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A thorough characterization of the shear layer that exists in large eddy simulation data of
three separated, compression ramp-generated shock/turbulent boundary layer interactions
is presented. Free stream Mach numbers ahead of the separation shock are 2.9, 7.2 and
9.1. The shear layers produced by the separation in these flows have convective Mach
numbers of 1.0, 1.9 and 2.0, respectively. It is found that the separation shear layers
share many properties associated with canonical compressible mixing layers. A region
of approximate similarity is found in each where it is possible to collapse the mean flow
profiles into nearly a single similarity profile. Large mixing-layer-like vortical rollers are
found in the shear layers and these are shown to become increasingly three-dimensional
with increasing convective Mach number. The relation between the peak turbulence stress
and the spreading rate was found to be consistent with mixing layer data and mixing layer
theory derived from dimensional analysis. Turbulent kinetic energy and Reynolds stress
budget analysis revealed that, although the streamwise turbulence production is greater
than the canonical mixing layer, the transfer of turbulence energy by the pressure–strain
terms and the energy drain by viscosity terms both show similar behaviour to mixing layer
data at matching convective Mach number. As a result, the spreading rate and turbulence
anisotropy decrease with increasing Mc. These conclusions are aided by an accurate and
direct measurement of the vortex convection velocity determined from enhanced two-point
correlations in the shear flow. The usefulness of studying the shock/turbulent boundary
layer flow in this manner is emphasized.

Key words: compressible turbulence, shear layer turbulence, shock waves

1. Introduction

The free shear layer is one of the most fundamental shear flows for the study of turbulence.
Unlike wall-bounded shear layers, the mixing layer develops with only one length scale.

† Email address for correspondence: mpmartin@umd.edu

© The Author(s), 2021. Published by Cambridge University Press 912 A7-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mpmartin@umd.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.989&domain=pdf
https://doi.org/10.1017/jfm.2020.989


C.M. Helm, M.P. Martín and O.J.H. Williams

The canonical mixing layer therefore affords a simple yet essential configuration for
the study of compressible turbulence. A firm grasp of the fundamental physics of
compressible turbulence in shear flow is of paramount importance for the advancement
of hypersonic flight technology, supersonic combustion and the development of robust
practical simulation tools for such engineering design efforts.

Despite its conceptual simplicity, the compressible mixing layer exhibits certain
properties that are difficult to explain physically. One of its most documented features
is a significant decrease in spreading rate with increasing compressibility. This property
is noted in research articles as early as the 1950s from experimental observation (Korst
& Tripp 1957; Channapragada 1963) and from linear stability prediction of the stabilizing
effects of increasing Mach number on a vortex sheet (Lin 1953; Pai 1955; Miles 1959).
By the 1970s, consensus among scientists resulted in the well known ‘Langley curve’
(Birch & Eggers 1972; Kline, Cantwell & Lilley 1980). The Langley curve is generally
plotted as normalized spreading rate versus the convective Mach number Mc, a metric
for compressibility proposed by several authors (Bogdanoff 1983; Chinzei et al. 1986;
Papamoscho & Roshko 1988). Early research also revealed that the reduction in spreading
rate is accompanied by a reduction in fluid entrainment, turbulence mixing and turbulence
stresses (Ikawa & Kubota 1975; Elliott & Samimy 1990; Goebel & Dutton 1991).
Many significant research contributions advancing our physical understanding of these
phenomena have since been put forward as outlined in several review articles (Dimotakis
1991; Lele 1994; Smits & Dussauge 2006; Gatski & Bonnet 2013). In spite of the large
volume of research, precise scaling laws and robust models for simulation are still lacking.

Several factors make identification of exact scaling dependencies difficult. Significant
spread exists in the data partly due to limitations of measurement techniques, but also
due to an acute sensitivity of the mixing layer to initial and boundary conditions. This
sensitivity is problematic in both experiment and computation and can produce large
variations in the spreading rate and turbulence stresses. Disturbances in the free stream,
conditions of the boundary layer, experimental facility acoustics, splitter plate vibration,
and test section confinement can all contribute to scatter in the data (Smits & Dussauge
2006; Gatski & Bonnet 2013). In the classic relation of Papamoscho & Roshko (1988) δ′ =
δ′

incφ(Mc), determination of the scaling function φ(Mc) is compromised by significant
scatter in both the compressible spreading rate δ′ and the incompressible spreading rate
δ′

inc. Dimotakis (1991) reported as much as a 30 % variation in incompressible spreading
rate data due to experimental inconsistencies. Smits & Dussauge (2006) estimated as much
as a 50 % variation in the compressible data measurements. A number of attempts have
been made to correct for the discrepancies in the data (Slessor, Zhuang & Dimotakis 2000;
Aupoix 2004; Aupoix & Bézard 2006; Barone, Oberkampf & Blottner 2006) with some
success, however, large spread in the data still remains. Similarly for turbulence quantities,
scatter has prevented a consensus on the trends caused by increasing compressibility. For
example, many studies indicate that the peak normal stress in both the streamwise (u′2)
and cross-stream (w′2) directions steadily decrease with increasing Mc. This resulted in
the turbulence shear stress (u′w′) and anisotropy (u′2/w′2) remaining relatively constant
(Samimy & Elliott 1990; Barre, Quine & Dussauge 1994; Debisschop, Chambres &
Bonnet 1994; Pantano & Sarkar 2002). Still, several other studies (Goebel & Dutton
1991; Gruber, Messersmith & Dutton 1993; Freund, Lele & Moin 2000) found that for
increasing Mc, u′2 is constant and only w′2 decreases causing the shear stress to decrease
and anisotropy to increase. The overall scatter is of the order of the reported trends, as can
be seen in the data compilations in Smits & Dussauge (2006) and also in the more recent
data compilations of Barre & Bonnet (2015).
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The sensitivity of the mixing layer stems from the complex dynamics of the large-scale
vortices produced by the Kelvin–Helmholtz instability. These large-scale mixing layer
eddies undergo significant changes with increasing Mach number and have been found
to play a dominant role in establishing both the spreading rate and turbulence levels. It has
been observed in many studies that the structure of the mixing layer becomes increasingly
three-dimensional (3-D) and less coherent with increasing compressibility. This has been
shown, for example, with two-point correlations in experimental data (Samimy, Reeder
& Elliott 1992), in experimental flow visualizations (Clemens & Mungal 1992, 1995;
Rossmann, Mungal & Hanson 2002) and flow visualizations in numerical simulations
(Sandham & Reynolds 1991; Day, Reynolds & Mansour 1998; Freund et al. 2000; Kourta
& Sauvage 2002). Increasing strength of an oblique unstable wave with convective Mach
number was also predicted by inviscid stability theory (Sandham & Reynolds 1990, 1991).
Further complexity arises when the motion of the large vortices becomes supersonic
relative to one or both of the external flows causing shocklets to appear. Shocklets have
been observed both experimentally (Papamoschou 1995; Rossmann et al. 2002) and in
simulations (Lele 1989; Freund et al. 2000; Kourta & Sauvage 2002) and typically occur
at high convective Mach numbers. These shocklets can affect the turbulence dilatation,
dissipation and pressure fields (Smits & Dussauge 2006).

A key parameter for the characterization of the compressible mixing layer is the
convection velocity of the Kelvin–Helmholtz vortices in relation to one or both of the
free stream velocities. Under the assumption that the mixing layer eddies convect at a
constant velocity, are non-dispersive, and the streamlines are isentropic, Papamoscho &
Roshko (1988) conducted a theoretical analysis to derive the convective Mach number
Mc = ΔU/(a1 + a2) which is the velocity difference across the layer ΔU divided by
the average of the sound speed a in the two streams. Despite the limitations imposed
by the derivation assumptions, Mc is still the most used Mach number in the study
of compressible mixing layers. Freund et al. (2000) showed in their direct numerical
simulations (DNS) of an annular mixing layer that, with increasing Mc, the cross-stream
correlation length decreases in relation to the layer thickness. This indicates that the
large-scale eddies do not span the width of the layer at elevated Mach number. The same
authors also showed that the peak turbulence stress in their simulation data scaled with the
cross-stream correlation length and not the layer thickness. These results were confirmed
by Pantano & Sarkar (2002) who demonstrated that the pressure–strain rate correlation
in their DNS scaled best with the so-called gradient Mach number. The gradient Mach
number Mg is by definition the acoustic time scale divided by the flow distortion time
scale and is related to the velocity difference across a large-scale structure. This is in
contrast to Mc which is based on the velocity difference across the entire layer. The
results of Freund et al. (2000) and Pantano & Sarkar (2002) are both consistent with the
previous work by Vreman, Sandham & Luo (1996) who used a theoretical model of a sonic
eddy, a concept first introduced by Breidenthal (1992), to explain an observed decrease in
pressure fluctuations with increasing Mach number. Detailed turbulence statistics afforded
by high-fidelity numerical simulations enabled these authors (Vreman et al. 1996; Freund
et al. 2000; Pantano & Sarkar 2002) to reveal that a decrease in the pressure–strain rate
correlation is directly responsible for the decrease in spreading rate with increasing Mach
number. These results point to the importance of the structural changes of the large-scale
mixing layer eddies in dictating both the spreading rate and the turbulence stresses.

One factor limiting our ability to translate these observations into precise scaling laws
is that the parameter space has by no means been exhausted. Particularly lacking in the
research are mixing layers of high convective Mach number (Mc > 1), especially in the
way of turbulence statistics. Aside from the notable work by Pantano & Sarkar (2002),
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the effects of density gradient on the compressible mixing layer dynamics and their
distinction from purely compressibility effects has not yet been thoroughly explored. The
effect of velocity ratio also has not been fully investigated. The majority of mixing layer
data are either of a single stream or two coflowing streams. There is evidence, however,
that the vortex dynamics are fundamentally different for the counter-current configuration
compared with the much more widely studied coflowing configuration. Flow visualizations
of the axisymmetric jet of Strykowski, Krothapalli & Jendoubi (1996) demonstrate that
counter-flow shear layers can produce larger and more coherent structures than are
discernible in single-stream jets at similar conditions. Linear stability analysis of both
compressible and incompressible mixing layers shows the unstable mode can transition
from a convectively unstable to an absolutely unstable mode under certain conditions of
reverse flow strength (Huerre & Monkewitz 1985; Pavithran & Redekopp 1989; Jackson
& Grosch 1990). Considering these changes in the nature of the instability, a question
that may be asked is whether the relations between spreading rate and turbulence statistics
observed in coflowing compressible mixing layers still hold true. Another configuration of
practical interest of which there is very little data available is the mixing layer subjected
to a streamwise pressure gradient.

A compressible separation shear layer forms in strong shock/turbulent boundary layer
interactions (STBLI). A well known characteristic of separated STBLI is the occurrence
of a low-frequency unsteadiness in the shock foot and separation bubble (among many
references, see for example Dussauge, Dupont & Debiève (2006) and Wu & Martín
(2008)). Many attempts have been made to discover the origins of this unsteadiness, but of
particular interest to the current discussion is the work of Piponniau et al. (2009) who used
scaling arguments to explain the order of magnitude difference between low-frequency
motions observed in STBLI and those observed in incompressible separation bubbles. In
the derivation of their model, they equated the separation shear layer in their Mach 2.3
reflected shock STBLI to a canonical mixing layer and cited the Mach number dependent
reduction in the spreading rate of the compressible mixing layer as the primary cause of
the frequency difference. Recently, Dupont, Piponniau & Dussauge (2019) published a
follow-up article to that of Piponniau et al. with the intention of verifying the assumptions
that were made of the STBLI shear layer properties. Although decidedly not a canonical
mixing layer, interestingly, Dupont et al. showed that the STBLI shear layer does in fact
share many of the same properties. For example, they were able to collapse profiles
of the mean velocity and turbulence stresses onto an approximate similarity profile
by defining an appropriate, linearly varying, shear layer coordinate system. They also
demonstrated that the spreading rate of the separation shear layer was consistent with the
level of compressibility as determined by the convective Mach number and the measured
rate of entrainment. Turbulence scaling properties of shear stress-to-spreading rate and
also turbulence anisotropy-to-convective Mach number were also found to be in good
agreement with mixing layer dimensional analysis. In light of these results, it would seem
that the separation shear layer in STBLI flows could potentially provide significant insight
into the mixing layer problem, or, at the very least, help expand the currently available
parameter space.

We use high-fidelity large eddy simulation (LES) data of separated compression ramp
STBLI flows at supersonic to hypersonic conditions (Helm & Martin 2015, 2016; Trichilo,
Helm & Martin 2019; Helm & Martín 2020) to analyse the properties of mixing layers
in hypersonic separated flow with the intention of contributing to the research of mixing
layer theory. Our flow conditions include free stream Mach numbers ranging from 3 to
10 which were found to produce shear layers with convective Mach number ranging from
1 to 2. This highlights an attractive feature of STBLI separation shear layers in that they
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naturally occur at high convective Mach number. They also present the rare combination
of high convective Mach number with reverse flow on the low-speed side. A further detail
of the STBLI shear layers is that they exists in an adverse pressure gradient. We find that
the pressure increases approximately linearly in the direction of shear layer development
and that similarity in the mean velocity and turbulent stress profiles is still achieved under
these conditions. Because we are using high-fidelity, high detail LES data, we are able to
obtain accurate turbulence statistics in the shear layer. The spatial/temporal resolution of
the LES data also allows us to produce statistics on the shear layer turbulence structures, to
visualize instantaneous realizations of the turbulence structures, and to directly calculate
their convection velocity. The vortex convection velocity is an important parameter in
characterizing the mixing layer yet it is notoriously difficult to measure accurately in
experiments (Barre et al. 1994; Dupont, Muscat & Dussauge 1999; Thurow et al. 2008).

In this paper we first provide in § 2 an overview of the STBLI data used for this study.
In § 3, the mean flow properties of the shear layer are tabulated. The form of the shear
layer vortices is the topic of § 4. The shear layer turbulence properties including turbulent
kinetic energy (TKE) and Reynolds stress budgets are compared with available mixing
layer data and theory in § 5 followed by a summary of conclusions in § 6.

2. LES database

For this study we use the data of Helm & Martín (2020) who, together with Helm &
Martin (2016), Helm & Martin (2015) and Trichilo et al. (2019), perform a validation of
the LES data against DNS of shock and turbulent boundary layer interactions. Detailed
comparisons of mean and intensity profiles and spectral distributions show the accuracy
and the high fidelity of the LES data, which include compression ramp-generated STBLIs
at free stream Mach numbers of 3, 7 and 10. These are referred to throughout this paper
as cases M3, M7 and M10, respectively. All three flows are two-dimensional (2-D) in the
sense that they are of a flat plate boundary layer over a 2-D wedge and are assumed to be
homogeneous in the spanwise direction. All three flows are strong interactions and are fully
separated in the mean. The shear layer that forms over the separation bubble is the focus of
the current research. The selection of the flow conditions was dictated by the experimental
and DNS data available for validation of the LES, and the disparate conditions here give
the conclusions broader applicability.

The LES coordinate axes are indicated by capital letters (X, Y, Z) and refer to the
streamwise, spanwise and wall-normal directions, respectively. The shear layer coordinate
axes, to be explained in § 3, are specified by the lowercase letters (x, y, z) where x is in the
direction of the shear layer development, y is the spanwise direction and z the cross-stream
direction. Unless stated otherwise, the velocity components (u, v, w) are in the direction
of the mixing layer coordinate system. The computational grids are provided in table 1.
Included in table 1 are the ramp angle ϕ, the simulation reference boundary layer thickness
δo, the outer dimensions of the computational domain in units of δo, the grid resolution in
units of the incoming boundary layer inner length scale and the number of grid points. The
outer dimensions include the length of the wall from inlet to the corner LX1, the length of
the ramp surface from the corner to the outlet LX2, the span width LY and the height of the
grid at the inlet plane LZ . The grid resolution is stretched in the streamwise direction so
that Δx+ is greatest at the inlet and smallest at the ramp corner. The spanwise resolution
Δy+ is uniform throughout. The first grid point away from the wall is given by z+

2 . The
high bandwidth resolving efficiency of our numerical methods is comparable to linear
Padé schemes in smooth regions (Martín et al. 2006; Taylor & Martín 2007; Taylor, Wu
& Martín 2007; Wu & Martín 2007; Taylor & Martín 2008), and this, together with the
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Case ϕ δo (mm) LX1/δo LX2/δo LY/δo LZ/δo Δx+ Δy+ z+
2 Grid size

M3 24◦ 7.0 8 6.5 4 4.5 26.7–12.5 15.0 0.37 280 × 128 × 65
M7 33◦ 5.0 12 12 10 8 26.6–11.3 8.4 0.23 300 × 256 × 80
M10 34◦ 18.0 13 12 10 7 27.7–10.5 7.1 0.20 780 × 664 × 100

Table 1. Computational grid.

Ue ρe Te Re δbl
Case Me (m s−1) (kg m−3) (K) (m−1) Tw/Ta (mm) Reθ Reτ L/δbl

M3 2.92 610.3 0.075 109 6.06 × 106 1.0 7.9 3220 360 3.03
M7 7.17 1146.4 0.076 64 1.91 × 107 0.5 4.9 3720 210 5.73
M10 9.05 1410.7 0.040 58 1.37 × 107 0.3 19.7 8280 520 3.26

Table 2. Conditions of STBLI mean flow.

adaptive shock sensor for locally dynamic shock capturing (Wu & Martín 2007), result
in reduced grid sizes that are adequate for the solution of turbulence flows as has been
demonstrated, see for example Wu & Martín (2007) or Priebe & Martín (2012, 2020).
We use the LES models of Martín, Piomelli & Candler (2000) and Martín (2000), which
employ an algebraic combination of locally dynamic, purely dissipative eddy viscosity
and locally dynamic, conservative energy exchange counterparts like those designed by
Bardina, Ferziger & Reynolds (1980) for incompressible flows. More details about the
computational set-up and data validation can be found in Helm & Martín (2020), Helm &
Martin (2015, 2016) and Trichilo et al. (2019).

Conditions of the free stream flow, the incoming boundary layer and the mean separation
length are listed in table 2. The conditions ahead of the shock at the incoming boundary
layer edge are indicated by the subscript ‘e’. The Mach number Me, streamwise velocity
Ue, temperature Te and density ρe are listed together with the unit Reynolds number Re =
ρeUe/μe where μe is the kinematic viscosity. Also included is the ratio of wall temperature
Tw to the adiabatic recovery temperature Ta = Te(1 + 0.9((γ − 1)/2)M2

e ) where γ is the
ratio of specific heats. Note that the M3 case is an adiabatic simulation and that the M7 case
and the M10 case are both cold-wall simulations. The conditions of the incoming boundary
layer ahead of the interaction region are indicated by the boundary layer thickness δbl
and several Reynolds numbers. The Reynolds number based on momentum thickness θ is
defined as Reθ = ρeUeθ/μe. The friction Reynolds number Reτ is defined as ρwuτ δbl/μw
where uτ is the friction velocity and the subscript ‘w’ refers to the condition at the wall.
Lastly, the mean separation length L is provided.

During the LES runtime, primitive flow variables were output at a high sampling rate
of f = 20Ue/δbl from several stations positioned along X in the computational domain.
At each station, that is at a given i-grid point, data was recorded from each j- and k-grid
point. The grid indices i, j and k refer to the streamwise, spanwise and wall-normal grid
directions, respectively. For each Mach number case, there are a total of seven of these
stations evenly spaced in X between (X − Xsep)/L = 0.3 and 0.9 in the region of the
mean separation bubble. Here Xsep refers to the location of the separation point in the
time- and spanwise-averaged ramp flow. These high-resolution time signals are used for
the enhanced correlations described in § 4.1 and also the flow visualizations in § 4.3.
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3. Region of similarity in the mean separated flow

3.1. Similarity profiles
The STBLI separation shear layers are visualized in figure 1 by the region of elevated
turbulence in the contours of mean turbulent kinetic energy TKE = u′

iu
′
i/2Ue

2. In each
case, the shear layer forms at the foot of the shock and makes an angle to the wall surface.
The positions of the shock and the separation dividing streamline are also indicated in
figure 1. A shear layer coordinate system (x, z) is defined for each case such that the
longitudinal x-axis extends along the centre of the layer in the direction of its development
and the z-axis is perpendicular to x in the cross-stream direction. Canonical mixing layers
are characterized by a linear growth rate of the layer thickness (Tennekes & Lumley 1972;
Lesieur 1987). If linear growth does in fact occur in the present shear flows, it should be
possible to collapse profiles of the mean flow onto a single similarity profile by plotting
against the similarity variable ζ = z/x. In doing so, a region of approximate linear growth
is found in each of the three STBLI flows.

The mean velocity and mean turbulence stresses are plotted versus ζ for M3, M7 and
M10 in figures 2–4, respectively. Obtaining these profiles required the positioning of
the shear layer coordinate system xz-axes, the rotation of which was determined by the
orientation of the mean velocity field, and the origin by the angle of spread observed
in the contour of mean TKE. This manual placement of the mixing layer coordinates is
similar to the method used by Dupont et al. (2019). The position of the xz-axes for each
case are shown in figure 1. The angles of inclination for the Mach 3, 7 and 10 flows are
12.0◦, 8.5◦ and 10.0◦, respectively. The bold dashed lines in figure 1 indicate the range in
x for which a good collapse of the similarity profiles was found. The profiles of figures 2–4
were taken from this range.

The collapsed profiles themselves resemble quite well those of the classic mixing layer.
The mean longitudinal velocity profiles show high and low velocities connected by a
single inflection point, and the profiles of turbulence stress are approximately Gaussian
with the peak coinciding with the location of the inflection point in the mean velocity
U. Both of these features are typical of the canonical mixing layer and together they
produce the Kelvin–Helmholtz inviscid instability (White 1974). Unlike the classic mixing
layer similarity solution, the collapsed profiles for all three shear layers appear to be
non-symmetric with the turbulence peak (equivalently the inflection point in the mean
velocity) biased towards the high-speed side of the layer. It is shown in § 5 that this bias is a
result of the proximity of the wall on the low-speed side. The profiles of mean cross-stream
velocity show that W is essentially zero across the layer for all three cases indicating that
the mean velocity is nearly parallel to the x-axis. The minimal variation in W across the
layer is also consistent with a reduced entrainment rate, and therefore reduced spreading
rate as is expected for highly compressible mixing layers. This point is discussed further
in § 3.4.

3.2. Two stream flow properties
Encouraged by the quality of collapse of the profiles as well as their resemblance to the
canonical free mixing layer flow, we make an attempt to categorize these STBLI shear
layers in the manner of conventional compressible mixing layers. To do so we must
describe each shear layer as two streams, a high- and a low-speed stream, each with
constant velocity and constant thermodynamic properties. As can be seen in figures 3–5
this will only be an approximation as all profiles deviate from the typical mixing layer
solution near the edges of the layer. Spreading occurs at the low-speed end of the profiles
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Figure 1. Mixing layer coordinate system definition for the (a) Mach 3, (b) Mach 7 and (c) Mach 10
compression ramp datasets. Contours are of the turbulent kinetic energy, TKE = ui

′ui
′/2Ue

2. The black line
is the location of the mean shock front and the magenta line is the mean dividing streamline. Dashed lines
indicate the range of similarity.

due to the presence of the wall and at the high-speed end due to the presence of the
separation shock (the location of the shock in ζ is easily seen in the profiles of W). It will
be shown, however, that even a rough estimation of the mean properties of the two streams
is sufficient for a general comparison to canonical mixing layer data. The estimations of the
two stream properties for each shear layer are listed in table 2. The methods for determining
the entries of table 2 are discussed below. By convention, properties associated with
the high-speed side are indicated with the subscript ‘1’ and the low-speed side with
subscript ‘2’.

The velocity U1 and temperature T1 for each case are estimated as the inviscid
post-shock solution for the STBLI free stream undergoing a flow deflection equal to the
angle of inclination of the x-axis. This selection of U1 and T1 stems from the observation
that the rotated mean W profiles are essentially zero for all three shear layers. It is worth
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Figure 2. Similarity profiles in the Mach 3 STBLI separated shear layer: (a) the mean axial and cross-stream
velocity; (b) axial turbulence intensity; (c) cross-stream turbulence intensity; and (d) turbulence shear stress.
The bold line is the profile at the ramp corner.

noting that we found the initial deflection angle of the separation shock, as shown for
each case in figure 1, corresponds closely to the resulting wave angle of the oblique shock
solution. The high-speed stream Mach number M1 is determined from U1 and T1. The M7
and M10 flows maintain Mach number above 5 downstream of the separation shock and
can be considered hypersonic shear layers.

The velocity U2 of the low-speed side is estimated as the minimum in the similarity
profiles of U in figures 2–4(a). The low-speed side T2 is likewise determined from the
similarity profiles of temperature which are plotted in figure 5. All three cases show a
satisfactory collapse of temperature within the previously defined range of approximate
similarity. In each shear layer, however, there occurs a ‘hook-off’ of the temperature
profiles on the low-speed side. This is due to the constant-temperature boundary condition
at the wall. The wall temperature of the Mach 3 case is nearly adiabatic and so the
divergence of the profiles in figure 5(a) is minimal. Because the Mach 7 and Mach 10
are both cold-wall simulations, the temperature drops significantly inside the separation
bubble as seen in figure 5(b,c). The low-speed T2 is therefore estimated as the maximum
value in temperature just before the profiles diverge to meet the wall boundary condition.
The two hypersonic shear layers have large temperature ratios such that T2 experiences an
increase of over five times T1 for the M7 case and nearly seven times for the M10 case.
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Figure 3. Similarity profiles in the Mach 7 STBLI separated shear layer: (a) the mean axial and cross-stream
velocity; (b) axial turbulence intensity; (c) cross-stream turbulence intensity; and (d) turbulence shear stress.
The bold line is the profile at the ramp corner.

In comparison, the M3 case T2 is only double the value of T1. Also listed in table 2 is the
low-speed stream Mach number M2 calculated from U2 and T2.

Because the separated flow is shock-induced, an adverse pressure gradient occurs along
the length of the shear layer. Figure 6 shows that the pressure increases nearly linearly
along the x-axis for all three cases. The reference pressure p1 is the post-shock pressure
from the oblique shock solution from which U1 and T1 are obtained. The average rate of
pressure increase dp/dx in units of p1/L was determined from a linear fit to the data of
figure 6. For the Mach 3 flow the pressure increases by nearly 50 % across the region of
similarity, while for the Mach 7 and Mach 10 flows the pressure approximately doubles.
As a result of the adverse pressure gradient, the mean density plotted versus ζ does
not collapse when normalized by the free stream density as is apparent in figures 7(a),
7(c) and 7(d). The density is seen to increase significantly from the most upstream
profile to the most downstream profile. However, a much better collapse is achieved if
each individual profile of ρ is non-dimensionalized by the local ρ2(x). The inverse of ρ

non-dimensionalized by ρ2(x) is plotted in figures 7(b), 7(d) and 7( f ). That is, although
there is a monotonic increase in density along x, the ratio between the two streams is
approximately constant. Therefore, only the density ratio s = ρ2/ρ1 is reported in table 2.
The value of local ρ2(x) was determined from the individual profiles in figure 7(a–c) in
a manner similar to the selection of T2 from the profiles of temperature. Note that the
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Figure 4. Similarity profiles in the Mach 10 STBLI separated shear layer: (a) the mean axial and cross-stream
velocity; (b) axial turbulence intensity; (c) cross-stream turbulence intensity; and (d) turbulence shear stress.
The bold line is the profile at the ramp corner.

density could have equivalently been non-dimensionalized by the local ρ1(x) to obtain
the collapse. We chose to use ρ2(x) because this quantity was easier to select from
figure 7(a–c). The Mach 3 STBLI flow produces a density ratio of approximately 1/2
across the shear layer while both the Mach 7 and Mach 10 interactions produce a density
ratio of 1/3. Also included in table 2 is the velocity ratio r = U2/U1 for each case.

3.3. Convective Mach number
Now that the properties of the shear layer high- and low-speed streams are known, the
theoretical convective Mach number defined as

Mc = U1 − U2

a1 + a2
(3.1)

and also the theoretical mixing layer vortex convection velocity Uc,i defined as

Uc,i = a1U2 + a2U1

a1 + a2
(3.2)

can be calculated for these flows. These expressions for the convective Mach number and
convective velocity are derived for an isentropic mixing layer where a1 and a2 are the speed
of sound in the two streams (Bogdanoff 1983; Papamoscho & Roshko 1988). The Mc and
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Figure 5. Similarity profiles of temperature in the (a) Mach 3, (b) Mach 7 and (c) Mach 10 STBLI separated
shear layers.
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Figure 6. Pressure gradient along the shear layer centreline.
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Figure 7. Similarity profiles of density in the (a,b) Mach 3, (c,d) Mach 7 and (e, f ) Mach 10 STBLI separated
shear layers. The profiles in panels (a,c,e) are normalized by the free stream density. Panels (b,d, f ) are profiles
of the inverse density normalized by the density of the low-speed side, that is, ρ2/ρ. Plotting density in this
way shows the variation in s = ρ2/ρ1.

Uc,i are computed for each case and listed in table 3. An interesting feature of the separated
STBLI flows is that they produce shear layers with rather high Mc even for the Mach
3 compression ramp flow. All three shear layers are above Mc = 1. This is an attractive
feature considering that the majority of mixing layer data available today, particularly for
turbulence statistics, is below Mc = 1.
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U1 T1 U2 T2 dp/dx Uc,i
Case (m s−1) (K) M1 (m s−1) (K) M2 (p1 L−1) s r Mc (m s−1)

M3 551 140 2.3 −36 279 0.1 0.52 0.541 −0.065 1.03 308
M7 1115 99 5.6 −137 537 0.3 1.20 0.299 −0.123 1.89 739
M10 1368 115 6.3 −142 707 0.2 0.86 0.333 −0.104 1.99 934

Table 3. Averaged mixing layer flow properties.

Case δ′
u′ δ′

u′w′ δ′
inc δ′

u′/δ′
inc δ′

u′w′/δ′
inc

M3 0.265 0.238 0.311 0.853 0.766
M7 0.195 0.194 0.297 0.656 0.653
M10 0.205 0.202 0.296 0.692 0.682

Table 4. Spreading rate estimates and comparison with incompressible theory.

For mixing layers with Mc above 1 it is likely that shock waves exist in one or both sides
of the mixing layer, thus negating the isentropic assumption in the derivation of (3.1) and
(3.2). We will show later in § 4.2 that the theoretical Uc,i in table 3 is quite different from
the convection velocity determined from enhanced two-point correlations.

3.4. Spreading rate
Despite its known limitations as a scaling parameter, the convective Mach number defined
by (3.1) is currently the most widely accepted metric in the literature for classifying the
compressibility effects of mixing layers (Smits & Dussauge 2006). One such classification
is the observed significant decrease in layer spreading rate with increasing Mc. Smits &
Dussauge (2006) presented a compilation of compressible mixing layer spreading rate
data, expressed as a fraction of the spreading rate of an equivalent incompressible mixing
layer with the same values of r and s, and plotted these versus Mc (see figure 6.6 in
the reference). Included in the data compilation are the classic Langley curve (Birch &
Eggers 1972; Kline et al. 1980), the semiempirical curve by Dimotakis (1991) and the
linear stability analysis prediction of spreading rate decrease with Mc by Day et al. (1998).
The data show that the spreading rate can decrease by as much as 50 % to 80 % from
the incompressible case for Mc above 0.5. For the current data, normalized spreading rate
predictions from the classic Langley curve are approximately 0.55 for the Mach 3 flow and
0.40 for both the Mach 7 and Mach 10 cases as determined by the values of Mc in table 3.

For the STBLI shear layers, the spreading rate of vorticity thickness δ′ = dδω/dx where
δω = ΔU/max(dU/dz) can be estimated using the two different methods outlined by
Dupont et al. (2019). The first of these uses a comparison of the normalized u′2 similarity
profile with the same from an incompressible mixing layer. Here the two-stream mixing
layer data of Mehta & Westphal (1984) (figure 5b in the reference) is used. This first
method assumes that the shape of the u′2 profile as well as the ratio of (dδω/dx)/dζ do
not differ between the compressible and the incompressible cases. The second method
involves fitting a Gaussian curve to the profiles of turbulent shear stress. Both methods
provide consistent results. These are listed in table 4.

A theoretical estimate of the spreading rate for an incompressible mixing layer with
non-zero density ratio s can be determined from the relation derived by Papamoscho &
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Roshko (1988),

δ′
inc = δ′

ref
(1 − r)(1 + √

s)
(1 + r

√
s)

. (3.3)

In (3.3), δ′
ref is a reference spreading rate from an incompressible mixing layer with s = 1

and U2 = 0 and is typically taken to be equal to 0.16 (Smits & Dussauge 2006). The STBLI
shear layer spreading rates are also listed in table 4 as a fraction of the corresponding
incompressible estimate. The spreading rate ratios are less than unity, however, they are
approximately 50 % to 70 % higher than the Langley curve predictions. The Langley curve,
however, is based primarily on data for single or two stream coflowing mixing layers. It has
been shown that the spreading rate can be significantly greater for counter-current mixing
layers (Strykowski et al. 1996; Forliti, Tang & Strykowski 2005) and also for mixing layers
subjected to adverse pressure gradients (König, Schulülter & Fiedler 1998). Although
there is significantly less data on the counter-current mixing layer than the coflowing
configuration, one notable work is that of Strykowski et al. (1996). The authors performed
a series of counter-flowing axisymmetric jet experiments at Mc ≈ 1 with varying reverse
flow strength. They showed that the spreading rates were consistently 60 % greater than
the case of a single stream jet. Another consideration is that (3.3) might not be an accurate
approximation for the spreading rate of incompressible counter-current mixing layers.
Strykowski et al. (1996), however, also showed that (3.3) was valid for their experimental
data if the reverse flow strength did not exceed r < −0.1. Even so, the disagreement for
r < −0.1 was cited by the authors as possibly due to an artefact of their jet nozzle. At any
rate, the shear layer data in table 4 clearly shows a decrease in spreading rate from the M3
case at Mc ≈ 1 to the M7 and M10 cases at Mc ≈ 2.

4. Vortex signature and convection velocity

The similarity profiles of the mean velocity and turbulence stresses presented in § 3.1
indicate that the criteria for the inviscid Kelvin–Helmholtz instability exist in the STBLI
shear layers, and so it is expected that there will be large spanwise-oriented vortices
present in the flow. Changes in the global characteristics of the compressible mixing
layer as compared with the incompressible condition may be better understood through
observation of the dynamics of the large vortical structures. The detection and description
of the average signature of these vortices is the subject of this section.

4.1. Enhanced correlation method
A schematic of the shear layer in the compression ramp STBLI flow is given in figure 8.
In panel (a) is shown a model of the spatial development of the mixing layer structures
as they convect along the x-axis. It is assumed that the vortices convect at a constant
velocity Uc and that they follow one after the other at fairly regular intervals. It is also
assumed that they do not stray too far from the shear layer centreline. At reattachment the
vortices are shed into the downstream flow. These assumptions are based on observations
of the temporally resolved and spatially resolved LES data and are verified in § 4.3 by
the instantaneous vortex visualizations. If the flow is probed at a stationary point in the
shear layer, the resulting time signals can be converted to spatially ‘frozen’ turbulence via
Taylor’s hypothesis. This is drawn schematically in figure 8(b). The average signature of
the frozen turbulence can be determined from the cross-correlations of the time signals of
mass flux and pressure fluctuations in the following way. Consider for example the time
signal of pressure taken from a point along the centreline of the shear layer. As a vortex
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Vortices(b)(a)

XZ

Centreline pressure

t ∗ Uc

t ∗ Uc

‘Probe’

Bottom edge u′

Figure 8. Schematic of the vortex structures (a) in the spatially developing shear layer in the separated
compression ramp STBLI flow and (b) time signals taken from within the shear layer converted to ‘frozen’
vortices by using Taylor’s hypothesis.

core convects past the probe location there will be a negative fluctuation in the pressure.
Likewise, in-between successive vortices there will be a positive pressure fluctuation from
the stagnation point in the convective reference frame. In a similar way, the time signal
of longitudinal mass fluctuations (ρu)′ taken near the bottom edge of the shear layer will
give information on the aperiodic signature of the passing vortices due to the orientation of
the vortex rotation. Taking the cross-correlation between the centreline p′ and the bottom
edge (ρu)′ time signals produces a sinusoidal signature, the period of which is equal
to the average time between successive vortices as they convect past the probe points.
Although not shown in the schematic of figure 8, similar arguments can be made for
cross-correlations between centreline p′ and centreline cross-stream momentum (ρw)′.
Here we consider both R(ρu)′p′ and R(ρw)′p′ .

A similar cross-correlation method was demonstrated by Kiya & Sasaki (1983) and
also Cherry, Hillier & Latour (1984) for an incompressible separation shear layer, and
Samimy et al. (1992) for compressible mixing layers. There are a couple of points to be
made regarding the cross-correlation method used here. First, the signal of longitudinal
momentum fluctuations could be taken from either the top or bottom edge of the shear
layer. Kiya & Sasaki (1983), for example, used the high-speed edge. In this analysis, the
bottom edge was chosen so as to avoid the separation shock. Second, autocorrelations of
pressure with itself will also give a periodic correlation curve as demonstrated by Kiya &
Sasaki (1983), Cherry et al. (1984) and Samimy et al. (1992). Here cross-correlations of p′
and (ρu)′, and also p′ and (ρw)′, were used in order to couple the mass flux and pressure
field events, that is, to ensure that a pressure fluctuation is accompanied by a corresponding
mass fluctuation. We found this strategy also ensures a more robust selection method for
the enhanced correlation technique to be described shortly. Last, it was found that nearly
identical correlation signatures were achieved when correlating velocity with pressure
compared with correlating mass flux with pressure. In general the mass flux correlations
provided a stronger signature and so only the mass flux and pressure correlations are
included in this paper.

The details of the correlation method are as follows. Before calculating the
cross-correlations, the signals of pressure and velocity are first bandpass-filtered in time.
Fully separated STBLI flows are characterized by frequency spectra consisting of three
distinct broadband ranges of energized turbulence motions. These are associated with
(i) the inherent low-frequency unsteadiness of the separated flow; (ii) the mixing layer
vortices; and (iii) the fine scale boundary layer turbulence. To demonstrate these frequency
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Figure 9. Premultiplied PSD of wall pressure signals from the (a) Mach 3, (b) Mach 7 and (c) the Mach 10
data. Spectra are shown for the upstream boundary layer (solid bold), separation point (dotted), corner (dashed
bold) and reattachment (solid).

bands, premultiplied power spectral density (PSD) of wall pressure taken in the upstream
boundary layer, the mean separation point, the ramp corner and the mean reattachment
point are plotted in figure 9 for each of the three STBLI flows. These spectra were
calculated using Welch’s method with eight time segments with 50 % overlap and then
bin sampled with a bin width of 0.1 in the log scale. From these spectra it is possible to
make out the shifts in the distribution of turbulence energy as the flow progresses through
the separated region. In the boundary layer, only the high-frequency turbulence exists
with little to no energy present at the lowest frequencies. The undisturbed boundary layer
turbulence is generally centred at Stδ = f δbl/Ue = 1 and experiences a shift to StL = 1
downstream of the shock. This shift in the boundary layer turbulence can be seen when
comparing the broadband energy peaks between the most upstream and most downstream
spectra. The low-frequency oscillations of the shock appear in the separation spectra.
It is well documented in the literature that the low-frequency oscillations in quasi-2-D
separated STBLI flows occur at StL = fL/Ue of the order of 0.01 (among many references,
see for example Dupont, Haddad & Debiève (2006) for reflected shock interactions
and Priebe & Martín (2012) for compression ramp interactions). The relative strength
of the low-frequency oscillations diminishes downstream, however, there still remains
elevated energy at these frequencies in the corner and reattachment spectra. Although
not appearing as a distinct peak in the premultiplied PSD, a substantial increase in energy
at frequencies of approximately StL = 0.5 occurs in the corner and reattachment spectra
when compared with the first two spectra profiles. The increase in energy content at these
intermediate frequencies is attributed to the development of the mixing layer turbulence
(Dupont et al. 2006). Because the three energized frequency ranges are separate from
each other, even more so as the ratio L/δbl increases, it is possible to filter out both
the low-frequency oscillations and the fine-scale boundary layer turbulence from the
mixing layer time signals. Therefore, a bandpass filter is designed for each case to retain
frequencies between StL = 0.3 and Stδ = 0.2. Note that the low-frequency cutoff scales
on L and the high-frequency cutoff on δbl. Correlation curves of R(ρu)′p′ and R(ρw)′p′ from
bandpass-filtered time signals taken from the corner profile in each of the Mach 3, 7 and
10 flows are plotted in figure 10(a–c). The corner profile refers to the slice through the
mixing layer that intersects the ramp corner as drawn in figure 8(a). The signals of p′ and
(ρw)′ are taken at ζ = 0 on the x-axis and (ρu)′ along the bottom edge of the shear layer
at ζ = −0.06. The time axis is oriented so that a positive time shift indicates a motion of
the fluid, (ρu)′ or (ρw)′, that occurs before the correlated fluctuation in pressure. Time is
non-dimensionalized by the preshock free stream velocity Ue and separation length L.
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Figure 10. Cross-correlations between bandpass-filtered mixing layer centreline pressure and mass flux signals
at the corner profile of each dataset. Averaged over full time signal (a–c) and enhanced average (d–f ).
(a,d) M3, (b,e) M7 and (c, f ) M10.

Both the R(ρu)′p′ and R(ρw)′p′ curves are sinusoidal and are almost perfectly out of phase
with each other. Only R(ρu)′p′ for the Mach 10 case fails to have a noticeable signature.
A decrease in the mixing layer structure correlation level with increasing Mc was also
observed by Samimy et al. (1992). The Mach 7 and Mach 10 flows, both Mc ≈ 2.0, have a
noticeably smaller amplitude than the Mach 3 with Mc ≈ 1.0. The approximate period of
the correlations is 2L/Ue which is consistent with the expected StL = 0.5 for the mixing
layer frequencies.

Although a distinct sinusoidal signature is visible in the full time signal correlations,
the overall magnitude of the correlation is rather low particularly for M7 and M10.
In order to obtain a stronger signature of the vortex events, an enhanced correlation
method is used. The conditional averaging technique used here is similar to the method
of Brown & Thomas (1977) for the detection of hairpin packets in a turbulent boundary
layer. The strategy of Brown & Thomas assumes that the hairpin packet, or in this case
the mixing layer vortex, is a specific isolated event occurring in the flow and that the
corresponding fluid motion, or pressure fluctuation, associated with that event produces a
specific signature in the time signal. Time signals of relevant fluid properties can be broken
up into shorter segments and the cross-correlation computed for each of the shortened
segments. If a vortex occurs in a given segment, the cross-correlation curve of that segment
will produce the ‘signature’ of the vortex event. The enhanced correlation, therefore, is the
average over all of the short-signal correlations that show the vortex signature.

For the detection of the mixing layer vortices, the time signals of p′, (ρu)′ and (ρw)′ are
broken up into N segments of length 6.5Ue/L, or twice the wavelength of the bandpass
filter low-frequency cutoff. Successive time segments are taken with 50 % overlap. We
assume that the signature of the mixing layer vortices has the same form as the full time
signal correlations. The criteria for the selection of the enhanced correlations are such that
the segment correlations Rn

(ρu)′p′ and Rn
(ρw)′p′ simultaneously have maxima and minima
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Figure 11. Non-dimensional vortex frequency (a), convection velocity (b) and length scale (c) determined
from the enhanced correlations.

in the same location as, but at least twice the magnitude of, the full time average signature.
More specifically, a correlation is retained if (i) max(Rn

(ρu)′p′) � 2 max(R(ρu)′p′) and (ii)
min(Rn

(ρw)′p′) � 2 min(R(ρw)′p′) both in the range −2 � Δt(Ue/L) � 0 for n ∈ N. The
enhanced results for the corner profile are shown in figure 10(d–f ). For the Mach 3,
approximately 30 % of the time segments met the criteria, and approximately 20 % for
the Mach 7 and Mach 10 flows. A distinct wavelength appears in the enhanced correlation
for all three cases including the Mach 10 R(ρu)′p′ .

4.2. Vortex convection velocity
The enhanced correlation technique was repeated for several stations along the x-axis. The
frequency in StL determined from the R(ρu)′p′ enhanced correlation curve time period are
plotted in figure 11(a) versus X/L. Although not shown, the time period selected from the
enhanced correlations of R(ρw)′p′ produces similar frequencies to those from R(ρu)′p′ . The
frequency is approximately constant through the region of similarity for each case. Dupont
et al. (2006) also showed that the shear layer frequency plateaus at a constant StL = 0.5 in
the separated flow of their reflected shock STBLI with free stream Mach number of 2.3.
They also showed that this frequency was independent of the incident shock angle.

The enhanced correlations can be used to determine the actual mixing layer vortex
convection velocity Uc. At a given position on the x-axis, if a time segment is selected
by the enhanced correlation criteria, the centreline pressure signal from that time segment
can be correlated with the same from an adjacent position along x. The convection velocity
of that vortex event is then obtained by dividing the distance between the two points
in x by the offset in time of the peak in Rp′p′ . The Uc can then be averaged over all
enhanced correlation selections. Here the cross-correlation of adjacent pressure signals is
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used because the theoretical Uc,i discussed in § 3.3 is by definition the convection velocity
of the stagnation point between successive vortices (Papamoscho & Roshko 1988; Smits
& Dussauge 2006). The averaged convection velocity versus X/L is plotted in figure 11(b).
For the cross-correlations of pressure, adjacent points are spaced approximately 0.1L apart.
An average of both the forward adjacent point and the backward adjacent point correlation
is used to calculate Uc at each data point plotted in figure 11(b). The convection velocity
seems to undergo a gradual transition in the first half of the similarity region, but, for
all three flows, Uc levels off at 0.4Ue in the second half of the region of similarity. For
comparison, Uc,i calculated from (3.2) is 0.5Ue for the M3 flow and 0.6Ue for M7 and
M10. A similar comparison was made by Dupont et al. (2006) for their Mach 2.3 reflected
shock experiments. They found the phase velocity of wall pressure signals in the frequency
range of 0.2 � StL � 0.5 gave a shear layer convection velocity of approximately 0.3Ue
compared with the isentropic prediction of 0.5Ue. In either case of the compression ramp
or the reflected shock flow, the theoretical convection velocity significantly overpredicts
the measured vortex convection velocity.

The time scale of figure 11(a) and the convection velocities of figure 11(b) can be
combined to estimate the spatial wavelength of the frozen vortices. The spatial quantity
St−1

L Uc is plotted in figure 11(c) and represents the average distance between successive
vortex cores. As with the convection velocity, the wavelength seems to reach a constant
value in the second half of the region of similarity, levelling off at approximately 0.8L
spacing for all three flows.

4.3. 3-D vortex signature
In order to investigate the spatial organization of the large vortex structure in our STBLI
mixing layers, the following correlation coefficient is defined:

Rf ′p′ = f ′(x + Δx, y + Δy, z + Δz)p′(x, y, zcl)

f ′
rmsp′

rms
, (4.1)

where f ′ can refer to either (ρu)′ or (ρw)′, and p′(x, y, zcl) is the pressure along the mixing
layer centreline. Again Taylor’s hypothesis of frozen vortices is used to convert time
signals into spatial information and so, in (4.1), we set x = tUc where Uc is the convection
velocity determined from the enhanced correlations described above. The enhanced spatial
correlation can be generated in the same manner as the one-dimensional (1-D) correlations
by averaging Rf ′p′ over all time segments selected by the previously defined criteria. The
enhanced spatial correlations of bandpass-filtered time signals from the corner profiles
of the Mach 3, 7 and 10 flows are plotted in figures 12, 13 and 14, respectively. These
plots represent the averaged ‘frozen’ spatial waveform of the mixing layer vortices as they
convect past the corner profile as drawn schematically in figure 8. In figures 12–14, panel
(a) is the enhanced average in the xz-plane for Δy = 0, and panel (b) is the enhanced
average in the xy-plane for R(ρu)′p′ . Panels (c) and (d) are the same for R(ρw)′p′ . The
z-location of the xy-plane is indicated by the solid black line in the corresponding panel
(a) and also in panel (c). For R(ρu)′p′ the xy-plane is along the mixing layer bottom edge
as was defined for the 1-D enhanced correlations. For R(ρw)′p′ the xy-plane is along the
mixing layer centreline. Note that plotting the values of Rf ′p′ along the line drawn in the
xz-plane would result in the same 1-D correlation curves as in figure 10(d–f ).

The form of the mixing layer vortices as determined from the 2-D correlation plots
is a streamwise periodic structure that exists all through the cross-stream width of the
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Figure 12. Enhanced correlation contours of the Mach 3 convective mixing layer structure. Correlations are
of centreline pressure with longitudinal mass flux in (a) xz- and (b) xy-planes and centreline pressure with
cross-stream mass flux in (c) xz- and (d) xy-planes. The horizontal dotted line in the xz-planes indicates the
location of the corresponding xy-plane. Time correlations are converted to spatial information using the mixing
layer convection velocity (i.e. x/L = tUc/L).

mixing layer. In R(ρu)′p′ , the sign of the periodic correlation is reversed in bands both
above and below the mixing layer edges. These bands coincide with the position of the
separation shock and the reverse flow, respectively. In the xz-plane, the coherent structures
are tilted ‘forward’ in the correlations of streamwise mass flux and tilted ‘backwards’ in the
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Figure 13. Enhanced correlation contours of the Mach 7 convective mixing layer structure. Correlations are
of centreline pressure with longitudinal mass flux in (a) xz- and (b) xy-planes and centreline pressure with
cross-stream mass flux in (c) xz- and (d) xy-planes. The horizontal dotted line in the xz-planes indicates the
location of the corresponding xy-plane. Time correlations are converted to spatial information using the mixing
layer convection velocity (i.e. x/L = tUc/L).

correlation of the cross-stream mass flux. The horizontal axis in figures 12–14 is oriented
so that positive Δx is ‘downstream’ and negative Δx is ‘upstream’. In the xy-plane, an
obvious oblique pattern occurs and the mixing layer structures do not appear as 2-D bands
in the spanwise direction. This obliqueness in the average signature is consistent with
compressible mixing layer research showing increased spanwise variation of the large
mixing layer vortices with elevated convective Mach number (Sandham & Reynolds 1991;
Clemens & Mungal 1992, 1995; Rossmann et al. 2002).
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Figure 14. Enhanced correlation contours of the Mach 10 convective mixing layer structure. Correlations are
of centreline pressure with longitudinal mass flux in (a) xz- and (b) xy-planes and centreline pressure with
cross-stream mass flux in (c) xz- and (d) xy-planes. The horizontal dotted line in the xz-planes indicates the
location of the corresponding xy-plane. Time correlations are converted to spatial information using the mixing
layer convection velocity (i.e. x/L = tUc/L).

The interpretation of the correlation contour plots can be aided by considering the
vector field defined by the magnitude of R(ρu)′p′ and R(ρw)′p′ . Assuming that a negative
fluctuation in pressure coincides with a vortex core, a plot of the vector field defined by
−(R(ρu)′p′, R(ρw)′p′) will provide information on the average motion about a mixing layer
vortex centre. These are plotted in figure 15. Also plotted in figure 15 are the location of the
mixing layer centreline and the inclination angles of the isolines of zero correlation from
figures 12–14. The point of crossing of the zero-correlation isolines can be interpreted
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Figure 15. Vector fields of −(R(ρu)′p′ , R(ρw)′p′ ) from figures 12–14 for (a) M3, (b) M7 and (c) M10. The
vector field gives information on the averaged mass flux motion about a negative fluctuation in pressure. The
horizontal line indicates the location of the mixing layer centreline. The inclination from vertical of the coherent
structures as determined from the isoline of zero correlation in R(ρu)′p′ and R(ρw)′p′ are also indicated.

as the centre of the vortex. A similar correlation vector plot was used by Kiya & Sasaki
(1983) for an incompressible separation shear layer. Unlike in Kiya & Sasaki, no clear
rotational motion is observed around the vortex centre in figure 15. Instead, a saddle point
occurs. The vector plot shows that the cross-stream momentum flux is positive to the left
of the vortex core and negative to the right, as one would expect based on the (clockwise)
orientation of the vortex roll-up. The vectors on the top and bottom of the vortex centre,
however, are in the opposite orientation from what is expected. The interpretation of this
stems from the fact that the density in the low-speed side of the layer is a factor of two less
than on the high-speed side for the Mach 3 flow and a factor of four for the Mach 7 and
10 flows. The rotation of the vortex brings the low-momentum, low-density fluid into the
high-speed, high-density side causing a negative streamwise correlation component to the
left of the vortex centre. The opposite occurs for fluid being pulled from the high-speed
side into the low-speed side to the right of the vortex centre.

Visualizations of the actual mixing layer vortices helps in asserting the interpretation of
the enhanced correlation plots. Flow visualizations of individual mixing layer vortices in
the raw data of the separated STBLI flows is made particularly difficult by the environment
in which they reside. One must be able to separate specifically the mixing layer rollers from
(i) the smaller scale vortical hairpin vortices in the incoming boundary layer turbulence
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and (ii) the separation shock which sits very close to the high speed side of the mixing
layer, as was shown in figure 1. We found that vortex detection methods based on the
eigenvalues of the velocity divergence, such as swirl strength, were more problematic
concerning the first issue. Vorticity methods, on the other hand, are dominated by the
strong shear in the separation shock. Ultimately we found the method developed by
Graftieaux, Michard & Grosjean (2001) to be the most robust for isolating the mixing layer
vortices in the raw data. The Graftieaux method is based on the topology of the velocity
field rather than on derivative quantities. It effectively searches the flow for points about
which there is a net circulating motion and, because it uses a summation over a search
window, it also acts as a spatial filter. This method was successively used by Dupont et al.
(2008) to identify mixing layer vortices in particle image velocimetry (known as PIV) data
from their separated reflected shock STBLI experiments.

The Graftieaux method is a vortex search method in a 2-D velocity vector field. If P is a
point in the flow, S is a specified area surrounding P and M is a point inside S, the vector
detector Γ1 is defined by

Γ1(P) = 1
S

∫
M∈S

(PM × UM ) · y
|PM | · |UM | dS = 1

S

∫
S

sin θM dS, (4.2)

where PM is the vector connecting points P and M. The velocity vector at point M is UM
and θ is the angle between the vectors PM and UM . The parameter Γ1 will take on values
between -1 and 1 where the sign depends on the direction of rotation. It can be shown that
a vortex exists at P if |Γ1| > 2/π. For a square interrogation area with N equally spaced
discreet points inside the area S, (4.2) can be re-expressed as

Γ1(P) = 1
S

∫
S

sin θM dS = 1
N

∑
N

sin θM . (4.3)

The bandpass-filtered time signals of velocity from the corner profile of the ramp grids
were again converted to space signals via the convection velocity of § 4.2. Thus the 3-D
velocity field on which Γ1 operates was generated. The 2-D velocity vector UM is defined
as (u − Uc, w) and the Graftieaux vortex detector was applied throughout the volume but
always in the xz-plane. A square interrogation window of size 0.5δbl was used throughout.
The results are plotted in figures 16–18. The contour of Γ1 in the streamwise–spanwise
plane sliced along the mixing layer centre (ζ = 0) is plotted for a time segment equivalent
to 8L in length that was randomly selected from the full time signal. This provides a top
view of the instantaneous frozen mixing layer structures. In the inset of figures 16–18(b)
is shown a side view of the structures. The location in the span of the 3-D volume of
Γ1 is indicated by the dashed line in the xy-plane contour. Similar plots are provided for
arbitrarily selected time segments from the M3, M7 and M10 data.

From the top view, one can immediately observe the spanwise angular pattern in the
vortices as is consistent with the 2-D correlation plots of figures 12–14. From the top plan
view, the M3 vortices are visually more coherent than the M7 and M10 flows. Also, in the
side view, the M3 vortices appear more regular and resemble a sinusoidal wavy interface
between the high- and low-speed sides of the mixing layer. The vortex cores appear to
occur predominantly at the upslope of the wave. A similar pattern is seen in the xz-plane
slice of the M7 and M10 flows although, in general, the M3 flow is apparently more regular.

With regard to the spanwise oblique angle observed in both the enhanced
correlation contours and the instantaneous vortex visualizations, it is interesting
to consider the compressible mixing layer inviscid linear stability analysis by
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Figure 16. Contour of the vortex detector variable Γ1 for the convective frozen flow from the corner grid plane
of the Mach 3 flow. (a) The xy-plane sliced through the mixing layer centre and (b) the xz-plane sliced through
the section indicated by the dashed lines and arrows in panel (a). Dotted diagonal lines indicate the vortex angle
predicted by (4.4).
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Figure 17. Contour of the vortex detector variable Γ1 for the convective frozen flow from the corner grid plane
of the Mach 7 flow. (a) The xy-plane sliced through the mixing layer centre and (b) the xz-plane sliced through
the section indicated by the dashed lines and arrows in panel (a). Dotted diagonal lines indicate the vortex angle
predicted by (4.4).

Sandham & Reynolds (1990, 1991). These authors showed that an oblique unstable mode
becomes dominant over the 2-D mode for Mc > 0.6. Furthermore, they found that the
angle α measured from the 2-D mode increased with increasing Mc by

Mc cos α ≈ 0.6. (4.4)

For the current STBLI shear layers, α = 54◦ for the M3 flow and 72◦ for M7 and M10.
These angles are indicated by the diagonal dotted lines drawn in the top-view contours
of Γ1 in figures 16–18(a) and prove to be a close representation of the actual structure
occurring in these flows.

5. Turbulence scaling

Barre et al. (1994) used dimensional analysis of the free shear layer to show that the
maximum turbulence shear stress (−u′w′)max non-dimensionalized by Uc(U1 − U2) varies
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Figure 18. Contour of the vortex detector variable Γ1 for the convective frozen flow from the corner grid plane
of the Mach 10 flow. (a) The xy-plane sliced through the mixing layer centre and (b) the xz-plane sliced through
the section indicated by the dashed lines and arrows in panel (a). Dotted diagonal lines indicate the vortex angle
predicted by (4.4).

linearly with the vorticity spreading rate. Specifically

δ′ = 1
K

(−u′w′)max

Uc(U1 − U2)
, (5.1)

where K is a proportionality constant to be determined empirically. The derivation of this
relation is independent of Mc and therefore includes both compressible and incompressible
layers. Oftentimes (5.1) is tested using Uc,i for lack of a better estimate, but, as was
shown in § 4, the actual convection velocity can vary significantly from the theoretical
value. For the current flows, the error in Uc,i is 25 % to 50 %. In figure 19 is plotted the
maximum turbulent stress from the profiles in figures 2–4(d) versus the average of the
two estimates of spreading rate from table 4. The maximum turbulence shear stress and
maximum normal stresses are listed in table 5. Included in figure 19 are also the data of the
separated STBLI shear layer from the experiments of Dupont et al. (2019), together with
the subsonic counter-current mixing layer data of Forliti et al. (2005). It has been shown by
Dupont et al. (2019) using a large compilation of incompressible and compressible shear
layer data available from the literature that the majority of the coflowing and single-stream
data fall within reasonable error of K = 0.12. The line drawn in figure 19 corresponds to
this value of K. The dashed lines indicate the region of 10 % error. The incompressible,
counter-current data of Forliti et al. show that the turbulence shear stress follows the
K = 0.12 line for spreading rates below approximately 0.2. Above 0.2, a steeper linear
trend occurs. This bifurcation in the Forliti data occurs between points of r = −0.13 and
−0.19. Although the spreading rate is above 0.2, the Mach 3 data point with r = −0.065
follows the trend of the coflowing data. The Mach 7 and Mach 10 data points, which have
stronger reverse flow (r = −0.123 and −0.104) than the Mach 3, lie within the trend of the
Forliti data at the same spreading rate. The two data points of Dupont et al. have similar
velocity ratios (r = −0.057 and −0.146) to the present STBLI shear layers and show
the same trend of the stronger reversed flow case having a higher non-dimensionalized
turbulent shear stress. The difference between the data of Dupont et al. and the current
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Figure 19. Non-dimensional turbulence stress versus the spreading rate. The arrows indicate how the data of
Dupont et al. (2019) changes if ΔU is calculated in the same manner as the current data.

Case −u′w′/UcΔU u′2/ΔU w′2/ΔU w′2/u′2

M3 0.0268 0.0432 0.0108 0.250
M7 0.0330 0.0754 0.0117 0.155
M10 0.0323 0.0786 0.0131 0.167

Table 5. Reynolds stresses and anisotropy.

data may be related to the method of determining U1 and U2. Dupont et al. selected these
values from a ζ closer to the mixing layer centre thus possibly underpredicting ΔU. If
the method of § 3.2 is used to recalculate the ΔU of Dupont et al., the two data points
move much closer to the current data as indicated by the arrows in figure 19. This is an
intriguing result and suggests that the change in the nature of the shear layer instability
for counter-current mixing layers as described by Forliti et al. (2005) is independent of the
level of compressibility.

The Reynolds stress anisotropy w′2/u′2 is known to be typically around 0.5 for
incompressible shear layers and can decrease significantly for Mc above approximately 0.5
(Smits & Dussauge 2006; Dupont et al. 2019). Brown & Roshko (1974) used dimensional
analysis to propose that the Reynolds stress anisotropy decreases in proportion to 1/M2

c .
The anisotropies determined from the profiles of figures 2–4 are listed in table 5 and are
found to lie below the subsonic level of 0.5. The anisotropies of the M7 and M10 data
are almost half that of the M3, confirming that the anisotropy decreases significantly with
Mc for the STBLI shear layer although not the extent predicted by the 1/M2

c scaling. The
anisotropy at Mc = 2 would be approximately 0.083 if calculated by the 1/M2

c law in
relation to the anisotropy level of the M3 flow. We note that Forliti et al. (2005) found
that increasing the strength of the counter-current reverse flow increased w′2/u′2 only for
r � −0.2.

The reduction in STBLI shear layer anisotropy is primarily due to an increase in
the streamwise turbulence component while the cross-stream component increases only
slightly. Values for the cross-stream stress of the M3 shear layer are comparable to the
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levels experienced in canonical mixing layers near Mc = 1. The increase in streamwise
turbulence stress from Mc = 1 to Mc = 2 is opposite to the apparent trends in canonical
mixing layer data for which u′2/ΔU is found to decrease or remain constant with
increasing Mc. For example, see the data compilations of Barre & Bonnet (2015) or
Pantano & Sarkar (2002) although the data do not extend past Mc = 1.2. To make sense
of these differences, we turn to the analysis of the turbulent kinetic energy and Reynolds
stress budget equations.

The following form of the TKE budget equation is considered:

∂k
∂t

= 0 = C + P + T + Π + ε + Σ,

C = −∂kũi

∂xi
,

P = −ρu′′
i u′′

j
∂ ũi

∂xj
,

T = −1
2

∂ρu′′2
i u′′

j

∂xj
− ∂p′u′′

i
∂xi

+
(

∂u′′
i σij

∂xj
+ ∂u′′

i τij

∂xj

)
,

Π = p′ ∂u′′
i

∂xi
,

ε = −σij
∂u′′

i
∂xj

− τij
∂u′′

i
∂xj

,

Σ = −u′′
i

∂ p̄
∂xi

.

(5.2)

In (5.2), a Reynolds averaged quantity is denoted by an overbar and a fluctuation about
the Reynolds average by a single prime such that u′ = u − ū. The Favre average is defined
as ũ = ρu/ρ̄ and a fluctuation about the Favre average is indicated by the double prime
so that u′′ = u − ũ. The turbulent kinetic energy is defined as k = ρu′′

i u′′
i /2. The budget

terms are convection C, production P , transport T , pressure strain Π , dissipation ε

and pressure work Σ . The several terms making up the transport budget are, from left
to right, the turbulent diffusion, pressure diffusion and viscous diffusion. The viscous
diffusion and viscous dissipation are functions of the fluid shear stress tensor, which is a
combination of the LES resolved stress tensor σij and the LES subgrid-scale (known as
SGS) modelled stress tensor τij. The total viscous diffusion in the shear layer is negligible.
The subgrid-scale viscous diffusion is calculated as the remainder of the sum of all other
terms.

Similarly, the Favre fluctuation Reynolds stress budget equation can be written as the
following where Rij = ρu′′

i u′′
j :

∂Rij

∂t
= 0 = Cij + Pij + Tij + Πij + εij + Σij,

Cij = −∂Rijũk

∂xk
,
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Figure 20. TKE budgets: production, transport and dissipation are plotted in panel (a) and convection and
pressure strain in panel (b). The data of Pantano & Sarkar (2002) is labelled as PS.

Tij = −
∂ρu′′

i u′′
j u′′

k

∂xk
+ ∂p′u′′

i
∂xj

+
∂p′u′′

j

∂xi
+
(

∂σjku′′
j

∂xk
+

∂σiku′′
j

∂xk
+

∂τjku′′
j

∂xk
+

∂τiku′′
j

∂xk

)
,

Πij = p′ ∂u′′
i

∂xj
+ p′ ∂u′′

j

∂xi
, (5.3)

εij = −
(

σjk
∂u′′

i
∂xk

+ σik
∂u′′

j

∂xk

)
−
(

τjk
∂u′′

i
∂xk

+ τik
∂u′′

j

∂xk

)
,

Σij = −u′′
j

∂ p̄
∂xi

− u′′
i

∂ p̄
∂xj

.

Pantano & Sarkar (2002) showed in the DNS of temporal mixing layers from Mc = 0.3
to 1.1 that the normalized TKE production and transport decreased with increasing Mc
while dissipation remained constant. Similar results were obtained by Vreman et al.
(1996) and by Freund et al. (2000). Decreased production resulted in decreased TKE
thus reducing turbulence mixing and ultimately the spreading rate. Increasing Mc also
has the effect of significantly decreasing the pressure–strain rate components in relation
to the incompressible values (Pantano & Sarkar 2002). The pressure–strain terms are
primarily responsible for the transfer of turbulence energy from the streamwise direction
to the cross-stream direction as it provides the greatest negative (loss) term in R11 and the
dominant positive (gain) term in the budgets of R33 and −R13.

The TKE budgets of the three STBLI shear layers are plotted in figure 20 and the
Reynolds stress budgets in figure 21. The budget profiles are plotted as functions of
z/δω = ζ/(dδω/dx) and were averaged in the x-direction over the region of approximate
similarity defined in § 3.1. All budget terms are nearly symmetric with the exception of
the convection profiles which are found to be affected by the proximity of the wall on the
low-speed side. The asymmetry of the convection term is responsible for the shift in the
turbulence peak noted in § 3.1. The level of convection does not change between the three
cases and so its influence in shifting the turbulence peak is greatest for the M3 case with
the lowest TKE production. The TKE production and transport increase substantially with
increasing Mach number. The same is true for the R11 budgets. Production and transport
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Figure 21. Reynolds stress budgets of R11 (a,b), R13 (c,d) and R33 (e, f ). The data of Pantano & Sarkar (2002)
is labelled as PS.

are approximately constant across the three cases for R33 and increase in magnitude only
slightly for R13 The observed increase across cases in T13 and T33 is due to an increase in
the pressure diffusion. The increase in T11, however, is due entirely to increased turbulence
transport as the pressure diffusion remains negligible in all three cases for this budget. Not
included in these plots are the pressure work terms Σ and Σij, which are negligible for all
cases.
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Case Π33/Π11 Π11/P13 Π33/P13 Π13/P13

M3 0.38 1.17 0.45 0.70
M7 0.41 1.12 0.46 0.69
M10 0.40 1.01 0.40 0.74
Freund et al. (2000) 0.4 1.0 0.4 0.8

Table 6. Comparison of integrated Reynolds stress pressure–strain budgets.

The data of Pantano & Sarkar (2002) for Mc = 1.1 and s = 1 are included in figures 20
and 21 for comparison. For this purpose, the data of Pantano & Sarkar were rescaled
from the normalization by the mixing layer momentum thickness δθ to the vorticity
thickness δω. The ratio δθ/δω for this data was obtained by noting that, for a planar mixing
layer, Pδω/ρ̄ΔU3 = 1

2 (P11δω/ρ̄ΔU3) = −˜u′′w′′/ΔU2. It is obvious that the STBLI shear
layers have much higher production and transport rates of TKE and R11 than the canonical
case. Otherwise, all other budget terms of the M3 shear layer at Mc = 1 compare
exceptionally well with the data of Pantano & Sarkar, most notably in the pressure–strain
terms.

Freund et al. (2000) studied the TKE and Reynolds stress budgets for self-similar
annular jets at Mc from 0.1 to 1.8 and found that the ratios between the integrated
pressure–strain terms (Π11/Π33) and also the ratio of integrated pressure–strain
components to turbulent shear stress production (Πij/P13) were nearly constant with
Mc. The STBLI Πij and P13 budget profiles were integrated over z/δω and the various
ratios were calculated. These are listed in table 6 and the results are compared with the
Mc-independent ratios reported by Freund et al. (2000). The closeness between the STBLI
shear layer ratios and those of Freund et al. indicates that the interchange of turbulence
energy is very similar between the two configurations.

From the comparison with the budgets of Pantano & Sarkar and with the ratios of
integrated budgets of Freund et al., it is apparent that the most significant difference
between the separation shear layer and the canonical case is the greatly increased
turbulence production of the separation shear layer. There is more energy in the higher
Mach number STBLI flows and therefore more energy is transferred from the mean flow to
the turbulence, predominantly through the R11 production, but the rate at which the energy
is transferred from streamwise to the spanwise component is limited by the pressure–strain
rate terms. Both the viscous drain of turbulence energy as well as the transport between
the components of turbulence by the pressure strain terms have been shown to be similar
to the canonical data suggesting that these properties in the STBLI shear layer are affected
by compressibility in the same manner as for the canonical free mixing layer.

6. Conclusions

The present research effectively demonstrates that, even in this assertively non-canonical
configuration that is the shear layer in a separated STBLI flow, it is still possible to
define a region of approximate mixing-layer-like similarity. Perhaps more surprising is
the fact that the STBLI shear layer also shows striking consistency with canonical mixing
layer theories as they are currently understood. This fact remains even in the case of the
hypersonic separation for which the shear layer high-speed Mach number is above 5 and
the temperature ratio across the layer is also above 5.
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Concerning the environment in which the shear layers exist, certain factors that prevent
this flow from being canonical in nature are the fact that the shear layer is (i) embedded
in a turbulent boundary layer; (ii) is subjected to the low-frequency oscillations of the
separation shock unsteadiness; (iii) is not aligned with the free stream; and (iv) the
low-speed side of the layer is produced by the reverse flow of a shallow separation bubble.
In spite of these, we have demonstrated the possibility of obtaining a reasonable collapse
of the mean flow profiles and turbulence stress profiles when plotting against a linearly
varying similarity variable. This is consistent with a constant spreading rate. The form of
the similarity profiles of U and the Reynolds stresses are also reminiscent of canonical
mixing layer topology and exhibit the necessary conditions for the Kelvin–Helmholtz
instability. Properties of the shear layers were reported, including the estimated conditions
of the two streams, the convective Mach number, the estimated linear spreading rates
and maximum turbulence stress levels. The peak turbulence shear stress was found to
be proportional to the spreading rate by the same relation as for canonical mixing layer
data with no dependence on the level of compressibility. Variation of the STBLI shear
layer properties with convective Mach number were shown to be consistent with known
trends observed in the literature. With respect to the variation of mixing layer properties
with increased compressibility as classified by Mc, the data is in the direction of the
expected trends. The difference in properties of the M7 and M10 data cases at Mc = 2 is
consistent with an increase in Mc when compared with M3 at Mc = 1. Namely, a decrease
in spreading rate with Mc was observed and the extent of this decrease, although not to the
level of the classic Langley curve, is consistent with other noted properties of the STBLI
shear layers that could also affect the spreading rate, specifically, the elevated reverse flow
and the adverse pressure gradient. A decrease in turbulence anisotropy was also observed
with increasing Mc. The well-documented increase in three-dimensionality of the vortex
rollers with increasing Mc was also shown in the current data. A sophisticated conditional
averaging method of the two-point correlations was developed for the purpose of extracting
specifically the mixing layer vortex signatures from the turbulent environment. This
correlation method also allowed for the direct measurement of the mixing layer convection
velocity. Instantaneous visualizations of the vortices showed that the oblique angle of the
vortices in the spanwise direction is consistent with predictions by inviscid linear stability
theory based on Mc.

It was found through TKE and Reynolds stress budget analysis that the STBLI shear
layers have a much greater streamwise turbulence production rate than is observed
in the compressible mixing layer data. In spite of this difference, the interchange of
turbulence energy among the different turbulence stress components determined from the
pressure–strain rate terms was shown to be consistent with mixing layer data at the same
Mc. The drain of energy caused by the viscous terms were also consistent. These results
indicate that the STBLI shear layer spreading rate, turbulence shear stress and anisotropy
are dictated by the same compressible flow phenomena as in the canonical configuration.

Mixing layer conditions that are particularly difficult to set up experimentally occur
naturally in the STBLI shear layer: high Mc, high reverse flow, and also an adverse
pressure gradient. Although it has its limitations as pointed out above, the STBLI shear
layer configuration, as demonstrated by this study, can provide useful data capable of
expanding the currently available mixing layer condition parameter space, as well as
identifying accurate generalizations of compressible shear layers for the development of
turbulence models and scaling laws. In particular, the conservative energy exchange from
the streamwise component is less efficient with increasing Mc, thus causing both the
spreading rate and the anisotropy to decrease with increasing Mc.
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