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Abstract
We propose a new method for two-dimensional mortality modelling. Our approach smoothes the

data set in the dimensions of cohort and age using Bayesian smoothing splines. The method allows

the data set to be imbalanced, since more recent cohorts have fewer observations. We suggest an

initial model for observed death rates, and an improved model which deals with the numbers of

deaths directly. Unobserved death rates are estimated by smoothing the data with a suitable prior

distribution. To assess the fit and plausibility of our models we perform model checks by

introducing appropriate test quantities. We show that our final model fulfils nearly all requirements

set for a good mortality model.
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1 Introduction

Mortality forecasting is a problem of fundamental importance for the insurance and pensions

industry. Due to the increasing focus on risk management and measurement for insurers and

pension funds, stochastic mortality models have attracted considerable interest in recent years.

A range of stochastic models for mortality have been proposed, for example the seminal models of

Lee & Carter (1992), Renshaw & Haberman (2006) and Cairns et al. (2006b). Some models build

on an assumption of smoothness in mortality rates between ages in any given year (e.g. Cairns et al.,

2006b), while others allow for roughness, (e.g. Lee & Carter 1992; Renshaw & Haberman, 2006).

In this paper we propose a new Bayesian method for two-dimensional mortality modelling. Our

method is based on natural cubic smoothing splines, which are popular in statistical applications,

since the smoothing problem can be solved using simple linear algebra. In this approach the distinct

data values are taken as knots of the spline, and its smoothness is achieved by employing roughness

penalty in a penalized likelihood function. In the Bayesian approach, the prior distribution takes the
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role of the roughness penalty term. A useful introduction to smoothing splines may be found, for

example, in Green & Silverman (1994).

A more general penalized splines approach would employ a set of basis functions, such as B-splines.

In the case that cubic B-splines are used, one may obtain the same solution as in the smoothing

spline approach by using the same roughness penalty and by choosing the knots to be the distinct

values of the data points. Compared to the general penalized splines approach our approach has the

advantage that one does not need to optimize with respect to the number of knots and their

locations. However, the drawback in our approach is that the matrices involved in computations

become too large, unless one restricts the size of the estimation data set.

We use age-cohort data instead of age-period data, since we wish to preserve the sequential dependence

of observations within each cohort. Therefore, we have to deal with imbalanced data, since more recent

cohorts have fewer observations. We suggest an initial model for the observed death rates, and an

improved model which deals with the numbers of deaths directly. We assume the number of deaths to

follow a Poisson distribution, a common model for the number of deaths in a year in a particular

cohort. Unobserved death rates are estimated by smoothing the data with one of our spline models.

The proposed method is illustrated using Finnish mortality data for females, provided by the Human

Mortality Database. We implement the Bayesian approach using the Markov chain Monte Carlo

method (MCMC), or more specifically, the single-component Metropolis-Hastings algorithm.

The use of Bayesian methods is not new in this general context. Dellaportas et al. (2001) proposed a

Bayesian mortality model in a parametric curve modelling context. Czado et al. (2005) and Pedroza

(2006) provided Bayesian analyses for the Lee-Carter model using MCMC, with further work by

Kogure & Kurachi (2010). More recently, Reichmuth & Sarferaz (2008) have applied MCMC to

a version of the Renshaw & Haberman (2006) model. Schmid & Held (2007) present software

which allows analysis of incidence count data with a Bayesian age-period-cohort model. Cairns

et al. (2011) use the same model to compare results based on a two-population approach with

single-population results. Currie et al. (2004) and Richards et al. (2006) assume smoothness in both

age and cohort dimensions through the use of P-splines in a non-Bayesian set-up. Lang & Brezger

(2004) introduce two-dimensional P-splines in a Bayesian set-up but in a different context.

Cairns et al. (2008) evaluated several types of stochastic mortality models using a checklist of

criteria. These criteria are based on general characteristics and the ability of the model to explain

historical patterns of mortality. None of the existing models met all of the criteria. However,

Plat (2009) later proposed a model which apart from partly meeting the parsimony criteria meets all

of the criteria. We also follow the same list in assessing the fit and plausibility of our model.

The plan of the paper is as follows. In the next section we describe the data and its use in estimation.

In Section 3 we explain the smoothing problem and present the Bayesian formulation of the

preliminary model, and in Section 4 we describe our final model. In Section 5 we introduce the

estimation method and provide some convergence results. The model checks are described in

Section 6, after which we conclude with a brief discussion.

2 Data

We use mortality data provided by the Human Mortality Database. This was created to provide

detailed mortality and population data to those interested in the history of human longevity. In our
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work we use Finnish cohort mortality data for females. We use age-cohort data instead of age-

period data, since we wish to take into account the dependence of consecutive observations within

each cohort. In the complete data matrix the years of birth included are between 1807 and 1977;

hence there are 171 different cohorts. The most recent data are from 2006. When the age group of

persons 110 years and older is excluded, the dimensions of the data matrix become 110 3 171.

These data are illustrated in Figure 1, in which the observed area is denoted by vertical lines and the

unobserved by two white triangles in the upper left and lower right corners.

Our estimation method would produce huge matrices if all these data were used simultaneously.

Therefore, we define estimation areas which are parts of the complete data set. A rectangular

estimation area shown in Figure 1 indicates the cohorts and ages for which a smooth spline surface

is fitted. The mortality rates are known for part of this area, and they are predicted for the unknown

part. More specifically, an estimation area is defined by minimum age x1, maximum age xK,

minimum cohort t1 and maximum cohort tT. The maximum age for which data are available in

cohort tT is denoted as x*. Thus, the number of ages included is K 5 xK 2 x1 1 1 and the number of

cohorts T 5 tT 2 t1 1 1.

Since the reader might be more familiar with age-period data, we have also plotted the data set in

the dimensions of age and year in Figure 2. One should, however, remember that the figures in these

two types of mortality tables are not computed in the same way. One figure in an age-period table is

based on persons who have a certain (discrete) age during one calendar year and are born during two

consecutive years, while each figure in an age-cohort table is based on data from two consecutive

calendar years about persons born in a certain year (for details, see Wilmoth et al., 2007).

3 Preliminary model

We start building our model in a simplified set-up. Let us denote the logarithms of observed death

rates as yxt 5 log(mxt) for ages x 5 x1, x2,y, xK and cohorts (years of birth) t 5 t1, t2,y, tT.

The observed death rates are defined as

mxt ¼
dxt

ext
;

Cohort (year of birth)

A
ge

18781807 t1 tT 1977

110

71

0

110

xK

x*

x1

29

0

1807 1896 1977

Estimation
area

Figure 1. Age-cohort representation of the data set. The complete data set is indicated by the
streaked area, and the imbalanced estimation set by the white rectangle.
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where dxt is the number of deaths and ext the person years of exposure. In our preliminary set-up we

model the observed death rates directly, while in our final set-up we model the theoretical,

unobserved death rates mxt.

3.1 The smoothing problem

Our goal is to smooth and predict logarithms of observed death rates. We fit a smooth two-

dimensional curve y(x,t), and denote its values at discrete points as yx,t. In matrix form we

may write

Y ¼ H þ E;

where Y is a K 3 T matrix of observations, Q is a matrix of smoothed values, and E is a matrix of

errors. We denote the columns of Y, Q and E by yj, hj and ej, respectively. Concatenating the

columns we obtain y 5 vec(Y), y5 vec(Q) and e 5 vec(E).

We further assume that the death rates within a cohort follow a multivariate normal distribution

having an AR(1) correlation structure with autocorrelation coefficient f. Thus,

e j � Nð0; s2PÞ; j ¼ 1; 2; . . . ;T;

where P is a correlation matrix with elements rrs ¼ fjr�sj. The observations in different cohorts are

assumed to be independent.

In general, all observations are not available for all cohorts. For each j, we may partition yj into

observed yj1 and unobserved yj2, and hj correspondingly into hj1 and hj2, and P into Pj,r,s, r, s 5 1,2.

The unobserved part of the data can be predicted using the result about the conditional distribution

of the multivariate normal distribution:

fyj2 j yj1; s
2;fg � Nðhj;2:1; s2Pj;22:1Þ;

where hj;2:1 ¼ hj2 þ Pj;21P�1
j;11ðyj1�hj1Þ and Pj;22:1 ¼ Pj;22�Pj;21P�1

j;11Pj;12.

Year

A
ge

1878 2006
110

71

0
1878 1977

110

xK

x*

x1

29

0

Estimation
area

1917

Figure 2. Age-period representation of the data set. The complete data set is indicated by the
streaked area, and the imbalanced estimation set by the white parallelogram.
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When estimating h we wish to minimize the generalized sum of squares

SS1 ¼
XT

j¼ 1

ðyj1�hj1Þ
0P�1

j;11ðyj1�hj1Þ: ð1Þ

The vector of all observed mortality rates is yobs 5 Sy, where S is a selection matrix selecting the

known values from the complete data vector y. The matrix S can be constructed from the identity

matrix of size KT by including the ith row (i 5 1, 2,y, KT) if the ith element of y is known. Now we

can write (1) as

SS1 ¼ ðy
obs�ShÞ0ðSPnS0Þ

�1
ðyobs�ShÞ; ð2Þ

where P* 5 IT
N

P.

In addition to maximizing fit, we wish to smooth Q in the dimensions of cohort and age.

Specifically, we minimize the roughness functionalZ xK

x1

@2

@x2
yðx; tjÞ

� �2

dx ð3Þ

for each j 5 1,2,y, T and Z tT

t1

@2

@t2
yðxk; tÞ

� �2

dt ð4Þ

for each k 5 1,2,y, K.

If y(x,tj) is considered a smooth function of x obtaining fixed values at points x1, x2,y, xK, then

using variational calculus it can be shown that the integral in (3) is minimized by choosing h(x,tj) to

be a cubic splines curve with knots at x1, x2,y, xK. Furthermore, this integral can be expressed as a

squared form h0jGKhj, where GK is a so-called roughness matrix with dimensions K 3 K (for proof,

see Green & Silverman, 1994). Similarly, if y(xk,t) is a cubic splines curve with knots at t1,y, tT, the

integral in (4) equals h0ðkÞGThk, where h(k) denotes the kth row of Q and GT is a T 3 T roughness

matrix. Thus, we wish to minimize

SS2 ¼
XT

j¼1

h
0

j GKhj ¼ h
0

ðIT �GKÞh ð5Þ

and

SS3 ¼
XK

k¼ 1

h
0

ðkÞGThðkÞ ¼ h0ðGT � IKÞh: ð6Þ

An N 3 N roughness matrix is defined as GN ¼ =ND�1
N =

0

N where the non-zero elements of banded

N3(N22) and (N22)3(N22) matrices =N and DN, respectively, are defined as follows:

ri;i ¼
1

xiþ 1�xi
; riþ 1;i ¼ �

1

xiþ 1�xi
þ

1

xiþ 2�xiþ 1

� �
; riþ 2;i ¼

1

xiþ 2�xiþ 1

and

Di;iþ 1 ¼ Diþ 1;i ¼
xiþ 2�xiþ 1

6
; Di;i ¼

xiþ 2�xi

3
;

with data points xi, i 5 1,y, n. In our case the data are given at equal intervals, implying that

ri;i ¼ 1; riþ 1;i ¼ �2; riþ2;i ¼ 1
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and

Di;iþ 1 ¼ Diþ 1;i ¼
1

6
; Di;i ¼

2

3
:

Combining the previous results, we obtain the bivariate smoothing splines solution for h by

minimizing the expression SS1 1 l1SS2 1 l2SS3, where SS1, SS2 and SS3 are given in the equations

(2), (5) and (6), respectively, and the parameters l1 and l2 control smoothing in the dimensions of

age and cohort, respectively. Using matrix differentiation and the properties of Kronecker’s product,

it is easy to show that for fixed values of l1 and l2 the minimal solution is given by

ĥ ¼ S0ðSPnS0Þ
�1

S þ A
h i�1

S0ðSPnS0Þ
�1

yobs; ð7Þ

where

A ¼ l1ðIT �GKÞ þ l2ðGT � IKÞ: ð8Þ

In the special case that the data set is balanced (S is an identity matrix), the solution is simplified to

ĥ ¼ ðI þ PnAÞ�1y.

3.2 Bayesian formulation

Bayesian statistical inference is based on the posterior distribution, which is the conditional distribution

of unknown parameters given the data. In order to compute the posterior distribution one needs to

define the prior distribution, which is the unconditional distribution of parameters, and the likelihood

function, which is the probability density of observations given the parameters. Bayes’ theorem implies

that the posterior distribution is proportional to the product of the prior distribution and the likelihood:

pðg j yÞ / pðgÞpðy j gÞ;

where y is the data vector and g the vector of all unknown parameters.

In our case, the likelihood is given by

pðyobs j gÞ ¼ ð2ps2Þ
�

Kn
2 j SPnS0 j �

1
2e�

1

2s2ðy
obs�ShÞ0ðSPnS0Þ

�1
ðyobs�ShÞ; ð9Þ

where K* is the length of yobs.

In order to facilitate estimation we reparametrize the smoothing parameters as follows: l5 l1 and

v 5 l2/l1, where l1 and l2 control the smoothing in the dimensions of age and cohort, respectively.

Furthermore, we use the following hierarchical prior for g:

pðgÞ ¼ pðs2ÞpðlÞpðoÞpðfÞpðhjs2; l;o;fÞ;

where

pðs2Þ /
1

s2

pðlÞ / la1�1e�b1l

pðoÞ / oa2�1e�b2o

pðfÞ / 1; �1ofo1:

As hyperparameters we set a1 5 b1 5 0.001 and a2 5 b2 5 10. Thus, the prior of s2 is the standard

uninformative improper prior used for positive parameters, and the priors of l and f are also fairly
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uninformative. The prior of v is instead more informative, having mean 1 and variance 0.1, since

we found that the data do not contain enough information about v, and with a looser prior we

would face convergence problems in estimation. We made sensitivity analysis with respect to the

prior of l and found that increasing or decreasing the order of magnitude of a1 and b1 did not

essentially affect the results.

The smoothing effect can now be obtained by choosing a conditional prior for h which is consistent

with the smoothing splines solution. Such a prior contains information only on the curvature, or

roughness, of the spline surface, not on its position or gradient. Thus, we assume that fhjs2; l;o;fg
is multivarite normal with density

pðh j s2; l;o;fÞ ¼ ð2ps2Þ
�KT

2 l ðIT �GK;g þ oðGT � IKÞ
� ��� ��12e� l

2s2h0 ðIT�GK;gÞþoðGT�IKÞ½ �h; ð11Þ

where GK,g is a positive definite matrix approximating GK. More specifically, we define

GK,g 5 GK 1 gXX0, where g . 0 can be chosen to be arbitrarily small, and X 5 (1 x) with

1 5 (1,y,1)0 and x 5 (x1 ,y, xK)0. Initially, we use GK,g instead of GK, since otherwise p(y | s2, l, v,

f) would be improper, which would lead to difficulties when deriving the conditional posteriors

for l and v.

Multiplying the densities in (11) and (9) and picking the factors which include h we obtain the full

conditional posterior for h up to a constant of proportionality:

pðhjy; s2; l;o;fÞ / e�
1

2s2 ðy
obs�ShÞ0ðSPnS0 Þ

�1
ðyobs�ShÞþ lh0 ðIT �GK;gÞþoðGT � IKÞ½ �h

	 

: ð12Þ

Manipulating this expression and replacing GK,g with Gk we obtain

pðy j y; s2; l;o;fÞ / e�
1

2s2ðy�ŷÞ
0Bðy�ŷÞ;

where ĥ is given in (7) and B ¼ A þ S0ðSPnS0Þ
�1

S. From this we see that the conditional posterior

distribution of h is multivariate normal with mean ĥ and covariance matrix s2B21 in the limiting case

when GK;g ! GK. This implies that the conditional posterior mode for h is equal to the smoothing

splines solution provided in the previous section. Thus, using the multivariate prior described above, we

can implement the roughness penalty of smoothing splines in the Bayesian framework.

In order to implement estimation using the Gibbs sampler, the full conditional posterior distributions of

the parameters are needed. In the following, we will provide these for s2, l, v and f in the limiting case

when GK;g ! GK.

The conditional posterior of s2 is

pðs2 j y; l;o;fÞ / ðs2Þ
�

Kn þKT
2 þ 1

� �
e�

1

2s2 ðy
obs�ShÞ0ðSPnS0Þ

�1
ðyobs�ShÞþ h0Ah

� �
;

which is the density of the scaled inverted x2 -distribution Inv�w2ðn; bÞ1, where g 5 K* 1 KT and

b ¼ ðSS1 þ lSS2 þ loSS3Þ=n with SS1, SS2 and SS3 given in (2), (5) and (6).

1 Notation X � Inv�w2ðn;bÞ means that nb =X � w2
n .

Arto Luoma et al.

290

https://doi.org/10.1017/S174849951200005X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951200005X


The conditional posterior of l is

pðl j y; h; s2;o;fÞ / la1�1þ KT
2 e�l b1 þ

1

2s2h0 ðIT�GK þoGT�IKÞh
� �

; ð13Þ

which is the density of Gamma ða1 þ KT =2; b1 þ ðSS2 þ oSS3Þ = ð2s2ÞÞ.

The conditional posterior of v is

pðo j y; h; s2; l;fÞ / oa2 þT�2
YK� 2

k¼ 1

YT�2

j¼ 1

1 þ o
mj

nk

� �" #1
2

e�o b2 þ
l

2s2h0ðGT�IKÞh

� �
; ð14Þ

where mj, j 5 1,y, T22 and vK, k 5 1,y, K22, are the nonzero eigenvalues of GT and GK,

respectively. This is not a standard distribution, but since it is log-concave, it is possible to generate

values from it using adaptive rejection sampling, introduced by Gilks & Wild (1992).

Finally, the conditional posterior of f, given by

pðfjy; h; s2; l;oÞ / ð1�f2
Þ
�1

2ðKn�TÞ
e�

1

2s2ðy
obs�ShÞ0ðSPnS0Þ

�1
ðyobs�ShÞ;

is not of standard form, and it is therefore difficult to generate random variates from it directly.

Instead, we may employ a Metropolis step within the Gibbs sampler.

Now, the estimation algorithm is implemented so that the parameters l, v, s2 and h are updated one by

one using Gibbs steps, and f is updated using a Metropolis step. Further details will be given in Section 5.

4 The final model

In our final set-up we are able to control for unsystematic mortality risk in addition to systematic risk.

Unsystematic risk means that even if the true mortality rate were known, the numbers of deaths would

remain unpredictable. When the population becomes larger, the unsystematic mortality risk becomes

smaller due to diversification.

4.1 Formulation and estimation

In the final model the inference is rendered more accurate by modelling the observed numbers of

deaths directly. Specifically, we assume that

dxt � PoissonðmxtextÞ;

where dxt is the number of deaths at age x and cohort t, mxt is the theoretical death rate (also called

intensity of mortality or force of mortality) and ext is the person years of exposure. This is an

approximation, since neither the death rate nor the exposure is constant during any given year. Our

purpose is to model yxt 5 log(mxt) with a smooth spline surface. Compared to the preliminary model

we have replaced mxt with mxt and removed the error term and its autocorrelation structure.

Similarly to the preliminary model, we obtain the smoothing effect by using a suitable conditional

prior distribution for h. Specifically, we obtain p(h|l,v) by replacing s2 with 1 in equation (11). For

l and v we use the same prior distributions as earlier, given by (10), and their conditional posteriors

are obtained from (13) and (14) when s2 is set at 1. However, here we use hyperparameters

a1 5 b1 5 1026, since removing s2 changes the scale of l several orders of magnitude.
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Now the full conditional posterior distribution of h may be written as

pðhjdobs; l;oÞ / exp
XtT

t¼ t1

XxKt

x¼ x1

dxtyxt�ext expðyxtÞ½ ��
1

2
h0Ah

( )
; ð15Þ

where dobs is a vector of observed death numbers, and Kt the number of ages for which data are

available in cohort t. The double sum in this expression comes from the likelihood function and the

squared form from the prior distribution.

This model can be estimated similarly to the preliminary model, using Gibbs sampling. However,

since the conditional distribution in (15) is non-standard, it is difficult to sample from it directly.

Here we may use a Metropolis-Hastings step within the Gibbs sampler. As a proposal distribution

we may use a multivariate normal approximation to (15), given by

Jðhjl;oÞ / exp �
1

2
yobs�Sh
 �

SSS0
� ��1

yobs�Sh
 �

�
1

2
h0Ah

� �
;

where yobs is a vector of observed log death rates, R is a diagonal matrix with approximate variances

of log death rates, denoted as vxt; x ¼ x1; . . . ; xK; t ¼ t1; . . . ; tT ; as its diagonal elements, and S is a

selection matrix defined in Section 3.1. We obtain vxt by applying the delta method to the relevant

transformation of the underlying Poisson variable. More specifically, we use vxt ¼ 1 = ðext expð~hxtÞÞ,

where ~hxt ¼ ð
P1

i¼�1

P1
j¼�1 yxþ i;tþ jÞ =9 is an initial approximation to the log death rate.

Thus, the proposal h* is distributed as

hn
�MVNðC�1S0ðSRS0Þ

�1
yobs;C�1

Þ;

where C 5 A 1 S0(SSS0)21S, and is accepted with probability

min 1;
pðhn j dobs; l;oÞ=Jðhn j l;oÞ

pðh j dobs; l;oÞ=Jðh j l;oÞ

 !
:

The whole algorithm is once more a special case of the single-component Metropolis-Hastings.

Further details on this algorithm will be provided in the next section.

5 Estimation

5.1 Estimation procedure

Our estimation procedure is a single-component (or cyclic) Metropolis-Hastings algorithm. This is

one of the Markov Chain Monte Carlo (MCMC) methods, which are useful in drawing samples

from posterior distributions. Generally, MCMC methods are based on drawing values from approximate

distributions and then correcting these draws to better approximate the target distribution, and hence

they are used when direct sampling from a target distribution is difficult. A useful reference for different

versions of MCMC is Gilks et al. (1996).

The Metropolis-Hastings algorithm was introduced by Hastings (1970) as a generalization of the

Metropolis algorithm (Metropolis et al., 1953). Also the Gibbs sampler proposed by Geman &

Geman (1984) is its special case. The Gibbs sampler assumes the full conditional distributions of the
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target distribution to be such that one is able to generate random numbers or vectors from them.

The Metropolis and Metropolis-Hastings algorithms are more flexible than the Gibbs sampler; with

them one only needs to know the joint density function of the target distribution with density p(y)

up to a constant of proportionality.

With the Metropolis algorithm the target distribution is generated as follows: first a starting

distribution p0(y) is assigned, and from it a starting-point y0 is drawn such that p(y0) . 0. For

iterations t 5 1,2,y, a proposal y* is generated from a jumping distribution Jðyn j yt�1
Þ, which is

symmetric in the sense that Jðya j ybÞ ¼ Jðyb j yaÞ for all ya and yb. Finally, iteration t is completed by

calculating the ratio

r ¼
pðynÞ

pðyt�1
Þ

ð16Þ

and by setting the new value at

yt
¼

yn with probability minðr;1Þ

yt�1 otherwise:

�

It can be shown that, under mild conditions, the algorithm produces an ergodic Markov Chain

whose stationary distribution is the target distribution.

Metropolis-Hastings algorithm generalizes the Metropolis algorithm by removing the assumption

of symmetric jumping distribution. The ratio r in (16) is replaced by

r ¼
pðynÞ = Jðynjyt�1

Þ

pðyt�1
Þ = Jðyt�1

jynÞ

to correct for the asymmetry in the jumping rule.

In the single-component Metropolis-Hastings algorithm the simulated random vector is divided

into components or subvectors which are updated one by one. If the jumping distribution for a

component is its full conditional posterior distribution, the proposals are accepted with probability

one. In the case that all the components are simulated in this way, the algorithm is called a Gibbs

sampler. As stated above, in the case of our preliminary model we can simulate all parameters

except f directly, and may therefore use a Gibbs sampler with one Metropolis step. As the jumping

distribution of f we use the normal distribution N(ft21,0.052). For the final model we use a Gibbs

sampler with one Metropolis-Hastings step for h. The proposal distribution and its acceptance

probability were already given in Section 4.

5.2 Empirical results

All the computations in this article were performed and figures produced using the R computing

environment (R Development Core Team, 2010). The functions and data needed to replicate the

results can be found at http://mtl.uta.fi/codes/mortality. A minor drawback is that we cannot use all

available data in estimation but must restrict ourselves to a relevant subset. This is due to the huge

matrices involved in computations if many ages and cohorts are included in the data set. For

example, if we used our complete data set, whose dimensions are T 5 110 and K 5 171, we would

have to deal with Kronecker product matrices of dimension 18810 3 18810. This would require
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5 GB of memory for storing one matrix and much more for computations. Although we can

alleviate the storage problem and also speed up the computations using sparse matrix methods, we

still cannot use the complete data set. In our implementation we use the R package SparseM.

To assess the convergence of the simulated Markov chain to its stationary distribution we used 5

representative values of h, denoted as y1,y,y5, from each corner and the middle of the data matrix,

in addition to the upper level parameters. The value y5 is in the lower right corner of the matrix and

corresponds to an unobserved data item.

For each data set and both models we assessed the convergence of iterative simulation using three

simulated sequences with 5000 iterations. In the case of the final model we discarded 1500 first

iterations of each chain as a burn-in period, while in the case of the preliminary model the

convergence was more rapid and we discarded only 200 iterations.

Figure 3 shows one simulated chain corresponding to the final model and the data set with ages

50–90 and cohorts 1901–1941. The series of l and v do not mix well, that is, they are fairly

autocorrelated. To obtain accurate results for the estimates, more iterations would be needed.

However, the chains converge to their stationary distribution fairly quickly, as indicated by the

values of the potential scale reduction factor, which is a convergence diagnostic introduced by

Gelman & Rubin (1992). The diagnostic values for the final model are less than 1.1 indicating

approximate convergence. Summaries of the estimation results for both preliminary and final model

as well as the diagnostics are provided in Appendix 1.

6 Model checking

Cairns et al. (2008) provide a checklist of criteria against which a stochastic mortality model can

be assessed. We will follow this list as we assess the fit and plausibility of our two models. The list is

as follows:

1. Mortality rates should be positive.

2. The model should be consistent with historical data.
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Figure 3. Posterior simulations of the final model.
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3. Long-term dynamics under the model should be biologically reasonable.

4. Parameter estimates should be robust relative to the period of data and range of ages employed.

5. Model forecasts should be robust relative to the period of data and range of ages employed.

6. Forecast levels of uncertainty and central trajectories should be plausible and consistent with

historical trends and variability in mortality data.

7. The model should be straightforward to implement using analytical methods or fast numerical

algorithms.

8. The model should be relatively parsimonious.

9. It should be possible to use the model to generate sample paths and calculate prediction intervals.

10. The structure of the model should make it possible to incorporate parameter uncertainty in

simulations.

11. At least for some countries, the model should incorporate a stochastic cohort effect.

12. The model should have a non-trivial correlation structure.

Both of our models fulfil the first item in the list, since we model log death rates. To assess the

consistency of the models with historical data we will introduce three Bayesian test quantities in

Section 6.1.

A model is defined by Cairns et al. (2006a) to be biologically reasonable if the mortality rates are

increasing with age and if there is no long-run mean reversion around a deterministic trend. Our

spline approach implies that the log death rate increases linearly beyond the estimable region. The

preliminary model allows for short-term mean reversion (or autocorrelation) for the observed death

rate, while there is no mean reversion at all in the final model.

The fourth and fifth points in the list, that is, the robustness of parameter estimates and model

forecasts, will be studied in Sections 6.2 and 6.3. The figures of posterior predictions in Section 6.3

help assess the plausibility and uncertainty of forecasts and their consistency with historical trends

and variability.

Implementing the models is fairly straightforward but involves several algorithms. Basically, we use

the Gibbs sampler, and supplement it with rejection sampling and Metropolis and Metropolis-Hastings

steps, which are needed to update certain parameters or parameter blocks. A further complication is that

we have to use sparse matrix methods to increase the maximum size of the data set.

In the Bayesian approach one typically uses posterior predictive simulation, in which parameter

uncertainty is taken into account, to generate sample paths and calculate prediction intervals. This

will be explained in detail in Section 6.3.

The hierarchical structure of the spline models makes them parsimonious: on the upper level the

preliminary model has 4 parameters, the final model only 2. Both models also incorporate a

stochastic cohort effect. The preliminary model incorporates an AR(1) structure for observed

mortality, while the final model has no correlation structure for deviations from the spline surface.

One should note, however, that the spline model in itself implies a covariance structure. In the one-

dimensional case the Bayesian smoothing spline model can be interpreted as a sum of a linear

trend and integrated Brownian motion (Wahba, 1978). The prior distribution does not contain

A Bayesian smoothing spline method for mortality modelling

295

https://doi.org/10.1017/S174849951200005X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951200005X


information on the intercept or slope of the trend but implies the covariance structure of the

integrated Brownian motion. Similarily, in our two-dimensional case, the spline surface can

be interpreted as a sum of a plane and deviations from this plane. The conditional prior of h, given

the smoothing parameters, does not include information on the plane but implies a specific spatial

covariance structure for the deviations.

6.1 Tests for the consistency of the model

In the Bayesian framework, posterior predictive simulations of replicated data sets may be used to

check the model fit (see Gelman et al., 2004). Once several replicated data sets yrep have been

produced, they may be compared with the original data set y. If they look similar to y, the model fits.

The discrepancy between data and model can be measured using arbitrarily defined test quantities.

A test quantity T(y,y) is a scalar summary of parameters and data which is used to compare data

with predictive simulations. If the test quantity depends only on data and not on parameters, then it

is said to be a test statistic. If we already have N posterior simulations yi, i 5 1,y, N, we can

generate one replication yrep
i using each yi, and compute the test quantities T(y,yi) and Tðyrep

i ; yiÞ.

The Bayesian p-value is defined to be the posterior probability that the test quantity computed from

a replication, T(yrep,y), will exceed that computed from the original data, T(y,y). This test may be

illustrated by a scatter plot of ðTðy; yiÞ;Tðy
rep
i ; yiÞÞ; i ¼ 1; . . . ;N; where the same scale is used for

both coordinates. Further details on this approach can be found in Chapter 6 of Gelman et al.

(2004) or Chapter 11 of Gilks et al. (1996).

In the case of our preliminary model, a replication of data is generated as follows: First, h, s2 and f
are generated from their joint posterior distribution. Then, using these parameter values, a

replicated data vector yrep is generated from the multivariate normal distribution Nðy; I� s2PÞ.

Finally, the elements of yrep which correspond to the observed values in yobs are selected. In the case

of the final model, h is first generated and then the numbers of deaths dxt and exposures ext

are generated recursively by starting from the smallest age included in the estimation data set.

The numbers for the smallest age are not generated but they are taken to be the same as in the

estimation set. Finally, the replicated death rates are computed as yxt 5 log(dxt/ext), and the values

corresponding to the observed values in yobs are selected. Further details about this procedure are

provided in Appendix 2.

We introduce three test quantities to check the model fit. The first measures the autocorrelation of

the observed log death rate and the second and third its mean square error:

ACðy; hÞ ¼

PtT

t¼ t1

PxK�1

x¼ x1

ðyxþ 1;t�yxþ 1;tÞðyxt�yxtÞ

PtT

t¼ t1

Kt

;

where Kt is the number of observations in cohort t, and

MS E1ðy; hÞ ¼

PtT

t¼ t1

PxKt

x¼ x1

yxt�yxt

� �2

PtT

t¼ t1

Kt

; MS E2ðy; hÞ ¼

PtT

t¼ t1

yxKt t�yxKt t

 �2

T
:
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Figure 4 and 5 show the results when using the data set with ages 50–90 and cohorts 1901–1941.

Each figure is based on 500 simulations. If the original data and replicated data were consistent,

about half the points in the scatter plot would fall above the 458 line and half below. Figure 4(a)

indicates that the preliminary model adequately explains the autocorrelation observed in the

original data set, while Figure 5(a) suggests that there might be slight negative autocorrelation in the

residuals not explained by the model. However, since the Bayesian p-value, which is the proportion

of points above the line, is approximately 0.95, there is no sufficient evidence to reject the

assumption of independent Poisson observations.

The test statistic MS E1 measures the overall fit of the models, and both models pass it (figures not

shown). The test statistic MS E2 measures the fit at the largest ages of the cohorts. From Figure 5(b)

we see that the final model passes this test. However, Figure 4(b) suggests that under the preliminary

model the MS E2 simulations based on the original data are smaller than those based on replicated

data sets (pB 5 0.98). The reason here is that the homoscedasticity assumption of logarithmic

mortality data is not valid. The validity of the homoscedasticity and independence assumptions

could be further assessed by plotting the standardized residuals (not shown here).

−
0.

15

−0.15

AC(y, θ)

A
C

(y
re

p ,
 θ

)

0.002

MSE2(y, θ)

M
S

E
2(

yre
p ,

 θ
)

0.05

0.00

−0.05

−0.10
−

0.
10

−
0.

05

0.
00

0.
05

0.008

0.007

0.006

0.005

0.004

0.003

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

(a) (b)

Figure 4. Goodness-of-fit testing for the preliminary model. (a) Autocorrelation test. (b) MSE test.
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Figure 5. Goodness-of-fit testing for the final model. (a) Autocorrelation test. (b) MSE test.
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6.2 Robustness of the parameter estimates

The robustness of the parameters may be studied by comparing the posterior distributions when two

different but equally sized data sets are used. Here we used two data sets with ages 40–70 and 60–90,

and cohorts 1917–1947 and 1886–1916, respectively. We refer to these as the younger and older age

groups, respectively. Figure 6 (c) indicates that the variance parameter s2 of the preliminary model is

clearly higher for the younger age group. This results from the fact that the variance of observed log

mortality becomes smaller when the age grows. This also causes a robustness problem for l, since its

posterior distribution is dependent on that of s2. Also f seems to be somewhat unrobust.

Figure 7 (a) indicates that under the final model the posterior of l is more concentrated on small

values for the older age group. This is compensated by smaller values of v for the younger group,

which indicates that the smoothing effect in the cohort dimension is similar in both groups.

However, the difference between the age groups is not as clear as in the case of the preliminary

model. Besides, the range of the distribution is fairly large in both cases.

6.3 Forecasting

Our procedure for forecasting mortality is as follows. We first select a rectangular estimation area

which includes in its lower right corner the ages and cohorts for which the death rates are to be

predicted. Thus we have in our estimation set earlier observations from the same age as the

predicted age and from the same cohort as the predicted cohort. An example of an estimation area is

shown in Figure 1.
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Arto Luoma et al.

298

https://doi.org/10.1017/S174849951200005X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951200005X


In the Bayesian approach, forecasting is based on the posterior predictive distribution. In the case of

our preliminary model, a simulation from this distribution is drawn as follows: First, h, s2 and f are

generated from their joint posterior distribution. Then the unobserved data vectors yj2, j 5 1,2,y,T,

(which are to be predicted) are generated from their conditional multivariate normal distributions,

given the observed data vectors yj1 and the parameters h, s2 and f. These distributions were

provided in Section 3. In the case of our final model, h is first generated. Then the numbers of deaths dxt

and the exposures ext are generated recursively starting from the most recent observed values within

each cohort. In this way we obtain simulation paths for each cohort and a predictive distribution for

each missing value in the mortality table. Further details are provided in Appendix 2.

In studying the accuracy and robustness of forecasts, we use estimation areas similar to those used

earlier. However, we choose them so that we can compare the predictive distribution of the death

rate with its realized value. The estimation is done as if the triangular area in the right lower corner
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of the estimation area, indicated in Figure 1, were not known. The posterior predictive distributions

shown in Figure 8 are based on the preliminary model, while those in Figure 9 are based on the final

model. The four cases in both figures correspond to forecasts 1, 9, 17 and 25 years ahead, for

cohorts 1892, 1900, 1908 and 1916, respectively, when the death rate at ages 70 and 90 are

forecast. The distributions indicated by solid lines are based on larger estimation sets than those

indicated by dashed lines.

It may be seen that increasing uncertainty is reflected by the growing width of the distributions.

Furthermore, the size of the estimation set does not considerably affect the distributions when the

death rate at age 90 is predicted, while when it is predicted at age 70, the smaller data sets produce

more accurate distributions. The obvious reason is that in the latter case the larger estimation set
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Figure 9. Posterior predictive distributions of the death rates at ages 70 and 90, based on the final model.
The solid curves correspond to the larger data set (cohorts 1876–1916; ages 30–70 when the death rate at
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−7

Age

lo
g(

de
at

h 
ra

te
)

−6

−5

−4

−3

−2

−1

40 50 60 70 80 90 100

Figure 10. Posterior predictions with the preliminary model for ages 662100 and cohort 1941. The
solid lines represents the 95% posterior limits for y, the dotted lines the 95% posterior predictive
limits for the observed log death rate, and the dashed lines the observed log death rate for ages
35265 and three predictive paths for ages 662100.

Arto Luoma et al.

300

https://doi.org/10.1017/S174849951200005X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951200005X


contains observations from the age interval 30–40 in which the growth of mortality is less regular

than at larger ages, inducing more variability in the estimated model. In all cases, the realized values

lie within the 90% prediction intervals.

Figure 10 and 11 show posterior predictive simulations for the log death rate when the preliminary

and the final model is used, respectively. In each case, the estimation region includes cohorts

1901–1941 and ages 35–100. Three paths of posterior simulations are shown for cohort 1941, for

which the data are available until age 65. As may be seen, the variability of the predictions

resembles that of the observed path. Furthermore, the 95% posterior limits for the log death rate

(yxt) and the 95% posterior predictive limits for the observed log death rate (yxt) are shown. These

two types of limits differ substantially only in the beginning of the forecast horizon. The prediction

belt is narrower for the final model, which reflects better model fit.

7 Conclusions

In this article we have introduced a new method to model mortality data in both age and cohort

dimensions with Bayesian smoothing splines. The smoothing effect is obtained by means of a

suitable prior distribution. The advantage in this approach compared to other splines approaches

is that we do not need to optimize with respect to the number of knots and their locations. In order

to take into account the serial dependence of observations within cohorts, we use cohort data sets,

which are imbalanced in the sense that they contain fewer observations for more recent cohorts.

We consider two versions of modelling: first, we model the observed death rates, and second, the

numbers of deaths directly.

To assess the fit and plausibility of our models we follow the checklist provided by Cairns et al.

(2008). The Bayesian framework allows us to easily assess parameter and prediction uncertainty

using the posterior and posterior predictive distributions, respectively. In order to assess the

consistency of the models with historical data we introduce test quantities. We find that our models

are biologically reasonable, have non-trivial correlation structures, fit the historical data well,

capture the stochastic cohort effect, and are parsimonious and relatively simple. Our final model
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Figure 11. Posterior predictions with the final model for ages 662100 and cohort 1941. The solid
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has the further advantages that it has less robustness problems with respect to parameters, and

avoids the heteroscedasticity of standardized residuals. A further remedy for the unrobustness of the

smoothing parameters might be generalizing the model to allow for dependence between these

parameters and age.

A minor drawback is that we cannot use all available data in estimation but must restrict ourselves

to a relevant subset. This is due to the huge matrices involved in computations if many ages and

cohorts are included in the data set. However, this problem can be alleviated using sparse matrix

computations. Besides, for practical applications using ‘‘local’’ data sets should be sufficient.

In conclusion, we may say that our final model meets well the mortality model selection criteria

proposed by Cairns et al. (2008) except that it has a somewhat local character. This locality is partly

due to limitations on the size of the estimation set and partly due to slight robustness problems

related to the smoothing parameters and forecasting uncertainty.
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Appendix 1

The posterior simulations were performed using the R computing environment. The following

outputs were obtained using the summary function of the add-on package MCMCpack:

Table 1. Estimation results of the preliminary mortality model.
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Table 2. Estimation results of the final mortality model.

Appendix 2

In the case of the final model, the numbers of deaths dxt and the exposures ext should be forecast for

the ages and cohorts for which they are unknown. Furthermore, these values should be generated

when replications of the original estimation data set are produced.

In the case of forecasting, we use an iterative procedure to generate dxt and ext, starting from the

most recent observation of death rate within each cohort. In the case of data replication, we start

from the smallest age available in the data set. In each case, the initial cohort size is estimated on the

basis of the relationship

qxt ¼ 1� expð�mxtÞ;
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where qxt is the probability that a person in cohort t dies at age x. The same equality applies for the

maximum likelihood estimates of qxt and mxt, given by q̂xt ¼ dxt = nxt and mxt 5 dxt/ext, where nxt is

the number of persons reaching age x in cohort t. Thus, we obtain the formula

dxt

nxt
¼ 1� exp �

dxt

ext

� �
; ð17Þ

from which we may solve nxt when dxt and ext are known.

Further, the number of persons alive is updated recursively as nx 1 1,t 5 nxt2dxt, and the number of

deaths is generated from the binomial distribution:

dxþ 1;t � Bin nxþ 1;t; qxþ1;t

� �
:

Then ex 1 1,t is solved using (17).
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