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ABSTRACT

In this paper, we first derive closed-form formulas for mortality-interest dura-
tions and convexities of the prices of life insurance and annuity products with
respect to an instantaneously proportional change and an instantaneously
parallel movement, respectively, in μ ∗ (the force of mortality-interest), the
addition of μ (the force of mortality) and δ (the force of interest). We then
build several mortality-interest duration and convexity matching strategies to
determine the weights of whole life insurance and deferred whole life annu-
ity products in a portfolio and evaluate the value at risk and the hedge
effectiveness of the weighted portfolio surplus at time zero. Numerical illustra-
tions show that using the mortality-interest duration and convexity matching
strategies with respect to an instantaneously proportional change in μ ∗ can
more effectively hedge the longevity risk and interest rate risk embedded in
the deferred whole life annuity products than using the mortality-only dura-
tion and convexity matching strategies with respect to an instantaneously
proportional shift or an instantaneously constant movement in μ only.
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1. INTRODUCTION

Interest rate immunization whereby the value of a portfolio will be little
affected in response to a change in interest rates has been studied and applied
widely in the assets and liabilities management of life insurance policies for
life insurers, see, for example, Redington (1952), Fisher and Weil (1971), Shiu
(1987, 1990), and Courtois and Denuit (2007). Over the past decades, mortal-
ity rates have displayed dramatic improvement, which is reflected in increased
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life expectancies. Because life annuity contracts and pension plans often span
decades, the trend in most developed countries toward a gradual increase in life
expectancy implies that annuity providers, retirement programs, and long-term
care systems face a significant threat from this longevity. On the other hand,
life insurers face the risk of financial loss due to a sudden jump in mortality
caused by catastrophes (e.g., the 1918 Spanish flu pandemic or the 2004 Indian
Ocean earthquake and tsunami). As a result, insurers issuing life insurance and
annuity policies bear not only interest rate risk but also mortality and longevity
risks.

Following interest rate immunization, mortality rate immunization has also
aroused some attention. Mortality rate immunization creates natural hedge
opportunities for life insurers and annuity providers through a proper allo-
cation of life insurance and annuity products in a portfolio. Wang et al. (2010)
adopt the effective mortality duration to determine the weights of two life
insurance and annuity products in a portfolio. Li and Hardy (2011) and Li and
Luo (2012) define the measure so called “key q-duration,” a variation of the
effective duration, and then build a longevity hedge with q-forward contracts
under the proposed measure. Tsai and Chung (2013) derive the closed-form
formulas for mortality durations and convexities with respect to an instanta-
neously proportional shift and an instantaneously parallel movement, respec-
tively, inμ (the force of mortality). Lin and Tsai (2013, 2014) further define and
derive mortality durations and convexities with respect to an instantaneously
proportional change and an instantaneously constant movement, respectively,
in q (the one-year death probability), p (the one-year survival probability),
ln(μ), (q/p), and ln(q/p); they also propose mortality duration and convex-
ity matching strategies to determine the weights of two or three life insurance
and annuity products and achieve quite satisfactory hedge effectiveness (HE).
Wong et al. (2017) quantify the benefits of natural hedges for a range of dif-
ferent types of life insurance product designs and risk measures based on the
probability of insurer’s solvency. Luciano et al. (2017) provide natural hedging
strategies with delta and gamma hedges for life insurance and annuity busi-
nesses on a single generation or on different generations in the presence of both
longevity and interest rate risks. Levantesi and Menzietti (2018) investigate the
application of natural hedging strategies for long-term care insurers by diver-
sifying both longevity and disability risks affecting long-term care annuities.

Following the two strands of literature in interest rate immunization and
mortality rate immunization, we further develop mortality-interest duration
and convexity matching strategies for hedging mortality, longevity, and inter-
est rate risks at the same time.Wemake the contribution to the literature in two
manners. First, motivated by the linear relationship between two sequences
of μ ∗ (the force of mortality-interest), the addition of μ (the force of mor-
tality) and δ (the force of interest), we assume that μ ∗ moves approximately
linearly and then derive closed-form formulas for mortality-interest dura-
tions and convexities with respect to an instantaneously proportional change
and an instantaneously parallel movement, respectively, in μ ∗. The linear
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assumption contributes to the closed-form formulas for mortality-interest
durations and convexities, whereas most papers, for example, Wang et al.
(2010), Li and Hardy (2011), Li and Luo (2012), Luciano et al. (2017), and
Levantesi and Menzietti (2018), cannot achieve closed-form formulas for their
measures.

Second, adopting the proposed mortality-interest duration or convexity, we
can determine the unique solution to a single unknown weight of life insurance
for a portfolio to achieve a better natural hedge when considering mortality,
longevity, and interest rate risks together. More importantly, one can apply
the proposed strategies to a portfolio where a single policy (multiple policies)
from each of life insurance and annuity products is (are) issued to policyholders
of the same or different ages (ranges of ages). Moreover, the unique solution
to a single unknown weight of life insurance under most conditions is feasible
(i.e., the weight is between zero and one). Nevertheless, even if one obtains an
infeasible weight, we propose to charge risk premiums on insurance products
under the allocation of a feasible weight to achieve the same level of unexpected
extreme loss with the allocation of the infeasible weight.

In the numerical illustrations, using U.S. mortality and interest rate data,
we first computemortality-interest durations and convexities of the surpluses at
time zero for whole life insurance (WL) and deferred whole life annuity (DWA)
products with the forecasted mortality rates under the Lee–Carter model and
the predicted interest rates under the Cox–Ingersoll–Ross (CIR) model. Next,
we illustrate how to allocate a portfolio of two-policy or multipolicy WL and
annuity products. Finally, we evaluate hedging performances of the proposed
mortality-interest duration and convexity matching strategies based on some
risk measures and compared with those of mortality-only duration and convex-
ity matching strategies. We also assess hedging performances to calibrate the
robustness of the results with a range of assumptions on alternative stochas-
tic mortality and interest rate models, population basis risks (country basis,
gender basis, and age basis risks), and the payment period.

The remainder of this paper proceeds as follows. In Section 2, we define and
derive mortality-interest durations and convexities of the prices of life insur-
ance and annuity products. Section 3 introduces mortality-interest duration
and convexity matching strategies to determine the weight of a portfolio of
life insurance and annuity exposures. In Section 4, we provide numerical illus-
trations. We compare the value at risk (VaR) and the HE of the simulated
surpluses at time zero for a portfolio of two-policy or multipolicy life insurance
and annuity products based on the weights resulting from different matching
strategies. Section 5 concludes this paper.

2. MORTALITY-INTEREST DURATIONS AND CONVEXITIES

In finance, interest rate duration (convexity) measures the sensitivity (curva-
ture) of the price of a bond in response to a parallel change in interest rate.
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Mortality durations and convexities have been defined and derived with appli-
cations to natural hedge by mortality immunization in Lin and Tsai (2013,
2014). In this section, combining mortality duration (convexity) with inter-
est rate duration (convexity), we further define and derive mortality-interest
durations (convexities) of the prices of life insurance and annuity products.

Consider the price of a more general annuity product, h|äx, t: j|, the net single
premium (NSP) of one-unit h-year deferred and j-year temporary life annuity-
due issued to an insured aged x in year t at time 0,

h|äx, t: j| =
h+j−1∑
k=h

kpx, t · e− ∫ k
0 δs ds =

h+j−1∑
k=h

e− ∫ k
0 μx, t(s) ds · e− ∫ k

0 δs ds =
h+j−1∑
k=h

e− ∫ k
0 [μx, t(s)+δs] ds,

(2.1)
where kpx, t = ∏k−1

i=0 px+i, t+i for k≥ 1 is the probability that the insured aged x
in year t survives k years to age x+ k in year t+ k, px+i, t+i = e− ∫ i+1

i μx, t(s) ds for
i= 0, 1, · · · k− 1, μx, t(s)> 0 for s≥ 0 is the force of mortality for age x+ s in
year t+ s, and δs is the force of interest at time s.

We assume that both μx, t(s) and δs are piecewise constant for s ∈ [i, i+ 1),
i= 0, 1, · · · , that is, μx, t(s)= μx, t(i)= − ln (px+i, t+i) and δs = δi for s ∈ [i, i+ 1).
Then, (2.1) can be rewritten as

h|äx, t: j| =
h+j−1∑
k=h

e− ∫ k
0 [μx, t(s)+δs] ds =

h+j−1∑
k=h

e− ∑k−1
i=0 [μx, t(i)+δi ]

=
h+j−1∑
k=h

e− ∑k−1
i=0 μ ∗

x, t(i) =
h+j−1∑
k=h

kp ∗
x, t,

where kp ∗
x, t =

∏k−1
i=0 p

∗
x+i, t+i = e− ∑k−1

i=0 μ ∗
x, t(i) for k= 0, 1, · · · with 0p ∗

x, t =
e− ∑−1

i=0 μ ∗
x, t(i) = 1, p ∗

x+i, t+i = e−μ ∗
x, t(i), and μ ∗

x, t(i)= μx, t(i)+ δi for i= 0, 1, · · · .
Note that we use piecewise level forces of mortality and interest to calculate
h|äx, t: j|. Since h|äx, t: j| is a function of μ ∗

x, t, we append (μ ∗
x, t) to h|äx, t: j| and

denote it as h|äx, t: j|(μ ∗
x, t) hereafter.

Motivated by a linear relationship between two sequences of mortality rates
(see Tsai and Yang (2015)), which has been applied to modeling mortality
rates (see Tsai and Yang (2015)) and natural hedges with mortality immu-
nization (see Tsai and Chung (2013), and Lin and Tsai (2013, 2014)), we
firstly conjecture that the force of mortality along with the force of interest
could move approximately linearly, that is, μ ∗

x, t(i) could move approximately
to (1+ α)μ ∗

x, t(i)+ β for i= 0, 1, · · · . Figure 1 gives the plots of one simulated
path (regarded as the realized path) μ̃ ∗

x, t(i) against the forecasted one μ̂ ∗
x, t(i)

for the next (100− x) years, starting 2016 for ages x= 40, 50, and 60, respec-
tively, that is, μ̃ ∗

x, 2016(i) against μ̂ ∗
x, 2016(i), i= 0, · · · , (99− x), for x= 40, 50, 60

(please refer to the fourth section for the details of simulating and forecasting
μx, t(i) and δi sequences). We find that there is an obvious linear relationship
between the simulated and forecasted paths of μ ∗

x, 2016(i) for ages 40, 50, and
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x=40 x=50 x=60

(c)(b)(a)

FIGURE 1: Sample paths of μ̃ ∗
x, t(i) against μ̂ ∗

x, t(i), t= 2016 and i= 0, 1, ..., (99− x).

60. Since the force of mortality μx, 2016(i) at older ages becomes much larger
than the force of interest δi (i.e., μx, 2016(i) dominates δi at lager values of x+ i)
and there is a linear relationship between the simulated and forecasted paths
of μx, 2016(i) with evidence support from empirical data, μ ∗

x, t(i) (an addition of
δi to μx, t(i)) still moves linearly over time. Therefore, we think that matching
mortality-interest durations or convexities with respect to an instantaneously
proportional change or an instantaneously constant movement in μ ∗

x, t(i) is
appropriate for natural hedge of WL and whole life annuity products.

When μ ∗
x, t(i) has a proportional change or a constant movement of size γ to

(1+ γ )μ ∗
x, t(i) orμ ∗

x, t(i)+ γ , the change in the h|äx, t: j|(μ ∗
x, t) and the correspond-

ing mortality-interest duration and convexity of h|äx, t: j| with respect to an
instantaneously proportional change or an instantaneously parallel movement
in μ ∗

x, t are given in Proposition 1 (see Appendix A for the proof).

Proposition 1. The change in h|äx, t: j|(μ ∗
x, t), in response to a proportional change

(λ = p) or a constant movement (λ = c) of size γ in μ ∗
x, t, is given by

�λ
h|äx, t: j|(μ ∗

x, t)=D λ[ h|äx, t: j|(μ ∗
x, t)] · γ +C λ[ h|äx, t: j|(μ ∗

x, t)] ·
γ 2

2
+ · · · .

(a) The mortality-interest duration (Dp) and convexity (C p) of h|äx, t: j|(μ ∗
x, t)

with respect to an instantaneously proportional change in μ ∗
x, t are given by

Dp[ h|äx, t: j|(μ ∗
x, t)]=

h+j−1∑
k=h

[ ln (kp ∗
x, t)] · kp ∗

x, t

and

C p[ h|äx, t: j|(μ ∗
x, t)]=

h+j−1∑
k=h

[ ln (kp ∗
x, t)]

2 · kp ∗
x, t.

(b) Themortality-interest duration (Dc) and convexity (C c) of h|äx, t: j|(μ ∗
x, t)with

respect to an instantaneously constant movement in μ ∗
x, t are given by

Dc[ h|äx, t: j|(μ ∗
x, t)]=

h+j−1∑
k=h

(−k) · kp ∗
x, t and C

c[ h|äx, t: j|(μ ∗
x, t)]=

h+j−1∑
k=h

k2 · kp ∗
x, t.
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Similarly, the corresponding mortality duration and convexity of h|äx, t: j|
with respect to an instantaneously proportional shift or an instantaneously par-
allel movement in μx, t only (excluding δ) is given in Corollary 1 (the proof is
similar to that of Proposition 1).

Corollary 1. The change in h|äx, t: j|(μx, t), in response to a proportional change
(λ = p) or a constant movement (λ = c) of size γ in μx, t, is given by

�λ
h|äx, t: j|(μx, t)=D λ[ h|äx, t: j|(μx, t)] · γ +C λ[ h|äx, t: j|(μx, t)] · γ 2

2
+ · · · .

(a) The mortality duration (Dp) and convexity (C p) of h|äx, t: j|(μx, t) with respect
to an instantaneously proportional change in μx, t are given as

Dp[ h|äx, t: j|(μx, t)]=
h+j−1∑
k=h

[ ln (kpx, t)] · kpx, t · e− ∑k−1
i=0 δi ,

and

C p[ h|äx, t: j|(μx, t)]=
h+j−1∑
k=h

[ ln (kpx, t)]2 · kpx, t · e− ∑k−1
i=0 δi .

(b) The mortality duration (Dc) and convexity (C c) of h|äx, t: j|(μx, t) with respect
to an instantaneously constant movement in μx, t are given by

Dc[ h|äx, t: j|(μx, t)]=
h+j−1∑
k=h

(−k) · kpx, t · e− ∑k−1
i=0 δi ,

and

C c[ h|äx, t: j|(μx, t)]=
h+j−1∑
k=h

k2 · kpx, t · e− ∑k−1
i=0 δi .

Note that h|äx, t: j| turns out to nEx, t (the NSP of one-unit n-year pure
endowment with (h, j)= (n, 1)), äx,t: n| (the NSP of one-unit n-year tempo-
rary life annuity-due with (h, j)= (0, n)), äx, t (the NSP of one-unit whole
life annuity-due with (h, j)= (0, ∞)), or n|äx, t (the NSP of one-unit n-year
DWA-due with (h, j)= (n, ∞)). Therefore, the mortality(-interest) duration
and convexity for typical annuity products can be obtained by Proposition 1
and Corollary 1.

Proposition 2 provides the mortality-interest duration and convexity for life
insurance products, with the proof given in Appendix B.

https://doi.org/10.1017/asb.2019.38 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.38


IMMUNIZATION STRATEGIES OF MORTALITY AND INTEREST RATES 161

Proposition 2. The mortality-interest duration and convexity of Ax, t(μ ′
x, t, μ ∗

x, t)
with respect to an instantaneously proportional change or an instantaneously
constant movement in both μ ′

x, t and μ ∗
x, t are given by

Bλ[Ax, t(μ ′
x, t, μ ∗

x, t)]= e−δ0 ·Bλ[äx, t(μ ′
x, t)]−Bλ[äx, t(μ ∗

x, t)], (2.2)

where B=D (duration), C (convexity); λ = p (proportional), c (constant);
Bλ[äx, t(μ ∗

x, t)] are given in Proposition 1 (a) and (b) with (h, j)= (0, ∞);

(a) Dp[äx, t(μ ′
x, t)]=

∑∞
k=0 [ ln (kp

′
x, t)] · kp ′

x, t;
(b) C p[äx, t(μ ′

x, t)]=
∑∞

k=0 [ ln (kp
′
x, t)]

2 · kp ′
x, t;

(c) Dc[äx, t(μ ′
x, t)]=

∑∞
k=0 (−k) · kp ′

x, t; and
(d) C c[äx, t(μ ′

x, t)]=
∑∞

k=0 k
2 · kp ′

x, t;

kp ′
x, t =

∏k−1
i=0 p

′
x+i, t+1 = e− ∑k−1

i=0 μ ′
x, t(i) for k= 0, 1, · · · with 0p ′

x, t = e− ∑−1
i=0 μ ′

x, t(i) = 1;
μ ′
x, t(i)= μx, t(i)+ δi+1; and p ′

x+i, t+i = e−μ ′
x, t(i) for i= 0, 1, · · · , k− 1.

Similar to (2.2), we can deriveBλ[A1
x, t: n|(μ

′
x, t, μ ∗

x, t)]= e−δ0 ·Bλ[äx, t: n|(μ ′
x, t)]−

Bλ[äx, t: n+1|(μ ∗
x, t)].

Corollary 2 gives the mortality duration and convexity of Ax, t(μx, t) with
respect to an instantaneously proportional shift or an instantaneously parallel
movement in μx, t only (excluding δ), with the proof given in Appendix C.

Corollary 2.

(a) Dp[Ax, t(μx, t)]= ∑∞
k=0 [ ln (kpx, t)] · kpx, t · e− ∑k

i=0 δi −Dp[äx, t(μx, t)];
(b) C p[Ax, t(μx, t)]= ∑∞

k=0 [ ln (kpx, t)]
2 · kpx, t · e− ∑k

i=0 δi −C p[äx, t(μx, t)];
(c) Dc[Ax, t(μx, t)]= ∑∞

k=0 (−k) · kpx, t · e− ∑k
i=0 δi −Dc[äx, t(μx, t)]; and

(d) C c[Ax, t(μx, t)]= ∑∞
k=0 k

2 · kpx, t · e− ∑k
i=0 δi −C c[äx, t(μx, t)].

The following corollary provides the relationships between the mortality
duration (convexity) and mortality-interest duration (convexity) with respect
to an instantaneously parallel movement, with the proof given in Appendix D.

Corollary 3.

(a) Bc[ h|äx, t: j|(μx, t)]=Bc[ h|äx, t: j|(μ ∗
x, t)],

(b) Bc[Ax, t(μx, t)]=Bc[Ax, t(μ ′
x, t, μ ∗

x, t)], where B=D,C.

To sum up, the first contribution of this paper to the literature is that the lin-
ear assumption of μ ∗ leads to the closed-form formulas for mortality-interest
durations and convexities of the NSPs of life insurance and annuity products
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with respect to an instantaneously proportional change and an instantaneously
parallel movement, respectively, in μ ∗ and μ ′; see Propositions 1 and 2.

3. NATURAL HEDGES WITH DURATION AND CONVEXITY MATCHING
STRATEGIES

In this section, we study mortality-interest immunization strategies for two
portfolios of life insurance and annuity products. The first portfolio PWA

1 con-
sists of a one-unit discretem-paymentWL policy and a one-unit n-payment and
n-year DWA-due policy issued to policyholders aged xl and xa in year t with
the net level premiums, PWL

xl , t:m
(=Axl , t/ äxl , t:m|) and PDA

xa, t: n (= n|äxa, t/ äxa, t: n|),
and the surplus (negative reserve) at time zero,

0SWL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)=PWL
xl , t:m

· äxl , t:m|(μ ∗
xl , t

)−Axl , t(μ
′
xl , t

,μ ∗
xl , t

)= 0

and

0SDA
xa, t: n(μ

∗
xa, t)=PDA

xa, t: n · äxa, t: n|(μ ∗
xa, t)− n|äxa, t(μ ∗

xa, t)= 0,

respectively. Note that (μ ∗
x, t) (and (μ ′

x, t, μ ∗
x, t)) is appended to äx, t:m|, Ax, t,

äx, t: n|, n|äx, t, 0SWL
x, t:m and 0SDA

x, t: n to indicate that these quantities will fluctuate if
there is a change in μ ∗

x, t (and μ ′
x, t), whereas P

WL
x, t:m and PDA

x, t: n do not involve
(μ ∗

x, t) or (μ ′
x, t,μ

∗
x, t) since the premiums are predetermined and cannot be

changed once the policies are issued. Moreover, we use the projected/expected
μ̂ ∗
x, t (and μ̂ ′

x, t) to calculate the premiums and use the simulated/realized μ̃ ∗
x, t

(and μ̃ ′
x, t) to calculate the surpluses.

The second portfolio PWA
2 is a mixture of a life portfolio and an annu-

ity portfolio. The life portfolio consists of one-unit discrete m-payment WL
policies issued to policyholders for a set of ages xl in year t, and the annu-
ity portfolio is composed of one-unit n-payment and n-year DWA-due policies
issued to policyholders for a set of ages xa in year t. Specifically, the surpluses
of the life and annuity portfolios at time zero are

0SWL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)=
∑
x∈xl

pWL
x · 0SWL

x, t:m(μ
′
x, t, μ ∗

x, t)= 0,

and

0SDA
xa, t: n

(μ ∗
xa, t

)=
∑
x∈xa

pDAx · 0SDA
x, t: n(μ

∗
x, t)= 0,

where pWL
x and pDAx are the percentages or numbers of life and annuity

policyholders aged x, respectively.
The corresponding weights of life insurance and annuity policies of each

portfolio are denoted by wWL and wDA (= 1−wWL), respectively. The follow-
ing theorem, with the proof given in Appendix E, gives the weight of the
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life insurance of the portfolio PWA
i , which is determined by Bλ(μ ′, μ ∗) and

called the mortality-interest duration (B=D) or convexity (B=C) matching
strategy with respect to an instantaneously proportional change (λ = p) or an
instantaneously constant movement (λ = c) in each of μ ′

x, t and μ ∗
x, t.

Theorem 1. Adopting the mortality-interest duration (B=D) or convexity
(B=C) matching strategy, the weight of life insurance for the portfolio PWA

i
is given by

(a) for i= 1,

wWL

[
Bλ(μ ′, μ ∗)

] = Bλ
[
0SDA

xa, t: n(μ
∗
xa, t)

]
Bλ

[
0SDA

xa, t: n(μ
∗
xa, t)

] −Bλ
[
0SWL

xl , t:m(μ
′
xl , t, μ ∗

xl , t)
] , (3.1)

where

Bλ
[
0SWL

xl , t:m
(μ ′

xl , t
, μ ∗

xl , t
)
] =PWL

xl , t:m
·Bλ

[
äxl , t:m|(μ ∗

xl , t
)
] −Bλ

[
Axl , t(μ

′
xl , t

,μ ∗
xl , t

)
]
,

and

Bλ
[
0SDA

xa, t: n(μ
∗
xa, t)

] =PDA
xa, t: n ·Bλ

[
äxa, t: n|(μ

∗
xa, t)

] −Bλ
[
n|äxa, t(μ ∗

xa, t)
]
;

(b) for i= 2,

wWL

[
Bλ(μ ′, μ ∗)

] =
Bλ

[
0SDA

xa, t: n
(μ ∗

xa, t
)
]

Bλ
[
0SDA

xa, t: n(μ
∗
xa, t)

] −Bλ
[
0SWL

xl , t:m(μ
′
xl , t, μ ∗

xl , t)
] , (3.2)

where

Bλ
[

0SWL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)
]
=

∑
x∈xl

pWL
x ·Bλ

[
0SWL

x, t:m(μ
′
x, t, μ ∗

x, t)
]
,

and

Bλ
[

0SDA
xa, t: n

(μ ∗
xa, t

)
]
=

∑
x∈xa

pDAx ·Bλ
[
0SDA

x, t: n(μ
∗
x, t)

]
.

Similarly, Corollary 4 provides the weight of the life insurance of the
portfolio PWA

i , which is determined by Bλ(μ) and called the mortality dura-
tion (B=D) or convexity (B=C) matching strategy with respect to an
instantaneously proportional change (λ = p) or an instantaneously constant
movement (λ = c) in μx, t only. The proof of Corollary 4 is similar to that in
Theorem 1.

Corollary 4. Adopting the mortality duration (B=D) or convexity (B=C)
matching strategy, the weight of life insurance for the portfolio PWA

i is given by
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(a) for i= 1,

wWL

[
Bλ(μ)

] = Bλ
[
0SDA

xa, t: n(μxa, t)
]

Bλ
[
0SDA

xa, t: n(μxa, t)
] −Bλ

[
0SWL

xl , t:m(μxl , t)
] , (3.3)

where

Bλ
[
0SWL

xl , t:m
(μxl , t)

] =PWL
xl , t:m

·Bλ
[
äxl , t:m|(μxl , t)

] −Bλ
[
Axl , t(μxl , t)

]
,

and

Bλ
[
0SDA

xa, t: n(μxa, t)
] =PDA

xa, t: n ·Bλ
[
äxa, t: n|(μxa, t)

] −Bλ
[
n|äxa, t(μxa, t)

]
;

(b) for i= 2,

wWL

[
Bλ(μ)

] =
Bλ

[
0SDA

xa, t: n
(μxa, t)

]
Bλ

[
0SDA

xa, t: n(μxa, t)
] −Bλ

[
0SWL

xl , t:m(μxl , t)
] , (3.4)

where

Bλ
[

0SWL
xl , t:m

(μxl , t)
]
=

∑
x∈xl

pWL
x ·Bλ

[
0SWL

x, t:m(μx, t)
]
,

and

Bλ
[

0SDA
xa, t: n

(μxa, t)
]
=

∑
x∈xa

pDAx ·Bλ
[
0SDA

x, t: n(μx, t)
]
.

The second contribution of this paper is that adopting the proposed
mortality-interest duration or convexity matching strategy, we can determine
the unique solution to a single unknown weight of life insurance for each of the
two portfolios above to achieve a better natural hedge when considering mor-
tality, longevity, and interest rate risks together, and the unique solution to a
single unknown weight under most cases is feasible. In Luciano et al. (2017),
there are at least two unknown quantities of life insurance products or zero
coupon bonds solved by at least two equations when considering longevity
and interest rate risks together; moreover, one could obtain multiple solu-
tions to these unknown quantities. Most of the solutions could be negative,
which is not easy to implement in product allocations for the life insurance
industry since short selling is impractical in life insurance products. One can
apply Theorem 1(a) to a portfolio where there are a single life insurance pol-
icy and a single annuity policy for two issue ages xl and xa. One can also
apply Theorem 1(b) to a mixed portfolio where there are two identical multi-
policy life insurance and annuity products for two sets of issue ages, xl and xa.
When the life insurance and annuity products are replaced with other identical
or mixed kinds of life insurance and annuity products, Theorem 1 still applies.
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Similarly, considering longevity and mortality risks but ignoring interest
rate risk, one can apply Corollary 4(a) to a portfolio of a single life insur-
ance policy and a single annuity policy for two issue ages xl and xa and apply
Corollary 4(b) to a mixed portfolio of multiple identical life insurance policies
andmultiple identical annuity products for two issue age sets xl and xa. Finally,
the weights based on the mortality and mortality-interest duration/convexity
matching strategies with respect to an instantaneously constant movement are
equal. That is, for Theorem 1 and Corollary 4,

wWL [Bc(μ)]=wWL

[
Bc(μ ′, μ ∗)

]
(3.5)

for B=D,C. For the case of portfolio PWA
1 , we have, by Corollary 3,

Bc
[
0SWL

xl , t:m
(μxl , t)

] = PWL
xl , t:m

·Bc
[
äxl , t:m|(μ ∗

xl , t
)
] −Bc

[
Axl , t(μ

′
xl , t

,μ ∗
xl , t

)
]

= Bc
[
0SWL

xl , t:m
(μ ′

xl , t
, μ ∗

xl , t
)
]

(3.6)

and

Bc
[
0SDA

xa, t: n(μxa, t)
] =PDA

xa, t: n ·Bc
[
äxa, t: n|(μ

∗
xa, t)

] −Bc
[
n|äxa, t(μ ∗

xa, t)
]

=Bc
[
0SDA

xa, t: n(μ
∗
xa, t)

]
(3.7)

which imply that (3.5) holds; similarly, (3.5) applies to the case of portfolio
PWA

2 .

4. NUMERICAL ILLUSTRATION AND ANALYSIS

In this section, we first compute mortality(-interest) durations and convexities
for the WL and the DWA products, respectively, with the forecasted mortal-
ity rates under the Lee and Carter (1992) mortality model and the forecasted
interest rates under the CIR model. Then, we obtain the weights for a portfo-
lio of two single-policy or multipolicy life and annuity products and evaluate
their performances of hedging mortality, longevity, and interest rate risks with
simulations.

The mortality data for both genders of the U.S., 56 yearly observations of
the age-specific death numbers and the corresponding population sizes exposed
to the risk of death from 1960 to 2015, are taken from the Human Mortality
Database (www.mortality.org). We estimate the parameters of the Lee–Carter
model with the data for the age–year window [25, 99]× [1960, 2015] and fore-
cast the mortality rates for [25, 99]× [2016, 2090]. We also set q100, t = 1. To
consider mortality improvement and deterioration, we take cohort mortal-
ity sequences and forecast kpx, 2016 (the k-year survival probability for age x
in year 2016) for the calculations of durations and convexities by kp̂x, 2016 =∏k−1

i=0 p̂x+i, 2016+i, where p̂ denotes the predicted one-year survival probability.
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The well-known CIR (1985) model assumes that the interest rate it at time
t follows the stochastic process as

d it = a · (b− it) d t+ c · √it dz, (4.1)

where a, b, and c are constants and dz follows a standard Brownian motion.
Then, we calibrate the parameters by using the yearly interest rates of one-year
U.S. Treasury securities over the period 1976–2015 available from the website
(http://federalreserve.gov/default.htm) of Board of Governors of the Federal
Reserve System. The parameters are estimated as â= 0.0332, b̂= 0.0117, and
ĉ= 0.0633. Denote ît the forecasted one-year interest rate for the interval
[t, t+ 1] with (4.1), and B̂0(T)= ∏T−1

t=0 [1/(1+ ît)] the forecasted present value
of $1 payable at time T , which is used to discount the cash flows at time T .

4.1. Product matching

In this subsection, firstly, we compute the mortality(-interest) durations and
convexities of the surpluses at time zero for the one-unit discrete 20-payment
WL issued to age x and for the one-unit (65–x)-payment (65–x)-year DWA-
due also issued to the same age x, with the forecasted survival probabilities
( kp̂x, 2016) and the predicted interest rates (ît). People who purchase annuities
may tend to live longer than average, a typical “adverse selection” problem
(see, e.g., Warshawsky, 1988; Mitchell et al., 1999; Finkelstein and Poterba,
2002); in practice, an annuitant population actually displays a longer life
expectancy than a general population. Since we do not have two different
and recent mortality tables for life insurance and life annuity, we assume a
male (female) mortality table for life insurance (life annuity) for numerical
illustrations.

Table 1 displays the durations and convexities of the surpluses at time zero
for the one-unit discrete 20-paymentWL and the one-unit (65–x)-payment (65–
x)-year DWA-due based on the Bλ(μ) and Bλ(μ ′, μ ∗) matching strategies and
the corresponding weights of WL for age x= 40, 50, and 60. Observations are
summarized as follows.

1. The absolute values of the durations and convexities with respect to an
instantaneously constant movement are much larger than those with respect
to an instantaneously proportional shift, that is, |Bc[ 0SWL

x, t:m]| > |Bp[ 0SWL
x, t:m]|

and |Bc[ 0SDA
x, t: n]| > |Bp[ 0SDA

x, t: n]|, implying that the surpluses at time zero for
WL and DWA with respect to an instantaneously constant movement in
mortality curve or mortality-interest curve are much more sensitive than
those with respect to an instantaneously proportional shift.

2. The weight of WL, wWL, determined by (3.1) or (3.3), implies that wWL ∈
(0, 1) if and only if the signs of Bλ[ 0SWL

x, t:m] and Bλ[ 0SDA
x, t: n] are oppo-

site. Observing from Table 1, only one pair, Cp[ 0SWL
x, t:m(μ

′
x, t, μ ∗

x, t)] and
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TABLE 1

DURATIONS AND CONVEXITIES OF THE SURPLUSES AND WEIGHTS OF WHOLE LIFE INSURANCE.

Age Dc(μ) Cc(μ)
x Dp(μ) Dc(μ ′, μ ∗) Cp(μ) Cc(μ ′, μ ∗) Dp(μ ′, μ ∗) Cp(μ ′, μ ∗)

Panel A: Bλ[ 0SWL
x, t:m]

40 −0.0902 −13.3298 0.0570 302.3481 −0.0302 −0.0229
50 −0.1170 −11.1584 0.0647 195.9155 −0.0828 0.0034
60 −0.1766 −9.5080 0.0862 134.1131 −0.1675 0.0501

Panel B: Bλ[ 0SDA
x, t: n]

40 5.7498 359.0786 −5.5011 −17336.7479 8.5186 −10.3180
50 6.2719 298.0299 −6.2552 −10484.6346 8.3137 −9.7443
60 6.7201 235.4050 −6.7709 −5217.0401 8.0775 −9.0010

Panel C: wWL

40 0.9841 0.9696 0.9877 0.9859 0.9966 1.0024
50 0.9812 0.9698 0.9879 0.9853 0.9905 0.9996
60 0.9738 0.9680 0.9854 0.9806 0.9801 0.9939

Cp[ 0SDA
x, t: n(μ

∗
x, t)] for age x= 40, has the same sign, which produces a weight

wWL larger than 1 as expected.
3. From (3.5), both Bλ(μ) and Bλ(μ ′, μ ∗) matching strategies yield the equal

weight wWL for B=D,C and λ = c. For λ = p, Panel C of Table 1 shows
that Bp(μ ′, μ ∗) leads to a heavier weight wWL than Bp(μ), that is, when a
matching strategy Bp is adopted to hedge mortality and longevity risks of a
portfolio, a larger weight should be placed on the WL with the intention of
hedging the additional interest rate risk. Moreover, among all of the mor-
tality and mortality-interest duration and convexity matching strategies,
Cp(μ ′, μ ∗), the mortality-interest convexity matching strategy with respect
to an instantaneously proportional change produces the largest weight wWL.

Next, we simulate 10,000 forecasted cohort mortality paths and interest rate
paths, respectively. Each cohort mortality path is used to calculate the simu-
lated k-year survival probability kp̃x, 2016 = ∏k−1

i=0 p̃x+i, 2016+i, where p̃x+i, 2016+i =
exp (−m̃x+i, 2016+i) and m̃ denotes the simulated central death rate under the
stochastic Lee–Carter model. Denote ĩt the simulated one-year interest rate at
time t with (4.1) and B̃0(T)= ∏T−1

t=0 [1/(1+ ĩt)] the simulated present value of
$1 payable at time T . In finance, α-VaR (value at risk) of the surplus is the
negative α-percentile (the lower the α-VaR value, the smaller the unexpected
loss amount). Then, we evaluate the hedging performance of these matching
strategies by comparing the 5%-VaR values of the surpluses at time zero for
a matched portfolio, shown in Table 2. We find that a heavier weight of WL
results in a lower VaR value for each fixed age x. We infer that selling whole
life annuity policies exposes life insurers to higher longevity risk and interest
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TABLE 2

5% VAR VALUES OF THE WEIGHTED SURPLUSES FOR A MATCHED PORTFOLIO.

Dc(μ) Cc(μ)
Age x Dp(μ) Dc(μ ′, μ ∗) Cp(μ) Cc(μ ′, μ ∗) Dp(μ ′, μ ∗) Cp(μ ′, μ ∗)

40 0.1559 0.1853 0.1486 0.1524 0.1306 0.1190
50 0.1177 0.1343 0.1079 0.1119 0.1040 0.0905
60 0.0822 0.0878 0.0708 0.0754 0.0758 0.0627

rate risk, so selling more WL policies can naturally hedge longevity and inter-
est rate risks more efficiently. Consequently, we can conclude that matching
the mortality-interest convexity (duration) with respect to an instantaneously
proportional change, which produces the heaviest (the second heaviest) weight
of the WL, can lead to an optimal allocation of WL and annuity products
and then reduce more efficiently the unexpected extreme losses from mortality,
longevity, and interest rate risks.

To further analyze the hedge efficiency, we define HE in terms of variance
reduction ratio (see Li andHardy, 2011; Li and Luo, 2012; Lin and Tsai (2014))
as follows:

HE(σ 2)= σ 2(S)− σ 2(S∗)
σ 2(S)

= 1− σ 2(S∗)
σ 2(S)

,

where S and S∗ represent the simulated surpluses for a single product (either
WL or DWA in this paper) and the matched insurance portfolio, respectively.
Since the natural hedge is a hedging vehicle against both mortality risk and
longevity risk at the same time, the HE canmeasure the effectiveness of hedging
mortality (longevity) risk along with interest rate risk when the single product
is the WL (the DWA) product. Table 3 exhibits summary statistics as well as
the HE values of the matched portfolio surpluses at time zero. Observations
are summarized as follows.

1. All of the matching strategies result in positive means (gains) of the
portfolio surpluses at time zero. Matching the mortality-interest convex-
ity Cp(μ ′, μ ∗) with respect to an instantaneously proportional change
contributes to the smallest standard deviation and the lowest positive mean.

2. All of the matching strategies achieve at least 55.38% for the probability of
gain (positive surplus), but which strategy produces the highest probability
of gain cannot be concluded.

3. All of the HE values for longevity risk are very close to one (at least 99.36%);
thus, all of the matching strategies are very effective in hedging longevity
risk of the DWA product. The mortality-interest convexity Cp(μ ′, μ ∗)
matching strategy with respect to an instantaneously proportional change
produces the highest HE value for longevity risk.
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TABLE 3

SUMMARY STATISTICS OF THE WEIGHTED SURPLUSES FOR THE MATCHED PORTFOLIOS.

Age Dc(μ) Cc(μ)
x Dp(μ) Dc(μ ′, μ ∗) Cp(μ) Cc(μ ′, μ ∗) Dp(μ ′, μ ∗) Cp(μ ′, μ ∗)

Panel A: Mean

40 0.0938 0.1133 0.0890 0.0915 0.0771 0.0694
50 0.0806 0.0939 0.0729 0.0759 0.0699 0.0592
60 0.0626 0.0674 0.0529 0.0569 0.0573 0.0458

Panel B: Standard deviation

40 0.2134 0.2573 0.2027 0.2081 0.1759 0.1587
50 0.1825 0.2114 0.1658 0.1723 0.1593 0.1366
60 0.1402 0.1503 0.1201 0.1283 0.1291 0.1055

Panel C: Probability of gain (%)

40 57.57 57.50 57.60 57.60 57.86 57.88
50 56.41 56.46 56.46 56.49 56.35 56.33
60 56.38 56.65 55.95 56.19 56.23 55.38

Panel D: HE for mortality risk (%)

40 −65.75 −141.02 −49.50 −57.65 −12.57 8.37
50 −80.97 −142.73 −49.46 −61.27 −37.89 −1.37
60 −115.95 −148.40 −58.49 −80.91 −83.26 −22.21

Panel E: HE for longevity risk (%)

40 99.56 99.36 99.60 99.58 99.70 99.76
50 99.55 99.40 99.63 99.60 99.66 99.75
60 99.47 99.40 99.61 99.56 99.55 99.70

4. The HE values for mortality risk are all negative except for one strategy
Cp(μ ′, μ ∗) and age 40 which has wWL > 1, and the highest HEs for mor-
tality risk come from Cp(μ ′, μ ∗). The reason of negative HE values for
mortality risk is that the simulated distribution of the WL with a death ben-
efit of $1 is much narrower than that of the DWA with annual survival
benefits of $1 so that the weighted portfolio surplus has a wider distribution
than the WL.

One may ask how to resolve the impossible phenomenon in the insurance
industry that the weight wWL equals 1.0024 (or the weight wDA equals −0.0024)
for age 40 with a 5%-VaR value of 0.1190 from the Cp(μ ′, μ ∗) matching
strategy, which would imply a short selling of the DWA policy by 0.24%
in the capital market. To make the weight equal to a feasible value such as
wWL = 0.9966 from the Dp(μ ′, μ ∗) matching strategy and keep the same 5%-
VaR value of 0.1190 from the Cp(μ ′, μ ∗) matching strategy, we add a risk
margin or loading rate to the net level premiums of the DWA and the DW.
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TABLE 4

ESTIMATES OF LOADING RATES AND MONEY’S WORTH VALUES OF ANNUITY.

θ̂l θ̂a Money’s worth value of annuity (1/(1+ θ̂a))

0.00% 20.40% 0.8305
1.00% 7.40% 0.9311

More specifically, we add loading rates θl to the DW and θa to the DWA in the
weighted surplus at time 0 as follows:

� 0SWA(μ̃ ′, μ̃ ∗)= 0.9966 · [(1+ θl)PWL
x, t:m · äx, t:m|(μ̃ ∗

x, t)−Ax, t(μ̃ ′
x, t, μ̃

∗
x, t)]

+ 0.0034 · [(1+ θa)PDA
x, t: n · äx, t: n|(μ̃ ∗

x, t)− n|äx, t(μ̃ ∗
x, t)].

Then, we obtain estimates of θl and θa, shown in Table 4, by setting 0.1190
for the 5%-VaR value of the simulated � 0SWA(μ̃ ′, μ̃ ∗). When θ̂l = 0, then θ̂a =
20.40%; when θ̂l = 1%, then θ̂a = 7.40%. The opposite direction of the changes
in θ̂l and θ̂a is reasonable since an insurer gets more risk premiums from the
position of WL and then less risk premiums from the position of DWA to
reach the same VaR value.

However, a question arises about whether a high loading rate of 20.40%
for annuity policy is reasonable. In practice, we actually see that an insurer
usually charges policyholders of annuity products a high loading rate since
some studies (see, e.g., Warshawsky (1988); Mitchell et al. (1999); Finkelstein
and Poterba, 2002; Einav et al., 2010) have shown that buying annuities may
cost as much as 20% of an annuitant’s wealth by examining money’s worth
values – how much a person gets when he or she pays $1 for the premium of
annuity. In this case, the policyholder pays the premium [(1+ θ̂a) ·PDA

x, t: n · äx, t: n|]
in exchange for his/her annuity benefit of n|äx, t, which leads to the money’s
worth value of annuity = n|äx, t/[(1+ θ̂a) ·PDA

x, t: n · äx, t: n|]= 1/(1+ θ̂a), reported
in Table 4. We can see that the costs of purchasing annuity policies are
16.95% (= 1− 0.8305) and 6.89% (= 1− 0.9311) under θ̂a = 20.40% and 7.40%,
respectively, both of which fall in a reasonable range.

We plot the distributions of the simulated weighted surpluses at time zero
for age 40 based on the mortality-interest duration and convexity matching
strategies, respectively, with respect to an instantaneously proportional change
along with the one with loading rates of θ̂l = 0 and θ̂a = 20.40% in Figure 2.
We observe that the loading rate can reshape the left tail of the distribution
for the Dp(μ ′, μ ∗) matching strategy or shift the distribution for Dp(μ ′, μ ∗)
to the right to achieve a similar heaviness of the left tail for Cp(μ ′, μ ∗). We
also plot in Figure 3(a) the distributions of the simulated surpluses at time zero
based on Dc(μ) (or Dc(μ ′, μ ∗), the worst) and Dp(μ ′, μ ∗) with loading rates
of θ̂l = 0 and θ̂a = 20.40% (the best) and those for two single products (WL
and DWA), all for age 40. The distributions are almost skewed to the right.
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C p(μ , μ )Dp(μ , μ ) Dp(μ , μ ) with θ

FIGURE 2: Distributions of the surpluses with and without the loading rates.

Dp(μ , μ ) with θDc(μ)/ Dc(μ , μ )WL DWA

Cp(μ , μ )Dc(μ)/ Dc(μ , μ )WL DWA

product matching

a mixture of two portfolios

(a)

(b)

FIGURE 3: Distributions of the simulated surpluses for two single products and their weighted portfolios.
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TABLE 5

px, gender, PERCENTAGES (%) OF AGE, AND GENDER FOR TWO PORTFOLIOS.

Age x 35 40 45 50 55 60

WL (Male) 8.39 7.76 8.27 8.44 8.64 7.76
DWA (Female) 8.37 7.85 8.40 8.68 9.06 8.37

The distributions for the WL and annuity products spread to both positive and
negative territories; the distribution for the latter is much wider than that for
the former. Thematching strategies can reduce the risk (variance) of the surplus
for the single whole life annuity product and, more importantly, also remove
the downside risk of loss (the probability of large loss) due to longevity risk
from the single whole life annuity product. The distribution for Dp(μ ′, μ ∗)
with loading is more centered around [−0.47, 0.65] than that for Dc(μ) (or
Dc(μ ′, μ ∗)), which implies more efficient performances of hedging longevity,
mortality, and interest rate risks.

4.2. A mixture of two portfolios

In the preceding subsection, six mortality and mortality-interest duration and
convexity matching strategies are applied to a portfolio of DW and DWA for
a single and equal age. However, the one-age by one-age product matching
is not practical in the real world. In this subsection, we show that the match-
ing strategies based on the proposed mortality-interest duration or convexity
can be applied to determine the weight for a mixed portfolio where there are
two identical multipolicy life insurance and annuity products for a same set of
issue ages.

We build two hypothetical portfolios and want to mix the two portfolios to
achieve the best natural hedge: one is a life insurance portfolio consisting of the
one-unit discrete 20-paymentWL policies for six representative ages x= 35, 40,
45, 50, 55, and 60 (i.e., xl = {35, 40, 45, 50, 55, 60}) for simplicity; the other is an
annuity portfolio including the one-unit discrete (65−x)-payment (65−x)-year
DWA-due policies for the same six ages (xa = xl). We mimic the demographic
structure of the U.S. to build the two portfolios. That is, we distribute totally
10,000 policyholders to the two portfolios with the percentages of policyholders
for each age and each gender shown in Table 5. The life insurance portfolio
and the annuity portfolio use the male and female percentages, respectively.
The percentages for the six ages and each gender are computed by the ratios of
the six population sizes for ages 33–37, 38–42, 43–47, 48–52, 53–57, and 58–62
of each gender to the total population size for ages 33–62 of both genders using
the U.S. data in 2015 from the Human Mortality Database.

Then, six mortality and mortality-interest duration and convexity matching
strategies can be adopted to calculate the weight of the whole life portfolio in

https://doi.org/10.1017/asb.2019.38 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.38


IMMUNIZATION STRATEGIES OF MORTALITY AND INTEREST RATES 173

a mixture of WL portfolio and annuity portfolio by applying (3.2) and (3.4).
Table 6 presents the weights wWL and summary statistics for two single-product
portfolios and six matched portfolios. The observations that are similar to the
case of one-age by one-age matching can be summarized again as follows.

1. The descending order of value in matching strategy, Cp(μ ′, μ ∗),
Dp(μ ′, μ ∗), Cp(μ), Cc(μ) (or Cc(μ ′, μ ∗)), Dp(μ), and Dc(μ) (or
Dc(μ ′, μ ∗)), applies to the wWL, HEM (HE for mortality risk), and HEL

(HE for longevity risk), and its reversed order applies to the mean, standard
deviation, and 5%-VaR. The larger the weight wWL, the bigger theHEM and
HEL values, and the smaller the mean, standard deviation, and 5%-VaR.
Among the six matching strategies, Cp(μ ′, μ ∗) (Dp(μ ′, μ ∗)) produces the
heaviest (the second heaviest) ŵWL of 0.9999 (0.9914), the largest (the second
largest) HEM of −0.42% (−33.87%), and HEL of 99.74% (99.65%) and also
contributes to the lowest (the second lowest) mean of 301 (351), a standard
deviation of 678 (783), and 5%-VaR value of 473 (540).

2. The means of the surpluses at time zero are all positive for two single-
product portfolios and six matched portfolios. The larger the mean gain
(reward), the higher the standard deviation (risk) − consistent with the
rule of typical investment strategies. The largest mean gain (6209) from the
single-product annuity portfolio also accompanies with the highest standard
deviation (13,305).

3. The HE values for mortality risk are all negative. The reason of negative
HE values for mortality risk is the same with that in the preceding subsec-
tion. The HE values for longevity risk are all very close to one (at least
99.38%). The mortality-interest duration and convexity matching strate-
gies have better performances of hedging mortality risk and longevity risk
(larger HEM and HEL values) than the mortality duration and convexity
matching strategies.

Figure 3(b) displays the distributions of the simulated portfolio surpluses at
time zero based on Cp(μ ′, μ ∗) (the best) and Dc(μ) (or Dc(μ ′, μ ∗), the worst)
matching strategies along with those for 100% of the WL portfolio and 100%
of the whole life annuity portfolio. The shapes of the distributions are similar
to those in Figure 3(a) for one-age by one-age product matching. As consistent
with Table 6, our matching strategies reduce the risk (variance) and the down-
side risk of loss (probability of large loss) due to longevity risk from the whole
life annuity portfolio. Especially, the distribution for the Cp(μ ′, μ ∗) matching
strategy is very centered around [− 1208, 3477]; it has a much smaller vari-
ance than that for 100% of the whole life annuity portfolio and a similar sized
variance to that for 100% of the WL portfolio. It implies that this matching
strategy largely reduces longevity and interest rate risks of the whole life annu-
ity portfolio but does not increase much mortality risk of the WL portfolio. As
a result, we conclude that the proposed mortality-interest convexity matching
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TABLE 6

SUMMARY STATISTICS FOR SINGLE-PRODUCT PORTFOLIOS AND SIX MATCHED PORTFOLIOS.

Single product Six matched portfolios

Dc(μ) Cc(μ)
WL DWA Dc(μ ′, μ ∗) Dp(μ) Cc(μ ′, μ ∗) Cp(μ) Dp(μ ′, μ ∗) Cp(μ ′, μ ∗)

wWL 1.0000 0.0000 0.9700< 0.9812< 0.9854< 0.9876< 0.9914< 0.9999
HEM (%) – – −140.69< −80.82< −60.85< −50.56< −33.87< −0.42
HEL(%) – – 99.38< 99.53< 99.58< 99.61< 99.65< 99.74
Mean 301 6209 478> 412> 387> 374> 351> 301
std 677 13, 305 1050> 910> 858> 830> 783> 678
5%-VaR 472 8518 710> 622> 588> 570> 540> 473
Pr(gain) (%) 57.40 58.10 57.79 57.70 57.74 57.76 57.57 57.41
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strategy Cp(μ ′, μ ∗) has the most efficient performance of hedging longevity,
mortality, and interest rate risks.

Note that wWL[Bλ(μ ′, μ ∗)] in (3.2) and wWL[Bλ(μ)] in (3.4) are based on $1
sum assumed (SA) for life insurance and $1 annual payment (AP) for all life
annuities. If the sum assumed is SA for life insurance and the annual payment
is AP for all life annuities, then the formulas for weights wWL[Bλ(μ ′, μ ∗)] and
wWL[Bλ(μ)] are adjusted to

wWL[Bλ(μ ′, μ ∗)]= AP ·Bλ[ 0SDA
xa, t: n

(μ ∗
xa, t

)]

AP ·Bλ[ 0SDA
xa, t: n(μ

∗
xa, t)]− SA ·Bλ[ 0SWL

xl , t:m(μ
′
xl , t, μ ∗

xl , t)]
,

and

wWL[Bλ(μ)]= AP ·Bλ[ 0SDA
xa, t: n

(μxa, t)]

AP ·Bλ[ 0SDA
xa, t: n(μxa, t)]− SA ·Bλ[ 0SWL

xl , t:m(μxl , t)]
.

If SA= 300, 000 and AP= 30, 000, then the sequence of increasing weights
0.9700, 0.9812, 0.9854, 0.9876, 0.9914, and 0.9999 in Table 6 are modified to
0.7641, 0.8394, 0.8708, 0.8886, 0.9204, and 0.9989. The small difference 0.0299
between 0.9700 and 0.9999 is enlarged to a big gap 0.2348 between 0.7641 and
0.9989.

4.3. Robustness checking: A summary

To calibrate the robustness of the results above, in the subsection, we report
the weights of WL for the same portfolio consisting of the one-unit discrete 20-
payment WL policies and the one-unit discrete (65−x)-payment (65−x)-year
DWA-due policies, with one-age by one-age matching as in Section 4.1 for a
wide range of ages, 25–64, shown in Figure 4(a) based on the Lee–Carter model
using the U.S. female data for annuity and the U.S. male data for life insurance,
which is regarded as the base scenario when compared with the recalculated
weights under six different scenarios displayed in Figure 4(b)–(g).

First, we consider the population basis risk which is the risk for the mis-
match between the population of exposures and that of hedges. Coughlan et al.
(2011) classify four types of population basis risks – gender basis risk, age basis
risk, subpopulation basis risk, and country basis risk. As a result, we recalcu-
late the weights using the durations and convexities of the surpluses for annuity
products with the U.K. female data and life insurance ones with the U.S. male
data in Figure 4(b); we also recalculate the weights of a two-product portfolio
shown in Figure 4(c), where theWL products for ages 25–44 match, one-age by
one-age, with the annuity ones for ages 45–64. Second, we adopt another mor-
tality model, the Cairns–Blake–Dowd (2006) model, and redo the same process
to obtain the weights in Figure 4(d). Third, we consider two different payment
periods of WL by setting m= 1 and m= 30 in Figure 4(e) and (f), respectively.
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FIGURE 4: Weights wWL under the base scenario and six different scenarios.

Fourth, we replace the CIR model with the Vasicek model to redo the same
process to obtain the weights in Figure 4(g). Figure 5 plots the correspond-
ing 5%-VaR values under the base scenario and six different scenarios. Note
that the method of charging loading rates in Section 4.1 and a mixture of two
portfolios in Section 4.2 can still be applied to these scenarios to resolve an
infeasible weight and meet the practical need in the life insurance industry.

We confirm again that the mortality-interest duration Dp(μ ′, μ ∗) and
convexity Cp(μ ′, μ ∗) matching strategies with respect to an instantaneously
proportional change in μ ′

x, t and μ ∗
x, t lead to heavier weights of life insur-

ance products and then lower unexpected extreme losses and can hedge
longevity and interest rate risks of long-term annuity products more efficiently.
Especially, the mortality-interest convexity matching strategy Cp(μ ′, μ ∗) con-
tributes to the heaviest weight of life insurance product and the lowest VaR
value, so it can provide the most efficient performance in natural hedges for a
portfolio of WL and annuity products.
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FIGURE 5: 5%-VaRs of the weighted surpluses under the base and six different scenarios.

5. CONCLUSION

Interest rate risk has been always a very important factor in risk management
for life insurers. A dramatic improvement in mortality rates that has occurred
over the past decades has led to an urgent demand for methodologies which
can effectively hedge longevity risk for annuity providers, retirement programs,
and social security systems. Interest rate immunization is more commonly
adopted than mortality immunization by insurance companies. Combining the
interest rate immunization and mortality rate immunization, we propose the
mortality-interest immunization and quantify the extent to which life insurers
and annuity providers can benefit from hedging not only longevity and mortal-
ity risks but also interest rate risk by adopting the proposed mortality-interest
duration and convexity matching strategies.

Observing a linear relationship between two sequences ofμ ∗
x, t(i) (= μx, t(i)+

δi), we assume μ ∗ moves approximately linearly. We also introduce μ ′
x, t(i)

(= μx, t(i)+ δi+1) to avoid dealing with the term e−δk which varies in k and thus
cannot be taken out from

∑n−1
k=0 e

−δk · kp ∗
x, t (see the note immediately below
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(B.1)). Then, we derive closed-form formulas for mortality-interest durations
and convexities with respect to an instantaneously proportional change and an
instantaneously parallel movement, respectively, in μ ∗ and μ ′. Next, we deter-
mine the weight of WL in a portfolio for natural hedges of long-term life insur-
ance and annuity exposures by using the mortality(-interest) durations and
convexities and compute 5%-VaR and HE (variance reduction ratio) for com-
parisons of hedging performances. Numerical illustrations show that life insur-
ers can prevent their insurance portfolios from incurring high level of unex-
pected losses due to longevity risk and interest rate risk from issuing a long-
term annuity product by using the mortality-interest duration and convexity
matching strategies with respect to an instantaneously proportional change
in μ ∗, which are more efficient than the mortality ones with respect to an
instantaneously proportional or constant change in μ only. It is noticeable that
matching the mortality-interest convexity with respect to an instantaneously
proportional change in μ ∗ can provide the most efficient way of hedging
longevity risk and interest rate risk embedded in whole life annuity products.

By allocating life insurance and annuity policies in an insurance portfolio
with the proposed mortality-interest duration/convexity matching strategies,
we can reduce the unexpected loss to a lower level. In practice, it is difficult for
a life insurer or annuity provider to reach the optimal weight of its portfolio. In
this case, the life insurer or annuity provider may consider external hedging by
purchasing some kinds of mortality-linked securities, for example, mortality
bonds or longevity bonds. However, the external hedging involves hedge
costs and basis risk. Moreover, mortality-linked securities are available only
in some past periods and have been rarely traded. The failures of longevity
securitization may be due to design or pricing problems (see Zelenko (2014))
or a moral hazard problem (see MacMinn and Brockett (2017)). Cox and
Lin (2007) provide empirical evidence supporting that the natural hedge is
an important factor contributing to annuity price differences which become
more significant for those insurers selling relatively more annuity. As a result,
natural hedge is an alternative efficient method of hedging longevity risk for
insurers selling annuity.

In summary, our proposed mortality-interest durations and convexities
have four features.

1. They are magnitude-free. Unlike the effective mortality duration and con-
vexity used in Wang et al. (2010) which have no closed-form formulas and
depend on the size of a proportional or constant change in mortality rates,
ours provide size-free closed-form formulas.

2. They are based on an instantaneous change in the force of mortality-interest
μ∗. Therefore, when we are explicitly hedging mortality or longevity risk
with a duration or convexity matching strategy, we are also implicitly hedg-
ing the interest rate risk at the same time. Moreover, numerical illustrations
show that natural hedging strategies with mortality-interest immunization
are more effective in hedging mortality and longevity risks than those with
mortality immunization only.

https://doi.org/10.1017/asb.2019.38 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.38


IMMUNIZATION STRATEGIES OF MORTALITY AND INTEREST RATES 179

3. They are model- and parameter-free. The duration (key q-duration, a vari-
ation of effective duration) defined in Li and Hardy (2011) and Li and
Luo (2012) is exclusive to the underlying mortality model and its associated
model parameters. However, our mortality-interest durations and convexi-
ties are calculated with the given − ln (p)s (= μs) data, no matter how these
ps data are obtained from a mortality table or an insurer’s mortality expe-
rience, best estimated by an actuary, or projected from a specific mortality
model and its associated parameters.

4. They are feasible, applicable, and easy to implement. The natural hedg-
ing strategies can be easily applied, without hedge costs, to a portfolio of
life insurance and annuity products with any different issue age sets (xl for
life and xa for annuity), and sum insured (SA) and annuity payment (AP);
and each strategy produces a unique weight ŵWL from its corresponding
formula. The natural hedging for both mortality and interest rate risks pro-
posed by Luciano et al. (2017) could produce multiple solutions because the
number of constraints is less than the number of variables.

Different from the typical immunization strategies in finance where dura-
tion matching lies in the first place and convexity matching the second, con-
vexity matching instead plays the most important role in natural hedges using
the mortality-interest immunization. Finally, the development of mortality-
interest duration and convexity in the paper can be the foundation of further
applying the immunization strategies of mortality rates and interest rates to
the asset and liability management for life insurance companies. To this end, an
optimal allocation of bonds with various maturities, life insurance, and annuity
exposures can be determined to achieve the best hedge of longevity, mortality,
and interest rate risks.
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APPENDIX A. PROOF OF PROPOSITION 1

When μ ∗
x, t(i) has a proportional change of size γ to (1+ γ )μ ∗

x, t(i), the h|äx, t: j|(μ ∗
x, t)

becomes

h|äx, t: j|((1+ γ )μ ∗
x, t)=

h+j−1∑
k=h

e−
∑k−1

i=0 (1+γ )μ ∗
x, t(i) =

h+j−1∑
k=h

(kp
∗
x, t)

1+γ ,

and the change in h|äx, t: j|(μ ∗
x, t) is

�p
h|äx, t: j|(μ ∗

x, t)= h|äx, t: j|((1+ γ )μ ∗
x, t)− h|äx, t: j|(μ ∗

x, t)=
h+j−1∑
k=h

kp
∗
x, t · [(kp ∗

x, t)
γ − 1].

(A.1)
We expand (kp ∗

x, t)
γ to 1+ ln (kp ∗

x, t) · γ + [ ln (kp ∗
x, t)]

2 · γ 2/2+ · · · , which leads (A.1) to

�p
h|äx, t: j|(μ ∗

x, t)=
h+j−1∑
k=h

kp
∗
x, t · ln (kp ∗

x, t) · γ +
h+j−1∑
k=h

kp
∗
x, t · [ ln (kp ∗

x, t)]
2 · γ 2

2
+ · · · . (A.2)

We can obtain the mortality-interest duration and convexity of h|äx, t: j|(μ ∗
x, t) with respect

to an instantaneously proportional change in μ ∗
x, t as

Dp[ h|äx, t: j|(μ ∗
x, t)]=

∂�p
h|äx, t: j|(μ ∗

x, t)

∂γ

∣∣∣∣
γ=0

=
h+j−1∑
k=h

[ ln (kp
∗
x, t)] · kp ∗

x, t, (A.3)

and

Cp[ h|äx, t: j|(μ ∗
x, t)]=

∂2�p
h|äx, t: j|(μ ∗

x, t)

∂γ 2

∣∣∣∣
γ=0

=
h+j−1∑
k=h

[ ln (kp
∗
x, t)]

2 · kp ∗
x, t. (A.4)

Similarly, when μ ∗
x, t(i) has a parallel movement of size γ to μ ∗

x, t(i)+ γ , the h|äx, t: j|(μ ∗
x, t)

becomes

h|äx, t: j|(μ ∗
x, t + γ )=

h+j−1∑
k=h

e−
∑k−1

i=0 (μ ∗
x, t(i)+γ ) =

h+j−1∑
k=h

kp
∗
x, t · e−γ ·k,

and the change in h|äx, t: j|(μ ∗
x, t) is

�c
h|äx, t: j|(μ ∗

x, t)= h|äx, t: j|(μ ∗
x, t + γ )− h|äx, t: j|(μ ∗

x, t)=
h+j−1∑
k=h

kp
∗
x, t · [e−γ ·k − 1]. (A.5)
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We expand e−γ ·k to = 1+ (−k) · γ + k2 · γ 2/2+ · · · . Then (A.5) can be re-expressed as

�c
h|äx, t: j|(μ ∗

x, t)=
h+j−1∑
k=h

kp
∗
x, t · (−k) · γ +

h+j−1∑
k=h

kp
∗
x, t · k2 · γ 2

2
+ · · · . (A.6)

Similarly, we can obtain the mortality-interest duration and convexity of h|äx, t: j|(μ ∗
x, t) with

respect to an instantaneously parallel movement in μ ∗
x, t as

Dc[ h|äx, t: j|(μ ∗
x, t)]=

∂�c
h|äx, t: j|(μ ∗

x, t)

∂γ

∣∣∣∣
γ=0

=
h+j−1∑
k=h

(−k) · kp ∗
x, t, (A.7)

and

C c[ h|äx, t: j|(μ ∗
x, t)]=

∂2�c
h|äx, t: j|(μ ∗

x, t)

∂γ 2

∣∣∣∣
γ=0

=
h+j−1∑
k=h

k2 · kp ∗
x, t. (A.8)

Therefore, (A.2) and (A.6) can be re-expressed, using (A.3)–(A.4) and (A.7)–(A.8), as

�λ
h|äx, t: j|(μ ∗

x, t)=D λ[ h|äx, t: j|(μ ∗
x, t)] · γ +C λ[ h|äx, t: j|(μ ∗

x, t)] ·
γ 2

2
+ · · · , (A.9)

where λ = p (proportional) or λ = c (constant).

APPENDIX B. PROOF OF PROPOSITION 2

For life insurance, the NSP of one-unit discrete n-year term life insurance issued to an

insured aged x in year t is A1
x, t: n| =

∑n−1
k=0 [ kpx, t − k+1px, t] · e−

∑k
i=0 δi . Since

kpx, t · e−
∑k

i=0 δi = e−δ0 · [e−
∑k−1

i=0 [μx, t(i)+ δi+1]]= e−δ0 · e−
∑k−1

i=0 μ ′
x, t(i) = e−δ0 · kp ′

x, t (B.1)

(note that in the last two equalities above we do not adopt the expression e−δk ·
[e−

∑k−1
i=0 [μx, t(i)+δi ]]= e−δk · e−

∑k−1
i=0 μ ∗

x, t(i) = e−δk · kp ∗
x, t to avoid dealing with the term e−δk

which varies in k and thus cannot be taken out from
∑n−1

k=0 e
−δk · kp ∗

x, t), and

k+1px, t · e−
∑k

i=0 δi = [e−
∑k

i=0 [μx, t(i)+δi ]]= e−
∑k

i=0 μ ∗
x, t(i) = k+1p

∗
x, t,

we have

A1
x, t: n| = e−δ0 ·

n−1∑
k=0

kp
′
x, t −

n−1∑
k=0

k+1p
∗
x, t = e−δ0 · äx, t: n|(μ ′

x, t)− [äx, t: n+1|(μ
∗
x, t)− 1],

where kp ′
x, t =

∏k−1
i=0 p

′
x+i, t+i = e−

∑k−1
i=0 μ ′

x, t(i) for k= 0, 1, · · · with 0p ′
x, t = e−

∑−1
i=0 μ ′

x, t(i) = 1,

p ′
x+i, t+i = e−μ ′

x, t(i), μ ′
x, t(i)= μx, t(i)+ δi+1, μ ∗

x, t(i)= μx, t(i)+ δi for i= 0, 1, · · · , and

äx, t: n|(μ ′
x, t)=

∑n−1
k=0 kp ′

x, t. Since A
1
x, t: n| can be expressed in terms of μ ′

x, t and μ ∗
x, t, we

denote it as A1
x, t: n|(μ

′
x, t, μ ∗

x, t) hereafter. Then, the NSP of one-unit discrete WL issued to
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an insured aged x in year t can be obtained from A1
x, t: n|(μ

′
x, t, μ ∗

x, t) by Ax, t(μ
′
x, t, μ ∗

x, t)=
lim
n→∞A1

x, t: n|(μ
′
x, t, μ ∗

x, t) as

Ax, t(μ ′
x, t, μ ∗

x, t)= e−δ0 · äx, t(μ ′
x, t)− [äx, t(μ ∗

x, t)− 1]. (B.2)

We can obtain the mortality-interest duration and convexity of äx, t(μ ′
x, t) with respect

to an instantaneously proportional change or an instantaneously parallel movement in μ ′
x, t,

similar to (A.3)–(A.4) and (A.7)–(A.8) with (h, j)= (0, ∞), as

Dp[äx, t(μ ′
x, t)]=

∞∑
k=0

[ ln (kp
′
x, t)] · kp ′

x, t,

C p[äx, t(μ ′
x, t)]=

∞∑
k=0

[ ln (kp
′
x, t)]

2 · kp ′
x, t,

Dc[äx, t(μ ′
x, t)]=

∞∑
k=0

(−k) · kp ′
x, t, (B.3)

and

C c[äx, t(μ ′
x, t)]=

∞∑
k=0

k2 · kp ′
x, t. (B.4)

Then, using the linearity preservation property of operators Dp, Cp, Dc, and Cc, the
mortality-interest duration and convexity of Ax, t(μ ′

x, t, μ ∗
x, t) with respect to an instanta-

neously proportional change or an instantaneously constant movement in both μ ′
x, t and

μ ∗
x, t in (B.2) are given by

Bλ[Ax, t(μ ′
x, t, μ ∗

x, t)]= e−δ0 ·Bλ[äx, t(μ ′
x, t)]−Bλ[äx, t(μ ∗

x, t)], (B.5)

where B=D (duration) or C (convexity), and λ = p (proportional) or c (constant).

APPENDIX C. PROOF OF COROLLARY 2

The NSP of one-unit discrete WL issued to an insured aged x in year t is

Ax, t(μx, t)=
∞∑
k=0

[ kpx, t − k+1px, t] · e−
∑k

i=0 δi =
∞∑
k=0

kpx, t · e−
∑k

i=0 δi − [äx, t(μx, t)− 1].

(C.1)
Using the linearity preservation property of operators Dp, Cp, Dc and Cc, we have

Bλ[Ax, t(μx, t)]=Bλ

[ ∞∑
k=0

kpx, t · e−
∑k

i=0 δi

]
−Bλ[äx, t(μx, t)].

The expressions for Bλ[
∑∞

k=0 kpx, t · e−
∑k

i=0 δi ] for B=D (duration) or C (convexity), and
λ = p (proportional) or c (constant) can be referred to Corollary 1.
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APPENDIX D. PROOF OF COROLLARY 3

From Proposition 1(b), Corollary 1(b), and kpx, t · e−
∑k−1

i=0 δi = kp ∗
x, t, we can get (a). To

prove (b), (C.1) can be re-expressed, using (B.1), as

Ax, t(μx, t)= e−δ0 ·
∞∑
k=0

kp
′
x, t − [äx, t(μx, t)− 1].

From (a) and (B.3)−(B.5), we obtain

Dc [
Ax, t(μx, t)

] = e−δ0 ·
∞∑
k=0

(−k) · kp ′
x, t −Dc [

äx, t(μx, t)
] =Dc [

Ax, t(μ ′
x, t, μ ∗

x, t)
]
, (D.1)

and

C c [
Ax, t(μx, t)

] = e−δ0 ·
∞∑
k=0

k2 · kp ′
x, t −C c [

äx, t(μx, t)
] =Cc [

Ax, t(μ ′
x, t, μ ∗

x, t)
]
. (D.2)

APPENDIX E. PROOF OF THEOREM 1

For the portfolio PWA
1 , the weighted surplus (negative reserve) at time 0, expressed in terms

of μ ′
x, t and μ ∗

x, t, is

0 = 0S
WA(μ ′, μ ∗)=wWL · 0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)+wDA · 0S
DA
xa, t: n(μ

∗
xa, t)

= wWL

[
PWL
xl , t:m

· äxl , t:m|(μ ∗
xl , t

)−Axl , t(μ
′
xl , t

, μ ∗
xl , t

)
]

+wDA
[
PDA
xa, t: n · äxa, t: n|(μ ∗

xa, t)− n|äxa, t(μ ∗
xa, t)

]
.

If there is a proportional change (λ = p) or a constant movement (λ = c) of size γ in each of
μ ′
x, t and μ ∗

x, t for any x and t, then

�λ
0S

WA(μ ′, μ ∗)

= wWL · �λ
0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)+wDA · �λ
0S

DA
xa, t: n(μ

∗
xa, t)

=
{
wWL ·Dλ

[
0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)
]
+ (1−wWL) ·Dλ

[
0S

DA
xa, t: n(μ

∗
xa, t)

]}
· γ

+
{
wWL ·Cλ

[
0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)
]
+ (1−wWL) ·Cλ

[
0S

DA
xa, t: n(μ

∗
xa, t)

]}
· γ 2

2
+ · · · .

We set wWL ·Bλ[ 0SWL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)]+ (1−wWL) ·Bλ[ 0SDA
xa, t: n(μ

∗
xa, t)]= 0 with

B=D for the mortality-interest duration matching strategy and B=C for the
mortality-interest convexity matching strategy, which leads to

wWL

[
Bλ(μ ′, μ ∗)

]
= Bλ

[
0SDA

xa, t: n(μ
∗
xa, t)

]
Bλ

[
0SDA

xa, t: n(μ
∗
xa, t)

] −Bλ
[
0SWL

xl , t:m
(μ ′

xl , t
, μ ∗

xl , t
)
] , (E.1)
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where

Bλ[ 0S
DA
xa, t: n(μ

∗
xa, t)]=PDA

xa, t: n ·Bλ[äxa, t: n|(μ ∗
xa, t)]−Bλ[ n|äxa, t(μ ∗

xa, t)]

and

Bλ[ 0S
WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)]=PWL
xl , t:m

·Bλ[äxl , t:m|(μ ∗
xl , t

)]−Bλ[Axl , t(μ
′
xl , t

,μ ∗
xl , t

)].

For the portfolio PWA
2 , the weighted surplus (negative reserve) at time 0, expressed in

terms of μ ′
x, t and μ ∗

x, t, is

0 = 0S
WA(μ ′, μ ∗)=wWL · 0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)+wDA · 0S
DA
xa, t: n

(μ ∗
xa, t

)

where

0S
DA
xa, t: n

(μ ∗
xa, t

)=
∑
x∈xa

pDAx · 0S
DA
x, t: n(μ

∗
x, t)

and

0S
WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)=
∑
x∈xl

pWL
x · 0S

WL
x, t:m(μ

′
x, t, μ ∗

x, t).

Similarly to (E.1), we obtain

wWL

[
Bλ(μ ′, μ ∗)

]
=

Bλ
[
0SDA

xa, t: n
(μ ∗

xa, t
)
]

Bλ
[
0SDA

xa, t: n
(μ ∗

xa, t
)
]
−Bλ

[
0SWL

xl , t:m
(μ ′

xl , t
, μ ∗

xl , t
)
] ,

where using the linearity preservation property of operators Dp, Cp, Dc, and Cc,

Bλ
[
0S

DA
xa, t: n

(μ ∗
xa, t

)
]
=

∑
x∈xa

pDAx ·Bλ
[
0S

DA
x, t: n(μ

∗
x, t)

]

and

Bλ
[
0S

WL
xl , t:m

(μ ′
xl , t

, μ ∗
xl , t

)
]
=

∑
x∈xl

pWL
x ·Bλ

[
0S

WL
x, t:m(μ

′
x, t, μ ∗

x, t)
]
.
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