
J. Fluid Mech. (2014), vol. 745, pp. 682–715. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.90

682
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The gravity-driven flow of a viscous liquid film coating the inside of a tube
is studied both theoretically and experimentally. As the film moves downward,
small perturbations to the free surface grow due to surface tension effects and can
form liquid plugs. A first-principles strongly nonlinear model based on long-wave
asymptotics is developed to provide simplified governing equations for the motion
of the film flow. Linear stability analysis on the basic solution of the model predicts
the speed and wavelength of the most unstable mode, and whether the film is
convectively or absolutely unstable. These results are found to be in remarkable
agreement with the experiments. The model is also solved numerically to follow the
time evolution of instabilities. For relatively thin films, these instabilities saturate as
a series of small-amplitude travelling waves, while thicker films lead to solutions
whose amplitude becomes large enough for the liquid surface to approach the centre
of the tube in finite time, suggesting liquid plug formation. Next, the model’s
periodic travelling wave solutions are determined by a continuation algorithm using
the results from the time evolution code as initial seed. It is found that bifurcation
branches for these solutions exist, and the critical turning points where branches
merge determine film mean thicknesses beyond which no travelling wave solutions
exist. These critical thickness values are in good agreement with those for liquid plug
formations determined experimentally and numerically by the time-evolution code.

Key words: instability, interfacial flows (free surface), thin films

1. Introduction

The flow of a viscous fluid film coating the inner or outer wall of a vertical
cylinder has received much attention over the last two decades, motivated by various
engineering and biological applications. For instance, some of the studies of the
exterior case originated from the need to understand the nature of instability growth
during the process of coating fibres (and we will henceforth refer to this as the
exterior or ‘fibre’ case), while the interior case is of interest to the understanding of
mucus dynamics in human airways.

† Email address for correspondence: ogrosky@math.wisc.edu

first published online 25 March 2014)
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Gravity-driven viscous film flows inside a vertical tube 683

When the liquid film is a Newtonian fluid, the typical mathematical set-up is that
of an initial-boundary-value problem for the Navier–Stokes equations. The general
presence of a free surface where the fluid is in contact with ambient air makes even
the simplest case fairly challenging from a mathematical perspective, and to make
progress it is often useful to consider models that incorporate a class of simplifying
assumptions. In fact, even when exact solutions to the Navier–Stokes equations for
such flows can be found, basically exploiting the linearization of these equations
for parallel flows, it is often the case that these solutions are unstable to small
perturbations and hence of potentially limited practical interest (see e.g. Goren 1962
and Yih 1967 for an analysis of instability to long-wave perturbations). Physically,
the instability growth originates from the interplay of flow characteristics, liquid
surface tension and curvature of the free surface, and is akin to instability growth
in liquid jets where the free surface pinches off to form droplets. Several modelling
approaches have been developed to explore the behaviour of fluid film flows. Fully
nonlinear models of such flows, where no assumption is made on the magnitude of the
free-surface displacement from a reference configuration, can be loosely categorized
into three groups: (i) thin-film asymptotic models, (ii) long-wave asymptotic models,
and (iii) integral models. This last category has been developed to examine flows with
moderate Reynolds number by departing from the traditional long-wave expansion
when calculating the first- and second-order corrections; see e.g. Craster & Matar
(2009) for a review of these modelling developments. As we are primarily interested
here in low-Reynolds-number flows, we focus instead on developments in the first
two categories.

Thin-film asymptotic models are derived by exploiting the ratio of film thickness
to cylinder thickness, and a single evolution equation can be found for the location
of the fluid–air interface. An extensive literature exists on this approach. For instance,
Hammond (1983) considered the growth of instabilities driven by capillary forces in
a thin film with cylindrical geometry and studied the formation of collars and lobes.
Frenkel (1992) derived an evolution equation that included the effects of gravity, and
his model is valid for both interior and exterior coatings. This model was studied
by Kerchman & Frenkel (1994) and Kalliadasis & Chang (1994), who noted the
possibility of finite-time blow-up of its solutions, and studied its behaviour near
blow-up under a self-similarity assumption.

Long-wave models, which exploit the ratio of film thickness to wavelength, have
also been studied for quite some time, see e.g. Lin & Liu (1975) for both the interior
and exterior coating set-up. This approach has been used to derive a long-wave model
for the related problem of air-driven interior film flow by Camassa & Lee (2006), and
a similar procedure will be studied here.

Exterior coating flows have enjoyed most of the attention in recent years due to
their numerous industrial applications. From a mathematical modelling perspective
these flows are closely related, albeit with important differences, to interior coatings,
so we first briefly review models designed solely for exterior films. Roy, Roberts &
Simpson (2002) developed a thin-film model which conserves mass, unlike Frenkel
(1992). Kliakhandler, Davis & Bankoff (2001) and Craster & Matar (2006) both
developed long-wave models for the exterior coating case. The derivation of the
model in Kliakhandler et al. (2001) is tailored around a few simplifying assumptions
without resorting to a systematic asymptotic expansion, and the resulting single
evolution equation is virtually identical to the model asymptotically derived by
Craster & Matar (2006). The derivation of this latter model is based not only on
long-wave asymptotics but also on small Bond numbers, whereby the Bond number
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is tied to the long-wave small parameter. Experiments performed by Smolka, North
& Guerra (2008) have shown that this model is effective in describing the linear
stability of an exterior film flow with low to moderate Reynolds number.

Perhaps the most critical difference between film behaviour in the exterior and
interior cases is that with interior coatings, if the film is thick enough, instabilities
can grow unchecked until they pinch off and form a liquid plug or bridge. Lister et al.
(2006) used the Hammond equation to study the behaviour of liquid collars and lobes
without the effects of gravity. Jensen (2000) studied the tendency of draining liquid
collars to form plugs using the model by Frenkel (1992), and found a critical modified
Bond number below which plugs form. Once a plug has formed, its movement driven
with either prescribed constant velocity or by a constant pressure gradient has been
studied numerically by Campana et al. (2007) and Ubal et al. (2008), respectively.
The tendency of a plug to thin or thicken in these cases is studied along with the
quasi-steady streamlines pattern within the fluid. Other theoretical studies have focused
on plug behaviour in other geometries, including a channel (Suresh & Grotberg 2005)
and flexible tube (Halpern & Grotberg 1992).

In this work we develop and use long-wave asymptotic models to study the
gravity-driven flow of a viscous film down the interior wall of a vertical cylinder. We
limit ourselves to low-Reynolds-number regimes, but do not restrict the thickness of
the film or the values of the Bond number, and compare with the corresponding exact
results from the appropriate Stokes (viscous-dominated) governing equations whenever
these can be obtained. Further, we present the data collected from our experimental
investigation, and compare them with the results of linear analysis and numerical
solutions to the low-Reynolds-number model we derive. The model is shown to
perform effectively in predicting important features of the flow, such as liquid plug
formation and whether free-surface instabilities are absolute or convective. We also
refer back to the better known case of an exterior film when appropriate. Specifically,
the paper is organized as follows. In § 2 we derive three models according to their
asymptotic ordering, with or without first-order inertial effects. These models are
compared with known ones from the literature, as well as shown to reduce to these
in the appropriate limits. Next, a series of experiments are performed and presented in
§ 3. We perform a linear stability analysis from both a temporal and spatial viewpoint
in § 4, and verify its predictions against the experimental data. In § 5 we discuss
numerical solutions to the first-order long-wave model, and develop algorithms to
find travelling wave solutions and discuss their properties. Further comparisons to
experimental observations are made with the time-dependent evolution of numerical
solutions. A discussion of the results is contained in § 6, as is a brief discussion of
the case where the air in the core region of the tube is forced to flow by a pressure
gradient, which is the subject of Part 2 of this work. Some details of the model
derivation are given in the appendix.

2. Long-wave asymptotic models
We consider a liquid film flow governed by the incompressible axisymmetric

Navier–Stokes equations in cylindrical coordinates,

ρ(ūt̄ + ūūr̄ + w̄ūz̄) = −p̄r̄ +µ
(

1
r̄
∂r̄(r̄ūr̄)+ ūz̄z̄ − ū

r̄2

)
,

ρ(w̄t̄ + ūw̄r̄ + w̄w̄z̄) = −p̄z̄ +µ
(

1
r̄
∂r̄(r̄w̄r̄)+ w̄z̄z̄

)
+ ρg,

1
r̄
∂r̄(r̄ū)+ w̄z̄ = 0,


(2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.90


Gravity-driven viscous film flows inside a vertical tube 685

g

FIGURE 1. Sketch of the flow configuration and variable definitions.

where the velocity components (ū, v̄, w̄) correspond to the coordinates (r̄, θ̄ , z̄). Here
the axial coordinate z̄ increases in the downward direction along the tube. Other
notation is pressure p̄, density ρ, molecular viscosity µ, and gravity acceleration
g; see figure 1 for a sketch of the set-up. Overbars denote dimensional quantities
and subscripts denote partial derivatives. Boundary conditions at the wall r̄ = ā are
no-slip

ū= w̄= 0, (2.2)

while at the free surface r̄= R̄(z̄, t̄) continuity of tangential stress

(w̄r̄ + ūz̄)(1− R̄2
z̄ )+ 2(ūr̄ − w̄z̄)R̄z̄ = 0, (2.3)

and jump in normal stress according to the Young–Laplace equation,

(−p̄+ p̄(g))(1+ R̄2
z̄ )+ 2µ(ūr̄ + w̄z̄R̄2

z̄ )+µR̄z̄(w̄r̄ + ūz̄)

= γ (1+ R̄2
z̄ )

(
1

R̄(1+ R̄2
z̄ )

1/2
− R̄z̄z̄

(1+ R̄2
z̄ )

3/2

)
, (2.4)

are required. Here p̄(g) is the background pressure, γ is surface tension and the sign
of the left-hand side of (2.4) is opposite that of the exterior case. To these dynamical
conditions, a kinematic boundary equation needs to be added at r̄= R̄,

ū= R̄t̄ + w̄R̄z̄. (2.5)

Denoting the length of a typical disturbance to the free surface by λ̄, the dynamics
is selected by the experimental parameters ρ, g, µ, γ , ā, λ̄ and the mean thickness of
the film h̄0 = ā− R̄0. These can be combined into four dimensionless parameters: (1)
the Reynolds number, Re= ρ2gh̄3

0/µ
2, (2) the Bond number Bo= ρgh̄2

0/γ , (3) a film
thickness parameter a= ā/h̄0 and (4) an aspect ratio ε = h̄0/λ̄. Flows with matching
parameters can be expected to be dynamically similar. Other dimensionless parameters
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appearing in studies of gravity-driven film flows in lieu of the Bond number are the
Weber number, We = Bo × Re, and the Kapitza number, Ka = γρ1/3/µ4/3g1/3. The
Kapitza number offers the advantage that it is determined only by the properties of
the fluid and does not depend on the flow rate or film thickness; however, as all of the
models in the literature which are discussed here were derived with reference to the
Bond (or Weber) number, we adopt this convention as well for ease of comparison.
The value of Ka for the fluid used in the experiments reported here will be discussed
in § 3.

2.1. Leading-order flow
There is an exact ‘parallel flow’ solution to (2.1)–(2.5) which is a balance of viscous
forces and gravity with a free surface given by R̄(z̄, t̄) = R̄0, where the only non-
zero velocity component is the axial component (w̄), and the only non-zero gradient
component is the radial one (∂r̄),

w̄= ρg
4µ

(
ā2 − r̄2 + 2R̄2

0 log
r̄
ā

)
. (2.6)

(When R̄0 = 0, i.e. for a tube entirely filled with liquid, the velocity profile reduces
to that of Poiseuille pipe flow.) Goren (1962) studied the stability of such flows; for
fluids with high viscosity like those considered here, the free surface is unstable to a
range of small wavenumbers. Motivated by these long-wave instabilities, we seek to
model the flow using long-wave asymptotics.

Proceeding with the traditional long-wave asymptotic approach, we take ε� 1. We
then non-dimensionalize (2.1) with

r= r̄/h̄0, z= z̄/λ̄, u= ū/U0,

w= w̄/W0, t= t̄W0/λ̄, p= p̄h̄0/(µW0),

}
(2.7)

where W0 = ρgh̄2
0/µ is the axial velocity scale and U0 = εW0, giving

ε2Re(ut + uur +wuz) = −pr + ε
(

1
r
∂r(rur)+ ε2uzz − u

r2

)
, (2.8)

εRe(wt + uwr +wwz) = −εpz + 1
r
∂r(rwr)+ ε2wzz + 1, (2.9)

1
r
∂r(ru)+wz = 0. (2.10)

The boundary condition (2.2) at the wall is

w= 0, u= 0, (2.11)

while at the interface r= R(z, t) the boundary conditions (2.3)–(2.5) become

(wr + ε2uz)(1− (εRz)
2)+ 2ε2(ur −wz)Rz = 0, (2.12)

(−p+ p(g))(1+ (εRz)
2)+ 2ε(ur +wz(εRz)

2)+ εRz(wr + ε2uz)

= 1+ (εRz)
2

Bo

(
1

R(1+ (εRz)2)1/2
− ε2Rzz

(1+ (εRz)2)3/2

)
, (2.13)

u= Rt +wRz, (2.14)
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Gravity-driven viscous film flows inside a vertical tube 687

respectively. Integrating the continuity equation (2.10) across the fluid layer and then
substituting the kinematic boundary condition (2.14) yields a layer-averaged mass
conservation equation,

Rt = 1
R
∂

∂z

∫ a

R
w r dr. (2.15)

With an approximate expression for w, this constitutes a single decoupled equation
describing the interfacial evolution. Note that after multiplying by R, mass conservation
is seen mathematically by (2.15) as a conservation law for the quantity R2. Thus the
models we derive below conserve equivalently mass or volume, since the liquid is
assumed incompressible.

As with the full governing equations, the four dimensionless parameters Re, Bo, a
and ε appear in (2.8)–(2.15). We pause to consider the relative sizes of the parameters
for the experiments conducted here. Due to the high viscosity of the oil employed in
all our experiments, the Reynolds number of the flows studied here is Re=O(10−2)
or lower. Thus in the asymptotic limit ε→ 0 we will also take εRe→ 0. The Bond
number, however, is as large as Bo = O(1) in our experiments and no restrictions
will be made on its size in the model equations. We shall not restrict the size of the
parameter a, in contrast to the thin-film models (which we will discuss in § 2.4). For
most of the experiments considered here, the aspect ratio ε is less than 0.2, though
for the thickest films examined ε takes values as high as 0.5.

We now seek solutions as regular perturbation expansions in ε for the velocities and
pressure, i.e.

u = u0 + εu1 + · · · ,
w = w0 + εw1 + · · · ,
p = p0 + εp1 + · · · ,

 (2.16)

and substitute these expansions into the motion (2.8)–(2.13). Taking the limit ε→ 0
yields at leading order

0= p0r,
1
r
∂r(rw0r)=−1,

1
r
∂r(ru0)+w0z = 0, (2.17)

with boundary conditions at the wall

u0 =w0 = 0, (2.18)

and at the interface

w0r = 0, p0 =− 1
Bo

(
1
R
− ε2Rzz

)
, (2.19)

where we have set the overall constant background pressure to zero without loss of
generality. The terms in parentheses in (2.19) model the role that surface tension plays
through the two types of curvature in an axisymmetric film, namely the azimuthal and
axial curvature. Note that the axial curvature has been retained despite being O(ε2).
This term is traditionally kept in modelling of liquid films (see e.g. Oron, Davis &
Bankoff 1997 and Craster & Matar 2009 for a discussion of this term’s role). We
note that solutions to the leading-order model derived below will in general tend to
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form shocks, so that higher-order derivatives must eventually play a prominent role
in the film’s evolution, no matter how smooth the initial conditions. This capillary
term appears to be the lowest-order one in the long-wave asymptotics with the ability
to prevent shock formation; it can thus be expected to play a dominant role with
respect to its counterparts of similar or lower order. The higher-order terms in the
asymptotic expansion computed below further corroborate this interpretation of the
capillary contribution to the asymptotic model.

The solution to (2.17)–(2.19) is given by

u0 = −RRz

(
r
2

log
r
a
− r

4
+ a2

4r

)
, (2.20)

w0 = 1
4
(a2 − r2)+ R2

2
log

r
a
, (2.21)

p0 = − 1
Bo

(
1
R
− ε2Rzz

)
, (2.22)

where (2.21) is the non-dimensional form of the exact solution (2.6) in the case
of a flat free surface. Substituting (2.21) into (2.15) yields a leading-order model
representing the base flow given by

Rt = 1
2

(
R2 − a2 − 2R2 log

R
a

)
Rz. (2.23)

It is readily seen that the flat solution R= R0 (with velocity profile given by (2.21))
simultaneously solves the governing equations (2.8)–(2.14) and the model equation
(2.23).

2.2. First-order corrections
At O(ε), the momentum equations are

p1r = 1
r
∂r(ru0r)− u0/r2, (2.24)

1
r
∂r(rw1r) = Re(w0t + u0w0r +w0w0z)+ p0z, (2.25)

1
r
∂r(ru1)+w1z = 0. (2.26)

Boundary conditions at the wall are

u1 =w1 = 0, (2.27)

and at the interface

w1r = 0, p1 = 2u0r. (2.28)

In order to solve (2.25) we use (2.23) to approximate w0t; the solution to (2.24)–(2.28)
is given in the appendix. The interfacial evolution equation with first-order corrections
is then

Rt = 1
R
∂

∂z

∫ a

R
(w0 + εw1)rdr, (2.29)
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Gravity-driven viscous film flows inside a vertical tube 689

which can be written as

Rt = f1(R; a)Rz + εR
[
S f2(R; a)(Rz + ε2R2Rzzz)+ Re f3(R; a)Rz

]
z , (2.30)

where

f1(R; a) = 1
2
[R2 − a2 − 2R2 log(R/a)],

f2(R; a) = − a4

R2
+ 4a2 − 3R2 + 4R2 log

R
a
,

f3(R; a) =
[
−59

48
R7 + 15

16
a2R5 + 9

16
a4R3 − 13

48
a6R+ 17

4
a2R5 log(R/a)

− 7
4

a4R3 log(R/a)+ 5
2

R7(log(R/a))2 − 5
2

a2R5(log(R/a))2

− 2R7(log(R/a))3
]
,



(2.31)

and S= 1/16Bo.
The model (2.30) is nearly identical to that derived by Lin & Liu (1975), as well

as that derived by Camassa & Lee (2006) for the liquid phase. Lin & Liu (1975)
performed linear stability analysis of their long-wave model and did not retain the full
form of the curvature terms; also our f3(R; a) differs from theirs in one coefficient, an
apparent typo.

Since the Reynolds number of the flows studied here is Re=O(10−2) or lower, we
choose to neglect the inertial terms, in which case the first-order model reduces to

Rt = f1(R; a)Rz + εS
R

[
f2(R; a)(Rz + ε2R2Rzzz)

]
z. (2.32)

As noted earlier, both models (2.30) and (2.32) are essentially statements of mass
conservation, as (2.32) can be equivalently rewritten as

8(R2)t = {f2(R; a)[−R2 + 16εS(Rz + ε2R2Rzzz)]}z. (2.33)

The flat solution R = R0 with velocity given by (2.21) which solves the governing
equations once again solves the model equations (2.30) and (2.32); the velocity
correction w1 given in (A 1) is identically zero for this flat solution.

Equation (2.32) coincides with the model studied in Craster & Matar (2006) up to
a choice of scalings (and similar to that studied in Kliakhandler et al. 2001) with the
exception of a sign change in front of f2(R;a) due to the corresponding sign change in
the pressure for the boundary conditions. Craster & Matar (2006) derived their model
asymptotically with small Bond number, a derivation which may not be appropriate for
all experiments considered here, though these authors comment about the model being
possibly valid for Bond numbers higher than those appropriate to their asymptotic
assumption (e.g. Bo= 0.75). In fact, as we have seen, the same model equation can
be derived under different assumptions which are compatible with our experimental
regimes. Importantly, all of these models make no assumption about the film being
thin relative to the tube or fibre radius. Equation (2.32) fits into a hierarchy of models
which will be explored in § 2.4.
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It will be shown in the rest of the paper that the first-order model (2.32) captures
the most important physical features of the flow and gives good agreement with our
experiments. In particular, the stability of steady-state solutions of (2.32) will be
analysed in § 4, while the initial-boundary-value problem for this equation will be the
focus of our numerical investigations in § 5. It is sometimes more useful to refer to
the thickness of the liquid layer h̄≡ ā− R̄ rather the radius of the air domain R̄ as
dependent variable; we will display results for the solutions of the long-wave model
(2.32) using the variable that best suits the result at hand.

2.3. Second-order model
Continuing to the second order allows viscous dispersive effects to be included, and
is useful in illustrating how successive iterations of the long-wave model approach the
full governing equations in an asymptotic sense. This additional asymptotic step also
determines explicitly the lower order O(ε2) terms neglected in favour of the dominant
regularizing term of O(ε3) from surface tension in (2.19). In this way we can test
that, unlike the latter, these additional O(ε2) terms may not prevent high-curvature
regions from developing in sections of the free surface, with the highest-derivative
term acting like Korteweg–de Vries (KdV) dispersion (see e.g. Johnson et al. 2012
for a mathematical perspective on this point).

At O(ε2) the equations of motion are

p2r =
1
r
∂r(ru1r)− u1/r2 − Re(u0t + u0u0r +w0u0z), (2.34)

1
r
∂r(rw2r)=−w0zz + p1z + Re(w1t + u1w0r + u0w1r +w0w1z +w1w0z), (2.35)

1
r
∂r(ru2)+w2z = 0. (2.36)

We neglect the inertial effects at this higher-order level. (Even in models where inertial
effects are considered to be significant, these second-order terms are often omitted as
their effects are not considered critical to the model; see e.g. Ruyer-Quil et al. 2008.)

Boundary conditions at the wall r= a are

u2 =w2 = 0; (2.37)

at the interface r= R(z, t) the tangential stress boundary condition is

w2r =−u0z +w0rR2
z + 2Rz(w0z − u0r). (2.38)

The streamwise velocity which solves (2.35), (2.37), and (2.38) is given in the
appendix.

The interfacial evolution equation with second-order corrections is

Rt = 1
R
∂

∂z

∫ a

R
(w0 + εw1 + ε2w2)rdr, (2.39)

which can be written (again after neglecting all inertial terms) as

Rt = f1(R; a)Rz + εR
[
S f2(R; a)(Rz + ε2R2Rzzz)+ ε f4(R; a)R2

z + ε f5(R; a)Rzz
]

z , (2.40)
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where f1 and f2 are defined in (2.31) and

f4(R; a) = 1
32R2

[
a6 − 4a4R2 + a2R4

(
7− 36 log

R
a

)
+R6

(
−4+ 40 log

R
a
− 72 log2 R

a

)]
,

f5(R; a) = 1
32R

[
−a6 + a2R4

(
9− 12 log

R
a

)
+R6

(
−8+ 24 log

R
a
− 24 log2 R

a

)]
.


(2.41)

2.4. Thin-film limit
The long-wave model (2.32) has been derived without assuming that the film’s
thickness is small relative to the tube radius. If the film is taken to be thin, then
β = h̄0/ā ≡ 1/a� 1 can be taken as a small (film thickness) parameter. This gives
R= a− h= 1/β − h, and (2.32) can be simplified by expanding each of the functions
fi in (2.31) and (2.41)

f1 = −h2

(
1− βh

3

)
+O(β2), f2 =−16βh3

3
(1+ βh)+O(β3),

f3 = −32h6

15β
+ 268h7

63
+O(β), f4 = 7h3

3β
− 23h4

6
+O(β),

f5 = −h4

β
+ 13h5

10
+O(β).


(2.42)

If we neglect f3, f4, and f5, we recover

(1− βh)ht + 1
3
∂

∂z

[
h3(1− βh)

(
1+ εS̃F

a2(1− βh)2
hz + ε3S̃Fhzzz

)]
= 0, (2.43)

where S̃F = 16S. This equation is analogous to the thin-layer fibre-exterior model
derived by Roy et al. (2002). As these authors pointed out, in the exterior fibre case,
this model is still a conservation law for mass. If a very thin film is assumed, i.e.
taking the limit β → 0, then (2.43) simplifies to the model equation developed by
Frenkel (1992),

ht + 1
3
∂

∂z

[
h3

(
1+ εS̃Fhz

a2
+ ε3S̃Fhzzz

)]
= 0. (2.44)

In dimensional form, this equation is

h̄t̄ + 1
3µ̄

∂

∂ z̄

[
h̄3

(
ρ̄ḡ+ γ̄ h̄z̄

ā2
+ γ̄ h̄z̄z̄z̄

)]
= 0. (2.45)

Like the long-wave model, the thin-film model (2.45) has a flat solution, but in
contrast to (2.21), h̄ = h̄0 does not lead to a velocity profile identical to that of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.90


692 R. Camassa, H. R. Ogrosky and J. Olander

governing equations’ flat solution (2.6). The thin-film flat velocity profile can be
found directly from (2.6) by setting r̄ = ā− h̄0y and expanding (2.6) for small β to
find

w̄F = ρg
2µ
(ā− r̄)(2h̄0 − ā+ r̄). (2.46)

There is one subtlety of the thin-film limit worth remarking upon: as ā→∞ with
fixed h̄ in (2.45), the mechanism for instability growth provided by the azimuthal
curvature vanishes, in agreement with the case of a flat film. However, note that in the
non-dimensional form (2.44) the limit a→∞ can be achieved both in the previous
case and for ā fixed with h̄→ 0. With this latter case, a→∞ corresponds to an
arbitrarily thin film in a cylindrical tube, and the azimuthal curvature remains present
as an instability growth mechanism. The thin-film equation (2.44), derived by Frenkel
(1992), is also studied by Kerchman & Frenkel (1994) and Kalliadasis & Chang
(1994); in the following we will refer to this as the thin-film model or Frenkel model.

Note that (2.44) is a conservation law, but the conserved quantity is now the
film thickness h. Thus, the liquid volume or mass is only approximately conserved,
as pointed out by Roy et al. (2002). It is perhaps unexpected that such a simple
approximation of the continuity equation can have surprising consequences. Camassa
et al. (2012) theoretically and experimentally studied particle trajectories within the
film flow for the related problem of core-driven film flow; it was shown there that
approximating mass conservation in the thin-film limit artificially alters the steady
streamline topology in travelling wave solutions (when viewed in the wave reference
frame).

3. Experiments
We designed and conducted a series of experiments to study the gravity-driven

film problem. The experimental procedure is described in § 3.1. Experimental data
for mean quantities such as film average thickness and fluxes are first examined in
§ 3.2. Further experimental outcomes on instabilities and their evolution are discussed
after the corresponding analytical and numerical model results are introduced in §§ 4
and 5 respectively.

3.1. Experimental setup and procedures
Using a Harvard Apparatus Model 975 syringe pump, we provide a constant volume
flux of silicone oil into a cylindrical chamber. Once the oil has filled the chamber, it
is forced through a radial slit of width 2.5 mm at the top of a pre-wetted 40 cm glass
tube. The oil then drains down into the tube, coating the tube axisymmetrically and
draining out the bottom of the tube; see figure 2 for a schematic of the set-up.

Tubes of three different inner radii were used for the experiments: 0.5, 0.295, and
0.17 cm. The liquid used was a silicone oil with dynamic viscosity µ= 129 Poise (P)
and density ρ = 0.97 g cm−3 (verified in our lab through an Anton-Paar DMA 4500
densitometer and TA Ares rheometer). The tube radii and liquid viscosity used here
are similar to those used in the biologically motivated experiments by Clarke, Jones &
Oliver (1970), Kim et al. (1986a,b), and Kim, Iglesias & Sackner (1987). The surface
tension of silicone oil with viscosity near µ = 129 P is reported in the literature as
γ = 21.5 dyn cm−1, see e.g. Joseph & Renardy (1993); the Kapitza number of the
oil is thus Ka ≈ 3.3 × 10−3. The syringe pump was set to a variety of volume flow
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Syringe pump

20
–4

0 
cm

FIGURE 2. (Colour online) Schematic of the experimental test section.

rates for each tube radius. A summary of these experimental parameters is reported
in table 1. Note that flow rates for the smallest (0.17 cm) radius tube are significantly
lower than those in larger tubes for this value of viscosity, which together with the
added difficulty of tracking free-surface features in such small tubes makes for a rather
time-consuming and arduous experiment. Accordingly, the data set for this case is
smaller than that of the larger radius tubes.

Video images were recorded with a Sony HDR FX1000 video camera. Snapshots
of experiments with varying Q̄ are shown for ā= 0.5 cm in figure 3. Each experiment
was allowed to progress until the film had reached a quasi-steady-state regime, i.e.
when the free surface continued to evolve, but on average the evolution did not exhibit
any significant changes as more time elapsed. This quasi-steady state was typically
achieved within a few minutes. At the end of each experiment, the coated tube was
carefully removed from the apparatus and weighed. By comparing the weight of the
coated tube with the weight of the same tube when dry, a mean film thickness of
the oil was determined. To ensure the robustness of our measured thicknesses, we
tested various methods of tube removal and found that all techniques gave weight
measurements within 5 % for the same inflow settings and tube radius. Essentially,
the high viscosity of the oil ensured minimal drainage during the manipulations
needed to determine the tube’s weight. The measured average film thicknesses h̄0
corresponding to experimental volume flow rates Q̄ are displayed in table 1 for
experiments conducted using the 40 cm tubes. Most of the film thicknesses reported
are the average of multiple experimental runs. The number of runs conducted for
each combination of flow rate and tube radius was dependent on the flow rate for
the following reason: for high flow rates, the film exits the tube faster and there is
thus a higher degree of uncertainty in the measured thickness due to the weighing
procedure described above, while at low flow rates the experiments take longer to
conduct but have a lower degree of uncertainty. Thus for thick films and high flow
rates, typically three runs were conducted for each combination of flow rate and tube
radius, while for thin films and low flow rates, one or two runs were conducted. We
also remark that a limited set of experiments, not reported in this table, was also
carried out with a longer 1 m tube of radius ā= 0.5 cm to further test the evolution
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0.5 cm ā: 0.295 cm ā: 0.17 cm
Q̄ (cm3 s−1) h̄0 (cm) Q̄ (cm3 s−1) h̄0 (cm) Q̄ (cm3 s−1) h̄0 (cm)

8.9× 10−3 0.117 8.6× 10−4 0.066
1.2× 10−2 0.131 1.2× 10−3 0.071
1.7× 10−2 0.149 1.6× 10−3 0.081
2.6× 10−2 0.170 2.3× 10−3 0.092 2.2× 10−4 0.048
3.4× 10−2 0.194 3.3× 10−3 0.108 3.1× 10−4 0.051
4.8× 10−2 0.223 4.6× 10−3 0.120 4.3× 10−4 0.055
6.7× 10−2 0.256 6.3× 10−3 0.131 5.9× 10−4 0.066
9.4× 10−2 0.295 8.9× 10−3 0.152 8.6× 10−4 0.073
1.3× 10−1 0.331 1.2× 10−2 0.189 1.2× 10−3 0.092
1.8× 10−1 0.398 1.7× 10−2 0.249 1.6× 10−3 0.123
1.81× 10−1 0.500 2.19× 10−2 0.295 2.42× 10−3 0.170

TABLE 1. Experimental volume flow rate Q̄ and measured average film thickness h̄0 for
each experiment with the 40 cm tube having the given inner radius. For reference, the last
row reports the theoretical flux values corresponding to Poiseuille gravity-driven full-pipe
flow, h̄0P = ā (or R̄0 = 0), and Q̄P =πρgā4/8µ.

(a)

(b)

(c)

(d)

FIGURE 3. (Colour online) Snapshots of four experiments with µ= 129 P and a= 0.5 cm.
(a) Q̄= 4.8× 10−2 cm3 s−1, (b) Q̄= 6.7× 10−2 cm3 s−1, (c) Q̄= 9.4× 10−2 cm3 s−1, and
(d) Q̄=1.3×10−1 cm3 s−1. (This montage of tube snapshots is rotated by 90o with respect
to the actual experiment, so that acceleration due to gravity g acts from left to right.)

of convective instability. For this longer tube, a high-precision Harvard Apparatus
Ph.D. Ultra Hpsi syringe pump was used to improve the resolution of volume fluxes
around the appropriate parametric region of interest discussed in § 5.

3.2. Experimental results and volume averages
The liquid flux generated by the flat exact solution (2.6) for each film thickness is
given by

Q̄≡ 2π

∫ ā

R̄0

w̄(r̄) r̄dr̄= πρg
8µ

(
ā4 − 4ā2R̄2

0 + 3R̄4
0 − 4R̄4

0 log
R̄0

ā

)
. (3.1)
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Thus, for a given flux Q̄, this expression can be inverted to yield an exact solution,
R̄= R̄0(Q̄), of the Navier–Stokes equations when the interface of the falling annular
liquid film in the vertical tube remains flat. Note that the velocity w̄ of the exact
solution (2.6) for a flat interface is also the leading-order velocity for the long-wave
model, and hence this flat solution R̄0(Q̄) coincides with an exact flat-interface solution
of the long-wave model, so that equation (3.1) is also the leading-order flux for the
long-wave model.

For thin films 1− R̄0/ā� 1 (or h̄0/ā� 1), a Taylor expansion shows that the flux
can be approximated by

Q̄F = 2πρgā
3µ

(ā− R̄0)
3. (3.2)

This expression for the thin-film flux Q̄F also follows directly from

Q̄F = 2πā
∫ ā

R̄0

w̄F(r̄) dr̄, (3.3)

with w̄F given in (2.46).
Note that in the limit R̄0→ 0 (or h̄0→ ā), the theoretical expression for flow rate

in Poiseuille pipe flow under gravity is recovered from (3.1), i.e.

Q̄P ≡ lim
R̄0→0

Q̄= πρgā4

8µ
, (3.4)

which establishes the maximum flux sustainable by the pure hydrostatic pressure jump
due to the liquid’s weight in the tube. Higher flux rates after the tube is entirely filled
from the inlet downward would require an additional pressure source above the inlet,
or a depression at the outlet.

Figure 4 groups the flux-thickness pairs found in the experiments compared with
those given by (3.1) and (3.2); both theoretical predictions are displayed for 0 6 Q̄ 6
Q̄P. For both thin films and moderately thick films the match between experiments
and (3.1) is rather accurate, while agreement between experiments and (3.2) is
generally found only for thin films; this is not surprising since in our experiments
the film mean thicknesses were not overly small and thus should lie outside of the
asymptotic assumptions for (3.2). The lack of precise agreement between (3.1) and
experiments for thick films is expected in light of the snapshots in figure 3: thick
films in the experiment form liquid bridges or plugs and thus are dynamically far
from the flat-interface exact solution. Note that while increasing film thickness always
corresponds to increasing volume flux, both the experiments and exact solution exhibit
an inflection point; on the exact solution curve, this inflection point occurs at h̄0 ≈
0.614ā, a condition readily found from (3.1). This is due to the cylindrical geometry
of the tube: for thick films, an incremental increase in film thickness adds less fluid
than the same increase for a thin film. No such inflection point exists in (3.2).

Similar comparisons can be made between experiments, long-wave model (2.32),
and thin-film model (2.44). In the models, mass (long-wave models), or film thickness
(thin-film model), is prescribed by the initial condition, and the volume flux is allowed
to vary freely as the solution evolves in time. In the experiments, the opposite is
true: volume flux is prescribed and the mean thickness settles to some value in the
quasi-steady-state regime. Hence, the volume flux associated with each film thickness
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(×10–3)

FIGURE 4. (Colour online) Comparison of volume flux and mean film thickness for
µ = 129 P and (a) a = 0.5 cm, (b) a = 0.295 cm, and (c) a = 0.17 cm. Bars indicate
the range of measured thicknesses recorded over multiple runs for each experiment. For
the two thinnest films in (a) and the thinnest film in (c), only one run was conducted.
Theoretical predictions (3.1) (dashed line) and (3.2) (dotted line) are also shown. Shaded
regions correspond to thick films for which numerical solutions to the long-wave model
do not settle into a quasi-steady state.

in the long-wave model has to be determined a posteriori by allowing the solution
to evolve until the spatially averaged volume flux has settled to some constant value.
For relatively thin films, quasi-steady regimes are quickly reached and the interfacial
disturbances maintain a small amplitude throughout the evolution, thus indicating that
the total volume flux can be well-approximated by the leading-order flux in the small
long-wave parameter ε. Hence, the corresponding flux values are observed to be very
close to those of the exact (flat) solution of both long-wave model and the parent
Navier–Stokes equations (2.6) and (3.1), and the corresponding h̄0 versus Q̄ curves in
the non-shaded regions in figure 4 are indistinguishable from the exact flat solution
(and hence are not reported in this figure).

We remark that predictions from our models only hold for parameter values such
that the numerical solutions reach a quasi-steady regime, whereby time evolution is no
longer transient. Those thicknesses for which solutions to the long-wave model did not
reach such a regime are indicated by the shaded regions in figure 4. This point will be
discussed further in § 5, where we will see that lack of a quasi-steady regime for the
long-wave model past a certain film thickness can be correlated to plug formation. It
is also interesting to note that the flat solution (3.1) continues to predict fairly accurate
film thicknesses for given fluxes long past the onset of plug-formation regimes. This
could be viewed as a manifestation of the robustness of the mass conservation law
versus the local dynamics of the free surface. Such robustness is also reflected in the
long-wave model’s overall good agreement with experiments, for as long as the model
is viable (which corresponds to absence of plugs in the experiment). This marks a
contrasting difference with respect to the non-mass-conserving thin-film model.

4. Linear stability analysis
Flat-film solutions, common to both parent equations and their asymptotic models,

can be expected to be unstable to perturbations, and depending on the set-up their
linear regime growth can be broadly classified as temporal or spatial instability. We
examine both these cases next.
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4.1. Temporal stability analysis
The starting point for linear stability analysis is common to all the models considered
so far (i.e. thin-film (2.44), first- (2.32) and second- (2.40) order long-wave models)
and relies on the assumption of the flat-interface solution being slightly perturbed by
a superposition of Fourier modes

R= (a− 1)+ A exp[i(kz−ωt)], (4.1)

where A�a−1 is the amplitude of the disturbance. For temporal stability, we assume
that this amplitude is assigned initially as a function of the real wavenumber k. For
(4.1) to be a solution, the frequency ω is assigned by (a branch of) the dispersion
relation, or ω = W(k). Then Re[W]/k is the phase speed of the perturbation, and
Im[W] is its growth or decay rate. Substituting (4.1) into (2.44), (2.32) and (2.40) and
neglecting higher-order terms in A gives the dispersion relation for each of the models

ωF = k+ iεSF

(
k2

a2
− ε2k4

)
, (4.2)

ω1 = 1
2

(
a2 − (a− 1)2 − 2(a− 1)2 log

a
a− 1

)
k+ iεS(a− 1)3

×
[(

a
a− 1

)4

− 4
(

a
a− 1

)2

+ 3+ 4 log
a

a− 1

][
k2

(a− 1)2
− ε2k4

]
, (4.3)

ω2 = 1
2

(
a2 − (a− 1)2 − 2(a− 1)2 log

a
a− 1

)
k

+ ε2

32(a− 1)

[
−a6 + a2(a− 1)4

(
9− 12 log

a− 1
a

)
+ (a− 1)6

(
−8+ 24 log

a− 1
a
− 24 log2 a− 1

a

)]
k3 + iεS(a− 1)3

×
[(

a
a− 1

)4

− 4
(

a
a− 1

)2

+ 3+ 4 log
a

a− 1

][
k2

(a− 1)2
− ε2k4

]
, (4.4)

respectively for thin-film, first- and second-order long-wave models (and SF ≡ S̃F/3).
Note that (4.2) and (4.3) are similar to that of the Kuramoto–Sivashinsky (KS)
equation in their polynomial dependence on k, while (4.4) is similar to that of
the Korteweg–de Vries/Kuramoto–Sivashinsky (KdV–KS) equation as studied by
e.g. Johnson et al. (2012). Also note that the wavenumber of the instability which
undergoes maximum growth in the thin-film model is km = 1/(εa

√
2), while in the

long-wave models this wavenumber is km = 1/ε(a − 1)
√

2. Thus, for the thin-film
model the wavelength of maximum growth rate is determined by the tube radius,
whereas in both long-wave models the average radius of the free surface plays the
determining role. (We note that in Craster & Matar 2006 the model by Frenkel 1992
was rescaled in the axial direction by a/R. While this is asymptotically equivalent
to the original aspect ratio for large a and results in significant improvement in the
agreement between long-wave and thin-film models in this limit, we choose here to
use the thin-film scaling as originally introduced by Frenkel 1992.)

For viscous-dominated flows the governing equations of motion reduce to the well-
known Stokes approximation. A linear stability analysis can be carried out in closed
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FIGURE 5. (Colour online) The growth rates predicted by linear analysis of the long-wave
models (solid lines), the thin-film model (dotted lines), and the Stokes equations (dashed
lines) are shown for (a) a= 11 and (b) a= 5 and a= 3.

form for the flat free-surface solutions of this system, and it is largely independent
of whether the interior or the exterior case is considered. Rather than repeating the
analysis here, we simply recall that the dispersion relation for the Stokes system can
be expressed in terms of Bessel functions, and refer to Goren (1962) and Craster &
Matar (2006) for details in the analogous exterior case. Figure 5 shows the growth
rates (4.2)–(4.4) and the growth rate of the full Stokes equations. In figure 5(a) the
growth rates are shown for a=11 corresponding to a relatively thin film; in figure 5(b)
the growth rates are shown for a= 5 and a= 3 corresponding to thicker films which
lie outside the regime where the asymptotic assumptions made in deriving the thin-
film model hold. As expected, the growth rates of the long-wave and thin-film models
approach the Stokes equations asymptotically for small k. The maximum growth rate
for each model is

Im[ωF] = SF

4εa4
, (4.5)

Im[ω1] = S
4ε(a− 1)

[(
a

a− 1

)4

− 4
(

a
a− 1

)2

+ 3+ 4 log
(

a
a− 1

)]
, (4.6)

where Im[ω1] is the maximum growth rate for both long-wave models. Note that the
maximum growth rate of the thin-film model is significantly less than that of both the
long-wave model and Stokes equations even for thin films (large a).

Figure 6 shows the wavelength of maximum growth rate. The thin-film model
selects a wavelength based on tube radius rather than mean film thickness, while the
wavelength decreases with film thickness in the long-wave model and Stokes equations.
Experimental results are also shown for those experiments in which instability growth
was consistently visible in the linear regime. Wavelengths were measured from the
first visible wave crest to the next crest occurring down the tube; the video recording
of the experiment was then advanced until this wavelength had progressed down the
tube and another wavelength had become visible. This process was repeated, and the
average of all such wavelengths for one realization of the experiment is shown with
error bars depicting one standard deviation. The small number of data points shown
reflects the fact that for high values of volume flux instabilities grow outside the
linear regime almost immediately upon entering the tube, while low values of volume
flux produce instabilities of very small amplitude and are thus difficult to identify.
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FIGURE 6. (Colour online) The wavelength λ̄m of maximum growth rate predicted by
linear analysis of the long-wave models (solid lines), the thin-film model (dotted lines), the
Stokes equations (dashed lines), and experiments (circles) are shown. Error bars indicate
the standard deviation. Data are only shown for those experiments in which instabilities
were consistently visible in the linear regime.

The data shown for ā= 0.17 cm should be viewed with these difficulties in mind, as
instabilities progressed quickly in space from the linear to nonlinear regime making
it difficult to consistently determine a wavelength without a substantial improvement
of optical resolution; we leave further studies in such small geometries for the future.

Figure 7 compares the linear disturbance speed of all three models and the Stokes
equations. In figure 7(a) disturbance speeds are shown for a= 5 and a= 3 while in
figure 7(b) speeds are shown for a= 2 and a= 1.5; these values of a correspond to
relatively thick films for which the thin-film asymptotic assumptions do not hold. The
first-order long-wave model has no dispersion, and the speed of a linear disturbance
of any wavelength is exactly the speed of the Stokes equations in the limit k→ 0, as
expected. The second-order long-wave model includes viscous dispersive effects, and
this correction gives speed predictions very close to the full Stokes equations for a
larger band of small wavenumbers k. Note that the speed of a linear disturbance in
the thin-film model is always higher than its counterparts in the long-wave models
and in the Stokes equations.

4.2. Absolute and convective instabilities
The experiments performed here can be categorized by the location in the tube where
instability growth can be visually detected. For thin films, instability growth is first
visible far away from the inlet as in figure 3(a–c), and the exact spatial location of
where instabilities are first visible varies significantly as the experiment progresses.
For thicker films, instabilities are consistently visible very close to the inlet, as in
figure 3(d). Films which only exhibit visible instability growth far away from the inlet
are said to be convectively unstable, while those which exhibit growth very near to
the inlet are classified as absolutely unstable (see Duprat et al. 2007 for a discussion
of this classification in the case of an exterior coating).

This instability classification is borrowed from the literature concerning jets and has
been well studied. Films which coat the exterior of a fibre have been shown to be
absolutely unstable if the fibre has small enough radius and the film thickness
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FIGURE 7. (Colour online) The speed of an infinitesimal disturbance predicted by linear
analysis of the first-order long-wave model (solid lines), the second-order long-wave model
(dot-dashed lines), the thin-film model (dotted lines), and the Stokes equations (dashed
lines) for (a) a= 5 and a= 3 and (b) a= 2 and a= 1.5.

lies in some intermediate range (which is determined by the fibre radius and
liquid properties); for fibres of large enough radius the exterior coating is always
convectively unstable, regardless of the film thickness (Duprat et al. 2007). We now
explore the same question for films coating the interior of a tube.

The appropriate tools for this study are centred around the asymptotic analysis
of Fourier-type integrals (see e.g. Erdelyi 1956 and Whitham 1974), and have been
developed by e.g. Briggs (1964) and Bers (1983), and further reviewed by Huerre &
Monkewitz (1990). A thorough exposition of these tools would transcend the purpose
of our study, and we only mention here the essential elements for completeness,
referring the reader to the cited literature for a full discussion. In this approach
to asymptotic stability, the normal-mode analysis conducted in § 4.1 is extended
by considering complex wavenumbers. The space–time asymptotic behaviour of a
perturbation obtained by Fourier superposition of modes (4.1) is determined by the
complex solutions k = κ(m) (‘saddle points’) of the equation ∂kW = m≡ x/t along a
given ray m = const. for a branch of the dispersion relation ω =W(k). In a Fourier
integral solution with respect to wavenumber k, the asymptotics is then obtained
by deforming the original integration for real k to a path in the complex k-plane
following steepest descent curves through saddle points κ(m) with commensurate,
growth or decay, exponential behaviour along a given ray. Accordingly, at a fixed
location x, the long-time behaviour is determined by the study along the ray m= 0 of
the saddle point κ(0)≡ κa defined by ∂kW|k=κa

= 0. The most amplified mode among
all acceptable κa values then governs the long-time behaviour; if Im[W(κa)] > 0 the
instabilities are said to be absolute since the envelope of the Fourier superposition
would then be stationary in space and exponentially growing in amplitude as time
progresses. Acceptable saddle points κa are determined by a selection criterion, which
corresponds to requiring that the original Fourier integration on the real k-axis can
be smoothly deformed to a ‘steepest descent’ path Im[W(k)] = Im[W(κa)] threading
through each saddle point κa. This selection criterion can in turn be interpreted in
terms of different forms of coalescence of branches of the dispersion relation, see
e.g. Huerre & Monkewitz (1990) for further discussion.

For our experimental set-up, perturbations can be assumed to originate at the inlet
slit and be continuously fed through the liquid lines. Mathematically, this corresponds
to a time-dependent perturbation applied as boundary forcing at the inlet location of
the tube. When this perturbing time-dependent forcing is viewed as a superposition
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of Fourier oscillatory modes exp(iΩt), the response of the fluid system may be
decomposed into a combination of transient time-dependent behaviour, corresponding
to the temporal stability analysis above, and spatially evolving solutions tuned to
the real forcing frequency Ω . Convective instability gives rise to a transient time
evolution that eventually dies out at every fixed spatial location along the tube, as
the unstable growing envelope moves away (and out of the tube) with non-zero
group velocity. Thus, if only convective instability is present, only spatially growing
(unstable) modes tuned to the forcing frequency of the form exp[i(K(Ω)z − Ωt)]
are left to be observed in the tube after sufficiently long times. Here the complex
values k = K(Ω) are given by the branches of the inverse of the dispersion relation
such that Im[K(Ω)]< 0, which implies spatial growth and propagation down the tube
(z> 0) when the phase speed Ω/Re[K(Ω)]> 0 is positive. Conversely, when absolute
instability is present, these spatially growing modes play a secondary role as they are
eventually swamped by the time-dependent growth at any fixed spatial location along
the tube, and in particular at the inlet location z= 0.

Duprat et al. (2007) found that for the exterior problem and the thin-film model
(2.44) there is a critical value SFc such that for SF > SFc the film is absolutely unstable,
and for SF < SFc the film is convectively unstable. Adjusting for the choice of scalings
used here, the critical value is in our case

SFc =
a3

2
(−17+ 7

√
7)1/2 ≈ 0.617a3. (4.7)

Expressed in terms of the experimental parameters, the condition SF > SFc , required
for the film to be absolutely unstable according to the thin-film model, is

R̄0 < ā− 3(−17+ 7
√

7)1/2ρgā3

2γ
. (4.8)

As noted in Duprat et al. (2007), the thin-film dispersion relation (4.2) can
be transformed into the first-order long-wave dispersion relation (4.3) by the
transformation

ω=− a− 1
f1(a− 1; a)aω

′, k= a− 1
a

k′, SF = a3f2(a− 1; a)
(a− 1)2f1(a− 1; a)S

′. (4.9)

Therefore, applying (4.9) to the condition SF > SFc yields the following implicit
condition for absolute instability in the long-wave model:

1
R̄2

0

f2

(
R̄0

ā− R̄0
; ā

ā− R̄0

)
f1

(
R̄0

ā− R̄0
; ā

ā− R̄0

) > 8ρg(−17+ 7
√

7)1/2

γ
. (4.10)

Figure 8 shows the regions of absolute versus convective instability for interior
coatings as predicted by (4.8) and (4.10), for the thin-film and long-wave models
respectively, compared with experimental results. The long-wave model shows good
agreement with our experiments. Note that the thin-film model predicts that for tubes
with radius greater than ā≈0.11 cm all films are convectively unstable. (This property
of the thin-film model to predict convective instabilities in a larger region of parameter
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Convective instabilities

Long-wave model
Thin-film model
Absolute instabilities
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FIGURE 8. (Colour online) Regions of absolute and convective instability for the
long-wave model (solid lines) and the thin-film model (dotted lines). Shaded regions (blue
online) correspond to regions of absolute instability for the corresponding model. Liquid
properties are γ = 21.5 dyn cm−1 and ρ = 0.97 g cm−3 corresponding to experiments in
§ 3. (The closed diamond indicates a film thickness where the flow exhibited both absolute
and convective instability at some point during the experiment.)

space is consistent with the overestimate of the linear wave speed and underestimate
of the maximum growth rate when compared to the long-wave models and Stokes
equations.)

Before proceeding to nonlinear results for the tube case, we note that for the
exterior case Duprat et al. (2007) show that the thin-film model (2.44) predicts that
absolute instabilities are present independently of the size of the fibre, provided the
film thickness is large enough. On the other hand, the long-wave model in Craster
& Matar (2006) predicts a critical fibre radius (as a function of liquid properties)
beyond which instabilities can only be convective. This is the opposite of the situation
for interior coatings, as just discussed, though in both cases the long-wave model
accurately captures the stability of the film. For comparison with the interior case,
we show in figure 9 the counterpart of our results for the fibre coating case, after
a rescaling of the results in figure 4 in Duprat et al. (2007) to match the choice of
scalings used in our work.

5. Nonlinear results
Having analytically explored the linear stability of small-amplitude perturbations,

we now study the nonlinear saturation of instabilities numerically. This allows us to
follow the evolution from a perturbed flat initial state to regimes where quasi-steady
wavetrains emerge, or, conversely, where there is no evidence that these long-time
quasi-steady regimes seem to take hold. We remark that the one-to-one relation
between flux and interface (3.1) is modified by the evolution of the instabilities, so
that the flux Q becomes a function of time t and spatial location z along the tube.
Hence, the flux spatial average

〈Q〉 ≡ 2π

L

∫ L

0

∫ a

R(z,t)

(
w0(r, t)+ εw1(r, t)

)
r dr dz, (5.1)
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FIGURE 9. (Colour online) Same as figure 8 but for a film coating the exterior of the
fibre (i.e. R̄0 > ā), as shown in Duprat et al. (2007).

is in general a time-dependent function. Even under the periodic boundary conditions
(used in our simulations), which make the spatial mean of (R(z, t))2 a constant of
time due to (2.15), the explicit expression for w1 (see the appendix, (A 1)) and the
long-wave model (2.33) show that 〈Q〉 is time dependent, in general. Nonetheless,
numerical solutions reveal that whenever a quasi-steady regime is reached, the
spatial average of flux 〈Q〉 and mean thickness 〈R2〉 track curves which are virtually
indistinguishable from their flat-solution counterparts shown in figure 4.

5.1. Transient solutions
The long-wave model (2.32) is solved using the method of lines with a pseudospectral
algorithm (whereby spatial derivatives are calculated in Fourier space and the
nonlinear terms are computed in physical space). Time integration uses a simple
second-order predictor–corrector scheme. Throughout the simulations, the Fourier
modes of the derivatives and nonlinear terms were carefully monitored to ensure
conservation of volume. For initial conditions, we perturb the interface with multiple
small-amplitude modes (see Camassa et al. 2012 for more details of the numerical
procedure on a related problem).

The numerical solutions fall into one of two categories. For films with mean
thickness smaller than some critical value depending on ā, i.e. h̄0 < h̄c(ā), the
interface evolves into a series of small-amplitude waves. Figure 10(a) shows an
example of such a free-surface evolution by plotting a sequence of snapshots of
the free-surface profile h̄(z̄, t̄) at fixed time increments. Successive snapshots of the
interface are shown; the perturbed interface sees instability growth which saturates
into small-amplitude waves. These waves undergo some limited nonlinear interaction
before settling into a series of stable travelling waves. This behaviour is reminiscent
of similar equations studied more extensively in the literature. For example, the
dispersion relation for the long-wave model was seen to be of Kuramoto–Sivashinsky
(KS) type in § 4, and solutions to the KS equation are well-known to exhibit
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FIGURE 10. Time snapshots showing the evolution of solutions to (2.32) in a periodic
domain for ā= 0.5 cm. Interfacial profiles h̄(z̄, t̄) are shown successively shifted at time
intervals 1t̄. Profiles are shown in the frame of reference moving with an undisturbed
interface. The scale for h̄ is given on the right-hand axis for the final profile shown.
Acceleration due to gravity acts from left to right. (a) R̄0=0.2766 cm,1t̄≈55 s, (b) R̄0=
0.2443 cm, 1t̄≈ 3.75 s. (For the final profile in (b), 1t̄≈ 0.56 s.)

spatio-temporal chaos. It has also been shown that adding dispersive terms to the
KS equation can regularize the evolution (see e.g Johnson et al. 2012 for a study
of the KdV–KS equation). Likewise, the fully nonlinear model studied here contains
dispersive terms which become significant as instabilities grow beyond the linear
regime, and which appear to regularize the free-surface evolution allowing coherent
wave structures to form.

For thicker films with h̄0 > h̄c(ā), there is numerical evidence that the model can
break down with some form of finite-time blow-up. In figure 10(b), a perturbed
interface once again experiences instability. This time, however, the instability with
largest amplitude undergoes rapid growth to the point of becoming comparable to
the tube’s radius, or R̄(z̄, t̄)= 0 at some time t̄ and location z̄ in the periodic domain,
indicating a tendency for the liquid to ‘choke’ the tube and form a liquid plug. When
this approach to R̄= 0 occurs, some of the coefficients of the long-wave model (2.32)
become large, leading to a very stiff problem which requires smaller and smaller
time-steps. We do not attempt here to provide a full mathematical characterization
of this blow-up trend, leaving it to future work. Of course, the model ceases to be
valid as extra physical phenomena not modelled by our long wave-asymptotics would
come into play as the air domain pinches off, and diametrically opposite locations
along the interface come into contact. Nonetheless, it is natural to take the tendency
for the interface location h̄ to limit to ā, and equivalently R̄→ 0, as an indication of
the formation of a liquid plug.

Next, we test this ‘choke’ criterion for plug formation based on the numerical
integration of model (2.32) against the experimental observation. Just as with the
model solutions, experimental films with mean thickness smaller than some critical
value do not exhibit plug formation, while thicker films do. A comparison between
model prediction and experimental evidence is summarized in figure 11, where both
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FIGURE 11. (Colour online) Shaded region (blue online) shows parametric space for mean
interfacial thickness R̄0 and tube radius ā (40 cm long) resulting in plug formation, as
numerically determined by the blow-up criterion at points (ā, R̄0) marked by ‘?’ (boundary
curve is least-square fit on cubic polynomial). Experimental results are shown with circles
(plugs form) and triangles (no plugs). Points ‘a’ and ‘b’ correspond to the values used in
figures 10(a and 10b) respectively, as well as the experimental snapshots seen in figures
3(a and 3b) respectively. (The closed triangle marking point ‘b’ indicates that some, but
not all, instabilities formed plugs before exiting the tube.) Inset shows data from the 1 m
long tube experiment, by zooming in on the transition region between plug and no plug
formation. Dash curve marks the separation between absolute and convective instability
depicted in figure 8 and determined by relation (4.8).

the experimental data and model solutions are classified according to the existence of
plug formation. The numerical data are interpolated with a least-square fit on a cubic
polynomial, giving rise to the empirical curve R̄0 =R(ā) depicted by the solid line
in figure 11, which we take as the model prediction for the boundary between plug
and no-plug regimes.

A remarkably good agreement can be seen between the long-wave model predictions
and experimental observations reported in figure 11, where the plug regime is
indicated by the shaded area (blue online) below curve R(ā) in the parametric
plane (ā, R̄0). The boundary between convective and absolute instability, analytically
determined by (4.8), is also depicted in this figure by a dashed curve, showing
how absolute instability may be a sufficient but not necessary criterion for plug
formation. It is interesting to note that the sectorial region between these two
curves corresponds to where the model predicts that liquid plugs (i.e. bridges in
the two-dimensional image projection) will form, but only after the instabilities have
traversed a considerable distance (from the feeding chamber in the experimental case).

In the bulk of our experiments, we are limited to observing plug or bridge formation
in the first 40 cm of distance travelled; it is quite possible that instabilities would
eventually form in the experimental regimes corresponding to this parameter range, if
the tube were long enough to allow for the growth and interaction of the unstable
modes. To check on this, we have performed a limited set of experiments around the
critical regime for a 1 m long tube with 0.5 cm radius, which are about the maximal
dimensions that our current experimental set-up can handle. The additional data points
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FIGURE 12. Same as figure 10 but with R̄0 = 0.27 cm and 1t̄≈ 10.3 s. (For the final
profile, 1t̄≈ 4.9 s.)

thus gathered are explicitly marked in the inset of figure 11, and further narrow the
experimental transition region between plug/no-plug regimes for this largest diameter
tube. (Because of the length, the average film thickness for this 1 m tube is computed
through interpolation by using the data and curve(s) reported in figure 4(a) rather
than by weight.) We remark that in the transition region the model solutions show
that bridge formation occurs as the result of nonlinear interactions between waves,
as opposed to the growth of a single wave crest, which appears to be a different
amplitude-increase mechanism than that exhibited in figure 10; this is exemplified by
figure 12 by matching fluid parameters and mean thickness intermediate between those
chosen for figures 10(a) and 10(b). It is also interesting to note the similarity between
curves separating different regions of the (ā, R̄0)-plane in figures 8 and 11, again
stressing the existence of the narrow region of parameter space where instabilities are
convective and do form plugs. While it would be difficult to explore experimentally,
this region of convective and plug-forming instability may persist in the limit of small
radii, though not visible in the scales of figure 11. An example of this combination
of flow attributes in an experimental result can be seen in figure 3(c).

A few remarks are in order concerning the numerical computations. The model
equation is solved using periodic boundary conditions, clearly not corresponding to
the experiment set-up. Hence, in order to emulate more closely the spatial growth
of the instabilities observed in the experiments, we tested the model again with
periodic boundary conditions, but this time using an extended domain (dimensionally
corresponding to 150 cm), which makes the computation more expensive. The initial
conditions of the previous section, i.e. a flat interface perturbed by small-amplitude
disturbances of many modes, were modified in the following way. First, the flat
interface was perturbed by the wavenumber k̄m mode with highest growth rate that
satisfies the periodic boundary conditions as determined from the linear stability
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FIGURE 13. (a) Initial condition (5.2) with N = 3, for model solutions shown in
figure 14(b). (b) The location of the free surface at the ‘inlet point’ shown in (a) as a
function of time.

analysis in § 4.1; some additional modes with smaller wavenumber were also added
to the perturbed interface. Second, upstream from an arbitrarily chosen ‘inlet point’
this perturbed interface was damped exponentially by a factor corresponding to this
maximum growth rate Im[W̄(k̄m)] which we analytically determined as described in
§ 4.1. For example, figure 13(a) shows one such initial condition given by

R̄= R̄0 − Ā f (z̄) sin(k̄mz̄)− Ā f (z̄)
N∑

n=1

sin
(

12πnz̄
L̄

)
, (5.2)

where L̄ = 150 cm is the computational domain length, R̄0 = 0.2443 cm, Ā =
10−4 cm, k̄m ≈ 2.89, N = 3, and the envelope function f is

f (z̄)=


exp[ᾱ z̄], z̄ 6 0
1, 0< z̄< 2z̄0

exp[−ᾱ(z̄− 2z̄0)], z̄ > 2z̄0.

(5.3)

Here the scale factor ᾱ > 0 is the spatial rate of growth for propagating disturbances
(cf. § 4.2), the envelope is centred at z̄0 = 25 cm, ᾱ≡−k̄m Im[W̄(k̄m)]/Re[W̄(k̄m)] and
the origin of the vertical coordinate is chosen so that z̄= 0 corresponds to the inlet
point.
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FIGURE 14. (Colour online) Model solutions (left) and experiments (right) for ā= 0.5 cm
and for (a) Q̄= 9.4× 10−2 cm3 s−1 and (b) Q̄= 6.7× 10−2 cm3 s−1. The initial condition
for the model solution in (b) is shown in figure 13(a).

The evolution of these initial conditions proceeds along the lines discussed in § 4.2:
an initial time transient occurs where the wavelength of maximum growth rate is
selected by the model and begins to dominate the free surface, followed by a later
time evolution where the instabilities reaching the ‘inlet point’ have nearly constant
amplitude and frequency Ω̄ =Re[W̄(k̄m)]. In this way the numerical inlet point z̄= 0
serves as an approximation to the actual inlet feeding location in our experiments, for
as long as the wrap around of wavetrains due to the finite periodic domain does not
affect the solution near z̄= 0. Figure 13(b) shows the thickness of the film at the inlet
point as time elapses using the initial condition shown in figure 13(a).

Figure 14 compares solutions for two different thicknesses (for different volume
fluxes) with corresponding experiments, showing a reasonable qualitative match. Note
that in the experimental snapshots the bright line should be interpreted as only an
approximate indication of the location of the free surface. Optical distortions from the
combination of curved interfaces of liquid and tube wall, due to the differences in the
refraction index, would have to be compensated for a precise evaluation of distances.
(Also note that these difficulties in determining the exact location of the free surface
do not arise in the case of exterior flows.) Thus, here we simply take the bright curves
in the experimental frames to be approximately representative of the deformation of
the free surface, and leave further quantitative comparisons to future work.

5.2. Travelling waves
Some solutions to (2.32) show the existence of stable, coherent wave structures
propagating down the tube as in figure 10(a). To explore their behaviour further we
now turn to a numerical study of travelling wave solutions of the evolution equation
(2.32).

Switching to a frame of reference that travels with the wave, we let

Z = z− ct. (5.4)
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FIGURE 15. (Colour online) Travelling wave solution branches (fluid parameters matching
those in the experiments). (a) Maximum thickness as a function of mean thickness.
(b) Speed as a function of mean thickness. (c) Speed as a function of domain length,
using parameters corresponding to those in the solutions marked by an ‘x’ in (a) and (b).

Substituting (5.4) into (2.32) yields a fourth-order ordinary differential equation

− cR′ = f1(R; a)R′ + εS
R

d
dZ

[
f2(R; a)(R′ + ε2R2R′′′)

]; (5.5)

for reference we also include the dimensional form of (5.5)

−µc̄R̄′ = ρgf1(R̄; ā)R̄′ + γ

16R̄
d

dZ̄

[
f2(R̄; ā)(R̄′ + R̄2R̄′′′)

]
. (5.6)

As (5.5) is not directly solvable, we seek solutions numerically in the following way.
By first solving the evolution equation (2.32) and letting the solution settle to a steady
series of travelling waves, we obtain a train of nearly identical pulses. We then use
one pulse of the evolution solution with an appropriate domain length as the seed in
an iterative scheme based on a collocation-method two-point boundary-value problem
solver. Throughout the iterative steps, we continue to enforce conservation of volume;
see Camassa et al. (2012) for details of this method. To explore how the properties
of these solutions change as we adjust parameter values, the continuation software
AUTO07 was used to trace out solution branches (Doedel et al. 2008).

Curves of amplitude and speed as functions of the mean film thickness h̄0
for travelling wave solutions thus determined are shown in figure 15, with µ =
129 P and a = 0.5 cm. As seen in figure 15(a,b), for very thin films the peak
wave amplitude increases in an almost linear fashion while the speed increases
approximately quadratically. As the thickness of the film increases, amplitude and
speed increase until the film approaches a critical thickness, hc ≈ 0.227 cm. Past this
(bifurcation) point, the solution curves double back giving rise to a second branch of
travelling wave solutions. For decreasing film thickness, the upper portion of these
curves corresponds to solutions whose amplitude continues to increase while the
corresponding speed decreases except for a small neighbourhood of the bifurcation
point. Note that this value of hc corresponds almost exactly to the value h0 = a− R0,
for the case a= 0.5 cm, which distinguishes plug formation from wavy interface as
seen in figure 11. It is interesting to conjecture that the lack of a travelling-wave
solution branch for values of mean thickness h0 larger than the critical value hc
could signal plug formation in the actual experiment, but more work needs to be
done for an in-depth verification of this. Also left to further investigation is the issue
of stability of solutions along the upper and lower portions of the solution curve,
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corresponding, as figure 15(a,b) shows, to multiple wave forms for the same set
of experimental parameters and mean film thickness. As a preliminary test on the
stability of these solutions, we used them as initial conditions in the evolution model
(2.32). In each case the wave retained its shape as it propagated through several
domain lengths. However, while the lower branch of the solution curve seems to act
as a sort of attractor in time-dependent simulations starting from slightly perturbed
flat-interface initial conditions, the high-amplitude solutions do not seem to ever be
attained in any of the simulations we performed for the same class of initial data.
Furthermore, it remains to be seen just how sensitive these higher-amplitude solutions
are to perturbations other than those generated by numerical error.

We remark that for decreasing mean film thicknesses, solutions corresponding to
the upper branch in figure 15(a) have peak amplitudes that increase to plug-formation
levels, or h̄max → ā−. This could be viewed as a sort of time-independent route to
bridge or plug formation supported by the model. However, this is not likely to be
of physical relevance as this class of travelling waves, unlike its lower-amplitude
counterpart, does not seem to play a role in any of the evolutions out of generic
initial conditions that we simulated numerically.

It is also interesting to study properties of solutions along branches as parameters
other than mean thickness are varied. For instance, for fixed experimental parameter
values and fixed h̄0, it can be seen that wave speed is largely insensitive to the size of
the periodic domain λ̄. In fact, as this increases, the wave speed seems to approach a
constant, c∞ say, as in figure 15(c). However, while all solutions shown in figure 15(c)
contain a single wave crest within a period, it is unclear whether in the limit λ̄→
∞ this can be maintained, that is, whether true solitary wave solutions exist for the
model.

Finally, in order to better understand how the fluid mass is flowing in each of the
two forms of solution for given mean thickness h̄0, we reconstruct the stream function
from the velocity field,

u=−∂zΨ , w− c= 1
r
∂r(rΨ ), (5.7)

where in the first-order model, w=w0 + εw1, u= u0 + εu1. Integrating (5.7) gives

Ψ =
[
−1

4
+ 4εS

R2
(Rz + ε2R2Rzzz)

][
1
4r
(a2 − r2)2

]
+
[

R2

2
− 8εS(Rz + ε2R2Rzzz)

][
1
4r
{a2 − r2 + 2r2 log(r/a)}

]
. (5.8)

We then plot isolines of the stream function Ψ . Figure 16 shows streamlines for two
of these solutions which have identical mean thickness. Note that in figure 16(b) a
small region of closed streamlines near the wave crest exists, indicating the presence
of a recirculation zone, or trapped core of fluid which rolls over the rest of the
substrate layer; solutions which lie on the dashed line (blue online) in figure 16(a)
all exhibit this property. In figure 16(c) no such trapped core exists; all solutions
which lie on the solid line (red online) in figure 16(a) exhibit this property. This has
consequences on the type of transport that tracers in the fluid would experience, as
illustrated by Camassa et al. (2012).
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FIGURE 16. (Colour online) Travelling wave solutions (fluid parameters matching those
in the experiments) shown in the periodic box (0, 6.28 cm). (a) Same as 15(a); each ‘x’
corresponds to solutions with identical mean thickness. Solutions lying along the dashed
line (blue online) contain a trapped core of fluid when viewed in the travelling reference
frame; solutions lying along the solid line (red online) do not. (b,c) Streamlines plotted
in a frame of reference moving with the wave. In (b), the closed streamlines indicate the
presence of a trapped core; (c) contains only open streamlines.

6. Discussion
We have carried out an experimental and modelling investigation of gravity-driven

flows of viscous films coating the inner wall of a vertical tube. We have developed
and analysed a series of models based on long-wave asymptotics, and tested their
predictions against the experimental data we have collected. For the range of
parameters we have explored in our experiments, we have found that a first-order
model which neglects the fluid’s inertia adequately captures most of the key dynamics,
in both linear (small free-surface deformation) and nonlinear (large deformations
close to clogging) regimes. We have carried out a linear stability analysis of our
model and compared the results for both existing models and Stokes equations
for viscous-dominated flows. In particular, we have found that both the model and
experiments indicate that for any tube size there exists a film thickness large enough
to become absolutely unstable. This is in contrast with the exterior coating problem
which has received most of the attention in the literature. Our model predicts this
critical film thickness with reasonable accuracy. The numerical simulations of the
model further illustrate how the (many) nonlinear terms of the model govern the
saturation of instabilities. Further, these simulations estimate thicknesses which lead
to the formation of plugs in the tube. We have also numerically determined branches
of travelling wave solutions and followed their bifurcations. These are found to
provide an organizing principle behind the plug formation in the tube, as these
branches exhibit critical points at thicknesses corresponding to values for which both
numerical solutions and experiments show evidence of liquid plugs.

It was demonstrated by Smolka et al. (2008) that the model derived by Craster &
Matar (2006) accurately describes the flow of an exterior coating in the linear regime.
Our study shows that the interior counterpart (2.32) of a similar first-order long-wave
model derived for interior coating performs just as well in the presence of an arguably
richer set of dynamical outcomes. Thus, the model offers reliable predictions for the
additional physical phenomena for the interior case, and can therefore be used as an
effective tool for predicting the motion of interior liquid coating in the corresponding
asymptotic parametric range.

Our study establishes the building block for related problems, such as the case of
the air occupying the core region of the tube being no longer stationary but forced to
flow by an imposed pressure gradient. In the upcoming Part 2 of the current work, the
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effects of turbulent air flow on the free surface of a highly viscous film coating the
interior of a tube will be considered. The model developed in Camassa & Lee (2006)
and Camassa et al. (2012) will be updated to include additional corrective terms to
improve the accuracy in modelling the free-surface evolution.
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Appendix. Long-wave asymptotics details
The solution to (2.24)–(2.28) is

u1(r, z, t) = 1
16Bo R3r

[
2(a2 − r2)2R2

z + 4
(

a2 − r2 + 2r2 log
r
a

)
R4RzRzzz

−R
(
(a2 − r2)2 − 2

(
a2 − r2 + 2r2 log

r
a

)
R2

)
(Rzz + R2Rzzzz)

]
+ g11(r, R; a)R2

z + g12(r, R; a)Rzz,

w1(r, z, t) = 1
4 Bo

(
r2 − a2 − 2R2 log

(
r
a

))(
Rz

R2
+ Rzzz

)
+ g21(r, R; a)Rz,

p1(r, z, t) = 1
2R

(
a2 − R2 − 2R2 log

r
a

)
Rz,



(A 1)

where each function gij(r, z, t) is

g11(r, z, t) = Re
1

768r

[
−13a6 + 33a4r2 − 21a2r4 + r6 + 12a2r4 log

r
a

+ 6R2

(
−17a4 + 48a2r2 − 31r4 + 12a2r2 log

r
a
+ 32r4 log

r
a
− 12r4

×
(

log
r
a

)2 + log R
(
−6a4 + 6a2r2 − 12a2r2 log

r
a

)
−36a4 log

R
a

+ 60a2r2 log
R
a
− 30r4 log

R
a
− 24a2r2 log

r
a

log
R
a
+ 24r4 log

r
a

× log
R
a
+ 2a2 log a

(
3a2 + 2r2 + 6r2 log

R
a

)
+ 6a2r2 log

R
r
− 2a2r2

× log r
(

5+ 6 log
R
r

))
− 6R4

(
a2 − r2 + 2r2 log

r
a

)
×
(
−19− 4 log

R
a
+ 40

(
log

R
a

)2
)]

, (A 2)
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g12(r, z, t) = Re
R

768r

[
−13a6 + 33a4r2 − 21a2r4 + r6 + 12a2r4 log

r
a

− 6R2

(
a4 − 8a2r2 + 31r4 − 8a2r2 log

r
a
− 8r4 log

r
a
+ 4r4

(
log

r
a

)2

+ log R
(

2a4 − 2a2r2 + 4a2r2 log
r
a

)
+12a4 log

R
a
− 20a2r2 log

R
a

+ 10r4 log
R
a
+ 8a2r2 log

r
a

log
R
a
− 8r4 log

r
a

log
R
a
− 2a2

× log a
(

a2 + 2r2 log
R
a

)
− 2a2r2 log

R
r
+ 2a2r2 log r

(
1+ 2 log

R
r

))
− 6R4

(
a2 − r2 + 2r2 log

r
a

)(
−3− 4 log

R
a
+ 8

(
log

R
a

)2
)]
, (A 3)

g21(r, z, t) = Re
1

128

[
R
(
−11a4 + 12a2r2 − r4 − 8a2r2 log

r
a

)
+R3

(
−20(a2 − r2)− 24r2 log

r
a
+ 16r2

(
log

r
a

)2
)

+ a2R3

(
−16 log

r
a
− 8 log a log

R
a
+ 8 log r log

R
r
+ 8 log R log

r
a

)
+R3 log

R
a

(
32(r2 − a2)+ 16a2 log

r
a
− 32r2 log

r
a

)
− 12R5 log

r
a
− 16R5 log

r
a

log
R
a
+ 32R5 log

r
a

(
log

R
a

)2]
. (A 4)

The second-order axial velocity which solves (2.35), (2.37), and (2.38) is

w2(r, z, t) = 1
8R2

(
a4 − a2r2 + 3R2(r2 − a2)+ 4r2R2 log

a
r
+ 36R4 log

a
r

log
a
R

)
R2

z

+ 1
8R

(
−a4 + a2r2 + 3R2(r2 − a2)+ 4(r2 + R2)R2 log

a
r

+ 12R4 log
a
r

log
a
R

)
Rzz. (A 5)
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