbation components with frequency ω/2, PSI also involves two smaller components
with frequency 3ω/2, which affect the instability growth rate and were ignored in the
earlier models for PSI by Karimi & Akylas (J. Fluid Mech., vol. 757, 2014, pp. 381–402)
and Karimi & Akylas (Phys. Rev. Fluids, vol. 2, 2017, 074801). After accounting for these
components, the revised PSI models are in excellent agreement with numerical solutions
of the Floquet eigenvalue problem. The Floquet stability analysis also reveals that PSI is
restricted to a finite range of perturbation wavenumbers: as the perturbation wavenumber
is increased (for fixed beam amplitude), higher-frequency components eventually come
into play due to the advection of the perturbation by the underlying wave beam, so the
components at ω/2 no longer dominate. By adopting a frame riding with the wave beam,
this advection effect is factored out and it is shown that small-amplitude beams that are not
generally susceptible to PSI may develop an essentially inviscid instability with broadband
frequency spectrum.

Key words: internal waves

1. Introduction

The stability of internal gravity waves in a continuously stratified fluid is a problem of
fundamental and geophysical interest. Early work focused on sinusoidal plane waves in
an inviscid Boussinesq fluid with constant buoyancy frequency. In this idealized setting,
linear stability analysis based on Floquet theory has revealed a wide host of instabilities
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with varying dynamics and physical mechanisms (e.g. see Sonmor & Klaassen (1997) and
Yau, Klaassen & Sonmor (2004) for a comprehensive treatment). As first noted by Mied
(1976), in the limit of small primary-wave amplitude, this diverse range of instabilities
reduce to triad resonant interactions: the primary wave is unstable to two sinusoidal
subharmonic perturbations whose frequencies and wavevectors sum to those of the basic
state. A specific form of such triadic resonant instability (TRI), where the subharmonic
perturbations have half the frequency of the primary wave and very fine wavelength, is
the celebrated parametric subharmonic instability (PSI). This mechanism has attracted
considerable interest as it permits transfer of energy into much smaller scales (e.g. Staquet
& Sommeria 2002) and therefore may be a potentially significant factor in the dissipation
of oceanic internal waves (Hibiya, Nagasawa & Niwa 2002; MacKinnon & Winters 2005;
Young, Tsang & Balmforth 2008).

In more recent work, attention shifted from sinusoidal waves to time-harmonic plane
waves with locally confined spatial profile: such wave beams arise in oceans due to the
interaction of the barotropic tide with bottom topography (Lamb 2004; Cole et al. 2009;
Johnston et al. 2011) and in the atmosphere due to thunderstorms (Fovell, Durran & Holton
1992), and therefore provide a more realistic setting for instability. However, compared
with sinusoidal waves, formal stability analysis of wave beams based on Floquet theory
is more demanding, as it requires solving an eigenvalue problem that involves an infinite
number of differential, rather than algebraic, equations.

In view of this complication, Karimi & Akylas (2014) (hereafter referred to as KA14)
proposed a simplified treatment of PSI assuming that two fine-scale subharmonic wave
packets at half the beam frequency interact with a small-amplitude beam of locally
confined profile. This model brings out the significance of the finite width of a beam:
the subharmonic perturbations travel with their group velocity so, to cause instability,
they must stay in contact with the beam long enough. By comparing the wavepacket
travel time across the beam with the duration of resonant interaction in the beam vicinity,
KA14 argued that small-amplitude finite-width beams generally are not susceptible to PSI.
An exception arises when the beam profile is nearly monochromatic, in which case PSI
is possible if the number of carrier wavelengths within the beam width is sufficiently
large. The stabilizing effect of the finite width of a beam is also supported by laboratory
experiments (Bourget et al. 2014), although the nearly inviscid flow scalings assumed in
KA14 cannot be met in a laboratory setting. Furthermore, using a small-amplitude nearly
inviscid model similar to that of KA14, Karimi & Akylas (2017) (henceforth referred to
as KA17) showed that PSI is possible for beams with general spatial profile if the beam
frequency ω ≈ 2f (where f is the inertial frequency) because in this instance subharmonic
perturbations with half the beam frequency are near-inertial and thus have nearly vanishing
group velocity.

The original scope of the present investigation was to assess the validity of the PSI
models of KA14 and KA17 by making a comparison with a formal linear stability analysis
based on Floquet theory of small-amplitude wave beams under nearly inviscid flow
conditions. In a recent related study, Onuki & Tanaka (2019) conducted a Floquet stability
analysis of internal wave beams by exploiting the fact that the Floquet multipliers, which
determine stability, are tied to the eigenvalues of the so-called monodromy matrix, which
is easily computed by time integration. The emphasis of Onuki & Tanaka (2019), however,
is on two- and three-dimensional instabilities of steep beams, far from the PSI regime
considered in KA14 and KA17, so our intent was to fill this gap by applying the technique
of Onuki & Tanaka (2019) to small-amplitude beams.

In carrying out this programme, we encountered difficulties obtaining quantitative
agreement of the instability growth rates predicted by KA17 with those of the Floquet
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stability analysis for near-inertial PSI. This led us to study afresh the Floquet stability
eigenvalue problem in the limit pertinent to the models of KA14 and KA17, namely for
a small-amplitude beam subject to fine-scale perturbations under nearly inviscid flow
conditions. Our analysis confirms that the unstable Floquet mode in near-inertial PSI
(beam frequency ω ≈ 2f ) is dominated by two subharmonic wavepackets with carrier
frequency ω/2, as assumed in KA17; however, the two relatively small components
of this mode at the frequency 3ω/2, which were ignored in KA17, also contribute to
the stability eigenvalue problem and hence affect the instability growth rate. Once this
contribution is taken into account, the predictions of the revised KA17 model are in
excellent agreement with the Floquet stability analysis. A similar omission was also made
in the PSI analysis of nearly monochromatic beams by KA14, but in this instance the
3ω/2 frequency components do not affect the instability growth rate, and the predictions
of KA14 agree well with their Floquet stability counterparts.

Apart from bringing out the significance of the 3ω/2 frequency components in the PSI
of wave beams, our asymptotic analysis of the Floquet eigenvalue problem also reveals
that PSI, which assumes that the frequency components ω/2 are dominant, is limited
by how fine-scale the perturbations are for a given beam amplitude (assumed small).
Specifically, as the perturbation wavenumber is increased holding the beam amplitude
fixed, higher-frequency components eventually come into play. This broadening of the
frequency spectrum of the Floquet mode was also noted in the numerical computations of
Onuki & Tanaka (2019) and was attributed to the advection due to the underlying-beam
velocity field. By adopting a frame riding with the wave beam, this advection effect is
factored out and it is shown that small-amplitude beams with general (not necessarily
nearly monochromatic) locally confined profile, which are not susceptible to PSI away
from near-inertial conditions, may develop an essentially inviscid instability that features
broadband frequency spectrum.

2. Floquet stability analysis

2.1. General formulation
The present analysis assumes an unbounded, incompressible, uniformly stratified
Boussinesq fluid with constant buoyancy frequency N∗ and includes the effect of
background rotation under the f -plane approximation. Using non-dimensional variables
with 1/N∗ as the time scale and L∗ as the length scale (to be specified later) the governing
equations for the velocity field u, the reduced density ρ and pressure p are

∇ · u = 0, (2.1a)

ρt + u · ∇ρ = u · j, (2.1b)

ut + u · ∇u + f × u = −∇p − ρj + ν∇2u. (2.1c)

Here, j is a vertical unit vector pointing upwards, f = f j, where f is the local Coriolis
parameter normalized with N∗, and ν = ν∗/N∗L2∗ is the inverse Reynolds number, where
ν∗ denotes the kinematic viscosity.

In the inviscid limit (ν = 0), (2.1) admits time-harmonic plane wave solutions in the
form of beams (Tabaei & Akylas 2003) that feature general profile in the cross-beam (η)
direction, and are uniform in the along-beam (ξ ) and transverse horizontal (z) directions
(figure 1a). Specifically, the beam velocity components (u, v,w) in the coordinate system
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Figure 1. (a) Schematic of uniform beam with frequency ω and inclination θ to the horizontal, in keeping
with (2.3). The coordinate system (ξ, η, z) is defined by the along-beam, cross-beam and transverse directions,
respectively. Dotted lines indicate the finite width of the beam and the arrows within show the along-beam
velocity u0. The perturbation wavevector k is inclined by the angle χ to η and by φ = θ − χ to the vertical y.
(b) Beam profile (3.1) for ε = 0.1. Solid, dashed and dotted lines correspond to the real part, imaginary part
and |U|, respectively.

(ξ, η, z), along with ρ and p, are given by

(u, v,w) = (u0, 0,w0) ≡
(

1, 0,
if cos θ
ω

)
U(η)e−iωt + c.c., (2.2a)

ρ = ρ0(η, t) ≡ − i sin θ
ω

U(η)e−iωt + c.c., (2.2b)

p = p0(η, t) ≡ i(1 − f 2)
sin θ cos θ

ω

∫ η

U(η′) dη′e−iωt + c.c.. (2.2c)

Here, the complex amplitude U(η) specifies the beam profile and θ is the beam inclination
angle to the horizontal (figure 1a), which is tied to the beam frequency ω via the
(non-dimensional) dispersion relation

ω2 = f 2 + (1 − f 2) sin2 θ. (2.3)

Furthermore, (ξ , η) are related to the horizontal and vertical coordinates (x, y) by
ξ = x cos θ − y sin θ and η = x sin θ + y cos θ . Generally, finite viscosity (ν /= 0) will
introduce along-beam variations in (2.2) (Mowbray & Rarity 1967; Thomas & Stevenson
1972). These viscous effects are ignored here.

The focus of the present analysis is on the stability of the primary wave (2.2) to
infinitesimal perturbations. As (2.2) does not depend on ξ or z, we superimpose normal
modes in the form

u = u0 + û(η, t) exp(i(μξ + mz)), (2.4)

where the real parameters μ and m specify the along-beam and transverse wavenumbers of
the perturbation, with similar expressions for v,w, ρ and p. After inserting into (2.1) and
linearizing with respect to the perturbations, we obtain the following equations (dropping
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the hats):

0 = iμu + vη + imw, (2.5a)

ρt = −i(μu0 + mw0)ρ − ρ0ηv − u sin θ + v cos θ, (2.5b)

ut = −i(μu0 + mw0)u − u0ηv − iμp + ρ sin θ − wf cos θ + νL u, (2.5c)

vt = −i(μu0 + mw0)v − pη − ρ cos θ − wf sin θ + νL v, (2.5d)

wt = −i(μu0 + mw0)w − w0ηv − imp + uf cos θ + vf sin θ + νL w, (2.5e)

where L ≡ −μ2 + ∂2
η − m2 takes into account the full effects of viscosity on the

perturbations. As the basic state (2.2) is periodic in t (period T0 = 2π/ω), (2.5) is a
linear equation system with periodic coefficients, which can be solved by Floquet theory
to determine stability for a given beam profile U(η) and parameters μ and m.

2.2. Sinusoidal waves
For a sinusoidal plane wave, the primary wave profile in (2.2) is taken in the form
U = ε exp(iη), where the amplitude parameter ε = U∗/(N∗L∗), U∗ being half the along-ξ
velocity amplitude, and the wavelength has been normalized to 2π (which fixes the length
scale L∗). In this instance, it is straightforward to solve (2.5) via Floquet theory by
expanding the perturbations in Fourier series in η − ωt, and thus recover the thoroughly
studied instability of a sinusoidal plane wave (e.g. Sonmor & Klaassen 1997; Yau
et al. 2004). Out of this body of work, of special interest here is the nearly inviscid
(ν � 1) small-amplitude limit (ε � 1). In this regime, the most unstable perturbation is
two-dimensional (i.e. m = 0) and involves only two subharmonic frequency components
that are freely propagating sinusoidal internal waves and form a resonant triad with the
primary wave. Specifically, these subharmonic waves, with frequencies (ω1, ω2) (where
|ω1,2| < ω) and wavevectors (k1,k2), each satisfy the dispersion relation (2.3), and
together satisfy the triad resonance conditions

ω1 + ω2 = ω, (2.6a)

k1 + k2 = k0, (2.6b)

where k0 = êη is the primary wavevector. This class of instabilities, which encompasses
all such pairs of (ω1,k1) and (ω2,k2), is thus known as TRI.

For inviscid flow conditions, in the event that the beam inclination angle θ � 43◦ for
f = 0, or when ω ≈ 2f for any θ , the most unstable pairs of subharmonic waves feature
ω1 ≈ ω2 ≈ ω/2 and |k1| ≈ |k2| 	 1 (e.g. Yeh & Liu 1981; Sonmor & Klaassen 1997).
This particular form of TRI is widely known as PSI. However, it is important to note that
other flow conditions may favour other forms of TRI over PSI. For instance, the most
unstable triads for θ � 43◦ and f = 0 involve subharmonic waves with |k1| < 1 < |k2|,
which is sometimes referred to as the ‘branch-C’ instability (Sonmor & Klaassen 1997).

2.3. Locally confined beams
Moving away from the sinusoidal wave, KA14 and KA17 examined the possibility of PSI
for locally confined beams in the small-amplitude nearly inviscid limit. As discussed in
§ 1, these approximate models of PSI are based upon the assumption of triad resonance,
which strictly holds for a small-amplitude sinusoidal primary wave. Here, to assess the
validity of KA14 and KA17, we perform a formal stability analysis of a locally confined
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beam profile U(η) based on the full stability problem (2.5). In general, this task has to be
carried out numerically.

The stability problem (2.5) is more challenging to handle numerically for a general
profile U(η) than for the sinusoidal wave profile: in addition to Fourier expansion in
t, it is necessary to use a separate discretization in η. To tackle this complication,
we follow the approach taken by Onuki & Tanaka (2019) in their stability analysis of
finite-amplitude internal wave beams under oceanic flow conditions. This approach was
used earlier for inertial wave beams (Jouve & Ogilvie 2014) and also in a very recent
study of finite-amplitude thin internal wave beams under laboratory flow conditions (Fan
& Akylas 2020).

As our interest centres on the relevance of PSI to small-amplitude locally confined
beams, we focus on two-dimensional perturbations (m = 0). It should be noted that
three-dimensional (m /= 0) instabilities are possible and may be important at large
amplitudes (Onuki & Tanaka 2019). Furthermore, other three-dimensional instability
mechanisms such as streaming, which involves the generation of a resonant mean flow
due to finite transverse variations of a beam (Kataoka & Akylas 2015; Fan, Kataoka &
Akylas 2018; Fan & Akylas 2020; Jamin et al. 2021) and thus falls beyond the scope of
linear stability analysis, may be important in other contexts.

Following Onuki & Tanaka (2019), we solve (2.5) using the ‘monodromy’ matrix,
which can be easily computed by integrating (2.5) over one period of oscillation of the
primary wave, namely T0 = 2π/ω. The Floquet exponents λ = λr + iλi, where λr > 0
implies instability, as well as the Floquet modes, are then obtained via the eigenvalues
and eigenvectors of the monodromy matrix (see Fan (2020) and Fan & Akylas (2020)
for details). Finally, we repeat this procedure for various μ in order to find the instability
modes with the highest growth rate. In implementing this procedure, (2.5) was typically
discretized using 1024 Fourier modes in the computational domain η ∈ [−10, 10] and
integrated using a pseudo-spectral method with fourth-order Runge–Kutta time stepping
and a typical �t = 0.02. The ensuing eigenvalue problem was then solved using standard
MATLAB algorithms.

3. Floquet stability of beams with ω = 2f

3.1. Results
To motivate the ensuing analysis (§ 4), we begin by considering finite-width beams in
the presence of background rotation and attempt a comparison of the Floquet stability
results with the predictions of the near-inertial PSI theory of KA17. This approximate
model focuses on the resonant interaction between a small-amplitude wave beam with
frequency ω ≈ 2f and two subharmonic perturbations of frequency ω/2 ≈ f and very
fine wavelength. According to KA17, the vanishing group velocity of such near-inertial
perturbations prolongs their interaction with the primary wave. As a result, when ω ≈ 2f ,
small-amplitude locally confined beams of general profile are susceptible to PSI in the
nearly inviscid limit.

We present Floquet stability results for a small-amplitude beam with the Gaussian
profile used in KA17, exactly at the critical frequency ω = 2f and for inviscid flow
conditions (ν = 0). Specifically, we chose U(η) in (2.2) to be

U(η) = ε√
8π

∫ ∞

0
ile−l2/8eilηdl (3.1)
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and set ω = 0.1. Here, the non-dimensional amplitude parameter ε = U∗/N∗L∗, where
U∗ and L∗ are a characteristic (dimensional) velocity and width, respectively, of the
primary wave beam. Combined with (2.2), the profile (3.1) (figure 1b) corresponds to a
unidirectional (progressive) wave beam that transports energy in the positive ξ direction
(figure 1a).

Figure 2(a) plots the computed Floquet growth rates λr, scaled by the beam
amplitude parameter ε = 0.01, as a function of the along-beam (ξ ) wavenumber μ
of the perturbations. Instability first arises around μ ≈ 1, and growth rates increase
monotonically with μ until they eventually saturate to approximately 0.126 at μ = 20.
Figure 2(b–d) plots the time-frequency spectra of the Floquet modes corresponding to the
growth rates shown in figure 2(a) at representative values of μ = 2.4, 8.6 and 17. It should
be noted that the different frequency components ωp = λi + nω (n = 0,±1,±2, . . . ) are
discretized with spacing equal to ω in keeping with Floquet theory: the Floquet mode must
be periodic with the same period as the basic state plus a constant offset term due to the
imaginary part λi of the Floquet exponent. At low values ofμ (e.g.μ = 2.4), the frequency
spectrum is dominated by two components at approximately ±f (figure 2b), matching the
description of near-inertial PSI in KA17. However, as μ increases, the frequency spectrum
broadens and ±f are no longer the dominant frequencies; for example, at μ = 17, the
dominant frequencies are now approximately ±3f (figure 2d). As μ is further increased,
the frequency spectrum continues to broaden and increasingly large frequencies dominate.

Figure 2(e) plots the spatial disturbances in the cross-beam (η) direction that correspond
to the top four frequency components, in order of power, of the Floquet mode found at
μ = 2.4, which are the components at ±f , followed by ±3f . All four spatial disturbances
take the form of wavepackets with a well-defined carrier and locally confined envelope.
Interestingly, the carrier wavenumbers γ of each of the four spatial disturbances,
corresponding to the peak of the cross-beam (η) spatial Fourier spectrum computed from
the Floquet analysis for a given μ, are all approximately equal, in this case to roughly −30.
Figure 2( f ) shows similar results for the Floquet mode found at μ = 8.6, in which case
γ ≈ −100. In fact, all frequency components of a computed Floquet mode, and not just
the top four, have approximately equal γ . Furthermore, figure 2(b–d) indicates that the
frequency components of a given Floquet mode always appear in plus/minus pairs, while
γ is always negative.

According to the above numerical results, the Floquet mode is a superposition of pairs of
wavepackets, and each pair consists of waves that have approximately the same frequency
and cross-beam wavenumber γ but travel in opposite directions. As the along-beam
wavenumber μ is fixed, the carrier wavevector k = μêξ + γ êη (figure 1a) of these
wavepackets is approximately constant for all frequency components of the Floquet mode.
Moreover, since |γ | 	 |μ| � O(1), the perturbation has very fine scale relative to the
primary beam, i.e. |k| 	 1, as assumed in KA17. According to the dispersion relation
(2.3), for ω = 0.1 and f = ω/2, the beam inclination angle θ ≈ 5◦, so χ , the inclination
angle of k to η, is approximately equal to θ ; thus, k, which is inclined to the vertical
by φ = θ − χ (figure 1a), points nearly vertically. Therefore, only the subharmonic
components at ±ω/2 of the Floquet mode approximately satisfy the dispersion relation
(2.3) for the wavevector k and correspond essentially to freely propagating internal waves.

3.2. Floquet stability versus near-inertial PSI
The Floquet stability results for a small-amplitude beam (ε = 0.01) with ω = 2f discussed
above suggest that the instability dynamics assumed by KA17 for near-inertial PSI is valid
only as long as the fine-scale perturbations have moderately large |k| (see figure 2b,e):
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Figure 2. (a) Instability growth rates (scaled by the beam amplitude ε = 0.01) predicted by the Floquet
stability analysis as a function of the along-beam (ξ ) wavenumber μ of the perturbations, for primary beam
profile (3.1), beam frequency ω = 0.1, Coriolis parameter f = 0.05 and inviscid flow conditions (ν = 0).
(b) Time frequency spectrum of the fastest growing Floquet mode for μ = 2.4, indicated in panel (a) by a
vertical dashed line. Vertical dotted lines indicate the frequencies ±f /ω. Here, the perturbation frequencies
ωp = λi + nω, where λi is the imaginary part of the Floquet spectrum and n = 0,±1,±2, . . .. Panels (c)
and (d) are the same as panel (b) but for μ = 8.6 and 17, respectively. (e) Spatial mode shapes for the top
four frequencies, in order of power, of the frequency spectrum plotted in panel (b) for the Floquet mode at
μ = 2.4. From left to right, plots are shown in order of decreasing power. The spatial mode amplitudes have
been normalized such that the mode corresponding to the top frequency component has maximum along-beam
velocity equal to unity. The peak cross-beam (η) wavenumber γ of each mode is listed along with the frequency.
Panel ( f ) is the same as panel (e) but for the top four frequencies, in order of power, of the frequency spectrum
plotted in panel (c) for the Floquet mode at μ = 8.6.

when μ and thereby |k| is increased while keeping ε fixed (e.g. figure 2c,d, f ), the main
hypothesis of PSI breaks down since the instability dynamics is no longer dominated by the
subharmonic frequencies ±ω/2. These findings are consistent with the asymptotic scaling
|k| = O(ε−1/2) of KA17, which is clearly violated as |k| → ∞ for fixed ε. As a result
of this restriction on |k|, PSI does not capture the dominant inviscid instability (largest
growth rate) which arises as |k| → ∞ (figure 2a). More importantly, however, quantitative
comparison between the growth rates predicted by KA17 and our Floquet analysis revealed
noticeable discrepancies even when PSI is valid (e.g. for μ = 2.4 in figure 2b,e).
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From Floquet analysis to PSI

To understand and resolve these issues, we now turn to an asymptotic stability analysis
of finite-width beams in the joint limit ε � 1 and |k| 	 1, based on the full stability
problem (2.5).

4. Small-amplitude limit of Floquet problem

4.1. Preliminaries
Since PSI is a two-dimensional instability, the following analysis assumes from the outset
perturbations that only vary in the plane of the basic state (i.e. m = 0 in (2.4)). In this
setting, rather than u and v, it is more convenient to introduce a stream function ψ(ξ, η, t),
in terms of which u = ψη and v = −ψξ . Thus, the incompressibility equation (2.1a) is
automatically satisfied, and ψ , w and ρ are governed by the vorticity equation

∇2ψt − cos θρξ − sin θρη − f sin θwξ + f cos θwη + J(∇2ψ,ψ)− ν∇4ψ = 0, (4.1)

along with the transverse momentum and continuity equations

wt + f sin θψξ − f cos θψη + J(w, ψ)− ν∇2w = 0, (4.2a)

ρt + cos θψξ + sin θψη + J(ρ, ψ) = 0, (4.2b)

where the Jacobian J(a, b) = aξbη − aηbξ . Furthermore, in terms of the stream function,
the basic state (2.2) that describes a uniform internal wave beam is replaced by

ψ0 = ε Q(η)e−iωt + c.c., (4.3a)

w0 = ε
if cos θ
ω

Qηe−iωt + c.c., (4.3b)

ρ0 = −ε i sin θ
ω

Qηe−iωt + c.c., (4.3c)

where Q(η) and the beam profile U(η) in (2.2) are related by εQη = U, and ε is the
amplitude parameter used earlier in (3.1). For convenience, here ε has been made explicit
in (4.3) as the focus of this section centres around small-amplitude beams.

As in (2.4), we superimpose infinitesimal perturbations to this basic state in the form of
normal modes

ψ = ψ0 + ψ̂(η, t)eiμξ , (4.4)

with similar expressions for w and ρ, whereμ is a real along-beam wavenumber parameter.
Furthermore, in keeping with Floquet theory, ψ̂ is expanded as a Fourier series in t with
period 2π/ω, multiplied with an exponential term that contains the Floquet exponent λ,

ψ̂ = eλt
∞∑

n=−∞
ψ̂(n)(η)einωt, (4.5)

with analogous expressions for ŵ and ρ̂. Inserting then (4.4) and (4.5) into (4.1) and
(4.2) and linearizing leads to a set of infinite homogeneous equations for the perturbation
amplitudes ψ̂(n), ŵ(n) and ρ̂(n), where n = 0,±1,±2, . . .. This eigenvalue problem for λ,
which determines stability, is of course equivalent to the one obtained earlier from (2.5)
and can be tackled numerically by a similar procedure as in § 2.3.

Rather than proceeding numerically, however, here we seek an asymptotic
approximation to this Floquet eigenvalue problem in the limit of a small-amplitude beam
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B. Fan and T.R. Akylas

(ε � 1) subject to fine-scale perturbations (|k| 	 1) in a nearly inviscid fluid (ν � 1), the
conditions under which PSI comes into play according to the numerical results in § 3.1.
Specifically, as seen in figure 2(e), the spatial mode shapes ψ̂(n)(η) in (4.5) take the form
of wavepackets with a common carrier wavenumber γ in the cross-beam (η) direction.
Therefore, we write(

ψ̂(n), ŵ(n), ρ̂(n)
)

=
(

A(n)(η),W(n)(η),R(n)(η)
)

eiγ η. (4.6)

Furthermore, we express the along- and cross-beam wavenumbers as
μ = −k sinχ, γ = k cosχ, (4.7a,b)

where

k =
√
μ2 + γ 2, χ = tan−1(−μ/γ ) (4.8a,b)

are the magnitude and inclination angle to the η direction, respectively, of the carrier
wavevector k = μêξ + γ êη (see figure 1a). Finally, to bring out the perturbation
components with frequency ω/2, without loss of generality, we take

λ→ λ− i
ω

2
. (4.9)

As a result of the substitutions (4.6)–(4.9), the Floquet mode in (4.4) takes the form

ψ̂(η, t)eiμξ = eλte−iωt/2 exp(ik(η cosχ − ξ sinχ))
∞∑

n=−∞
A(n)(η)einωt, (4.10)

with similar expressions for ŵ and ρ̂. Furthermore, upon substituting (4.4) and (4.10) into
(4.1) and (4.2), linearizing and collecting equal harmonics, it follows that the perturbation
amplitudes Ã(n) = kA(n),W(n) and R(n) (n = 0,±1,±2, . . . ) satisfy the infinite equation
system

(λ+ i(n − 1/2)ω)LÃ(n) + i
(

sinφR(n) − f cosφW(n)
)

+ 1
k

(
sin θR(n)η − f cos θW(n)

η

)
−i sinχ

{
εk
(

QηLÃ(n+1) + Q∗
ηLÃ(n−1)

)
+ ε

k

(
QηηηÃ(n+1) + Q∗

ηηηÃ(n−1)
)}

+νk2
L

2Ã(n) = 0, (4.11a)

(λ+ i(n − 1/2)ω)W(n) − if cosφÃ(n) − f cos θ
k

Ã(n)η + νk2
LW(n)

−i sinχ
{
εk
(

QηW(n+1) + Q∗
ηW(n−1)

)
− iεf cos θ

ω

(
QηηÃ(n+1) − Q∗

ηηÃ(n−1)
)}

= 0,

(4.11b)

(λ+ i(n − 1/2)ω)R(n) + i sinφ Ã(n) + sin θ
k

Ã(n)η

−i sinχ
{
εk
(

QηR(n+1) + Q∗
ηR(n−1)

)
+ iε sin θ

ω

(
QηηÃ(n+1) − Q∗

ηηÃ(n−1)
)}

= 0,

(4.11c)
where

L = 1 − 2i cosχ
k

d
dη

− 1
k2

d2

dη2 , (4.12)

and φ = θ − χ is the inclination of k to the vertical (see figure 1a).
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From Floquet analysis to PSI

4.2. PSI regime
The eigenvalue problem (4.11), while equivalent to the one discussed in § 2.3, is a
convenient starting point for examining the limit ε � 1 and k 	 1 appropriate for
PSI. Specifically, for k 	 1, the amplitudes (Ã(n),W(n),R(n)) of the various frequency
components that comprise the Floquet mode (4.10) correspond to the envelopes of the
wavepackets found numerically in figure 2(e, f ). According to (4.11), these amplitudes are
coupled via the terms in the curly brackets which are O(εk) to leading order. Therefore,
when εk = O(1), all frequency components may participate equally in the instability
dynamics of a small-amplitude (ε � 1) beam. This accounts for the broadening of the
frequency spectrum of the instability at fixed ε as μ (and therefore k) is increased
(figure 2c,d).

By contrast, when
εk � 1 (4.13)

in (4.11), the amplitudes of the frequency components of the Floquet mode are weakly
coupled. In this instance, it is possible to asymptotically truncate the Fourier series in
(4.10) so that a finite number of frequency components dominate the instability dynamics,
as is the case in PSI. Thus, we now turn our attention to the joint limit

ε � 1, k 	 1, (4.14a,b)

under the condition (4.13) and, as seen in figure 2(b), we assume that the frequencies −ω/2
and ω/2, which correspond to n = 0 and n = 1 in (4.10), dominate the instability. Then,
from (4.11), the rest of the harmonics are less important

(
Ã(n),W(n),R(n)

)
=
{

O
(
(εk)n−1) Ã(1), (n ≥ 2),

O
(
(εk)|n|) Ã(0), (n ≤ −1).

(4.15)

Furthermore, after eliminating W(0), W(1), R(0) and R(1), and making use of (4.13)–(4.15),
the equations for the dominant n = 0 and n = 1 components of (4.11) can be approximated
as

iΩÃ(0) + ω
(
λ+ νk2β

)
Ã(0) + ωc

k
Ã(0)η − i

3ω2

4k2 Ã(0)ηη

+ εki sinχ
{
Ω

2
ω

QηÃ(1) − Q∗
η

(
sinφ R(−1) − f cosφW(−1) + ω

2
Ã(−1)

)}

− ε2k2i sin2 χ

(
1 + 4Ω

ω2

)
|Qη|2Ã(0) + ε

sinχ
ω

{
3δQηηÃ(1) + 2ωcQηÃ(1)η

}

= O
(ε

k
, ε2

)
, (4.16a)

− iΩÃ(1) + ω
(
λ+ νk2β

)
Ã(1) − ωc

k
Ã(1)η + i

3ω2

4k2 Ã(1)ηη

+ εki sinχ
{
Ω

2
ω

Q∗
ηÃ(0) + Qη

(
sinφR(2) − f cosφW(2) − ω

2
Ã(2)

)}

+ ε2k2i sin2 χ

(
1 + 4Ω

ω2

)
|Qη|2Ã(1) + ε

sinχ
ω

{
3δQ∗

ηηÃ(0) + 2ωcQ∗
ηÃ(0)η

}

= O
(ε

k
, ε2k

)
, (4.16b)
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where

Ω = sin2 φ + f 2 cos2 φ − ω2

4
, (4.17a)

β = 1
2

(
1 + 4f 2 cos2 φ

ω2

)
, δ = sinφ sin θ + f 2 cosφ cos θ, (4.17b)

c = 2
ω

(
δ − ω2

4
cosχ

)
. (4.17c)

Here, in deriving (4.16), it is assumed that

λ ∼ νk2 � 1, (4.18)

anticipating that in the weak-coupling limit (4.13) instability is weak, and including only
the leading-order effects of viscosity.

The O(1) terms in (4.16) drop out as the carrier wavevector k has to adhere to
the dispersion relation (2.3) for the dominant frequencies ±ω/2, so Ω = 0 in (4.17a).
Furthermore, from (4.11), the amplitudes of the frequency components ±3ω/2, to leading
order, are given as

Ã(−1) = −εk
sinχ
ω

QηÃ(0), Ã(2) = εk
sinχ
ω

Q∗
ηÃ(1), (4.19a)

(
R(−1),R(2)

)
= 2 sinφ

ω

(
Ã(−1),−Ã(2)

)
, (4.19b)

(
W(−1),W(2)

)
= 2f cosφ

ω

(
−Ã(−1), Ã(2)

)
. (4.19c)

As a result, inserting (4.19) into (4.16), we find that all interaction terms at O(εk) and
O(ε2k2) vanish, leaving the following closed system for Ã(0) and Ã(1):(

λ+ νk2β
)

Ã(0) + c
k

Ã(0)η − i
3ω
4k2 Ã(0)ηη

+ ε
sinχ
ω2

{
3δQηηÃ(1) + 2ωc QηÃ(1)η

}
= O

(ε
k
, ε2k

)
, (4.20a)

(
λ+ νk2β

)
Ã(1) − c

k
Ã(1)η + i

3ω
4k2 Ã(1)ηη

+ ε
sinχ
ω2

{
3δQ∗

ηηÃ(0) + 2ωc Q∗
ηÃ(0)η

}
= O

(ε
k
, ε2k

)
. (4.20b)

These two coupled equations (along with the boundary conditions Ã(0), Ã(1) → 0 as
η → ±∞) define an eigenvalue problem for λ that governs the stability of small-amplitude
finite-width beams under the conditions (4.13), (4.14a,b) and (4.18), appropriate to
PSI. This reduced system captures the effects of the group velocity and dispersion of
the subharmonic perturbation wavepackets, as well as the leading-order effects of the
interaction of these wavepackets with the underlying beam, and weak viscous dissipation.

In view of (4.13) and (4.14a,b), the O(1/k) group velocity effect in (4.20) always
dominates the O(ε) interaction of the perturbation with the beam, the only term that can
cause instability. On these grounds KA14 argued that a small-amplitude finite-width beam
cannot suffer PSI in general. Furthermore, from this scaling argument follow two notable
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From Floquet analysis to PSI

special cases: (i) near-inertial PSI (considered in KA17 and revisited in § 5 below), where
the group velocity c in (4.17c) happens to be small; and (ii) PSI of a beam with nearly
monochromatic profile (considered in KA14 and revisited in § 6 below), where the triad
interaction of the subharmonic perturbations with the beam is finely tuned and can lead to
instability.

Finally, turning to the full Floquet stability eigenvalue problem (4.11), a small-amplitude
(ε � 1) beam with general locally confined profile could be unstable to fine-scale (k 	 1)
perturbations with εk = O(1). In this regime, while the Floquet mode frequency spectrum
broadens, figure 2(a) suggests that the instability growth rate remains O(ε). Thus, as
explained in § 7, it becomes possible to set up a separate asymptotic model for ε � 1,
k 	 1 and εk = O(1), which reveals a new, broadband instability of small-amplitude
beams.

5. Near-inertial PSI

5.1. Reduced eigenvalue problem
We now revisit near-inertial PSI in the light of the small-amplitude theory of § 4 and the
numerical Floquet analysis of § 3. To allow for slight deviations from the critical frequency
ω = 2f , we write

ω = 2f + σ, (5.1)

where |σ | � 1 is a detuning parameter.
Here, it is important to note that when ω < 2f (i.e. σ < 0), perturbations at half this

frequency are subinertial (ω/2 < f ) so in (4.16) the dispersion relation Ω = 0 cannot be
satisfied by a real wavevector k. However, it is still possible to allow for slightly subinertial
subharmonic perturbations in our asymptotic approach by inserting (5.1) into (4.11) from
the onset. This results in two additional terms, ωσ Ã(0)/2 in (4.16a) and ωσ Ã(1)/2 in
(4.16b), which incorporate the effect of small detuning. Since ω/2 = f to leading order,
with the inclusion of these additional terms it is sufficient now to take, without loss of
generality, φ = 0 (i.e. k points vertically) so that Ω = 0 and the O(1) terms in (4.16)
again drop out. Furthermore, for this choice of φ, the group velocity terms in (4.20) can be
neglected in view of (4.17). The remaining terms of (4.20) – which represent the effects of
wavepacket dispersion, coupling to the underlying beam, viscous dissipation and departure
from the critical frequency – may then be formally balanced by the scalings

λ→ ελ, ν = αε2, k = κ

ε1/2 , σ = εf σ̂, (5.2a–d)

consistent with (4.14a,b) and (4.18). In this ‘distinguished limit’, making also use of (4.17),
the eigenvalue problem (4.20) reduces to(

λ̂

ω/2
− i
σ̂

2

)
Ã(0) − i

3
2κ2 Ã(0)ηη + 3 sin 2θ

4ω
QηηÃ(1) = 0, (5.3a)

(
λ̂

ω/2
+ i
σ̂

2

)
Ã(1) + i

3
2κ2 Ã(1)ηη + 3 sin 2θ

4ω
Q∗
ηηÃ(0) = 0, (5.3b)

where

λ̂ = λ+ ακ2. (5.4)
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For a given beam profile Q, the eigenvalues λ̂ depend on the parameters ω, σ̂ and κ , and
instability arises when λ̂ > ακ2. Accordingly, λ̂ can be interpreted as the inviscid growth
rate.

The stability eigenvalue problem (5.3) is similar, but not entirely equivalent, to the
one obtained in KA17 for near-inertial PSI. Specifically, the present asymptotic analysis,
which is based on the full Floquet stability problem (4.11), reveals the importance
of the ±3ω/2 frequency components (4.19) in the PSI dynamics: including these
disturbances cancels out the terms proportional to |Qη|2 in (4.16), which thus do not
appear in the final stability equations (5.3). In contrast, KA17 focuses solely on the ±ω/2
frequency components so these ‘nonlinear refraction’ terms erroneously are present in
the stability eigenvalue problem of KA17 (cf. their (28)). This resolves the discrepancy
noted in § 3.2 between KA17 and the numerical Floquet analysis: the predictions of
the eigenvalue problem (5.3) are in excellent agreement with Floquet numerical results
for near-inertial PSI, as discussed below. Furthermore, it should be noted that KA17
assumes ω ≥ 2f , whereas our analysis permits the detuning parameter to be of either sign,
encompassing both superinertial and subinertial perturbations. The present, more general,
treatment reduces to that of KA17 by setting σ̂ = σ 2

KA(1 − f 2)/f 2 and (Ã(0), Ã(1)) →
(Ã(0), Ã(1)) exp(iκσKAη/ sin θ), where σKA is the detuning parameter used in KA17.

5.2. Instability growth rates
We now compare the predictions of (5.3) with those of the numerical Floquet analysis. To
this end, Q in (5.3) is chosen as

Q(η) = 1√
8π

∫ ∞

0
e−l2/8eilηdl, (5.5)

which corresponds to the same beam profile (3.1) used earlier (and also matches the
profile used in KA17). Furthermore, as in § 3, ω = 0.1 and all reported growth rates λr
will be in the scaled time T = εt consistent with (5.2a–d). Numerically, the eigenvalue
problem (5.3) was discretized in η using eighth-order centred differences and the resulting
matrix eigenvalue problem was solved using standard numerical eigenvalue algorithms
in MATLAB for the eigenvalue λ̂. The computational domain was varied between η ∈
[−5, 5] and [−100, 100], depending on the choices of κ and σ̂ , with a typical grid size of
2000 points.

Figure 3 compares the instability growth rates λr predicted by the numerical Floquet
analysis and the near-inertial PSI theory (5.3) under various flow conditions. Specifically,
the PSI growth rates are plotted as a function of the perturbation wavenumber κ > 0 for
viscosity parameter α = 0 and 10−3, and detuning parameter σ̂ = −4,−2, 0, 4, 10 and 20.
The corresponding Floquet growth rates are shown for beam amplitude ε = 0.002, with κ
computed using (4.8a,b) and (5.2a–d), where γ is taken to be the average of the carrier
wavenumbers (in η) of the two subharmonic frequency components. For this ε, the largest
detuning parameter chosen here, σ̂ = 20, corresponds to ω/f = 2.04, which translates to a
frequency detuning of approximately 2 %. A discussion of results for varying ε is presented
later (see figure 5).

Overall, we observe excellent quantitative agreement between the fully numerical and
the asymptotic instability growth rates. In the inviscid case (α = 0) shown in figure 3(a,c),
λr = λ̂r saturates to an approximately constant value for large κ that depends on the
detuning σ̂ . As |σ̂ | increases, i.e. as ω/2 moves away from f , this limiting growth
rate is diminished, a stabilizing effect that is stronger for σ̂ < 0 (i.e. ω/2 < f ). In this
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(a) (b)

(c) (d)
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Figure 3. Comparison of predicted instability growth rates (in terms of the scaled time T = εt) as a function
of the scaled perturbation wavenumber κ between the near-inertial PSI theory (using beam profile (5.5)) and
the Floquet analysis (using beam profile (3.1) with beam amplitude ε = 0.002) for primary beam frequency
ω = 0.1. Results are shown for viscous parameter (a,c) α = 0 corresponding to inviscid flow and (b,d) α =
10−3. Panels (a,b) show results for detuning parameter σ̂ = 0 (•, solid line), σ̂ = 4 (�, dashed line), σ̂ = 10
(�, dashed-dotted line) and σ̂ = 20 (♦, dotted line). Panels (c,d) show results for σ̂ = 0 (•, solid line), σ̂ = −2
(×, dashed line), σ̂ = −4 (∗, dashed-dotted line). In all plots, shapes correspond to the Floquet growth rate
while lines correspond to the near-inertial PSI growth rate.

instance, the computed PSI growth rates have zero imaginary part (λi = 0) so in view of
(4.10), subinertial subharmonic perturbations have frequency exactly equal to ω/2, also
in agreement with the numerical Floquet analysis. For finite viscosity, as illustrated in
figure 3(b,d) for α = 10−3, instability is confined to a finite range of κ . This is to be
expected based on the near-inertial PSI theory: as κ is increased, the quadratic ακ2 will
eventually exceed λ̂r, the inviscid growth rate, which is approximately constant at large κ .
Here, it should be noted that α = 10−3 with ε = 0.002 sets the inverse Reynolds number
ν = O(10−9) and corresponds to nearly inviscid conditions, as would be found in oceans.

Figure 4 plots the maximum instability growth rate, taken over κ , as a function of
the detuning −6 ≤ σ̂ ≤ 20. Again, there is excellent agreement between the near-inertial
PSI theory and the Floquet analysis. As illustrated in figure 4, instability is completely
suppressed regardless of viscous dissipation when ω/2 is sufficiently subinertial (σ̂ �
−5). For inviscid flow conditions (figure 4a), the maximum instability growth rate, which
is found as κ → ∞ for a given detuning σ̂ , shows very weak dependence on σ̂ for σ̂ ≥ 0.
Under viscous flow conditions (α = 10−3), shown in figure 4(b), the maximum growth rate
decreases for large σ̂ , indicating that instability is weakened far enough from near-inertial
conditions. Interestingly, though, for finite viscosity, instability is strongest at small but
finite σ̂ > 0, rather than exactly at the critical ω = 2f (σ̂ = 0). This is due to the behaviour
of the growth rates near the onset of instability: as illustrated in figure 3(a,b), the growth
rates for σ̂ = 4 arise at slightly lower κ and have larger values in the range 1 � κ � 5 than
the growth rates for σ̂ = 0.

Finally, figure 5 compares the Floquet and PSI growth rates under inviscid flow
conditions (α = 0) at three different values of the detuning σ̂ = −4, 0 and 20 for the
beam amplitudes ε = 0.002, 0.01, 0.05 and 0.1. For σ̂ = 0, the Floquet growth rates for
the larger ε = 0.2 are also shown. As expected, the best agreement between the PSI theory
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Figure 4. Maximum instability growth rate as function of detuning −6 ≤ σ̂ ≤ 20 for the same primary beam
as in figure 3. (a) Inviscid flow conditions (α = 0). In this case, since the maximum growth rate for a given
σ̂ occurs as κ → ∞ (see figure 3a,c), results are presented for the near-inertial PSI growth rate at κ = 12
(solid line) and κ = 100 (dotted line). Floquet results (◦) are shown at κ ≈ 12. (b) Viscous flow conditions
(α = 10−3). In this case, since the maximum growth rate is achieved at finite κ (see § 5.2), plotted growth rates
correspond to the maximum over all κ . Solid line is the near-inertial PSI growth rate, while (◦) is the Floquet
growth rate.
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Figure 5. Inviscid instability growth rate as a function of the scaled perturbation wavenumber κ predicted by
the Floquet analysis for beam amplitude ε = 0.002 (◦), 0.01 (�), 0.05 (�), 0.1 (♦). The same primary beam
profile and frequency as in figures 3 and 4 are used here. Plots correspond to detuning parameter σ̂ = −4 (a),
σ̂ = 0 (b) and σ̂ = 20 (c). The results for σ̂ = 0 in panel (b) include Floquet growth rates for ε = 0.2 (∗). Solid
lines correspond to the near-inertial PSI growth rate.

and the Floquet analysis is found when the assumptions ε � 1, εk � 1 (κ � ε−1/2) and
|σ̂ | = O(1)made in the PSI theory are well satisfied. It should be noted that typical values
for oceanic internal waves, with characteristic velocity U∗ ≈ 0.1 m s−1, characteristic
beam width L∗ ≈ 500 m, and buoyancy frequency N∗ ≈ 2 × 10−3 s−1 (see e.g. Gerkema,
Lam & Maas 2004), result in the dimensionless amplitude ε ≈ 0.1.

5.3. Instability dynamics
The results presented above indicate that the instability growth rates predicted by the
numerical Floquet analysis agree well with the near-inertial PSI theory. However, as
illustrated in figure 2 and discussed in § 4.2, the main assumption of PSI theory, namely
that the frequency components at ±ω/2 dominate, eventually breaks down as κ is
increased with ε fixed. More precisely, the PSI theory fails when κ = O(ε−1/2), in keeping
with (4.13) and (5.2a–d), and unstable Floquet modes contain broadband frequency
spectra.

To confirm these theoretical predictions, we return to the instability growth rate curve in
figure 2(a). When plotted in terms of the scaled wavenumber magnitude κ rather than the
along-beam wavenumber μ, this curve corresponds to the growth rate curve in figure 5(b)
for σ̂ = 0 and ε = 0.01 and is nearly indistinguishable from the predictions of the
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Figure 6. Time-frequency spectra of the fastest-growing Floquet mode found at scaled perturbation
wavenumber κ = 10 for the same primary beam profile and frequency used throughout § 5. Panels (a–c) show
modes for beam amplitude ε = 0.05 while panels (d– f ) show modes for ε = 0.002. Panels (a,d), (b,e) and
(c, f ) correspond to detuning parameter σ̂ = −4, 0 and 20, respectively. The vertical dotted lines indicate the
frequencies ±f /ω.

PSI theory. However, despite this agreement, the time-frequency spectra in figure 2(b–d),
which correspond to κ ≈ 3, 10 and 20, respectively, indicate that the instability dynamics
for κ � 10 does not resemble PSI at all, consistent with the estimate κ ≈ ε−1/2 = 10 for
the breakdown of the PSI assumption. Furthermore, figure 6 compares the time-frequency
spectra of the most unstable inviscid Floquet modes at κ = 10 for beam amplitudes
ε = 0.002 and 0.05 and detuning σ̂ = −4, 0 and 20. Since these Floquet modes exactly
correspond to the growth rates shown in figure 5 at κ = 10, the Floquet growth rate is
in excellent agreement with the PSI theory for both beam amplitudes. However, for the
larger amplitude ε = 0.05 (figure 6a–c), the frequency spectra indicate that the instability
dynamics does not correspond to PSI, consistent with εk ≈ 2 not being small.

In summary, when εk � 1 the near-inertial PSI theory is in excellent agreement with
the numerical Floquet analysis. When εk is not small, instability is not dominated by
the subharmonic frequencies at ±ω/2, consistent with the conclusion reached in § 4.2.
Remarkably, however, PSI theory, even though it is not formally valid in this regime, still
provides reliable predictions for the instability growth rate. A similar observation was
made by Sonmor & Klaassen (1997) for the instability of a sinusoidal wave (see their
§ 4a). The reason for the wider than expected validity of PSI theory is discussed in § 7.

6. PSI of nearly monochromatic beams

6.1. Reduced eigenvalue problem
Aside from near-inertial conditions, PSI is also possible for small-amplitude locally
confined beams with a nearly monochromatic profile, as pointed out in KA14. This
study assumed no background rotation ( f = 0), so the beam frequency obeys ω = sin θ
according to (2.3), and omitted the contribution of the ±3ω/2 frequency components
to PSI dynamics. However, unlike near-inertial PSI, these frequencies do not affect the
stability eigenvalue problem derived in KA14.
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Here, we compare the predictions of PSI theory with those of Floquet stability analysis
for a nearly monochromatic beam under the conditions assumed in KA14. To this end,
rather than quoting KA14, it is more economical to derive the PSI eigenvalue problem
directly from the small-amplitude limit of the Floquet stability problem discussed in § 4.
Specifically, we return to (4.20) and consider a beam with profile

Q(η) = q(H)eiη, H = ε̂η. (6.1a,b)

Here, H is a stretched envelope coordinate and ε̂ � 1 is a small parameter (made precise
in (6.4a–d) below) that controls the width of the slowly varying envelope q(H) relative
to the characteristic length scale L∗ = Λ∗/2π, where Λ∗ is the carrier wavelength of the
primary wave beam. It should be noted that under the present conditions, the dispersion
relation Ω = 0 in (4.16) is exactly satisfied by choosing sinφ = ω/2.

In view of (6.1a,b), the perturbation amplitudes Ã(0,1) take the form

Ã(0)(η) → Ã(0)(H)ei(η/2), Ã(1)(η) → Ã(1)(H)e−i(η/2), (6.2a,b)

and inserting (6.1a,b) and (6.2a,b) into the stability equations (4.20), we find at leading
order(

λ+ 1
2
νk2 + i

c
2k

+ i
3ω

16k2

)
Ã(0) + ε̂

c
k

Ã(0)H − ε sinχ cos2
(χ

2

)
qÃ(1) = 0, (6.3a)

(
λ+ 1

2
νk2 + i

c
2k

− i
3ω

16k2

)
Ã(1) − ε̂

c
k

Ã(1)H − ε sinχ cos2
(χ

2

)
q∗Ã(0) = 0. (6.3b)

The various terms in (6.3) may then be formally balanced in a similar fashion to the
near-inertial PSI analysis (cf. (5.2a–d)), by the scalings

λ→ ελ, ν = 2αε2, k = κ

ε1/2 , ε̂ = ε1/2

D
. (6.4a–d)

Here,

D = 2πNε1/2 = O(1) (6.5)

is a scaled width of the beam envelope in terms of N, the number of carrier wavelengths
contained within the beam. Inserting (6.4a–d) into (6.3) and making the substitutions
Ã(0,1) → Ã(0,1) exp[−3iωH/(16cε̂k)] and λ→ λ− ic/(2k), which do not affect stability,
we find that the PSI of nearly monochromatic beams is governed by

λ̂Ã(0) + c
Dκ

Ã(0)H − sinχ cos2
(χ

2

)
qÃ(1) = 0, (6.6a)

λ̂Ã(1) − c
Dκ

Ã(1)H − sinχ cos2
(χ

2

)
q∗Ã(0) = 0, (6.6b)

where

λ̂ = λ+ ακ2. (6.7)

As noted earlier, the final stability eigenvalue problem (6.6) is identical to that found
by KA14 (see their (4.10)), as the frequency components at ±3ω/2, omitted in KA14,
ultimately do not play a role in the PSI stability analysis of nearly monochromatic beams.
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Figure 7. Beam profile (6.9) for non-dimensional amplitude ε = 1 and (a) N = 1 and (b) N = 7, where N
corresponds to the number of carrier wavelengths contained within the beam width. Solid lines indicate the
real part, while dotted lines indicate the imaginary part.

6.2. Comparison with Floquet analysis
We now compare the Floquet stability analysis of a nearly monochromatic beam with the
predictions of the PSI theory (6.6). Specifically, we chose the Gaussian envelope profile

q(H) = 1
2 exp(−8H2). (6.8)

Combined with (6.1a,b), (6.4a–d) and (6.5), (6.8) corresponds to the overall beam profile

U(η) = i
ε

2
exp

(
− 2η2

π2N2

)
exp(iη) (6.9)

in (2.2) for the Floquet analysis. Figure 7 plots the beam profile (6.9) for N = 1
and 7. We recall that, according to (6.5), N = O(ε−1/2) in the PSI theory. Numerically, the
eigenvalue problem (6.6) was discretized in the domain H ∈ [−5, 5] using eighth-order
centred differences with a grid size of 500 points, and the resulting matrix eigenvalue
problem was solved using standard numerical eigenvalue algorithms in MATLAB for the
eigenvalue λ̂. The discussion below will focus on the beam inclination angle θ = 45◦
(which is tied to the beam frequency via the dispersion relation ω = sin θ ) and inverse
Reynolds number ν = 10−5. The effect of varying θ is discussed in Fan (2020, § 3.6.3).

Figure 8(a) plots the maximum instability growth rates (taken over κ and given in
terms of the slow time T = εt) predicted by the PSI theory and the Floquet analysis as a
function of N, the number of carrier wavelengths of the beam profile, for various values of
0.025 ≤ ε ≤ 0.4. As expected, in the limit of N → ∞, the PSI growth rates converge onto
the sinusoidal wave growth rate. Furthermore, the Floquet growth rates show excellent
agreement with the PSI theory for all ε ≤ 0.4 and N ≥ 2, even though in these parameter
ranges neither the assumption of small amplitude (i.e. ε � 1) nor the assumption of scale
separation between the carrier and the envelope (i.e. N 	 1) are necessarily well satisfied.

Furthermore, based on PSI theory, KA14 proposed a lower bound on N, the number of
carrier wavelengths contained in the beam envelope, for PSI to arise (see their (5.14)). By
rearranging their expression for this lower bound, which depends on various parameters
including the inverse Reynolds number ν and beam amplitude ε, we deduce a minimum
amplitude threshold for instability, at fixed N,

εc =
(

1
2Cc

)1/3 c2/3

Γ

ν1/3

(2πN)2/3
. (6.10)

Here, Cc ≈ 3.35 × 10−3 is a coefficient set by the choice of envelope profile (6.8), c
is defined in (4.17c) and Γ = sinχ cos2(χ/2). Figure 8(b) compares (6.10) with the
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Figure 8. (a) Computed instability growth rates (in terms of the scaled time T = εt) according to the Floquet
stability analysis as a function of N, the number of carrier wavelengths contained in the beam width, for the
profile (6.9) with viscosity ν = 10−5, beam frequency ω = sin 45◦ and beam amplitudes ε = 0.025 (�), 0.05
(◦), 0.1 (♦), 0.2 (�) and 0.4 (�). The corresponding asymptotic PSI growth rates, as predicted by (6.6), are
overlaid and labelled. The PSI growth rate for a sinusoidal wave (i.e. N → ∞) is indicated by the horizontal
dashed line. (b) Minimum amplitude εc for instability as a function of N for ν = 5 × 10−4 (�, dotted line),
10−3 (∗, dashed line) and 2 × 10−3 (�, solid line). Shapes correspond to Floquet analysis results while lines
correspond to the amplitude threshold (6.10) predicted by the PSI theory.
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Figure 9. Time-frequency spectra of the fastest-growing Floquet mode for various configurations shown in
figure 8(a). Panels (a–c) correspond to beam amplitude ε = 0.2 and 0.05, respectively. Panels (a,d), (b,e)
and (c, f ) correspond to N = 2, 10 and 20, respectively. Vertical dotted lines in each plot correspond to the
frequencies ±ω/2. The wavenumber κ for each mode is displayed.

minimum amplitude threshold found numerically using the Floquet analysis for various
2 ≤ N ≤ 10 and for three different viscosities ν = 5 × 10−4, 10−3 and 2 × 10−3. We
observe excellent agreement between (6.10) and the numerical results.

Figure 9 plots the time-frequency spectra of the Floquet modes corresponding to the
growth rates shown in figure 8(a) for ε = 0.05 and 0.2, and for N = 2, 10 and 20. Similar
to the results found in § 5.3 for near-inertial conditions, the frequency spectra widen as
the beam amplitude ε is increased, corresponding to the emergence of multiple instability
frequencies other than ±ω/2. When this happens, again we find that PSI theory, although
it is no longer strictly valid, still provides accurate predictions of the instability growth
rates.
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From Floquet analysis to PSI

Finally, it is worth noting that, according to (6.10), εc → 0 in the inviscid limit
(ν = 0) regardless of N. This hints that small-amplitude (ε � 1) locally confined beams
with general (not necessarily nearly monochromatic) profile are possibly susceptible to
instability. This point is discussed below.

7. Broadband instability of small-amplitude beams

According to the asymptotic analysis of § 4, PSI of a small-amplitude (ε � 1) beam of
frequency ω involves fine-scale (k 	 1) disturbances under the condition εk � 1, which
ensures that the Floquet mode is dominated by the frequency components at ±ω/2.
However, based on numerical solutions of the full Floquet stability eigenvalue problem,
PSI theory continues to provide reliable predictions of instability growth rates when
εk = O(1) and the Floquet mode frequency spectrum becomes broadband (see figures 3, 5
and 6). This broadening of the frequency spectrum as εk is increased was also noted in the
numerical computations of Onuki & Tanaka (2019) and it was attributed to the advection of
the perturbation by the underlying-beam velocity field, an effect that has a passive role in
regards to the instability growth rate. Here, we provide theoretical justification of this claim
and also demonstrate that small-amplitude beams with general (not necessarily nearly
monochromatic) locally confined profile may develop an essentially inviscid instability
that features broadband frequency spectrum.

7.1. Revised Floquet analysis
Returning to the Floquet analysis in § 4, we adopt the frame riding with the primary wave

ξ ′ = ξ −
∫ t

ψ0ηdt′, (7.1)

where ψ0 = O(ε) is given by (4.3a). This key step (suggested by an anonymous referee)
makes it possible to factor out the (along-beam) advection of the Floquet mode due to the
underlying wave and thereby eliminate the O(εk) terms in (4.11). Specifically, in view of
(7.1), the Floquet mode in (4.4) and (4.10) is replaced by

ψ̂ ′(η, t)eiμξ ′ = eλte−iωt/2 exp(ik(η cosχ − ξ ′ sinχ))
∞∑

n=−∞
A′(n)(η)einωt, (7.2)

with similar expressions for ŵ′ and ρ̂′. Substituting these revised modes into the linearized
form of (4.1) and (4.2) governing the perturbations, and collecting equal harmonics leads
to an infinite equation system, analogous to (4.11), for the amplitudes Ã′(n) = kA′(n), W ′(n)
and R′(n) (n = 0,±1,±2, . . . ). Unlike (4.11), however, the coupling terms due to the
interaction with the primary wave are now O(ε) instead of O(εk). Thus, for ε � 1, k 	 1
and εk = O(1), it is possible to asymptotically truncate the Fourier series in (7.2) and
obtain a reduced stability eigenvalue problem for the dominant perturbation amplitudes.

In this new eigenvalue problem, the O(ε) instability growth rate derives from the O(ε)
coupling of the perturbation with the primary wave, which now may be balanced with the
O(1/k) group velocity effect and the O(νk2) viscous dissipation. This ‘distinguished limit’
is achieved by the scalings

λ→ ελ, ν = α′ε3, k = κ ′

ε
. (7.3a–c)

Thus, compared with near-inertial PSI (cf. (5.2a–d)), here the growth rate is of the same
order, but the perturbation length scale is shorter and the Reynolds number much higher.
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Furthermore, although the Fourier series in (7.2) may be truncated, the Floquet mode as
a whole features broadband frequency spectrum due to the factor exp(−ikξ ′ sinχ), which
in view of (7.1) comprises all harmonics when εk = O(1).

7.2. Reduced eigenvalue problem
We now sketch the derivation of the asymptotic stability eigenvalue problem appropriate to
the limit ε � 1, k 	 1 and εk = O(1). Upon implementing (7.3a–c), the equation system
governing the Fourier amplitudes Ã′(n), W ′(n) and R′(n), correct to O(ε), can be reduced to
the following system for Ã′(n) (n = 0,±1,±2, . . .):

i(Ω − n(n − 1)ω2)Ã′(n)

− ε

⎛
⎜⎝λΩ +

(
n2 − n + 1

2

)
ω2(

n − 1
2

)
ω

− α′κ ′2 f 2 cos2 φ +
(

n − 1
2

)2
ω2(

n − 1
2

)
ω

⎞
⎟⎠ Ã′(n)

+ 2
ε

κ ′
(
δ − ω2 (n − 1/2)2 cosχ

) dÃ′(n)

dη

− ε (n − 1/2) ω sin 2χ
(

QηηÃ′(n+1) + Q∗
ηηÃ′(n−1)

)

+ ε
n − 1

2
ω

sinχ
(

sin(φ − χ) sinφ + f 2 cos(φ − χ) cosφ
)

×
(

QηηÃ′(n+1)

n + 1
2

− Q∗
ηηÃ′(n−1)

n − 3
2

)
= O(ε2), (7.4)

whereΩ and δ are given in (4.17a) and (4.17b). Then, settingΩ = 0 makes the O(1) terms
in (7.4) for n = 0, 1 drop out, and the dominant Fourier amplitudes Ã′(0) and Ã′(1) satisfy
the closed system

λ̂Ã′(0) + c
κ ′

dÃ′(0)

dη
+ sinχ

ω2

(
δ + ω2

2
cosχ

)
QηηÃ′(1) = 0, (7.5a)

λ̂Ã′(1) − c
κ ′

dÃ′(1)

dη
+ sinχ

ω2

(
δ + ω2

2
cosχ

)
Q∗
ηηÃ′(0) = 0, (7.5b)

where
λ̂ = λ+ α′κ ′2β, (7.6)

with β and c given in (4.17b) and (4.17c). Equations (7.5) (along with the boundary
conditions Ã′(0), Ã′(1) → 0 as η → ±∞) define an eigenvalue problem for λ̂ = λ̂r + iλ̂i.
Here, in view of (7.6), λ̂r may be interpreted as the inviscid instability growth rate whereas
λr = λ̂r − α′κ ′2β accounts for the effect of viscous dissipation.

As remarked earlier, the instability described by (7.5) is distinct from PSI because
the Floquet mode (7.2) features a broadband frequency spectrum and the scaling ν ∝ ε3

appropriate here requires larger Reynolds number than PSI, where ν ∝ ε2 according to
(5.2a–d) and (6.4a–d). Therefore, as discussed in § 7.3, this broadband, essentially inviscid
instability may affect beams that are not generally susceptible to PSI. Furthermore, the
same type of instability replaces PSI under inviscid flow conditions in the limit where
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From Floquet analysis to PSI

the wavenumber of subharmonic perturbations is large enough so that κ ′ = εk = O(1).
For instance, at inertial conditions ω = 2f , where according to (4.17) φ = 0, δ = f 2 cos θ ,
β = 1 and c = 0, (7.5) reduces to

2λ̂Ã′(0) + 3
4 sin 2θQηηÃ′(1) = 0, (7.7a)

2λ̂Ã′(1) + 3
4 sin 2θQ∗

ηηÃ′(0) = 0, (7.7b)

which agrees with the limiting form, when κ = ε1/2k = κ ′/ε1/2 	 1, of the near-inertial
PSI stability problem (5.3) at the critical frequency ω = 2f (σ̂ = 0). This explains why
(5.3), which was derived under the assumption εk � 1, provides reliable predictions of
instability growth rates even when εk = O(1) and the Floquet mode is no longer dominated
by the subharmonics at ±ω/2 (see figures 3, 5 and 6).

7.3. Results for f = 0
We now make a comparison of the predictions of the broadband-instability eigenvalue
problem (7.5) with results from numerical Floquet analysis, under conditions where PSI
is not expected to arise. Specifically, we consider again the beam with profile (3.1) and
frequency ω = 0.1 used in the discussion of near-inertial PSI of § 5 (see figure 1b), except
here, we assume no background rotation ( f = 0). In this instance, it follows from (2.3)
that ω = sin θ so, making use of (4.17), sinφ = ω/2, β = 1/2 and δ = ω2/2. Thus, (7.5)
and (7.6) take the form

λ̂′Ã′(0) + c
κ ′

dÃ′(0)

dη
+ sinχ cos2 χ

2
QηηÃ′(1) = 0, (7.8a)

λ̂′Ã′(1) − c
κ ′

dÃ′(1)

dη
+ sinχ cos2 χ

2
Q∗
ηηÃ′(0) = 0, (7.8b)

where
λ̂ = λ+ 1

2α
′κ ′2, (7.9)

with c = ω(2 − cosχ)/2 and χ = θ − φ. The eigenvalue problem (7.8) was solved
numerically following the procedure used for (5.3). Here, the computational domain was
varied between η ∈ [−5, 5] and [−75, 75], depending on the choice of κ ′, with a typical
grid size of 3000 points.

Figure 10(a) compares the instability growth rates λr, as a function of the perturbation
wavenumber k, predicted by the broadband-instability eigenvalue problem (7.8) and the
numerical Floquet analysis for ε = 0.01 under inviscid flow conditions (ν = 0). We
observe excellent quantitative agreement between the fully numerical and asymptotic
instability growth rates. For comparison, the same figure also plots the growth rates
for f = 0.05, corresponding to near-inertial conditions exactly at the critical frequency
ω = 2f . Figure 10(a) confirms that for f = 0, the beam is unstable when εk � O(1):
the onset of instability occurs at k ≈ 45 (εk = κ ′ ≈ 0.45) and the growth rate keeps
increasing monotonically, reaching a plateau for k � 300 (εk � 3). This is in contrast to
the (near-inertial) instability for f = 0.05, which arises at a significantly lower value of
k ≈ 10 (εk = 0.1), consistent with the scaling κ = ε1/2k = 1 = O(1) of near-inertial PSI,
and has reached its plateau when k � 100 (εk � 1).

Figure 10(b–d) plots the frequency spectrum of the Floquet mode for f = 0 at
k = 80, 200 and 400. Perhaps surprisingly, at k = 80 (εk = κ ′ = 0.8) the frequency
components ±ω/2 are dominant so the spectrum is of the PSI type (figure 10b).
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Figure 10. (a) Floquet growth rate (•) as a function of the perturbation wavenumber magnitude k using beam
profile (3.1) for beam amplitude ε = 0.01, primary beam frequency ω = 0.1 and no background rotation ( f =
0) under inviscid flow conditions (ν = 0). Solid line corresponds to the asymptotic growth rate predicted by the
broadband-instability eigenvalue problem (7.8). The Floquet growth rate for f = 0.05 (◦) and the asymptotic
near-inertial PSI growth rate (dotted line) predicted by the eigenvalue problem (5.3) are plotted for comparison.
Vertical dashed lines indicate the values k = 80, 200 and 400. (b) Time-frequency spectra of the most unstable
Floquet mode for f = 0 shown in panel (a) at k = 80. Vertical dashed lines indicate the frequencies ωp =
±ω/2. Panel (c) is the same as (b) but at k = 200 and panel (d) is the same as panel (b) but at k = 400.

However, the Floquet modes associated with the highest growth rates for f = 0 (which
according to figure 10(a) are roughly 75 % of the highest near-inertial growth rates) are
certainly broadband, as illustrated in figure 10(c,d) at k = 200 and 400, corresponding
to εk = κ ′ = 2 and 4. These results indicate that the scaling argument made in § 4.2
(and KA14) for ruling out PSI of small-amplitude locally confined beams away from
near-inertial conditions is not entirely binding: the dominant instability for f = 0 indeed is
broadband, but PSI is still relevant near the onset of instability.

To examine the range of validity of the weakly nonlinear theory (ε � 1) for broadband
instability, in figure 11 we show a comparison of instability growth rates as predicted by
(7.8) with numerical results obtained from Floquet analysis, for ε = 0.01, 0.1 and 0.2 and
two beam frequencies, ω = 0.1 (figure 11a) and ω = 0.8 (figure 11b). There is excellent
quantitative agreement for ε ≤ 0.1, and the small-amplitude predictions remain reasonably
accurate even for ε = 0.2.

It was noted earlier that, in view of (7.3a–c), the broadband instability is expected
to be more vulnerable to the effects of viscous dissipation than near-inertial PSI (cf.
(5.2a–d)). This is illustrated in figure 12, which shows the effect of finite viscosity
(ν = 10−7) on the instability growth rates for the same beam as in figure 10(a). Similar
to inviscid flow conditions (figures 10a and 11), the asymptotic growth rates predicted by
the broadband-instability eigenvalue problem (7.8) again show excellent agreement with
the fully numerical results. For both f = 0 and f = 0.05 (i.e. near-inertial conditions),
instability is suppressed when k � 110 (εk � 1.1), thereby eliminating the broadband-type
instability and leaving only the PSI-type instability. As a result, instability is far weaker
for f = 0 than for f = 0.05. Based on figure 12, for ν = 10−7, the maximum growth rate
for f = 0 decreases by roughly 80 % relative to inviscid conditions, whereas the maximum
growth rate for f = 0.05 decreases only by roughly 30 %.
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(a) (b)

1.0

0.5

0 2

κ′
4 6 8

1.0

0.5

0 2

κ′
4 6 8

λ
r/
ω

Figure 11. (a) Comparison of the instability growth rates λr, scaled by the beam frequency ω, predicted by the
weakly nonlinear theory for broadband instability (solid lines) and the fully numerical Floquet analysis (shapes)
for f = 0, ν = 0 and beam profile (3.1). (a) Growth rates are plotted as a function of the scaled wavenumber
parameter κ ′ = εk for beam frequency ω = 0.1 and amplitudes ε = 0.01 (�), 0.1 (∗) and 0.2 (♦). Panel (b) is
the same as panel (a) but for ω = 0.8.

0
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Figure 12. Effect of viscosity on the Floquet growth rates shown in figure 10(a) using the same beam profile
(3.1), beam amplitude ε = 0.01 and primary beam frequency ω = 0.1, for ν = 10−7 (�,�) and ν = 0 (•, ◦).
Filled shapes (•,�) correspond to growth rates for f = 0, while open shapes (◦,�) correspond to results
for f = 0.05 (i.e. near-inertial conditions). The corresponding growth rates predicted by the near-inertial PSI
eigenvalue problem (5.3) (dotted lines) and the broadband-instability eigenvalue problem (7.8) (solid lines) are
overlaid.

8. Concluding remarks

We made an analytical and numerical study of instability mechanisms of small-amplitude
finite-width internal gravity wave beams using a formal stability analysis based on Floquet
theory. Our original motivation was to assess the validity of the approximate theories
proposed in KA14 and KA17 for the PSI of small-amplitude beams. These models
assume that PSI involves a resonant triad interaction between a beam of frequency ω and
two fine-scale subharmonic perturbation wavepackets with carrier frequency ω/2. This
hypothesis is supported by our asymptotic analysis of the Floquet stability eigenvalue
problem in the PSI regime, namely for a small-amplitude beam subject to fine-scale
perturbations in the nearly inviscid limit. However, the Floquet instability mode also
comprises two components with frequency 3ω/2, ignored in KA14 and KA17, which
although they are smaller than the two subharmonic wavepackets, still play an important
part, particularly in near-inertial PSI where they affect the instability growth rate.

After accounting for the 3ω/2 frequency components, the predictions of KA17 for
near-inertial PSI of a locally confined beam are in excellent quantitative agreement
with those of the Floquet stability analysis, even outside the formal range of validity
of the approximate model. Close agreement is also found between the PSI model of
KA14 and the exact linear stability analysis of nearly monochromatic beams away from
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near-inertial conditions. In this instance, the 3ω/2 frequency components of the Floquet
mode omitted in KA14 do not affect the PSI growth rate, which shows satisfactory
agreement with that computed from the Floquet stability analysis even for a beam profile
with as few as two carrier wavelengths. Furthermore, the validity of the minimum
beam-amplitude threshold for PSI found in KA14 is confirmed.

An interesting insight provided by our analysis of the small-amplitude limit of the
Floquet stability problem is that the coupling of the perturbation with the underlying
beam is controlled by εk, where ε � 1 measures the beam amplitude and k 	 1 is the
perturbation wavenumber. As a result, PSI arises only in the limit εk � 1 where the
coupling is weak and the two subharmonic perturbation components with frequency
ω/2 dominate. This also explains why the frequency spectrum of the Floquet mode
eventually becomes broadband as εk is increased. This broadening of the spectrum
was also noted by Onuki & Tanaka (2019) and was attributed to the advection of the
perturbation by the velocity field due to the underlying wave beam. We have confirmed
this claim by formulating a Floquet stability analysis in the frame moving with the
beam velocity. Furthermore, this revised Floquet analysis has brought out a new form of
instability of small-amplitude beams, which arises for εk = O(1) and involves broadband
frequency spectrum. This essentially inviscid instability can impact beams with general
(not necessarily nearly monochromatic) locally confined profile, which according to the
scaling argument presented in § 4.2 (and KA14) are not susceptible to PSI away from
near-inertial conditions.
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