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Abstract
The multi-robot path planning problem is an NP-hard problem. The coati optimization algorithm (COA) is a novel
metaheuristic algorithm and has been successfully applied in many fields. To solve multi-robot path planning
optimization problems, we embed two differential evolution (DE) strategies into COA, a self-adaptive differen-
tial evolution-based coati optimization algorithm (SDECOA) is proposed. Among these strategies, the proposed
algorithm adaptively selects more suitable strategies for different problems, effectively balancing global and local
search capabilities. To validate the algorithm’s effectiveness, we tested it on CEC2020 benchmark functions and
48 CEC2020 real-world constrained optimization problems. In the latter’s experiments, the algorithm proposed in
this paper achieved the best overall results compared to the top five algorithms that won in the CEC2020 com-
petition. Finally, we applied SDECOA to optimization multi-robot online path planning problem. Facing extreme
environments with multiple static and dynamic obstacles of varying sizes, the SDECOA algorithm consistently
outperformed some classical and state-of-the-art algorithms. Compared to DE and COA, the proposed algorithm
achieved an average improvement of 46% and 50%, respectively. Through extensive experimental testing, it was
confirmed that our proposed algorithm is highly competitive. The source code of the algorithm is accessible at:
https://ww2.mathworks.cn/matlabcentral/fileexchange/164876-HDECOA.

1. Introduction
Robot systems, primarily accomplishing desired tasks through close collaboration between individual or
multiple robots and humans, have now become an indispensable part of the development in agriculture,
industry, and service sectors. In this trend of development, robot path planning has become one of the
most crucial issues in robot systems. Multi-robot path planning is an NP-hard problem, which describes
the scenario where, in the same working environment, these robots need to move from their initial posi-
tions to their respective destinations at the minimum cost while avoiding collisions with other robots or
obstacles during the movement. Multi-robot path planning involves multiple constraints, particularly in
dynamically changing environments. Previous work has proposed several solutions to avoid collisions
and coordinate between multiple robots [1]. Classical methods for solving robot path planning problems
typically include potential field techniques [2], bounding box representations [3], Breadth-First Search
and Depth-First Search [4], A∗ algorithm [5], and exploring random tree methods [6]. However, these
methods often fail to effectively address multi-robot path planning as the scale of robots or obstacles
increases. Current researchers primarily utilize artificial neural networks and metaheuristic algorithms to
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solve such problems. Metaheuristic algorithms primarily mimic biological behaviors or natural phenom-
ena as heuristic methods and are primarily categorized into four types. The first type is population-based
metaheuristic algorithms, exemplified by particle swarm optimization (PSO) [7], which simulates the
foraging behavior of bird flocks, and ant colony optimization (ACO) [8], which mimics the process where
ant populations release pheromones along their paths during foraging to find optimal routes based on
pheromone concentration. Similar algorithms include artificial bee colony (ABC) [9]. The second type
is evolutionary-based metaheuristic algorithms, such as genetic algorithm (GA) [10] and differential
evolution (DE) [11], which emulate the process of biological evolution where the most optimal genetic
individuals are preserved over generations. The third type is based on chemical and physical phenom-
ena, grounded in theoretical foundations, with representative algorithms including gravitational search
algorithm (GSA) [12] and Archimedes optimization algorithm (AOA) [13]. The fourth type is inspired
by human social behaviors and can draw inspiration from various aspects of daily life. Examples include
lungs performance-based optimization (LPO) [14], which simulates human lung function activity, and
football team training algorithm (FTTA) [15], which mimics the training process of a football team.
However, due to the homogeneity of their update strategies, these algorithms tend to fall into local optima
to some degree when solving problems, and their parameter settings are relatively uniform, making them
unsuitable for solving diverse problems.

This article is a study on path planning problem based on metaheuristic algorithm. According to the
No Free Lunch theorem, no single algorithm can solve all problems optimally. Therefore, researchers
often integrate multiple strategies and algorithms to improve the performance of path planning algo-
rithms. Geng et al. [16] combined sparrow search algorithm (SSA) with reverse learning strategy to
solve a robot path planning problem on a grid map. Parhi et al. [17] merged the classical method of lin-
ear regression (LR) with GSA called RGSA, incorporating multiple chaos strategies to obtain optimal
paths in multi-humanoids (Nao robots) movement problems. Li et al. [18] proposed a hybrid algo-
rithm based on Improved GA and Dynamic Window Approach for solving mobile robot path planning
problems. Xu et al. [19] combined a new fourth-order Bezier transition curve with an improved PSO
algorithm, proposed a novel method for smooth path planning of mobile robots. Nazarahari et al. [20]
proposed an innovative artificial potential field (APF) algorithm to find all feasible paths between start
and end points in a discrete grid environment and developed an Enhanced GA to improve initial path
and find the optimal path between start and end points in robot path planning problems. Zhang et al.
[21] proposed a hybrid algorithm of GA and firefly algorithm to enhance the responsiveness and com-
putational capability of mobile robots during movement. Dai et al. [22] introduced an Improved ACO
utilizing characteristics of A∗ algorithm and MAX-MIN ant system to achieve efficient search capabil-
ity for mobile robot path planning in complex maps. Chen et al. [23] addressed path planning problems
for mobile robots in known environments, proposed a grid-based hybrid APF and ACO path planning
method. Zhang et al. [24] proposed a turning point-based grey wolf optimizer (GWO) for solving the
path planning problem of patrol robots. The algorithm utilizes the concepts of roulette wheel selection
and crossover mutation to broaden the search scope of the initial population. Additionally, the conver-
gence factor function varies with the number of obstacles, enhancing the performance of the proposed
algorithm. Liu et al. [25] integrated the A∗ algorithm with an improved GWO to propose an A∗-IGWO
for solving parking lot path planning problems. The algorithm constructs a minimum cost equation
using the A∗ algorithm on the basis of the population updating mechanism of the IGWO, fully leverag-
ing the advantages of both algorithms to improve performance. Dai et al. [26] proposed an improved
sparrow search algorithm (ISSA) for solving the path planning problem of cellular robots on large-scale
three-dimensional truss. Julius et al. [27] proposed an improved self-adaptive learning PSO (ISALPSO)
algorithm for solving the path planning problem of mobile robots in 2D lidar maps. The algorithm can
fine-tune the lidar information using a binary occupancy grid method during the robot’s movement,
thereby adaptively adjusting the parameters by ISALPSO.

The coati optimization algorithm (COA) [28] is an efficient and novel metaheuristic algorithm pro-
posed by Dehghani et al. in 2022, widely applied to various global optimization problems. However, due
to its inherent mechanism issues, it tends to fall into the dilemma of premature convergence when solving
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high-dimensional problems. Researchers have proposed some improvement ideas for COA. Hashim et al.
[29] introduced an adaptive mutation strategy for the COA to solve feature extraction and global opti-
mization problems. Baş et al [30] proposed an Enhanced COA for solving large-scale high-dimensional
big data optimization problems (BOP). Yildizdan et al. [31] used a transfer function to transform the
continuous optimization problem-solving COA into a binary optimization algorithm (BinCOA) to solve
the Knapsack Problem (KP) and the Uncapacitated Facility Location Problem (UFLP). Hasanien et al.
[32] introduced a new improved COA to find the optimal solution for the Probability Optimal Power
Flow (POPF) problem. Jia et al. [33] proposed an improved COA based on the sound search envelope
strategy to solve six engineering application problems. Although DE and COA have a wide range of
applications and unique advantages, both algorithms exhibit poor solution quality when dealing with
high-dimensional and multimodal problems, making them susceptible to local optima. To overcome the
limitations of COA, this paper combines a cross-update strategy from some DE algorithm variants with
the original COA to propose a new hybrid algorithm (SDECOA). When faced with different problems,
self-adaptive differential evolution-based coati optimization algorithm (SDECOA) adaptively adjusts the
use frequency of update strategies, fully utilizing the update mechanisms of both algorithms to enhance
the algorithm’s global search and local search capabilities.

The contributions of this paper are summarized as follows:

1. Combining the update strategies from variants of DE algorithms with COA, an SDECOA is
proposed, enhancing the COA’s global search and local search capabilities.

2. The crossover probability CR in the DE strategy adapts dynamically based on the algorithm’s
iterations, increasing the convergence speed of the algorithm.

3. The proposed algorithm successfully solved 48 real-world constrained optimization problems
from various fields and achieved superior results compared to the top algorithms in the CEC2020
competition.

4. The multi-robot path planning problem is NP-hard, and the presence of multiple moving
obstacles further complicates the problem. The proposed algorithm effectively addresses this
issue.

The organization of this paper is as follows: Section 2 discusses the relevant definitions of DE, COA,
real-world constrained optimization problems, and online multi-robot path planning problems. Section 3
provides a detailed explanation of SDECOA’s definition. Section 4 showcases the experimental results
of this study. Section 5 is the summary and future research objectives of this paper.

2. Preliminaries
In this section, COA and DE algorithm are introduced separately, along with the definition of real-
world constrained engineering optimization problems and the definition of multi-robot path planning
problems.

2.1. Coati optimization algorithm (COA)
This section describes the mathematical model of the original COA. The COA is a novel swarm intel-
ligence algorithm proposed in 2022, which primarily simulates the behavior of coatis hunting iguanas.
Initially, half of the population will climb trees to approach their food source, the iguana, and this
behavior is defined by Eq. (1):

Xnewi : xnewi,j = xi,j + r1 · (Igj − I · xi,j

)
, i= 1, 2, 3, . . .

⌊
N

2

⌋
(1)
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In the above equation, xi,j represents the position of the i-th individual in the j-th dimension of the
solution space, Ig denotes the position of the best solution in the current population, N represents the
population size, r1 is a random number between [0, 1], and I takes a random value of either 1 or 2.

Faced with the siege of coatis, the iguana will randomly drop to the ground. Eq. (2) expresses this
behavior in the solution space. Meanwhile, the other half of the coatis will search for their prey, as
represented by Eq. (3):

IgG : IgG
j = lbj+ r2 · (ubj− lbj) , j= 1, 2, 3, . . . m (2)

Xnewi : xnewi,j =
{

xi,j + r3 · (IgG
j − I · xi,j

)
, FG

Ig < Fi

xi,j + r3 · (I · xi,j − IgG
j

)
, else

, i=
⌊

N

2

⌋
+ 1, . . . N (3)

where IgG
j represents the random dropping position of the iguana, with lb and ub denoting the upper

and lower bounds of the solution space, respectively. r2 and r3 are both random numbers between [0,1].
In Eq. (3), FG

Ig represents the fitness value of Ig and Fi denotes the current fitness value of the i-th
individual. Subsequently, if the fitness value Fnewi of the newly generated individual is superior to the
current individual, its position is replaced; otherwise, the original position is retained, as expressed in
Eq. (4):

Xi =
{

Xnewi, Fnewi < Fi

Xi, else
(4)

After locating the iguana, all the coatis will slowly surround their prey. This biological characteristic
is represented by equations (5) and (6):

lbL
j =

lbj

t
, ubL

j =
ubj

t
, t= 1, 2, 3, . . . T (5)

Xnewi : xnewi,j = xi,j + (1− 2r4) · (lbL
j + r5 · (ubL

j − ubL
j

))
, i= 1, 2, 3, . . . N (6)

where t denotes the current iteration number, while T represents the maximum iteration number, and r4

and r5 are both random numbers between [0, 1]. Subsequently, the new position of the current individual
is also calculated using Eq. (4). The pseudocode of the basic framework of the COA is represented by
Algorithm 1.

2.2. Differential evolution (DE)
This section describes the mathematical model of original DE. DE is a well-known classic metaheuristic
algorithm, mainly consisting of three evolutionary processes: mutation, crossover, and selection.

2.2.1. Mutation
In DE, the mutation process involves randomly selecting two individuals and using the difference
of their position vectors as the step size for updating the target carrier position, as represented
by Eq. (7):

yi,j = xi,j + F · (xR1,j − xR2,j

)
, i= 1, 2, 3, . . . , N (7)

In the above equation, xi represents the i-th individual in the population, xR1 and xR2 are two different
individuals randomly selected from the population, j denotes the j-th dimension of the solution, and F
is the scaling factor.

2.2.2. Crossover
The crossover process involves exchanging the j-th dimension component between the mutated indi-
vidual yi and the target carrier xi, generating a crossover individual zi, as represented by Eq. (8):
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Algorithm 1 Pseudocode of COA.
1: Set the number of iterations T and the number of coatis N .
2: Initialize population.
3: for t= 1:T
4: Update location of the iguana based on the location of the best member of the population.
5: Phase 1: Hunting and attacking strategy on the iguana (Exploration Phase).
6: for i= 1 : N /2
7: Calculate new position for the i-th coati using Eq. (1).
8: Update position of the i-th coati using Eq. (4).
9: end for
10: for i= 1 + N /2: N
11: Calculate random position for the iguana using Eq. (2).
12: Calculate new position for the i-th coati using Eq. (3).
13: Update position of the i-th coati using Eq. (4).
14: end for
15: Phase 2: The process of escaping from predators (Exploitation Phase).
16: Calculate the local bounds for variables.
17: for i= 1: N
18: Calculate the new position for the i-th coati using Eq. (6).
19: Update the position of the i-th coati using Eq. (4).
20: end for
21: Save the best candidate solution found so far.
22: end for
23: Output of the best obtained solution by COA for given problem. End COA.

Zi : zi,j =
{

yi,j, r < CR||jr = j

xi,j, else
(8)

where CR denotes the crossover probability, jr represents a randomly selected number between 1 and
the maximum dimensions, and r is a random number between [0, 1].

2.2.3. Selection
Similar to Eq. (4), after comparing the fitness values of the target carrier and the crossover individual,
one of them is randomly selected. The better individual is chosen as the position vector for the next
generation, achieving the goal of evolution:

Xi =
{

Zi, Fzi < Fi

Xi, else
(9)

where Fzi represents the fitness value of the crossover individual and Fi represents the fitness value of
the target carrier.

2.3. Real-world constrained optimization problems
This paragraph introduces the basic definition of constrained optimization problems, which typically
refer to minimization problems under several equality and inequality constraints. The real-world con-
strained optimization problems in this paper are all derived from CEC2020, covering various fields
such as industrial chemical processes, synthesis and design, mechanical engineering, power systems,
power electronics, and livestock feed optimization. The definitions of these problems are referenced
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from literature [34] and all meet the following function definition.

Minimize f (X) , X = (x1, x2, . . . , xn) (10)

Subject to:
gi(X)≤ 0, i= 1, . . . , n

hj(X)= 0, j= n+ 1, . . . , m

In the above equation, X denotes the solution vector of the problem, g represents inequality con-
straints, n denotes the number of g, h represents equality constraints, and m signifies the total number
of all constraints.

2.4. Multi-robot online path planning problem
This article studies the multi-robot path planning problem with multiple static and dynamic obstacles;
therefore, it is necessary to consider the safe distance between robots and other robots, robots and static
obstacles, and robots and dynamic obstacles. The mathematical model of this problem is provided in
literature [35], where each robot has its own starting point and destination. During the robots movement,
there are static and dynamic obstacles of various sizes and shapes. All robots not only need to avoid these
obstacles but also must not collide with each other. The robots need to reach their destinations with the
minimum cost step by step.

Minimize,

Fit= F1 + F2 + F3 + F4 (11)

where F1 represents the shortest distance, F2 represents avoiding static obstacles, F3 represents avoiding
dynamic obstacles, and F4 represents avoiding other robots. F1 can be expressed as Eq. (12):

F1 =
NR∑
i=1

(fi + gi) (12)

where

fi =
√

(xn
i − xc

i )
2 + (yn

i − yc
i )

2 (13)

gi =
√(

xn
i − xg

i

)2 + (
yn

i − yg
i

)2 (14)

where NR represents the number of robots and (xg
i , yg

i ) represents the destination coordinates of the i-th
robot. F2 can be expressed as Eq. (15):

F2 =
{

ε, ds
i ≤ ds

0, else
(15)

where ε is a large penalty value, ds represent the safety distance between any two objects, and ds
i is the

sum of distances from all static obstacles to the i-th robot, as derived from Eq. (16):

ds
i =

NR∑
i=1

NS∑
j=1

√(
xn

i − xs
j

)2 + (
yn

i − ys
j

)2 (16)

where NS is the number of static obstacles and (xs
j , ys

j ) is the coordinate position of the j-th static obstacle.
F3 can be expressed as Eq. (17):

F3 =
{

ε, dD
i ≤ ds

0, else
(17)
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where dD
i is the sum of distances from all dynamic obstacles to the i-th robot, as obtained from Eq. (18):

dD
i =

NR∑
i=1

ND∑
j=1

√(
xn

i − xD
j

)2 + (
yn

i − yD
j

)2 (18)

where ND is the number of dynamic obstacles, (xD
j , yD

j ) is the coordinate position of the j-th dynamic
obstacle, and the movement of dynamic obstacles at each step is determined by equations (19) and (20):

xD
j = xD

j + vD
j cos

(
αj

)
(19)

yD
j = yD

j + vD
j sin

(
αj

)
(20)

In the above equation, vD
j represents the movement speed of dynamic obstacle j and αj represents its

radial position relative to the target position. F4 can be expressed as Eq. (21):

F4 =
{

ε, dR
i ≤ ds

0, else
(21)

where dR
i is the sum of distances between different robots and (xR

j , yR
j ) is the coordinate position of the

j-th robot, as obtained from Eq. (22):

dR
i =

NR−1∑
i=1

NR∑
j=i+1

√(
xn

i − xR
j

)2 + (
yn

i − yR
j

)2 (22)

3. The proposed SDECOA algorithm
This section will elaborate on the mathematical definition of SDECOA in detail. In the original COA
algorithm, there existed an imbalance between global search capability and local search capability. To
overcome this deficiency, we propose called SDECOA. For optimization problems with fewer extreme
points, a mutation operator with stronger local search capability should be used. For optimization prob-
lems with more extreme points, a mutation operator with stronger global and local search capability
should be employed. It is difficult for a single mutation operator to balance global search capability and
local search capability, creating obstacles to achieving this balance. In SDECOA, two variants of DE
are introduced in the update strategy, and these strategies are called upon based on a roulette wheel
method. Initially, all strategies have the same probability of being used. However, during the algorithm
iteration process, strategies that yield better results are given higher usage probabilities through learn-
ing. Learning is determined through points, where a strategy that achieves good results earns a point.
As a result, satisfactory results can be achieved for different problems, overcoming the challenge of
imbalance between local and global search in COA.

3.1. Crossing
In traditional DE algorithms, the crossing probability CR is a fixed value, with literature [36] suggesting
a range of values for CR between [0, 1]. When CR approaches zero, the changes in individuals between
adjacent generations are minimal, leading to a high presence of similar individuals in the population and
potentially causing the algorithm to get stuck in local optima. Conversely, when CR is close to 1, the
individuals update positions fluctuate greatly, hindering efficient convergence. To address these issues,
this paper proposes an adaptive dynamic adjustment method, calculated as follows:

CR (t)=CRmin + (CRmax −CRmin) ·
(

1− t

T

)
(23)

where CRmax equals 0.95, CRmin equals 0.05, t represents the current iteration number, and T is the
maximum number of iterations.
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3.2. Variant update strategies of DE
The first introduced update strategy, rand < CR, was proposed in literature [37], while the other part
was inspired by the GWO [34] and is represented by Eq. (24):

Xnewi : xnewi,j =
{

xi,j + FF · (xbest,j − xi,j + xR1,j − xR2,j

)
; if rand < CR

1
3

(
xbest,j + xsec ond,j + xthird,j

)
, else

(24)

In the above equation, xbest , xsecond , and xthird represent the current population’s top three individuals,
FF is the scaling factor with a value of 0.8, while R1 and R2 are randomly selected individuals that are
different from the i-th individual.

The second introduced update strategy was proposed in literature [39] and is represented by Eq. (25):

Xnewi : xnewi,j = xi,j + L · (xR1,j − xi,j

)+ FF · (xR2,j − xR3,j

)
(25)

where L is a random number between [0, 1], and R1, R2, and R3 are also three distinct random
individuals.

3.3. Algorithm implementation
In the algorithm proposed, during the exploration phase, Eqs. (1), (24), and (25) are randomly used,
with their probabilities determined by Eq. (26). During the invocation process, a counter records which
update strategy an individual has been used. If an individual achieves better results in this iteration, the
score of the strategy used by that individual is incremented. The probabilities for the next roulette wheel
selection are calculated based on the total score obtained by each strategy in this iteration:

pj (t+ 1)= Sj (t)∑SN
i=1 Si (t)

, j ∈ {1, 2, . . . , SN} (26)

where pj(t+ 1) represents the probability of strategy j being used in the next iteration, Si(t) represents
the score of strategy i in the current iteration, and SN represents the number of strategies, which is set
to 3 in this paper. The update strategy for each individual is determined by a roulette wheel selection.
The pseudocode and flow chart of SDECOA are, respectively, shown in Algorithm 1 and Figure 1.

3.4. Time complexity analysis
The operation of SDECOA includes population initialization, fitness calculation, population position
update, individual probability update, and strategy selection, so by analyzing the complexity of each
process, the time complexity of SDECOA can be obtained. Assuming the population size is N , the
number of iterations is T , and the dimension of the problem is D, the time complexity of population
initialization is O(ND). In each iteration process, the time complexity of population position update is
O(ND+ND), the time complexity of fitness value calculation and comparison is O(ND+ND), and the
time complexity of individual probability update and strategy selection is O(ND). Therefore, the time
complexity of SDECOA can be concluded as O(ND+T×(ND+ND+ND+ND+ND+ND)) ≈ O(TND).

4. Experiment results and analysis
4.1. Experimental configuration and design
The programming language used in this experiment is MATLAB, and the compilation software is
MATLAB 2021a. The computer configuration consists of a 64-bit Windows 10 operating system, 8.0G
RAM, and a processor with a base frequency of 2.10 GHz. To demonstrate the effectiveness of the
improved algorithm, our algorithm was initially compared with several classic and advanced algo-
rithms on the 20-dimensional CEC2022 benchmark functions. To further validate the performance of
our algorithm, SDECOA was employed to solve 48 real-world constrained optimization problems from
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Algorithm 2 Pseudocode of SDECOA.
1: Set the number of iterations T , the number of coatis N and the scale factor FF.
2: Initialize population.
3: pi← 1/3, Si← 0, i ∈ {1,2,3}.
4: Calculate the fitness value of the population.
5: for i= 1: N
6: ppi← RouletteWheelSelection(p).
7: end for
8: for t= 1:T
9: Calculate the crossover probability CR using Eq. (23).
10: Calculate the optimal three individuals Xbest , Xsecond , and Xthird in the population.
11: Iguana← Xbest◦
12: for i= 1 :N
13: Randomly select three individuals R1, R2, R3 that are different from individual i.
14: if ppi == 1
15: Calculate the new position Xnew for the i-th coati using Eq. (1).
16: elseif ppi == 2
17: Calculate the new position Xnew for the i-th coati using Eq. (24).
18: elseif ppi == 3
19: Calculate the new position Xnew for the i-th coati using Eq. (25).
20: end if
21: Update position of the i-th coati using Eq. (4)
22: if f (Xnew ) < f (Xi)
23: Sj ← Sj + 1
24: end if
25: end for
26: Update the p using Eq. (26).
27: for i= 1:N
28: ppi← RouletteWheelSelection(p).
29: end for
30: for i= 1:N
31: Calculate the new position for the i-th coati using Eq. (6).
32: Update the position of the i-th coati using Eq. (4).
33: end for
34: Save the best candidate solution found so far.
35: end for
36: Output of the best obtained solution by SDECOA for given problem. End SDECOA.

CEC2020, and comparisons were made with several algorithms that won in the CEC2020 competition.
Finally, our algorithm was applied to the problem of multi-robot online path planning.

4.2. SDECOA for CEC2022 benchmark functions
Solving benchmark test functions is a common method for testing algorithm performance, and this sec-
tion presents the experimental results of SDECOA solving this test set. The CEC2022 benchmark test
functions are the latest test functions, and basic information is shown in Table 1. This test suite mainly
includes three dimensions (dim = {2, 10, 20}), with function types primarily including single-peak
functions (F1), multimodal functions (F2–F5), hybrid functions (F6-F8), and composite functions (F9–
F12). To validate the algorithm’s effectiveness, we compare SDECOA with the original DE and COA.
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Start

Set the parameters T, N, FF

Initialize population

Calculate the strategy of each
individual

t <= T

Calculate the CR using Eq.(23)

switch pp

Calculate the new position using
Eq.(1)

Calculate the new position using
Eq.(24)

Calculate the new position using
Eq.(25)

Update the new location of the
coatis using Eq.(4)

Update probability p using
Eq.(26)

Update the new location of the
coatis using Eq.(4)

t = t + 1

Output the best results and
solutions

End

No

Yes

pp = 1

pp = 2

pp = 3

Figure 1. Flow chart of SDECOA.

Furthermore, to evaluate its performance, we also test and analyze it against some well-known classical
algorithms and recent advanced algorithms. The algorithms involved in testing the CEC2022 benchmark
functions include simulated annealing (SA) [40], PSO [7], GWO [38], sine-cosine algorithm (SCA)
[41], whale optimization algorithm (WOA) [42], Harris hawk optimizer (HHO) [43], SSA [44], modi-
fied adaptive sparrow search algorithm (MASSA) [41], self-adaptive differential sine-cosine algorithm
(sdSCA) [35], hybrid algorithm of differential evolution and flower pollination (HADEFP) [45], etc. In
this set of experiments, all algorithms were independently run 25 times. Except for SA, the iteration
count for all algorithms was set to 1000 iterations, with a population size of 50. The other parameters
for each algorithm are shown in Table 2.

As shown in Table 3, the means and standard deviations of different algorithms are recorded. In the
experimental results across all test functions, the proposed algorithm outperforms the original COA and
DE by a significant margin, particularly achieving the best results in solving F1, F6, F7, F8, and F9.
Among all the compared algorithms, SDECOA proves to be the most competitive. Table 3 also presents
the rankings of all algorithms based on the Friedman rank-sum test, with the data confirming that the
proposed algorithm achieved the best performance in solving the CEC2022 test functions.

The convergence curves for different CEC2022 test functions are shown in Figure 2. From these
curves, it is evident that SDECOA exhibits substantial improvements in both optimization capability and
convergence speed compared to DE and COA. Compared with other algorithms, SDECOA shows the
best convergence speed and results for most test functions. The boxplots for all test functions are shown
in Figure 3, where it can be seen that SDECOA performs better in terms of median values and lower
variance for most functions. Compared to other algorithms, SDECOA is more stable, thus demonstrating
the superior robustness of the proposed algorithm.
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Table I. Basic information of CEC2022 benchmark test functions.

No. Functions f ∗

Unimodal Function F1 Shifted and full Rotated Zakharov Function 300
F2 Shifted and full Rotated Rosenbrock’s Function 400

Basic Functions F3 Shifted and full Rotated Expanded Shaffer’s f6
Function

600

F4 Shifted and full Rotated Non-continuous
Rastrigin’s Function

800

F5 Shifted and full Rotated Levy Function 900
F6 Hybrid Function 1 (N = 3) 1800

Hybrid Functions F7 Hybrid Function 2 (N = 6) 2000
F8 Hybrid Function 3 (N = 5) 2200
F9 Composition Function 1 (N = 5) 2300

Composition Functions F10 Composition Function 2 (N = 4) 2400
F11 Composition Function 3 (N = 5) 2600
F12 Composition Function 4 (N = 6) 2700

Search range: [−100,100]D

Table II. Parameter settings of different algorithms.

Algorithm Parameter
SDECOA F= 0.8
DE F= 0.4, CR= 0.5
COA –
SA Initial temperature= 100, cooling rate= 0.99
PSO c1= 2, c2= 2, v0= 0, w= 0.7
GWO –
SCA –
WOA –
HHO –
SSA P= 0.2, ST= 0.8, SP= 0.2
MASSA P= 0.2, ST= 0.8, SP= 0.15
sdSCA CR= 0.6, FF= 0.8
HADEFP α = 0.01, MaxRuntime= 30, a= 4

4.3. SDECOA for CEC2020 problems
To further demonstrate the effectiveness of SDECOA, this section presents the experimental results
and data analysis of SDECOA applied to real-world constrained optimization problems. The real-world
constrained problems used in this study are based on the CEC2020 real-world constrained optimiza-
tion problems. The mathematical models for all problems in this study are derived from reference [46].
Table 4 displays the basic information of 48 problems, where D represents the dimension of the problem,
g represents the number of inequality constraints, h represents the number of equality constraints, and
f∗ represents the known optimal value. These problems are mainly designed in fields such as Industrial
Chemical Processes, Process Synthesis and Design, Mechanical Engineering, Power Systems, Power
Electronics, and Livestock Feed Ration Optimization, with dimensions ranging from 2 to 118 and
varying numbers of constraints from 1 to 108.
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etal.Table III. Experimental results of different algorithms on CEC2022 benchmark functions in 20 dimensions.

Function Metric SDECOA DE COA SA PSO GWO SCA WOA HHO SSA MASSA sdSCA HADEFP

F1 Avg. 3.0000E+ 02 5.8850E+ 04 3.7666E+ 04 3.5105E+ 04 1.7048E+ 05 1.0387E+ 04 1.3565E+ 04 1.5429E+ 04 2.1594E+ 03 1.0080E+ 04 2.1201E+ 04 3.9211E+ 02 1.6934E+ 04
SD. 3.4094E-03 3.1172E+ 04 9.5610E+ 03 1.5593E+ 04 4.6289E+ 04 4.2106E+ 03 2.9376E+ 03 3.9526E+ 03 1.5431E+ 03 5.4612E+ 03 1.2747E+ 04 2.3339E+ 02 5.0041E+ 03

F2 Avg. 4.4199E+ 02 4.8547E+ 03 2.5294E+ 03 4.5374E+ 02 2.1734E+ 04 4.8140E+ 02 6.8423E+ 02 5.2963E+ 02 4.7717E+ 02 4.4902E+ 02 4.6164E+ 02 4.4808E+ 02 4.4745E+ 02
SD. 2.0764E+ 01 1.8155E+ 03 4.8823E+ 02 2.1086E+ 01 7.2428E+ 03 2.3937E+ 01 7.2110E+ 01 5.0224E+ 01 2.8911E+ 01 9.9530E+ 00 1.4380E+ 01 1.8259E+00 2.1303E+ 00

F3 Avg. 6.0173E+ 02 6.9760E+ 02 6.7513E+ 02 6.0000E+ 02 7.6729E+ 02 6.0357E+ 02 6.4424E+ 02 6.5949E+ 02 6.5991E+ 02 6.5002E+ 02 6.3845E+ 02 6.0000E+ 02 6.0046E+ 02
SD. 3.1131E+ 00 1.4915E+ 01 1.0789E+ 01 9.6371E-03 1.6745E+ 01 2.7836E+ 00 4.8728E+ 00 1.5219E+ 01 9.0051E+ 00 1.0890E+ 01 1.6219E+ 01 4.2874E-04 2.0633E-01

F4 Avg. 8.5616E+ 02 1.0420E+ 03 9.6756E+ 02 9.1241E+ 02 1.2533E+ 03 8.5370E+ 02 9.3862E+ 02 9.2024E+ 02 8.8049E+ 02 8.9022E+ 02 8.8467E+ 02 9.1549E+ 02 9.0727E+ 02
SD. 1.2321E+ 01 5.2455E+ 01 1.6928E+ 01 2.4606E+ 01 4.8872E+ 01 2.7739E+ 01 1.2515E+ 01 2.9567E+ 01 1.2061E+ 01 5.4475E+ 00 1.5268E+ 01 1.0550E+ 01 1.6138E+ 01

F5 Avg. 1.3809E+ 03 7.7792E+ 03 3.2282E+ 03 4.7036E+ 03 2.5857E+ 04 1.0436E+ 03 2.1384E+ 03 4.0273E+ 03 2.7385E+ 03 2.4796E+ 03 2.2327E+ 03 9.0000E+ 02 9.0051E+ 02
SD. 6.1203E+ 02 3.1415E+ 03 3.4212E+ 02 1.6448E+ 03 4.1328E+ 03 1.2666E+ 02 2.3011E+ 02 1.3920E+ 03 2.7645E+ 02 6.9158E+ 01 4.9697E+ 02 1.0766E-04 5.4120E-01

F6 Avg. 1.8628E+ 03 2.9397E+ 09 1.8023E+ 09 1.7458E+ 04 1.2439E+ 10 9.3085E+ 05 1.3671E+ 08 1.9680E+ 05 8.1438E+ 04 6.6033E+ 03 5.0013E+ 03 4.0734E+ 03 6.9989E+ 05
SD. 2.8380E+ 01 1.5603E+ 09 8.4583E+ 08 8.5441E+ 03 6.2024E+ 09 2.8487E+ 06 6.9288E+ 07 3.6333E+ 05 3.3276E+ 04 6.1194E+ 03 4.1507E+ 03 1.1220E+ 04 7.1453E+ 05

F7 Avg. 2.0427E+ 03 2.3026E+ 03 2.1906E+ 03 2.1161E+ 03 2.4045E+ 03 2.0750E+ 03 2.1445E+ 03 2.2173E+ 03 2.1777E+ 03 2.1671E+ 03 2.1407E+ 03 2.0638E+ 03 2.0684E+ 03
SD. 1.9283E+ 01 8.6210E+ 01 3.7285E+ 01 5.1414E+ 01 4.8177E+ 01 3.9807E+ 01 1.9773E+ 01 7.0364E+ 01 5.4260E+ 01 7.2444E+ 01 4.3666E+ 01 9.7407E+ 00 1.7894E+ 01

F8 Avg. 2.2310E+ 03 2.7497E+ 03 2.3917E+ 03 2.2970E+ 03 1.6854E+ 05 2.2540E+ 03 2.2631E+ 03 2.2779E+ 03 2.2691E+ 03 2.2955E+ 03 2.2613E+ 03 2.2373E+ 03 2.2380E+ 03
SD. 2.0676E+ 00 4.3058E+ 02 1.1877E+ 02 7.0938E+ 01 1.2529E+ 05 4.7243E+ 01 1.4034E+ 01 5.4650E+ 01 5.8601E+ 01 8.5724E+ 01 4.5755E+ 01 2.7204E+ 00 2.1052E+ 00

F9 Avg. 2.4808E+ 03 3.5370E+ 03 3.2232E+ 03 2.4855E+ 03 5.2114E+ 03 2.5091E+ 03 2.5850E+ 03 2.5391E+ 03 2.4902E+ 03 2.4809E+ 03 2.4808E+ 03 2.4808E+ 03 2.4808E+ 03
SD. 6.2957E-13 3.2405E+ 02 2.5265E+ 02 4.6754E+ 00 8.1657E+ 02 2.1480E+ 01 2.8873E+ 01 3.6123E+ 01 6.5441E+ 00 1.5576E-01 2.6014E-01 1.1235E-08 1.4916E-03

F10 Avg. 2.9324E+ 03 5.9777E+ 03 5.7749E+ 03 2.4170E+ 03 7.3046E+ 03 2.9286E+ 03 3.0549E+ 03 4.5989E+ 03 3.6398E+ 03 3.0940E+ 03 3.5958E+ 03 3.3921E+ 03 2.5260E+ 03
SD. 9.9669E+ 02 1.5928E+ 03 1.6254E+ 03 2.4782E+ 01 2.6820E+ 02 5.9806E+ 02 1.2903E+ 03 1.1633E+ 03 7.0158E+ 02 4.4200E+ 02 9.1648E+ 02 7.0045E+ 02 7.2782E+ 01

F11 Avg. 2.9040E+ 03 6.8477E+ 04 8.3588E+ 03 2.9000E+ 03 4.5224E+ 05 3.5956E+ 03 5.9828E+ 03 3.1928E+ 03 2.9867E+ 03 2.9280E+ 03 2.9732E+ 03 2.9000E+ 03 2.9543E+ 03
SD. 2.0000E+ 01 6.2575E+ 04 8.6341E+ 02 3.9076E-05 1.2018E+ 05 2.8798E+ 02 4.4265E+ 02 9.9508E+ 01 1.0610E+ 02 4.5823E+ 01 1.6668E+ 02 2.0972E-05 5.2048E+ 01

F12 Avg. 2.9740E+ 03 3.7834E+ 03 3.5750E+ 03 2.9630E+ 03 3.1357E+ 03 2.9639E+ 03 3.0482E+ 03 3.0619E+ 03 3.1186E+ 03 3.0147E+ 03 3.0857E+ 03 2.9405E+ 03 2.9396E+ 03
SD. 3.2828E+ 01 3.5057E+ 02 2.1345E+ 02 1.7314E+ 01 8.8622E+ 01 1.6969E+ 01 2.7432E+ 01 8.6321E+ 01 8.3877E+ 01 6.0802E+ 01 1.6208E+ 02 3.5849E+ 00 3.8063E+ 00

Friedman mean
rank

2.3333 12.0833 10.8333 5.5833 12.8333 5.2500 7.7500 8.7500 7.1667 5.8333 6.0000 2.7500 3.8333

Rank 1 12 13 6 4 10 11 9 7 8 3 2 5
Statistic 107.21978
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Figure 2. Convergence curves of different algorithms.

In this set of experiments, SDECOA is compared with several advanced algorithms that won in
the CEC2020 competition. These top-ranking algorithms, in descending order, include SASS [47],
COLSHADE [48], sCMAgES [49], EnMODE [50], and BpMAgES [51]. Each algorithm is indepen-
dently run 25 times, with 1000 iterations, a population size of 60, and other control parameters consistent
with the literature [52]. A dynamic adaptive penalty function is used. Table 5 presents the optimal val-
ues, mean values, and standard deviations of these algorithms. It is worth noting that shaded cells in the
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Figure 2. (Continued)

table indicate that the proposed algorithm’s best result exceeds the f∗ for that problem. In this paper, the
Friedman rank-sum test is also conducted on the average values of these 48 optimization problems, and
the ranking of the proposed algorithm, obtained through calculation, is superior to the top five algorithms
that won the CEC2020 competition.

The introduction in the literature [53] determines the quality of the solutions by calculating the per-
centage deviation of the mean with respect to the known optimal solution (PDmean). As can be seen
from Eq. (27), the smaller the average value obtained from 25 runs, the smaller the PDmean value,
indicating higher solution quality. Table 6 presents the PDmean values when different algorithms solve
different problems:

PDmean=
{

mean−f ∗
f ∗+ε

;if f ∗ ≥ 0
f ∗−mean

f ∗ , else
(27)

where f∗ represents the best know solution, mean represents the average value of the test results, and
ε represents a very small constant. An analysis of Table 6 shows that the proposed algorithm generally
demonstrates superior solution quality compared to these advanced algorithms. Based on the experi-
mental results, the proposed algorithm achieved ideal results in most cases, with results for 26 problems
surpassing the known optimal solution. These experimental results are sufficient to demonstrate that the
proposed algorithm not only performs well but also excels in addressing real-world constrained opti-
mization problems using SDECOA. Therefore, in comparison with these state-of-the-art algorithms,
our algorithm demonstrates excellent competitiveness.

4.4. SDECOA for multi-robot path planning problem
In this section, the experimental content applies SDECOA to the multi-robot path planning problem, the
mathematical model code of which can be obtained from reference [35].
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Figure 3. Boxplots of different algorithms.
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Figure 3. (Continued)

4.4.1. Design of the scenario for multi-robot path planning problem
This section introduces the simulation scenario layout for the robot path planning problem. In the sim-
ulation model of this problem, all robots are circular with equal radii, and collisions between them are
not allowed. Each robot has its own starting point and end point. As for static obstacles, each one has
a different size and shape. Similarly, each dynamic obstacle is also circular with equal radii and has its
own starting point and end point. Each dynamic obstacle moves at a constant speed without deviating
during the motion. In this study, three different scenarios are created, with the numbers of robots, static
obstacles, and dynamic obstacles shown in Table 7. Except for Scenario 1, which references literature
[35], the other scenarios are arranged independently in this study. The layouts of these three scenarios
are shown in Figures 4, 5, and 6. In these scenarios, the black paths represent the planned paths of robots,
the blue paths represent the paths of dynamic obstacles, and ‘×’ indicates the respective end points of
objects.

In the experiments of the three scenarios mentioned above, in addition to the proposed algorithm, the
comparison algorithms include DE, PSO, SCA, COA, and sdSCA, with a population size of 30, and the
parameter settings are consistent with Section 4.2. It is worth noting that in this experiment, the iteration
of all algorithms stops when all robots reach their end points. Each algorithm runs independently 20
times.

4.4.2. Simulation experiment in Scenario 1
In the simulation experiment in Scenario 1, Figure 7 illustrates the travel paths of each algorithm. In
solving the multi-robot path planning problem, the stronger the algorithm’s performance, the smoother
the robot’s path and the shorter the average travel distance. As seen in Figure 7, the path corresponding to
SDECOA is notably the smoothest. Table 8 records the average travel distance and standard deviation for
each robot from the starting point to the destination and also calculates the total average travel distance
for the six robots in Scenario 1. For ease of comparison, a histogram of the average travel distances
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Table IV. Basic information of 48 CEC2020 real-world constrained optimization problems.

Problems Name D g h f∗

Industrial Chemical Processes
Pro1 Heat Exchanger Network Design

(case 1)
9 0 8 1.8931163E+ 02

Pro2 Heat Exchanger Network Design
(case 2)

11 0 9 7.0490370E+ 03

Pro3 Optimal Operation of Alkylation Unit 7 14 0 −4.5291197E+ 03
Pro4 Reactor Network Design (RND) 6 1 4 −3.8826044E−01
Pro5 Haverly’s Pooling Problem 9 2 4 −4.0000560E+ 02
Pro6 Blending-Pooling-Separation

problem
38 0 32 1.8638304E+ 00

Pro7 Propane, Isobutane, n-Butane
Nonsharp Separation

48 0 38 2.1158628E+ 00

Process Synthesis and Design Problems
Pro8 Process synthesis problem 2 2 0 2.0000000E+ 00
Pro9 Process synthesis and design problem 3 1 1 2.5576546E+ 00
Pro10 Process flow sheeting problem 3 3 0 1.0765431E+ 00
Pro11 Two-reactor Problem 7 4 4 9.9238464E+ 01
Pro12 Process synthesis problem 7 9 0 2.9248306E+ 00
Pro13 Process design Problem 5 3 0 2.6887000E+ 04
Pro14 Multi-product batch plant 10 10 0 5.3638943E+ 04

Mechanical Engineering Problems
Pro15 Weight Minimization of a Speed

Reducer
7 11 0 2.9944245E+ 03

Pro16 Optimal Design of Industrial
refrigeration System

14 15 0 3.2213001E-02

Pro17 Tension/compression spring design
(case 1)

3 3 0 1.2665233E−02

Pro18 Pressure vessel design 4 4 0 5.8853328E+ 03
Pro19 Welded beam design 4 5 0 1.6702177E+ 00
Pro20 Three-bar truss design problem 2 3 0 2.6389584E+ 02
Pro21 Multiple disk clutch brake design

problem
5 7 0 2.3524246E−01

Pro22 Planetary gear train design
optimization problem

9 10 1 5.2576871E−01

Pro23 Step-cone pulley problem 5 90 3 1.6069869E+ 01
Pro24 Robot gripper problem 7 7 0 2.5287918E+ 00
Pro25 Hydro-static thrust bearing design

problem
4 7 0 1.6254428E+ 03

Pro26 Four-stage gear box problem 22 86 0 3.5359232E+ 01
Pro27 10-bar truss design 10 3 0 5.2445076E+ 02
Pro28 Rolling element bearing 10 9 0 1.4614136E+ 04
Pro29 Gas Transmission Compressor

Design (GTCD)
4 1 0 2.9648954E+ 06
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Table IV. (Continued)

Problems Name D g h f∗

Pro30 Tension/compression spring design
(case 2)

3 90 0 2.6138841E+ 00

Pro31 Gear train design Problem 4 1 1 0.0000000E+ 00
Pro32 Himmelblau’s Function 5 6 0 −3.0665539E+ 04
Pro33 Topology Optimization 30 30 0 2.6393465E+ 00

Power System Problems
Pro34 Optimal Sizing of Single Phase

Distributed Generation with reactive
power support for Phase Balancing at
Main Transformer/Grid

118 0 108 0.00000000E+ 00

Pro35 Wind Farm Layout Problem 30 91 0 −6.2607000E+ 03
Power Electronic Problems

Pro36 SOPWM for 3-level Invereters 25 24 1 3.8029251E−02
Pro37 SOPWM for 5-level Inverters 25 24 1 2.1215000E−02
Pro38 SOPWM for 7-level Inverters 25 24 1 1.5164538E−02
Pro39 SOPWM for 9-level Inverters 30 29 1 1.6787536E−02
Pro40 SOPWM for 11-level Inverters 30 29 1 9.3118742E−03
Pro41 SOPWM for 13-level Inverters 30 29 1 1.5096451E−02

Livestock Feed Ration Optimization
Pro42 Beef Cattle (case 1) 59 14 1 4.5508511E+ 03
Pro43 Beef Cattle (case 2) 59 14 1 3.3489821E+ 03
Pro44 Beef Cattle (case 3) 59 14 1 4.9976069E+ 03
Pro45 Beef Cattle (case 4) 59 14 1 4.2405483E+ 03
Pro46 Dairy Cattle (case 1) 64 0 6 6.6964145E+ 03
Pro47 Dairy Cattle (case 2) 64 0 6 1.4748933E+ 04
Pro48 Dairy Cattle (case 3) 64 0 6 3.2132917E+ 03

for different algorithms is shown in Figure 8. From this, it is evident that SDECOA demonstrates the
best performance. Table 9 lists the number of steps taken by each robot, with fewer steps indicating a
smoother path.

The experimental results from Scenario 1 show that, compared to DE and COA, the algorithm’s
performance improved by 33.2% and 22.4%, respectively, while the average number of steps taken was
reduced by 26.9% and 15.8%.

4.4.3. Simulation experiment in Scenario 2
Figure 9 shows the travel paths of each algorithm in Scenario 2. It is clearly observed in Figure 9 that, as
the number of robots increases, the differences in path smoothness between the algorithms become more
pronounced. Compared to the other algorithms, the path corresponding to SDECOA is the smoothest.
Table 10 records the average travel distance and corresponding standard deviation for the 12 robots from
the starting point to the destination. Figure 10 presents a histogram of the average travel distances for
different algorithms. From the analysis of Figure 10, it can be seen that, despite the increased complexity
of the problem, SDECOA still demonstrates strong performance. Table 11 records the number of steps
taken by each robot.

The experimental results from Scenario 2 show that, compared to DE and COA, the algorithm’s
performance improved by 46.1% and 50.2%, respectively, while the average total number of steps taken
was reduced by 40.0% and 48.3%.
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Table V. Experimental results of different algorithms solving 48 CEC2020 real-world constrained optimization problems (shaded areas indicate
results superior to the known optimal solution).

Problems Metric SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Best 1.90136494E+ 02 1.89311639E+ 02 1.89484062E+ 02 1.89311647E+ 02 1.89311726E+ 02 1.89558919E+ 02

Pro1 Avg. 4.97261246E+ 02 1.89311639E+ 02 2.17274353E+ 02 1.89311647E+ 02 1.89311726E+ 02 2.03797339E+ 02
SD. 2.52789483E+ 02 5.80155714E-14 2.59764421E+ 01 1.32042156E-09 2.90077857E-14 1.40425132E+ 01
Best 7.04903695E+ 03 7.04903770E+ 03 7.04903707E+ 03 7.04903760E+ 03 7.04903882E+ 03 7.04966344E+ 03

Pro2 Avg. 7.04903695E+ 03 7.04903770E+ 03 7.04903707E+ 03 7.04903760E+ 03 7.04903882E+ 03 1.58370588E+ 04
SD. 2.35563225E-12 9.28249143E-13 2.78474743E-12 2.57538931E-08 9.28249143E-13 1.06825558E+ 04
Best −4.52918561E+ 03 −1.42719318E+ 02 −4.52911969E+ 03 −4.52776573E+ 03 −4.52911967E+ 03 −4.52911969E+ 03

Pro3 Avg. −4.34475603E+ 03 −1.42719316E+ 02 −4.36667729E+ 03 −4.32491082E+ 03 −4.35366365E+ 03 −4.75240766E+ 02
SD. 4.27626238E+ 02 4.08248291E-06 3.31584160E+ 02 2.69220987E+ 02 8.77280074E+ 02 1.35106780E+ 03
Best −3.88084571E-01 −3.88260420E-01 −3.88260436E-01 −3.88244310E-01 −3.88260375E-01 −3.86980632E-01

Pro4 Avg. −3.73479442E-01 −3.88260153E-01 −3.87465209E-01 −3.87155644E-01 −3.75738899E-01 −3.83121793E-01
SD. 1.35723172E-02 5.08049538E-07 2.93352081E-03 3.70189247E-03 4.69053171E-03 3.05014349E-03
Best −2.25000000E+ 01 −4.00005532E+ 02 −4.00005600E+ 02 −4.00003872E+ 02 −4.00005600E+ 02 −1.96391022E+ 02

Pro5 Avg. −5.69700000E+ 00 −4.00002118E+ 02 −3.40830432E+ 02 −3.97683750E+ 02 −3.37813699E+ 02 −3.05838116E+ 01
SD. 6.58700710E+ 00 8.21440903E-03 1.17179814E+ 02 8.00812181E+ 00 1.31367249E+ 02 1.38292570E+ 02
Best 1.10307109E+ 00 1.86386710E+ 00 1.91762880E+ 00 1.86390003E+ 00 1.08353014E+ 00 2.12172047E+ 00

Pro6 Avg. 3.13774007E+ 00 1.87233338E+ 00 2.06339806E+ 00 2.00520226E+ 00 1.08701830E+ 00 2.44867119E+ 00
SD. 2.63577263E+ 00 1.86575140E-02 1.05771577E-01 1.32012583E-01 7.43075221E-03 1.99250965E-01
Best 9.81574349E-01 1.56705180E+ 00 1.38382662E+ 00 1.75241050E+ 00 9.51040119E-01 1.36257235E+ 00

Pro7 Avg. 2.03920690E+ 00 1.57650206E+ 00 1.84002526E+ 00 2.02137918E+ 00 1.16170831E+ 00 1.86600951E+ 00
SD. 5.44598091E-01 1.98224027E-02 1.99058990E-01 1.12402096E-01 1.94983718E-01 2.96719631E-01
Best 1.99999000E+ 00 2.00000010E+ 00 2.00000002E+ 00 2.00000015E+ 00 2.00000118E+ 00 2.00000475E+ 00

Pro8 Avg. 1.99999000E+ 00 2.00000010E+ 00 2.00000002E+ 00 2.00000015E+ 00 2.00000118E+ 00 2.01942277E+ 00
SD. 9.06493304E-16 0.00000000E+ 00 4.53246652E-16 1.28197512E-15 1.35973996E-15 6.52581319E-02
Best 2.55780959E+ 00 2.55765484E+ 00 2.55765461E+ 00 2.55765478E+ 00 2.55765487E+ 00 2.55765815E+ 00

Pro9 Avg. 2.55780959E+ 00 2.55765484E+ 00 2.55765461E+ 00 2.55765478E+ 00 2.55765487E+ 00 2.55766153E+ 00
SD. 1.35973996E-15 0.00000000E+ 00 9.06493304E-16 2.77135304E-09 9.06493304E-16 7.68697762E-06
Best 1.07652094E+ 00 1.07654317E+ 00 1.07654310E+ 00 1.07654317E+ 00 1.07654383E+ 00 1.07655076E+ 00

Pro10 Avg. 1.07652094E+ 00 1.07654317E+ 00 1.10429621E+ 00 1.07654317E+ 00 1.15286487E+ 00 1.07655076E+ 00
SD. 6.79869978E-16 2.26623326E-16 6.49016291E-02 1.94632366E-15 8.78772212E-02 2.26623326E-16
Best 9.92395162E+ 01 9.92384667E+ 01 1.07781781E+ 02 9.92384845E+ 01 9.92385128E+ 01 1.00285320E+ 02
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Table V. (Continued)

Problems Metric SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Pro11 Avg. 9.92441965E+ 01 1.01516778E+ 02 1.47815320E+ 02 9.92388702E+ 01 1.05096920E+ 02 1.12439915E+ 02

SD. 3.22686049E-03 3.72876276E+ 00 2.12144612E+ 01 4.39439234E-04 3.72869337E+ 00 8.99546453E+ 00
Best 2.92482984E+ 00 2.92483078E+ 00 2.92483061E+ 00 2.92483069E+ 00 2.92483153E+ 00 2.92483930E+ 00

Pro12 Avg. 3.09538650E+ 00 2.92483078E+ 00 2.92483061E+ 00 2.93621432E+ 00 2.92483153E+ 00 3.98163035E+ 00
SD. 4.27634626E-01 0.00000000E+ 00 9.06493304E-16 1.12765320E-02 1.35973996E-15 7.67243223E-01
Best 2.68680210E+ 04 2.68874239E+ 04 2.68874223E+ 04 2.68874245E+ 04 2.68874303E+ 04 2.68874756E+ 04

Pro13 Avg. 2.68680210E+ 04 2.68874239E+ 04 2.68874223E+ 04 2.68874245E+ 04 2.68874303E+ 04 2.68874756E+ 04
SD. 1.48519863E-11 7.42599314E-12 7.42599314E-12 7.42599314E-13 7.42599314E-12 3.71299657E-12
Best 5.36349646E+ 04 5.85054547E+ 04 5.85054503E+ 04 5.36511215E+ 04 5.85054523E+ 04 5.85562988E+ 04

Pro14 Avg. 5.81089147E+ 04 5.85054620E+ 04 5.85054503E+ 04 5.66204061E+ 04 5.85054523E+ 04 7.59334196E+ 04
SD. 1.34654051E+ 03 1.64760432E-02 0.00000000E+ 00 3.02847983E+ 03 1.48519863E-11 1.32694478E+ 04
Best 2.99423425E+ 03 2.99442454E+ 03 2.99442452E+ 03 2.99442449E+ 03 2.99442605E+ 03 2.99443489E+ 03

Pro15 Avg. 2.99423425E+ 03 2.99442454E+ 03 2.99442452E+ 03 2.99442449E+ 03 2.99442605E+ 03 3.00645526E+ 03
SD. 1.31274253E-13 9.28249143E-13 9.28249143E-13 2.50627269E-12 0.00000000E+ 00 1.54021266E+ 01
Best 3.22129956E-02 3.22130012E-02 3.22130012E-02 3.35503836E-02 3.22130314E-02 5.03410999E-01

Pro16 Avg. 3.22144449E-02 3.22130012E-02 3.22130012E-02 3.64187643E-02 3.22130314E-02 3.86462552E+ 03
SD. 8.76687054E-07 7.08197893E-18 1.41639579E-17 1.76241034E-03 7.08197893E-18 1.33483803E+ 04
Best 1.26652310E-02 1.26652336E-02 1.26652330E-02 1.26652339E-02 1.26652367E-02 1.26653573E-02

Pro17 Avg. 1.26652310E-02 1.26652336E-02 1.26652578E-02 1.26676230E-02 1.27104463E-02 1.28854549E-02
SD. 3.99049247E-18 3.54098947E-18 1.08445455E-07 4.63566637E-06 2.01379742E-05 3.24045831E-04
Best 5.74301891E+ 03 6.05971451E+ 03 6.05971435E+ 03 6.05971480E+ 03 6.05971433E+ 03 6.05978255E+ 03

Pro18 Avg. 5.74301891E+ 03 6.05971451E+ 03 6.06217930E+ 03 6.08860116E+ 03 6.05971433E+ 03 6.48270988E+ 03
SD. 2.78474743E-12 0.00000000E+ 00 8.53142879E+ 00 6.63653093E+ 01 9.28249143E-13 4.67137882E+ 02
Best 1.67021511E+ 00 1.67021785E+ 00 1.67021771E+ 00 1.67021783E+ 00 1.67021878E+ 00 1.67022763E+ 00

Pro19 Avg. 1.67021511E+ 00 1.67021785E+ 00 1.67021771E+ 00 1.67022849E+ 00 1.67021878E+ 00 1.67316894E+ 00
SD. 2.07703709E-16 2.26623326E-16 4.53246652E-16 5.33094634E-05 2.26623326E-16 1.00550187E-02
Best 2.63852346E+ 02 2.63895853E+ 02 2.63895841E+ 02 2.63895854E+ 02 2.63895854E+ 02 2.63896890E+ 02

Pro20 Avg. 2.63852346E+ 02 2.63895853E+ 02 2.63895841E+ 02 2.63895854E+ 02 2.63895854E+ 02 2.63896890E+ 02
SD. 0.00000000E+ 00 5.80155714E-14 0.00000000E+ 00 2.17058886E-12 1.16031143E-13 1.16031143E-13
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Table V. (Continued)

Problems Metric SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Best 2.35242458E-01 2.35242480E-01 2.35242461E-01 2.35242468E-01 2.35242614E-01 2.35242568E-01

Pro21 Avg. 2.35242458E-01 2.35242480E-01 2.35242461E-01 2.35242468E-01 2.35242614E-01 2.35242568E-01
SD. 5.66558315E-17 0.00000000E+ 00 5.66558315E-17 2.83279157E-17 5.66558315E-17 5.66558315E-17
Best 5.25768707E-01 5.25769005E-01 5.25768715E-01 5.25967410E-01 5.25769222E-01 5.27588075E-01

Pro22 Avg. 5.33188822E-01 1.11140461E+ 00 5.41026211E-01 5.30809304E-01 5.26911917E-01 8.31511745E-01
SD. 5.27604610E-03 8.80794458E-01 4.34505158E-02 4.34837419E-03 1.44018181E-03 4.74691245E-01
Best 1.60439153E+ 01 1.60698706E+ 01 1.60698691E+ 01 1.60699252E+ 01 1.60698700E+ 01 1.60700105E+ 01

Pro23 Avg. 1.60439153E+ 01 1.60698706E+ 01 1.60698691E+ 01 1.62086769E+ 01 1.60698700E+ 01 1.60868794E+ 01
SD. 5.84670613E-15 7.25194643E-15 1.08779196E-14 2.05466006E-01 1.08779196E-14 2.93226549E-02
Best 2.54378561E+ 00 2.54378579E+ 00 2.54378561E+ 00 2.58013916E+ 00 2.54378761E+ 00 2.79518644E+ 00

Pro24 Avg. 2.54393667E+ 00 2.54378579E+ 00 2.54378561E+ 00 2.82978402E+ 00 2.54378761E+ 00 3.82988988E+ 00
SD. 7.40084735E-04 1.35973996E-15 4.53246652E-16 2.20002973E-01 9.06493304E-16 1.19218086E+ 00
Best 1.24535162E+ 02 1.61611987E+ 03 1.61611981E+ 03 2.28447644E+ 03 1.61612138E+ 03 1.69106118E+ 03

Pro25 Avg. 4.25061575E+ 02 1.61612031E+ 03 1.63903736E+ 03 3.02213559E+ 03 1.61612138E+ 03 2.98208911E+ 03
SD. 6.07854479E+ 02 1.14749001E-03 1.02805302E+ 02 3.95554565E+ 02 2.32062286E-13 1.16144570E+ 03
Best 3.62784048E+ 01 3.62504032E+ 01 3.53592322E+ 01 3.62485386E+ 01 3.53592664E+ 01 4.20781016E+ 01

Pro26 Avg. 3.62802229E+ 01 3.86662117E+ 01 3.66109756E+ 01 5.37101361E+ 01 3.57284192E+ 01 6.82199553E+ 01
SD. 8.81651318E-04 2.46204679E+ 00 1.39591172E+ 00 1.78764043E+ 01 5.99105585E-01 1.78825339E+ 01
Best 5.22383263E+ 02 5.24457638E+ 02 5.24450764E+ 02 5.24508224E+ 02 5.24451210E+ 02 5.24471114E+ 02

Pro27 Avg. 5.22383263E+ 02 5.24469909E+ 02 5.24450764E+ 02 5.24740013E+ 02 5.24451210E+ 02 5.28368863E+ 02
SD. 3.00890125E-07 6.99795427E-03 2.32062286E-13 1.91943684E-01 0.00000000E+ 00 2.92877989E+ 00
Best 1.46078146E+ 04 1.46141364E+ 04 1.69582022E+ 04 1.46141363E+ 04 1.69582084E+ 04 1.46241749E+ 04

Pro28 Avg. 1.46078146E+ 04 1.46141364E+ 04 1.69582022E+ 04 1.46141363E+ 04 1.69582084E+ 04 1.50840552E+ 04
SD. 4.06738396E-12 3.71299657E-12 0.00000000E+ 00 1.35257081E-11 7.42599314E-12 9.69919837E+ 02
Best 1.67775928E+ 06 2.96489564E+ 06 2.96489542E+ 06 2.96489558E+ 06 2.96489619E+ 06 2.96490195E+ 06

Pro29 Avg. 1.67807821E+ 06 2.96489564E+ 06 2.96489542E+ 06 2.96491252E+ 06 2.96489619E+ 06 2.96507075E+ 06
SD. 1.59468037E+ 03 1.42579068E-09 4.75263561E-10 3.48061660E+ 01 1.42579068E-09 5.80107481E+ 02
Best 2.65855791E+ 00 2.65855930E+ 00 2.65855921E+ 00 2.85234342E+ 00 2.65856093E+ 00 2.61390821E+ 00

Pro30 Avg. 2.65855791E+ 00 2.65855930E+ 00 2.66183397E+ 00 4.23690707E+ 00 2.81494085E+ 00 2.62819070E+ 00
SD. 1.35973996E-15 4.53246652E-16 1.13342498E-02 1.05662763E+ 00 3.65700052E-01 3.30602014E-02
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Table V. (Continued)

Problems Metric SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Best 0.00000000E+ 00 2.88828925E-24 1.15940219E-23 0.00000000E+ 00 0.00000000E+ 00 0.00000000E+ 00

Pro31 Avg. 6.07355164E-16 3.60715445E-18 1.88066664E-16 0.00000000E+ 00 0.00000000E+ 00 0.00000000E+ 00
SD. 9.86793323E-16 1.24318244E-17 3.89233887E-16 0.00000000E+ 00 0.00000000E+ 00 0.00000000E+ 00
Best −3.06675816E+ 04 −3.06655384E+ 04 −3.06655388E+ 04 −3.06655365E+ 04 −3.06655389E+ 04 −3.06653717E+ 04

Pro32 Avg. −3.06675816E+ 04 −3.06655384E+ 04 −3.06655388E+ 04 −3.06655365E+ 04 −3.06655389E+ 04 −3.06652139E+ 04
SD. 7.38876989E-12 1.11389897E-11 1.11389897E-11 3.14181826E-11 7.42599314E-12 6.84538805E-01
Best 2.63934650E+ 00 2.63934651E+ 00 2.63934651E+ 00 2.63934659E+ 00 2.63934847E+ 00 2.63934979E+ 00

Pro33 Avg. 2.63934650E+ 00 2.63934651E+ 00 2.63934651E+ 00 2.63934659E+ 00 2.63934847E+ 00 2.71534725E+ 00
SD. 9.06493304E-16 0.00000000E+ 00 0.00000000E+ 00 1.10279670E-15 9.06493304E-16 4.95061367E-02
Best 2.26165480E-01 9.88911680E-10 1.24281937E+ 00 3.26365242E-01 5.85369556E-06 4.66777204E-01

Pro34 Avg. 6.68733178E-01 1.18911605E-03 4.95481969E+ 00 1.22930749E+ 00 2.93235236E+ 00 9.19360334E-01
SD. 2.71788762E-01 3.37986831E-03 2.05741650E+ 00 5.73900722E-01 3.50850049E+ 00 3.20170970E-01
Best −5.91780159E+ 03 −6.21107481E+ 03 −6.19728069E+ 03 −6.22250950E+ 03 −6.18684896E+ 03 −5.94718427E+ 03

Pro35 Avg. −5.48530985E+ 03 −6.09804308E+ 03 −6.03241907E+ 03 −6.08570456E+ 03 −6.08384270E+ 03 −5.61595587E+ 03
SD. 1.40015782E+ 02 8.72131893E+ 01 1.08443435E+ 02 8.01671935E+ 01 5.34931484E+ 01 3.41836051E+ 02
Best 2.38528540E-01 3.14100567E-02 3.43680404E-02 6.22341065E-02 7.43337014E-02 7.36185387E-02

Pro36 Avg. 4.88500237E-01 5.26138823E-02 4.27949467E-02 8.56817526E-02 1.43239307E-01 8.52844563E-01
SD. 1.94719298E-01 1.02129100E-02 5.63196460E-03 1.68405113E-02 5.43043874E-02 4.56265888E-01
Best 1.06153620E-01 3.73003372E-02 2.02403353E-02 2.70744540E-02 5.15082868E-02 1.89802144E-01

Pro37 Avg. 2.37090658E-01 5.55104749E-02 2.60819335E-02 4.87614434E-02 6.35807994E-02 4.46911854E-01
SD. 5.85386432E-02 1.14318075E-02 5.79570143E-03 1.55700510E-02 5.17854199E-03 2.91587900E-01
Best 1.03678745E-01 2.10371838E-02 1.27830682E-02 2.18177361E-02 3.81537441E-02 4.58417421E-02

Pro38 Avg. 1.03682993E-01 4.90818129E-02 1.82115863E-02 3.32366546E-02 6.43661599E-02 4.77230818E-01
SD. 2.40870981E-06 2.96663478E-02 3.26107960E-03 6.12417268E-03 1.68774575E-02 4.31820157E-01
Best 3.01636422E-01 2.16197578E-02 1.68273483E-02 2.50975344E-02 4.03635428E-02 2.64446615E-01

Pro39 Avg. 7.33351813E-01 5.99707655E-02 2.18758966E-02 1.33218921E-01 7.00629241E-02 5.58620218E-01
SD. 2.41776910E-01 2.26586180E-02 4.07834543E-03 1.96907336E-01 1.00227369E-01 3.43224331E-01
Best 1.06883388E-01 2.29202003E-02 2.17177091E-02 4.39293017E-02 3.73134549E-02 1.15740197E-01

Pro40 Avg. 2.98612456E-01 3.77571453E-02 3.25815543E-02 1.80061930E-01 9.41501471E-02 3.58325090E-01
SD. 1.00324480E-01 9.86770922E-03 4.15778833E-03 9.00013900E-02 4.80954246E-02 1.95955310E-01
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Table V. (Continued)

Problems Metric SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Best 1.52823432E-01 1.51151681E-02 2.04502232E-02 1.79851064E-02 1.36541786E-01 8.19117274E-02

Pro41 Avg. 3.38185299E-01 2.26010046E-02 6.50911405E-02 8.38493866E-02 3.27215685E-01 2.09060523E-01
SD. 6.19263210E-02 7.12209847E-03 4.91924745E-02 2.69146197E-02 7.07874248E-02 7.94531560E-02
Best 4.50901256E+ 03 4.55091819E+ 03 4.55089302E+ 03 4.55085207E+ 03 4.45822736E+ 03 3.65750914E+ 03

Pro42 Avg. 4.50922981E+ 03 4.55098126E+ 03 4.55094514E+ 03 4.55100407E+ 03 4.50300277E+ 03 5.80365461E+ 03
SD. 1.33101751E-01 7.16906300E-02 6.92445105E-02 1.04759010E-01 1.81981927E+ 01 2.26501373E+ 03
Best 3.58129428E+ 03 3.75088403E+ 03 3.35225321E+ 03 3.58929248E+ 03 3.34971895E+ 03 4.85718147E+ 03

Pro43 Avg. 4.26834374E+ 03 4.19099441E+ 03 3.37212476E+ 03 3.63393847E+ 03 3.36815435E+ 03 5.92391310E+ 03
SD. 4.54325201E+ 02 2.81548423E+ 02 1.32470824E+ 01 5.60554017E+ 01 1.51924733E+ 01 1.14774009E+ 03
Best 5.18652247E+ 03 5.00123129E+ 03 5.02952031E+ 03 5.15773450E+ 03 4.34524830E+ 03 4.43794820E+ 03

Pro44 Avg. 5.18678939E+ 03 5.25637355E+ 03 5.10949966E+ 03 5.46661366E+ 03 4.67610664E+ 03 5.67576975E+ 03
SD. 1.63985769E-01 1.54961347E+ 02 5.76759871E+ 01 1.15641334E+ 02 4.31813269E+ 02 9.80924315E+ 02
Best 3.59624113E+ 03 4.24054431E+ 03 4.24166502E+ 03 4.24608539E+ 03 3.19205843E+ 03 2.46363995E+ 03

Pro45 Avg. 3.59640071E+ 03 4.24153092E+ 03 4.24593645E+ 03 4.27310050E+ 03 3.33474725E+ 03 5.52347602E+ 03
SD. 1.09825017E-01 2.97891024E+ 00 3.47940766E+ 00 8.56411494E+ 00 3.00734113E+ 01 3.35382785E+ 03
Best 3.48444483E+ 03 6.69707089E+ 03 6.69800955E+ 03 6.72712930E+ 03 1.69427926E+ 03 3.53979682E+ 03

Pro46 Avg. 4.96537944E+ 03 6.70061243E+ 03 6.73250538E+ 03 6.72737549E+ 03 4.93755208E+ 03 6.09141713E+ 03
SD. 1.00978715E+ 03 2.52978893E+ 00 5.57923062E+ 01 2.83448059E-01 1.68757424E+ 03 1.89471056E+ 03
Best 1.03918716E+ 04 1.47465804E+ 04 1.40125061E+ 04 1.47534654E+ 04 9.04906878E+ 03 1.08239247E+ 04

Pro47 Avg. 1.36187779E+ 04 1.47518351E+ 04 1.46466559E+ 04 1.47647685E+ 04 1.14192669E+ 04 1.35606103E+ 04
SD. 1.74646343E+ 03 3.92778171E+ 00 2.08954188E+ 02 3.30313032E+ 00 1.21731025E+ 03 1.87793072E+ 03
Best 2.57867513E+ 03 3.21329173E+ 03 3.29508063E+ 03 3.24899607E+ 03 1.96266818E+ 03 3.29133159E+ 03

Pro48 Avg. 5.19002448E+ 03 3.21330864E+ 03 3.62823993E+ 03 3.31230400E+ 03 2.46861402E+ 03 7.46744502E+ 03
SD. 2.14966966E+ 03 3.99869908E-02 2.99257683E+ 02 4.51513658E+ 01 3.74142744E+ 02 2.35293584E+ 03

Friedman mean rank 2.6771 3.2917 2.8542 3.8646 3.4479 4.8646
Rank 1 3 2 5 4 6
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Table VI. Percentage deviation values (PDmean) obtained through solutions using different
algorithms.

Problems SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Pro1 162.668 0.000 14.771 0.000 0.000 7.652
Pro2 0.000 0.000 0.000 0.000 0.000 124.670
Pro3 4.071 96.849 3.587 4.509 3.874 110.493
Pro4 3.807 0.000 0.205 0.285 3.225 1.324
Pro5 98.576 0.001 14.794 0.580 15.548 92.354
Pro6 68.349 0.456 10.707 7.585 −41.678 31.378
Pro7 −3.623 −25.491 −13.037 −4.465 −45.095 −11.809
Pro8 −0.001 0.000 0.000 0.000 0.000 0.971
Pro9 0.006 0.000 0.000 0.000 0.000 0.000
Pro10 −0.002 0.000 2.578 0.000 7.090 0.001
Pro11 0.006 2.296 48.950 0.000 5.903 13.303
Pro12 5.831 0.000 0.000 0.389 0.000 36.132
Pro13 −0.071 0.002 0.002 0.002 0.002 0.002
Pro14 8.333 9.073 9.073 5.558 9.073 41.564
Pro15 −0.006 0.000 0.000 0.000 0.000 0.402
Pro16 0.004 0.000 0.000 13.056 0.000 0.000
Pro17 0.000 0.000 0.000 0.019 0.357 1.739
Pro18 −2.418 2.963 3.005 3.454 2.963 10.150
Pro19 0.000 0.000 0.000 0.001 0.000 0.177
Pro20 −0.016 0.000 0.000 0.000 0.000 0.000
Pro21 0.000 0.000 0.000 0.000 0.000 0.000
Pro22 1.411 111.387 2.902 0.959 0.217 58.152
Pro23 −0.162 0.000 0.000 0.864 0.000 0.106
Pro24 0.599 0.593 0.593 11.903 0.593 51.451
Pro25 −73.849 −0.574 0.836 85.927 −0.573 83.463
Pro26 2.605 9.353 3.540 51.898 1.044 92.934
Pro27 −0.394 0.004 0.000 0.055 0.000 0.747
Pro28 −0.043 0.000 16.040 0.000 16.040 3.216
Pro29 −43.402 0.000 0.000 0.001 0.000 0.006
Pro30 1.709 1.709 1.834 62.092 7.692 0.547
Pro31 0.000 0.000 0.000 0.000 0.000 0.000
Pro32 −0.007 0.000 0.000 0.000 0.000 0.001
Pro33 0.000 0.000 0.000 0.000 0.000 2.880
Pro34 0.000 0.000 0.000 0.000 0.000 0.000
Pro35 12.385 2.598 3.646 2.795 2.825 10.298
Pro36 1184.538 38.351 12.532 125.305 276.656 2142.602
Pro37 1017.561 161.657 22.941 129.844 199.697 2006.584
Pro38 1907.595 850.362 252.628 543.555 1146.310 9140.532
Pro39 4268.430 257.234 30.310 693.559 317.351 3227.589
Pro40 3106.792 305.473 249.893 1833.681 911.076 3748.045
Pro41 2140.164 49.711 331.168 455.424 2067.501 1284.832
Pro42 −0.915 0.003 0.002 0.003 −1.051 27.529
Pro43 27.452 25.142 0.691 8.509 0.572 76.887
Pro44 3.785 5.178 2.239 9.385 −6.433 13.570
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Table VI. (Continued)

Problems SDECOA SASS COLSHADE sCNAgES EnMODE BPMAgES
Pro45 −15.190 0.023 0.127 0.768 −21.360 30.254
Pro46 −25.850 0.063 0.539 0.462 −26.266 −9.035
Pro47 −7.663 0.020 −0.693 0.107 −22.576 −8.057
Pro48 61.517 0.001 12.913 3.081 −23.175 132.392

Table VII. Number of robots and obstacles in different scenarios.

Scenario Robots Static obstacles Dynamic obstacles
Scenario 1 6 7 3
Scenario 2 12 9 5
Scenario 3 20 13 7

Figure 4. Scenario 1.
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Figure 5. Scenario 2.

4.4.4. Simulation experiment in Scenario 3
In Scenario 3, the number of robots was increased to 20, and the quantities of both dynamic and static
obstacles were significantly raised, making the path planning problem more complex. It should be noted
that in this experiment, COA led to the phenomenon of robots getting lost, demonstrating subpar per-
formance. Therefore, the experimental results involving COA are excluded from consideration in this
section. In this experiment, Figure 11 illustrates the trajectories of each algorithm in Scenario 3. From
Figure 11, it is clearly observable that, even as the problem scale increased, the proposed algorithm still
managed to find effective paths compared to the other algorithms. Table 12 records the average travel
distance and corresponding standard deviation for 20 robots from the starting point to the destination,
while Figure 12 shows the histogram of the average travel distances for different algorithms. The his-
togram clearly indicates that the average travel distance of SDECOA is significantly lower than that of
the other algorithms. Table 13 documents the number of steps taken by each robot.

From the experimental results in Scenario 3, it can be concluded that, compared to DE, the proposed
algorithm improved performance by 45.3%, with the total average movement steps reduced by 37.0%.

Through these experimental data, it can be seen that regardless of the number of robots, the proposed
algorithm always achieves the best performance. Moreover, as the number of robots increases, the values
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Figure 6. Scenario 3.

of other algorithms become very large, while SDECOA can still manage reasonably. The path diagrams
in the three scenarios clearly show that the proposed algorithm’s results in a shorter travel distance and
smoother paths for the robot, particularly demonstrating significant advantages when the robot oper-
ates in more complex environments. Therefore, it can be proven that our algorithm outperforms these
algorithms in terms of performance and competitiveness.

5. Conclusion and future work
Current research on robot path planning mainly considers environments with static obstacles or involves
a very small number of robots. However, in this study, we consider a scenario with 20 robots and 7
dynamic obstacles, significantly increasing the complexity of the problem. To address the issue of multi-
robot online path planning in environments with both static and dynamic obstacles, this paper proposed
a SDECOA. The proposed algorithm extends the original COA by incorporating two DE update strate-
gies. These strategies are adaptively selected based on a learning mechanism, which eliminates the
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(a)

DE

(b)

PSO
(c)

SCA

(d)

COA(e)

sdSCA

(f)

SDECOA

Figure 7. Paths of different algorithms in Scenario 1.
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Table VIII. Experimental results of the travel distance for each robot in Scenario 1.

Robot Metric DE PSO SCA COA sdSCA SDECOA
R1 Avg. 155.298 312.732 158.077 145.165 109.556 100.902

SD. 7.996 22.151 3.643 10.923 3.996 0.765
R2 Avg. 142.451 371.126 177.660 116.102 105.660 98.892

SD. 6.006 27.587 7.871 5.198 3.487 5.980
R3 Avg. 64.119 250.800 85.025 53.376 44.706 39.850

SD. 8.620 48.552 15.284 2.519 1.199 0.590
R4 Avg. 143.411 339.231 162.100 120.651 104.692 100.486

SD. 6.713 32.274 8.103 8.223 1.664 5.814
R5 Avg. 84.838 249.738 92.081 71.090 55.934 56.952

SD. 5.273 37.285 10.466 7.797 1.720 5.786
R6 Avg. 119.637 311.692 144.330 104.418 82.244 77.066

SD. 5.506 16.923 9.404 7.127 1.883 1.660
Total mean distance 709.755 1835.320 819.274 610.801 502.792 474.149
Rank 6 5 4 3 2 1

Figure 8. Average travel distance of each robot in Scenario 1.

dependency on a single update strategy in COA. As a result, the algorithm is capable of achieving excel-
lent performance across a variety of problem domains. Furthermore, the crossover probability, which
was originally a constant parameter, is transformed into a dynamic adaptive variable to further improve
the accuracy of the solutions. This approach effectively mitigates the premature convergence problem
caused by the imbalance between local and global search capabilities in COA, thereby improving the
algorithm’s optimization capability.
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Table IX. Average number of steps traveled by each robot in Scenario 1.

Robot DE PSO SCA COA sdSCA SDECOA
R1 129.45 250 129.65 122.05 88.1 89.9
R2 114.6 288.8 147.6 96.6 86.65 90.35
R3 53.15 195.4 66.15 43.45 37 35.05
R4 116.65 281.4 133.35 97.6 87.65 90.9
R5 67.7 200.2 75.7 56.1 46.3 48.95
R6 97.85 256.5 116.35 87.15 68.55 68.35

(a)

DE

(b)

PSO

(c)

SCA

(d)

COA

Figure 9. Paths of different algorithms in Scenario 2.
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(e) 

sdCOA

(f)

SDECOA

Figure 9. (Continued)

Table X. Experimental results of the travel distance for each robot in Scenario 2.

Robot Metric DE PSO SCA COA sdSCA SDECOA
R1 Avg. 62.787 217.614 63.358 45.436 26.614 31.861

SD. 17.987 119.305 12.634 2.897 2.995 4.073
R2 Avg. 164.269 431.117 213.012 184.073 121.577 97.637

SD. 9.543 51.563 16.642 30.190 11.226 3.338
R3 Avg. 250.674 330.084 173.439 201.653 85.770 105.505

SD. 63.917 19.190 11.632 41.555 3.581 6.344
R4 Avg. 52.440 229.792 71.882 77.764 32.838 29.979

SD. 16.965 20.031 29.698 31.384 7.020 3.700
R5 Avg. 111.945 310.797 114.428 110.812 60.319 64.881

SD. 16.310 25.473 7.530 10.763 3.665 5.700
R6 Avg. 122.856 188.722 106.414 99.016 62.420 65.306

SD. 8.191 22.746 5.509 13.256 4.560 1.549
R7 Avg. 108.073 165.359 116.620 92.062 67.966 58.992

SD. 11.505 32.149 11.352 9.850 3.072 3.554
R8 Avg. 68.966 115.199 62.237 47.225 37.932 32.271

SD. 5.484 45.977 7.264 8.060 1.947 2.623
R9 Avg. 89.652 148.906 84.867 76.711 51.414 52.491

SD. 13.593 43.286 8.971 9.217 1.866 2.376
R10 Avg. 155.862 425.183 176.663 355.010 88.339 97.291

SD. 8.514 81.036 15.646 184.370 5.428 2.331
R11 Avg. 81.344 254.331 110.142 86.818 54.585 47.961

SD. 7.190 89.799 13.120 8.702 2.527 2.820
R12 Avg. 20.528 113.579 41.494 20.356 11.243 11.153

SD. 3.221 53.615 20.365 4.914 2.077 1.983
Total mean distance 1289.395 2930.682 1334.554 1396.936 701.017 695.327
Rank 3 6 4 5 2 1
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Table XI. Average number of steps traveled by each robot in Scenario 2.

Robot DE PSO SCA COA sdSCA SDECOA
R1 52 176.5 53.85 39 21.35 29.4
R2 138.85 358.35 177.65 162.1 99.95 92.05
R3 207.95 263.95 138.4 160.65 70.1 98.2
R4 40.95 186.8 62.1 58.5 25.25 26.8
R5 92.7 251.5 94.3 92.3 49.75 61.8
R6 101.3 147.05 87.05 86.05 53.1 61.4
R7 87.3 134.05 90.95 75.7 55.8 53.25
R8 57.2 98.4 51.7 42.15 31 30.5
R9 74.7 131.6 70.2 62.8 42.85 46.75
R10 133.9 296.15 146.7 375.35 74.5 89.85
R11 68.1 178.4 91.9 74.9 42.8 42.9
R12 15.95 115.5 35.35 15.2 9.6 9.65

Figure 10. Average travel distance of each robot in Scenario 2.

To validate the performance of the proposed algorithm, it was applied to the CEC2022 benchmark
test suite and the CEC2020 real-world constrained optimization problems. Experimental results show
that, compared to DE and COA, the proposed algorithm significantly improves performance, solving
optimization problems even with over 100 constraints. When compared with the winning algorithm
in the CEC2020 competition, SDECOA achieved the best results, as confirmed by the Friedman test.
Finally, the algorithm was applied to multi-robot path planning problems in three complex scenarios.
In Scenario 1, compared to the original DE and COA, the proposed algorithm reduced the average total
travel distance of all robots by 33.2% and 22.4%, respectively, and reduced the average total movement
steps by 31.1% and 21.6%. In Scenario 2, the average total travel distance was reduced by 46.1% and
50.2%, respectively, while the average total movement steps were reduced by 40.0% and 48.3%. In
Scenario 3, compared to the original DE, the average total travel distance was reduced by 45.3%, and
the average total movement steps were reduced by 32.7%. These experimental results demonstrate the
strong competitiveness of the proposed algorithm.

https://doi.org/10.1017/S0263574725000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000049


Robotica 33

(a)

DE

(b)

PSO
(c)

SCA

(d)

sdCOA
(e)

SDECOA

Figure 11. Paths of different algorithms in Scenario 3.
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Table XII. Experimental results of the travel distance for each robot in Scenario 3.

Robot Metric DE PSO SCA sdCOA SDECOA
R1 Avg. 53.502 32.010 28.602 31.699 27.143

SD. 2.190 7.675 4.651 7.293 3.153
R2 Avg. 92.906 195.468 111.946 54.778 44.780

SD. 8.406 38.925 10.642 2.342 2.796
R3 Avg. 87.971 280.642 162.165 61.790 53.495

SD. 13.500 42.123 22.905 3.785 5.882
R4 Avg. 122.528 175.538 117.169 80.620 65.400

SD. 13.259 17.704 10.251 5.467 1.827
R5 Avg. 207.327 449.117 320.794 123.995 105.829

SD. 3.290 40.807 62.608 2.335 3.750
R6 Avg. 151.624 557.380 223.380 89.750 89.355

SD. 6.048 27.258 21.816 4.122 5.880
R7 Avg. 222.964 619.783 379.673 153.876 146.662

SD. 13.297 19.180 7.887 5.124 12.084
R8 Avg. 45.038 22.431 19.930 27.471 23.262

SD. 1.543 1.281 0.594 3.355 2.120
R9 Avg. 162.324 544.513 252.321 82.498 75.965

SD. 22.005 34.009 43.137 6.072 15.959
R10 Avg. 124.478 123.487 94.905 70.077 59.796

SD. 9.392 9.636 15.047 5.913 2.866
R11 Avg. 140.808 213.129 122.371 65.260 77.242

SD. 5.820 17.069 27.072 1.813 8.708
R12 Avg. 100.883 188.058 136.553 50.084 60.251

SD. 17.664 48.471 14.059 6.638 8.156
R13 Avg. 123.430 331.049 105.435 57.955 69.380

SD. 10.472 134.419 9.614 4.339 3.409
R14 Avg. 87.166 288.856 122.968 50.055 57.020

SD. 16.001 65.006 24.217 8.777 6.060
R15 Avg. 201.038 376.998 216.024 88.111 105.646

SD. 8.560 7.395 52.682 3.847 9.627
R16 Avg. 123.763 399.841 131.791 84.567 64.274

SD. 13.694 82.944 10.701 5.227 2.397
R17 Avg. 64.757 38.555 38.621 36.415 30.008

SD. 12.230 7.315 3.008 1.580 2.495
R18 Avg. 66.079 33.227 25.095 31.407 27.821

SD. 7.634 4.176 0.821 4.405 2.736
R19 Avg. 97.520 134.959 89.793 57.950 63.769

SD. 17.077 29.111 7.381 5.984 9.539
R20 Avg. 44.769 23.512 42.718 22.527 23.461

SD. 8.028 1.906 12.308 1.497 2.663
Total mean distance 2320.876 5028.552 2742.255 1320.883 1270.558
Rank 3 5 4 2 1

This paper presents a novel solution approach for the multi-robot path planning problem, holding
promise for addressing more complex path planning challenges in future environments, such as multi-
robot path planning in three-dimensional spaces with multiple dynamic obstacles. According to the No
Free Lunch theorem, no single algorithm can solve all problems, but continuous improvement can enable
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Table XIII. Average number of steps traveled by each robot in Scenario 3.

Robot DE PSO SCA sdSCA SDECOA
R1 43.2 25.5 21.75 23.55 27
R2 77.1 155.45 87.7 43.85 41.15
R3 76.5 240.7 138.05 52.15 51
R4 102.2 149 96 64.8 61
R5 170.7 376.05 275.1 104.15 98.4
R6 127.8 450.4 185.6 74.4 83.95
R7 180.85 512.5 315.85 128.55 141
R8 36.3 17.4 15.45 22.55 22.75
R9 135.45 441.65 213.15 65.3 79.45
R10 97.45 95.85 79.4 55.4 55.35
R11 115.6 173.1 115.15 52.6 72.45
R12 79.35 161.7 109.8 40.8 55.8
R13 99.5 260.6 89.25 47.55 63.35
R14 74.9 261.05 101.45 39.05 55.3
R15 168.1 310.55 193.1 73.1 101.3
R16 102.4 333.25 107.6 69.5 59.8
R17 55.95 29.4 31.4 28.9 28.75
R18 58.55 27 20.45 25.6 26.8
R19 77.7 108.85 75.5 48.45 60.95
R20 35.7 18.5 35.8 18 21.65

(a)

(b)

Figure 12. Average travel distance of each robot in Scenario 3.
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an algorithm to solve a broader range of problems. Of course, the number of position update strategies is
not always a determining factor for success. In future research on intelligent algorithms, better position
update strategies that align with the COA are expected to emerge, along with more challenging real-
world optimization problems for SDECOA to solve. One limitation of the proposed algorithm is that
it has a relatively large number of control parameters, and the effective update strategy at the initial
stage may not necessarily be suitable for the later iterations. Future research could focus on applying
the algorithm to more realistic path planning problems. Moreover, this paper only applies SDECOA to
single-objective constrained optimization problems; future work could extend its application to high-
dimensional multi-objective optimization problems.
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