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We consider large-eddy simulation (LES) of buoyant plumes in uniform and stably
stratified environments. We show that in the former case the results agree well with
the simple plume model of Morton, Taylor & Turner (Proc. R. Soc. Lond. A, vol. 234,
1956, p. 1). In particular, we calculate an entrainment constant which is consistent
with laboratory and field measurements and find no significant difference between
the radial spreading rates of vertical velocity and buoyancy. In a stably stratified
environment, the LES plume shows better agreement with Morton et al. (1956) below
the level at which the buoyancy first vanishes than above this level. Above the level of
neutral buoyancy, the LES plume is characterized by an ascending core of negative
buoyancy surrounded by a descending annulus of positive buoyancy. We compare
the LES data with the model of Bloomfield & Kerr (J. Fluid Mech., vol. 424, 2000,
p. 197), which explicitly accounts for these coherent motions. The model exhibits many
qualitative aspects of the LES plume and quantitative agreement can be improved
by adjusting the downward volume flux relative to the upward volume flux in a
manner consistent with the LES plume. This simple adjustment, along with revised
values of the entrainment constants, represents the combined effects of an overturning
region at the top of the plume (where a fluid element reverses direction), ‘plume-top’
entrainment (whereby the plume entrains ambient fluid above the plume) as well as
lateral entrainment and detrainment processes (both external and internal) occurring
above the top of the model plume.

1. Introduction
Buoyant plumes occur in a wide variety of natural and man-made situations.

Despite their obvious complexity, they have been amenable to relatively simple
theoretical models. Morton et al. (1956, hereafter referred to as MTT) proposed a
model for plumes in a Boussinesq environment in terms of the mass, momentum
and buoyancy fluxes by making two important assumptions. The first assumption is
that the entrainment of ambient fluid by the plume occurs at a rate proportional to
the mean vertical velocity such that the ratio of the mean inward horizontal velocity
at the plume boundary and the mean vertical velocity of the plume is constant
throughout the depth of the plume. The second assumption is that the mean vertical
velocity and buoyancy profiles are self-similar with height. For plumes in a uniform
(neutrally stratified) environment, the resulting plume equations admit analytical
solutions and for plumes in a stably stratified environment, numerical or approximate
analytical solutions can be obtained. These models have been remarkably successful
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in describing buoyant plumes and detailed reviews can be found in e.g. List (1982),
Turner (1986) and Gupta (1993).

The aim of this paper is to compare plumes generated by large-eddy simulations
(LES) with the mathematical plume theory described above. The success of this
theory provides a stringent test of LES and, in this context, it is perhaps somewhat
surprising that there have been relatively few studies of purely buoyant plumes using
LES, particularly when compared with jets and forced plumes (e.g. Akselvoll & Moin
1996; Le Ribault, Sarkar & Stanley 1999; Zhou, Luo & Williams 2001). Among the
LES studies of buoyant plumes are Nieuwstadt & de Valk (1987), Bastiaans et al.
(2000), Abdalla et al. (2007), Yan (2007) and Pham, Plourde & Doan (2007). With
the exception of Nieuwstadt & de Valk (1987), who considered a line plume in a
convective atmospheric boundary layer, all the studies are restricted to a uniform
environment. Bastiaans et al. (2000) performed LES of a line source and Yan (2007)
and Pham et al. (2007) considered an effectively axisymmetric source. In this study,
we restrict attention to the latter configuration. Direct numerical simulations (DNS)
of the Navier–Stokes equations for purely buoyant plumes have been conducted by
Pham et al. (2007) and Plourde et al. (2008). The former authors make a systematic
comparison of their DNS results with different subgrid models for LES. We use
the Smagorinsky–Lilly model to account for dissipation by the smallest eddies in
our LES. Although Pham et al. (2007) note some discrepancies between the classical
Smagorinsky model and DNS, since our main interest is in comparing mean field
statistics derived from the LES with the mathematical plume theory, we do not
consider other subgrid models. In addition to dissipation, LES also accounts explicitly
for the perturbation pressure gradient. These aspects, which are absent from the MTT
model, coupled with the fact that the filter separating the resolved and unresolved
scales lies within the inertial subrange of turbulence (and thus allows a wide range
of eddies to be resolved), all contribute to much richer behaviour than is possible
in the MTT model. Thus, LES in turn points to the limitations of the mathematical
plume theory. We shall show that while the mathematical plume theory agrees well
with LES in a uniform environment, in a stably stratified environment this is only
partially true. In particular, we quantify the differences between the LES plume and
the mathematical theory.

The paper is organized as follows. In § 2, we present a summary of plume theory
for an axisymmetric Boussinesq plume from a point source, and in § 3 we give a brief
outline of the numerical solution of the Boussinesq equations in LES. In this study,
we assume the validity of the Boussinesq approximation: in practice, this does not
lead to accurate predictions for the near-source region, but since our main interest is
the well-developed region sufficiently far above the source, we do not consider this
to be a significant limitation. The LES results are presented in § 4 for a uniform
environment and in § 5 for a stably stratified environment.

2. Summary of plume theory
Equations for the volume, momentum and buoyancy fluxes for a plume from a

point source can be derived from the Navier–Stokes equations in their Boussinesq
form (with suitable approximations) and the continuity equation (see e.g. Rooney &
Linden 1996; Linden 2000). The governing equation for the volume flux is given by

dV

dz
= −2πru|r=∞, (2.1)
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where V is the volume flux, r is the radial coordinate, z is the vertical coordinate and
u is the radial component of velocity evaluated far from the plume. The governing
equation for the momentum flux is given by

dM

dz
= 2π

∫ ∞

0

g′(r, z)r dr, (2.2)

where M is the momentum flux, g′(r, z) = g(ρa(z) − ρ(r, z))/ρ0 is the reduced gravity
or buoyancy of the plume, ρ(r, z) is its density, ρa(z) is the ambient density, ρ0 is a
reference density and g is the gravitational acceleration. The governing equation for
the buoyancy flux is given by

dF

dz
= −N2V, (2.3)

where F is the buoyancy flux and N =((g/ρ0)dρa/dz)1/2 is the buoyancy frequency.
The fluxes V , M and F are defined respectively by

V =

∫ ∞

0

2πw(r, z)r dr, M =

∫ ∞

0

2πw2(r, z)r dr, F =

∫ ∞

0

2πw(r, z)g′(r, z)r dr, (2.4)

where w(r, z) is the vertical velocity of the plume. Provided that both w and g′ have
the same r-dependence, the right-hand side of (2.2) can be expressed as FV/M for
arbitrary profiles of w and g′ (Linden 2000, § 3.5).

It is commonplace to express the fluxes and plume equations in terms of an
average (across the plume) vertical velocity, w(z), and reduced gravity, g′(z), along
with a radius, b(z), which are defined by

V = πb2w, M = πb2w2, F = πb2wg′.

Provided g′ is proportional to w as r varies at a given z, the right-hand side of (2.2)
can be expressed as πb2g′. The plume variables w(z) and g′(z) would follow naturally
from the definitions of V , M and F in the case that w and g′ are assumed to have
a top-hat profile (as was originally done by MTT for a uniform environment) and
this motivates the more general definition of w(z) and g′(z). In reality, the time-
averaged cross-plume profiles of the vertical velocity and reduced gravity are more
appropriately described by Gaussian profiles (Turner 1973, § 6.1):

w(r, z) = ŵ(z) exp

(
− r2

b2
w

)
, g′(r, z) = ĝ′(z) exp

(
− r2

b2
g

)
, (2.5)

where ŵ is the centreline vertical velocity, ĝ′ is the centreline reduced gravity and bw

and bg are typical radii associated with the widths of w and g′, respectively, at a given
z. The centreline variables can be expressed in terms of the plume variables via (2.4):

w =
1

2
ŵ, b = bw

√
2, g′ =

1

1 + b2
w/b2

g

ĝ′. (2.6)

Equation (2.5) allows for different spreading rates of w and g′; however, with bw = bg

the right-hand side of (2.2) can be expressed as FV/M or πb2g′ as discussed above.
In terms of the fluxes, (2.2) becomes

dM

dz
=

FV

M
. (2.7)

The plume equations (2.1)–(2.3) are commonly closed by means of the (Taylor)
entrainment assumption, which states that the horizontal inflow velocity at the plume
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boundary i.e. the entrainment velocity, ue, is proportional to the vertical velocity
of the plume, that is, ue = αw where α is the entrainment constant. In a quiescent
environment, the inflow velocity at the plume boundary is equal to its far-field
value, namely, bue = −rur = ∞ (since physically we require dV/dz > 0). The volume
flux equation, (2.1), then becomes

dV

dz
= 2απ1/2M1/2. (2.8)

In a uniform environment, the plume equations admit similarity solutions for w, b

and g′ (Turner 1973, § 6.1):

w =
5

6π1/3α

(
9

10
αF

)1/3

z−1/3, b =
6

5
αz, g′ =

5

6π2/3α

(
9

10
α

)−1/3

F 2/3z−5/3. (2.9)

3. Large-eddy simulation
The three-dimensional Boussinesq equations for an incompressible fluid form the

basis of the large-eddy model. The evolution of the resolved, or filtered, velocity, u,
is governed by

∂u
∂t

+ u · ∇u = − 1

ρ0

∇p + Bk + ∇ · σ , ∇ · u = 0

where p is the pressure perturbation about the hydrostatic pressure and k is the unit
vector in the vertical direction. The buoyancy is given by B = g(T (x, t)−T0)/T0 where
T is the instantaneous (potential) temperature at time t and position x and T0 is a
reference temperature. The evolution of T is given by

∂T

∂t
+ u · ∇T = ∇ · Q.

The stress tensor, σ , and the heat flux, Q, represent the influence of the subgrid-scale
(unresolved) terms. The Smagorinsky–Lilly model is used to approximate the subgrid
terms in which the stress tensor takes the form σ ij = 2νT Sij , where 2Sij = ∂ui/∂xj +
∂uj/∂xi and i, j = 1, . . . , 3. The subgrid eddy viscosity is given by νT = λ2Sfm(Ri ),
where λ is the mixing length, S = (2SijSij )

1/2 and fm is a function of the Richardson
number, Ri = (1/S2)∂B/∂z, used to describe the stability of turbulent stratified flows.
The form of fm reflects the observation that turbulence persists for Ri � 1 and
subsides for Ri � 1 (see e.g. Pasquill & Smith 1983, § 2.3). The mixing length is given
by 1/λ2 = 1/λ2

0 + 1/(k(z + z0))
2 where z0 is the roughness length, k =0.4 is the von

Kármán constant and λ0 =Cs�x (as in the standard Smagorinsky model) where ∆x

is the horizontal grid spacing and Cs =0.23 is the Smagorinsky coefficient. The heat
flux, Q = κ∇T , where κ is the scalar (eddy) diffusivity and κ = λ2Sfs(Ri ) where fs has
a similar functional form to fm. For further details see e.g. Mason (1989).

The momentum equations are solved using a centred-difference method based on
Piacsek & Williams (1970). The evolution equation for the temperature is solved
using a total variation diminishing (TVD) method (Leonard, Lock & MacVean
1996). The Poisson equation for the pressure is solved using a fast Fourier transform.
Periodic boundary conditions are imposed on the lateral boundaries and a sufficiently
large domain is chosen so that the periodicity has little effect on the plume over the
duration of the simulation. No-slip and free-slip boundary conditions are imposed
on the lower and upper boundaries, respectively, of the domain. The surface stress
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Simulation N/Nmax F0/Fmin b0/F
1/4
0 N−3/4 zeq zfinal zmax Nz ∆z/b0 H/b0 zmax/R

S1 0.25 1 0.18 15.9b0 20b0 24.6b0 80 0.5 40 0.49
S2 0.5 100 0.1 30.7b0 40b0 47.2b0 140 0.5 70 0.81
S3 0.75 100 0.13 22.7b0 30b0 34.7b0 120 0.5 60 0.7
S4 1 100 0.16 17.7b0 20b0 29.3b0 100 0.5 50 0.59
S5 1 20 0.25 10.5b0 14b0 17.5b0 100 0.3 30 0.35
S6 1 10 0.29 8.21b0 10.5b0 13.0b0 100 0.25 25 0.26
S7 1 1 0.52 3.79b0 3.75b0 6.6b0 100 0.2 20 0.13

Table 1. The details of the plume simulations in a stably stratified environment: N is the buo-
yancy frequency; F0 is the initial surface buoyancy flux; b0 is the source radius; zeq is the
equilibrium level; zfinal is the final rise height; zmax is the maximum plume height; Nz is the
number of vertical grid points; ∆z is the vertical grid spacing; R denotes half the domain
width and equals 50b0 for all cases except S2 for which it is 60b0. The number of horizontal
grid points is 200 in each direction except for S2 where it is 240 with a horizontal extent
of 120b0.

is determined using Monin–Obukhov similarity arguments (see e.g. Pasquill & Smith
1983, § 2.2) and the top of the domain is stress free. We added a small random
perturbation of the ambient temperature in the lowest 5 % of the domain in order
to help initiate a turbulent flow.

We specify a uniform non-zero heat flux in a circular source of radius b0 in the centre
of the lower boundary and zero heat flux outside this region. We use a finite source
since the LES subgrid model cannot model a point source accurately. With sufficiently
high resolution, this source is captured reasonably well with Cartesian coordinates.
Unless otherwise stated, we use 200 grid points in each horizontal direction with a
grid spacing of �x/b0 = 0.5 giving a horizontal extent of 100b0. We found that this
resolution was sufficient to give good agreement with the observed plume generated by
the explosion and fire at the Buncefield oil depot (Hertfordshire, UK) in December
2005 (Devenish & Edwards 2009). One purpose of this study is to establish how
well the results of a simulation with this resolution agree with the predictions
of § 2.

For a plume in a uniform environment we use 100 grid points in the vertical
direction which gives a vertical grid spacing of �z/b0 = 0.5 and a domain height of
50b0. Newtonian damping towards the initial state (see e.g. Kantha & Clayson 2000,
p. 228) in the top 20 % of the domain is used to ensure that, in this case, the plume
does not impinge on the top of the LES domain. The maximum rise height of the
plume, zmax , is approximately 40b0, which ensures that there is a region in which the
plume becomes fully developed sufficiently far above the source that a meaningful
comparison with the plume theory of § 2 can be made. Except on the first grid point
above the surface, the resolved buoyancy flux is approximately conserved up to the
level where the Newtonian damping takes effect. For plumes in a stably stratified
environment, we consider a range of constant N values and initial buoyancy fluxes,
F0, which are listed in table 1. Here, Nmax is typical of stable atmospheric conditions.

Although we are concerned with the simulation of a buoyant plume in an
unbounded domain, we are in effect modelling a buoyant plume in a confined
region. The latter has been studied both theoretically and experimentally by Baines &
Turner (1969). They considered an initially uniform environment which is stabilized
over time by the redistribution of warmer, or lighter, fluid by the plume. They argued
that, in order to avoid a large-scale circulation, the stabilizing buoyancy force in the
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region of detrainment at the top of the plume must be larger than the inertial force
of the plume. This in turn places a restriction on the aspect ratio, H/R � 1, where H

is the height and πR2 is the cross-sectional area of the confined region. Manins (1979)
strengthened this condition to H 2/R2 � 1 in order to avoid large vertical accelerations
in the fluid outside the plume, and experimental evidence for a line plume (Manins
1973) suggests that H/R � 0.8 is sufficient in practice. In an externally imposed stably
stratified environment, the ratio zmax/R, where zmax is the maximum plume height,
plays the role of H/R with the domain height chosen to be sufficiently high that
the plume does not impinge on the top of the domain prior to coming to rest as
a result of the stable stratification. The values of zmax/R for a range of simulations
are shown in table 1. It will be seen that the condition zmax/R � 0.8 is satisfied in all
cases thus ensuring that our results are not compromised by the finite domain size.
In practice, we find that zmax/R � 0.8 does not need to be strictly satisfied with, for
example, a modified simulation S2 with 200 grid points in each horizontal direction
and a horizontal extent of 100b0, and for which zmax/R ≈ 0.95, giving similar results
to S2. For the plume in a uniform environment, zmax/R ≈ 0.8 (due to the Newtonian
damping). Although the condition H/R � 1 precludes the formation of a large-scale
circulation, it does not prevent a slow change in the environmental temperature profile.
However, the LES data samples are taken before such changes have a significant
impact.

Figure 1 shows a series of instantaneous contour plots of the concentration of an
arbitrary scalar field emitted from the source in order to visualize the plume. The
simulation is of a typical plume in a stably stratified environment (S4). The time
scale, τ , is defined as the maximum height of the plume divided by the maximum
centreline velocity of the plume in its (quasi-)steady state. At the beginning of the
simulation, the plume extends well above its steady-state maximum height; initially
the ambient fluid is undisturbed (except for the random perturbation near the surface)
with the result that the plume entrains at a lower rate than in its steady state. By the
time the simulation reaches a steady state (figures 1c and 1d ), the ambient fluid has
been disturbed sufficiently that there is a degree of turbulence which increases the
entrainment rate (and hence reduces the height of the plume).

Once the plume reaches a steady state, the plume statistics are calculated over
a sufficiently long sample period such that fluctuations in the statistics are small.
Statistics from several sample periods of 10τ each are calculated. Unless indicated
otherwise, only time-averaged statistics from the plume in its steady state are presented
below. Centreline statistics are calculated along the geometric centre of the domain
and are denoted by a hat. We term fluxes that are calculated by integrating the
instantaneous variables over a circle centred on the source and averaged over the
sample period the ‘total resolved’ fluxes and we term ‘mean’ fluxes those fluxes that
are calculated by integrating the time-averaged variables. Unless indicated otherwise,
all the statistics are computed from the resolved variables so that the fluxes include
contributions from the resolved fluctuations as well as the mean flow.

Figure 2 shows the centreline resolved and subgrid vertical velocities, respectively
ŵ and ŵSG, with the latter estimated as w2

SG =2λ2S2/(3a2) where a2 = 0.23 is the
stress-energy ratio. It is clear that, except very close to the surface and near the top
of the plume, the energy of the plume is dominated by the resolved motions. Figure 3
shows the total (resolved and subgrid) buoyancy flux, the resolved mean buoyancy
flux, the resolved fluctuating buoyancy flux and the subgrid buoyancy flux. As with
the energy of the plume, the buoyancy flux is dominated by the resolved motions
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Figure 1. Contour plots of the instantaneous scalar concentration (arbitrary units) showing
the evolution of plume S4: (a) t = 2.5τ , (b) t = 10τ , (c) t = 30τ and (d ) t =60τ .
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Figure 2. The resolved (solid) and subgrid (dashed) centreline vertical velocities for
plume S4.
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Figure 3. For plume S4, F represents the total (resolved and subgrid) buoyancy flux (solid),
the resolved mean buoyancy flux (dashed), the resolved fluctuating buoyancy flux (dot-dashed)
and the subgrid buoyancy flux (dotted).

except very close to the surface. The entrainment into the rising plume may, however,
be less well resolved and hence more sensitive to the subgrid model.

To test the sensitivity of the plume statistics to the finite source size, we repeated
simulation S4 with an initial radius b′

0 = b0/2, keeping the total surface heat flux as
before, setting �x/b′

0 = 0.5 and using 400 grid points in each horizontal direction (so
that the domain size remains the same). We found that the plume takes longer to
reach a steady state but its statistics do not differ significantly from the equivalent
simulation with the original value of b0 and 200 grid points in each horizontal
direction.

We also conducted some sensitivity tests to changes in the resolution. Increased
horizontal resolution (keeping b0 fixed) also results in a plume which takes longer
to reach a steady state but whose statistics do not differ significantly from those of
the original simulation (except near the source). Changes in the vertical resolution
do not have a significant impact on either the time to reach a steady state or the
steady-state plume statistics. The results of sensitivity tests for plumes in a stably
stratified environment are shown in figure 13. It is clear that increased horizontal or
vertical resolution does not have a significant impact on the buoyancy flux.

4. Uniform environment
Figure 4 shows the centreline values of the vertical velocity and the reduced gravity,

ĝ′, of the LES plume in a uniform environment. It is readily seen that, above the
region in which the plume is developing, ŵ scales like z−1/3 and ĝ′ scales like z−5/3, as
predicted by (2.9).

The plume theory of MTT assumes a point source, whereas we have used a circular
source of finite size. This can be corrected for by using the virtual point source, zvs ,
associated with the finite (physical) source. The determination of the virtual source
in practice is complicated by the difficulty in defining it precisely (see Gupta 1993
and Hunt & Kaye 2001 for a discussion on the various approaches that have been
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Figure 4. The centreline vertical velocity (solid) and reduced gravity (dashed) in a
uniform environment.
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Figure 5. The centreline reduced gravity (solid) plotted as ĝ′3/5z versus ĝ′3/5. The dashed line
indicates the best linear fit between the two vertical lines.

used in the literature). Consequently, there are a number of ways of calculating the
location of the virtual point source. We choose to calculate the virtual source from
the centreline reduced gravity following George, Alpert & Tamanini (1977) (see also

Hunt & Kaye 2001, § 1.1). Since g′ ∼ (z − zvs)
−5/3, we get g′3/5z = g′3/5zvs + c where c

is a constant and hence zvs is given by the gradient of a plot of g′3/5z against g′3/5.
Figure 5 shows ĝ′3/5z against ĝ′3/5 for the LES plume. The region in which the plume
is well developed (where ĝ′ ∼ z−5/3) corresponds to 0.2 � ĝ′3/5 � 0.35; for ĝ′3/5 � 0.2
the plume is affected by the Newtonian damping and for ĝ′3/5 � 0.35 the plume is
affected by b0. The gradient of a linear fit to the well-developed region gives a virtual
source correction of zvs ≈ −1.43b0.
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Figure 6. Γ (z) evaluated from the mean fluxes (solid) and the total resolved fluxes (dashed)
using α = 0.15.

The value of the dimensionless quantity

Γ (z) =
5FV 2(z)

23π1/2αM5/2(z)
(4.1)

at the source, Γ0 = Γ (0), has been used to characterize forced plumes (Morton 1959;
Hunt & Kaye 2001) and, more generally, Γ (z) is proportional to a local Richardson
number. (Note that the definition of Γ by Morton 1959 has been suitably rescaled for
consistency with the plume equations of § 2.) For a purely buoyant plume Γ (z) = 1
for all z > 0 but it is not well defined at the source. In the limit Γ0 → ∞, Hunt &
Kaye (2001) have shown that the virtual source coincides with the actual source. In
the case that Γ0 = 1, Morton (1959) has shown that the virtual source is located at
zvs ≈ −2.108LM where LM = 2−1π−1/4α−1/2M

3/4
0 F −1/2 is a length scale characterizing

the vertical distance over which a forced plume with initial momentum flux M0

becomes a purely buoyant plume. For purely buoyant plumes with M0 = 0, LM is not
an appropriate length scale and the source radius provides a more suitable length
scale (Hunt & Kaye 2001).

Figure 6 shows (4.1) evaluated using the total resolved fluxes and the mean fluxes.
(The value of α = 0.15 is consistent with the LES data; see below.) With the exception
of the near-source region (and close to the domain top), Γ calculated from the mean
fluxes tends to be larger than unity whereas Γ calculated from the total fluxes tends
to be smaller than unity. Although figure 6 shows that Γ is becoming large as z tends
to zero, this cannot be regarded as conclusive due to the dominance of diffusion over
advection close to the source and numerical difficulties in simulating the near-source
region with limited resolution. Moreover, the plume equations of § 2 are not valid for
the near-source region of the LES plume. Using Γ at the lowest grid point above the
source, the virtual source correction of Hunt & Kaye (2001) (see (34) and figure 2 in
that work) would give a value of zvs which is close to the physical source. However,
taking the average value of Γ in the region where the plume is well-developed (for
which the plume equations are appropriate) gives a virtual source much farther below
the physical source than that calculated above (even if we treat the effective source of
the plume as the lowest point of the well-developed plume and subtract the difference
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Figure 7. Cross-sections of the vertical velocity at z/b0 = 20 (solid), z/b0 = 25 (long dashed),
z/b0 = 30 (short dashed) and z/b0 = 35 (dotted). The thick solid line is proportional to
exp(−60(r/(z − zvs))
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Figure 8. Cross-sections of the reduced gravity with the same key as in figure 7. The thick
solid line is proportional to exp(−60(r/(z − zvs))

2).

between this effective source and the physical source). The sensitivity of the virtual
source location to the way in which it is determined means, of course, that any
comparison of the LES results with plume theory is likely to be sensitive to the choice
of virtual source. An alternative approach is to ask what value of zvs is required for
the LES results to agree with the predictions of § 2. For this reason and the ambiguity
in the choice of Γ , we choose to use zvs = −1.43b0, calculated above, which ensures
that g′ ∼ (z − zvs)

−5/3 in the appropriate range of z. This leads to a value of α of the
expected order of magnitude (see below).

Figures 7 and 8 show cross-sections of the mean vertical velocity and reduced
gravity, respectively, at a number of different values of z/b0. It is clear from
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both figures that, within the region 20 � z/b0 � 35, the vertical velocity and reduced
gravity are approximately self-similar with height. Moreover, both sets of profiles are
reasonably well approximated by Gaussian profiles, w ∼ exp(−β1r

2/(z − zvs)
2) and

g′ ∼ exp(−β2r
2/(z − zvs)

2), with β1 = 60 ± 10 and β2 = 60 ± 10. Equating these profiles
with (2.5), we see that bw and bg take the same value and so there is no difference in the
radial spreading rates of w and g′. The ratio β1/β2 is within the range of experimental
values listed in table 1 of Linden (2000): of the six experiments quoted, half calculated
a value of β1/β2 less than unity and half a value that is greater than unity. These
results also indicate that the plume radius grows linearly with z. Thus, we can use
(2.6b) and (2.9b) to estimate a value of the entrainment constant α =0.15 ± 0.015
that agrees well with the value determined from the LES plume of Abdalla et al.
(2007), the experimental values listed by Linden (2000) and field measurements (e.g.
Briggs 1984). We find that without the virtual source correction, the profiles of w and
g′ at the same values of z still collapse when scaled appropriately but with a slightly
different spreading rate that results in a value of α that is approximately 15 % larger.
This suggests that for the finite source used in this LES, the virtual origin correction
has only a small effect on the plume statistics in the region where the plume is well
developed.

5. Stably stratified environment
In a stably stratified environment, the density of a buoyant plume increases with

height due to entrainment while that of the environment decreases with height. At
some point, the density difference vanishes and above this height the buoyancy force
acts on the plume to reduce its momentum and eventually bring it to rest. The plume
then falls back down and, as it does so, it continues to entrain ambient fluid as
well as interacting with the ascending plume. After the descending plume is brought
to rest by the increasingly positive buoyancy, the plume then re-ascends and these
oscillations continue until the plume finally comes to rest at its ‘final rise height’.
The result is that the final rise height may not be the same as the level at which
the buoyancy first vanishes, the ‘equilibrium level’ (see also the discussion in MTT).
Below the equilibrium level, a plume in a stably stratified environment behaves very
much like a plume in a uniform environment. Indeed, as Briggs (1984) has noted, 1/N
is the time scale to reach the equilibrium level and this time scale is independent of
F0. Thus, for times much less than 1/N , the stratification should have little effect on
the plume rise. The result is that below the equilibrium level the rate of entrainment
can be assumed to be the same in both stably stratified and uniform environments.

We start this section by looking at how well the LES fluxes satisfy the plume
equations of § 2 and thus how well justified are the assumptions that underlie them.
In § 5.1 we compare the LES data with the numerical solution of the plume equations
of § 2 and Briggs’ (1975) approximate analytical solutions of these equations. As
we find that neither captures the upper part of the plume accurately, in § 5.2 we
consider the more sophisticated model of Bloomfield & Kerr (2000; hereafter referred
to as BK2000) which is based on a model by McDougall (1981). This was originally
developed for a turbulent fountain and we start by applying it directly (using the
same values of the entrainment constants) to a purely buoyant plume.

In figures 9, 10 and 11, we plot the left-hand and right-hand sides of the buoyancy,
momentum and volume equations, respectively, evaluated from the LES data for
simulation S4. Figure 9 shows that the buoyancy equation (2.3) is approximately
satisfied throughout the depth of the plume (with the exception of the near-source
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Figure 9. F represents the left-hand (solid) and right-hand (dashed) sides of (2.3) for
plume S4.
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Figure 10. M represents the left-hand (solid) and right-hand sides of the momentum equation
with the dotted line the right-hand side of (2.2) and the dashed line the right-hand side
of (2.7).
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Figure 11. V represents the left-hand (solid) and right-hand (dashed) sides of (2.8) with
α =0.1 for plume S4.
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Figure 12. The LES zeq (+) and zmax (×) for the simulations listed in table 1 as a function

of b0/F
1/4
0 N−3/4. The solid and dashed horizontal lines are (5.1a) and (5.1b), respectively, with

α = 0.1. The LES zeq with the virtual source correction is indicated by (∗).

region). Figure 10 shows that the momentum equation is reasonably well satisfied
throughout the depth of the plume when the right-hand side is evaluated as in (2.2).
However, when the right-hand side of the momentum equation is evaluated as in
(2.7), the two sides of the momentum equation only agree for z � zeq , where zeq is the
equilibrium level. Figure 11 shows that the volume equation (2.8) (with α = 0.1 for
best fit) is reasonably well satisfied for z � zeq but not for z � zeq . These results lead
us to make the following remarks: (i) the LES plume provides a reasonable solution
of the buoyancy flux and momentum flux equations (provided the right-hand side of
the latter is evaluated as in (2.2)) but not of the volume flux equation. This supports
the assumptions leading to (2.2) and (2.3) such as the neglect of the radial pressure
gradient in the plume equations (see e.g. Linden 2000, § 3.4) but raises questions about
the validity of the entrainment assumption in the upper part of the plume; we will
return to this point in § 5.2. We note that the momentum and buoyancy flux equations
do not depend directly on α and, when re-formulated in terms of time, t =

∫
dz/w,

become independent of the volume flux. This may explain why the LES satisfies (2.2)
and (2.3) but not (2.8). (ii) The constituents of FV/M each depend on w whereas
the integral on the right-hand side of (2.2) does not. When FV/M is calculated from
the mean fluxes, the disagreement between the left and right-hand sides of (2.7) for
z � zeq remains and implies that, for z � zeq , the shapes of w and g′ no longer have
the same r-dependence; this will be demonstrated in figures 17 and 18. In § 5.2, we
will show that the upper part of the plume is characterized by coherent upward and
downward motion which provides an explanation for why the shapes of w and g′ no
longer have the same r-dependence in this region and why FV/M does not agree
with the left-hand side of the momentum equation for z � zeq .

5.1. Comparison of LES with the plume model of MTT

From a numerical solution of (2.3), (2.7) and (2.8), the levels at which the buoyancy
and vertical velocity vanish can be estimated as respectively (MTT)

zeq ≈ 1.04α−1/2F
1/4
0 N−3/4, zmax ≈ 1.36α−1/2F

1/4
0 N−3/4. (5.1)

Figure 12 shows zeq and zmax computed from the LES plumes for the simulations
listed in table 1. The equilibrium height is taken to be the level at which ĝ′ vanishes
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Figure 13. The MTT (solid) and LES buoyancy fluxes showing the effect of different
resolutions. The dashed line represents the simulation S4, the dotted line represents the
same simulation except with ∆x/b0 = 0.25 and 400 grid points in each horizontal direction
and the dot-dashed line represents S4 except with ∆z/b0 = 0.25 and 200 vertical grid points.

and the maximum height of the plume is taken to be the level at which ŵ vanishes.
It is clear that the LES results and (5.1) agree better when b0 is small relative to
the length scale F

1/4
0 N−3/4; indeed we would expect the agreement to improve for

smaller values of b0/F
1/4
0 N−3/4 than we have considered here since we should recover

a point source in the limit b0 � F
1/4
0 N−3/4. As b0 increases relative to F

1/4
0 N−3/4, the

finite source size becomes more important; this can be corrected for using a virtual
source correction. We choose to base the virtual source correction on zeq and not zmax

because we expect the MTT model to agree better up to, but not above, zeq . Figure 12
suggests a virtual source correction of 2.5b0 and it can be seen that this results in
better agreement with (5.1a). It is clear from figure 12 that since MTT overpredicts
the LES zeq and underpredicts the LES zmax , the virtual source correction cannot
improve both simultaneously. Thus, correcting the LES zeq results in a systematic
underprediction of the LES zmax by MTT.

In order to gain more insight into how well the LES plumes agree with the MTT
model, we compare the LES and MTT fluxes throughout the depth of the plume.
Figure 13 shows the LES and MTT buoyancy fluxes and indicates that up to and
including the equilibrium levels, the two fluxes agree reasonably well. (Note that zeq

is the appropriate value for either the LES or MTT plume.) The MTT value of zeq is
slightly larger than the LES zeq which is consistent with figure 12. Figures 15, 16 and 23
show the buoyancy, momentum and volume fluxes, respectively, for the LES and
MTT plumes scaled by F0 and N (raised to the appropriate powers). The agreement
between the LES and MTT fluxes is better for the buoyancy and momentum fluxes
than that for the volume flux. In the context of what has already been discussed
above regarding the plume equations (figures 9–11), this situation is perhaps not
surprising.

Briggs (1975) introduced the ‘unaltered volume flux’ technique to derive an
approximate analytical solution of the plume equations in a stably stratified
environment. This method assumes that the volume flux is not significantly affected
by the stratification and so can be approximated by the volume flux in a uniform
environment. Substituting V = π2/3(6α/5)(9α/10)1/3F 1/3

0 z5/3 into (2.3) and (2.7), it is
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straightforward to show that

F = F0 − 1

2
π2/3

(
9α

10

)4/3

F
1/3
0 N2z8/3 (5.2)

and

M2 = π2/3

(
9α

10

)4/3

F
1/3
0 z8/3

(
F0 − 1

4
π2/3

(
9α

10

)4/3

F
1/3
0 N2z8/3

)
. (5.3)

Equation (5.2) represents the first two terms in a series solution of (2.3) (with higher
order terms proportional to z8n/3 for n= 2, 3, . . .). The next term in the series is
given (numerically) by MTT and the full analytical solution can be found in Scase,
Caulfield & Dalziel (2006). The latter authors found that the full series converges
very rapidly implying that only the first two terms are significant. It follows from
(5.2) and (5.3) that the equilibrium level and maximum rise height are given by

zeq = 23/8π−1/4

(
9α

10

)−1/2

F
1/4
0 N−3/4, zmax = 23/4π−1/4

(
9α

10

)−1/2

F
1/4
0 N−3/4. (5.4)

The difference between the coefficients in (5.4a) and (5.1a) is approximately 1 %
whereas the coefficient in (5.4b) is approximately 2.5 % smaller than that in (5.1b).
The good agreement between (5.4) and (5.1), particularly for zeq , provides justification
for the unaltered volume flux technique. The fact that zeq agrees better than zmax is
consistent with the above arguments that the stratification does not play a significant
role below zeq . Above zeq , the buoyancy becomes negative and the plume behaves like
a jet. Furthermore, (5.2) becomes more negative than the buoyancy flux calculated
from the numerical solution of the plume equations. Since jets spread out more
rapidly than plumes (Turner 1973, § 6.1), it explains why the coefficient of (5.4b)
is less than that of (5.1b). However, neither the numerical solution of the plume
equations nor the approximate analytical solutions of Briggs’ unaltered volume flux
technique capture the LES zmax correctly.

Figure 14 shows the LES volume fluxes for a range of F0 and N values along with
the LES volume flux in a uniform environment. For z � min(15b0, zeq ), the volume
fluxes in a stratified environment follow the volume flux in a uniform environment
which would appear to justify the unaltered volume flux approximation. However,
further examination of figure 14 shows that above z/b0 ≈ 15 but below the equilibrium
levels of plumes S2 and S3, the volume fluxes of plumes S2 and S3 do not follow
the volume flux in a uniform environment as might be expected. For all the stratified
cases, the volume flux grows linearly until zeq whereas the volume flux in a uniform
environment grows linearly until z/b0 ≈ 15 and approximately like z5/3 above this
level. That the volume flux in a stratified environment does not scale like z5/3 below
the equilibrium level may be due to there being an insufficiently large separation
between the region where the finite source affects the plume behaviour and the region
where the stratification becomes important. With a much smaller source, we would
expect such a separation to be achieved.

Figures 15 and 16 show that the LES data agree reasonably well with (5.2) and
(5.3) which provides a better justification for the unaltered volume flux approximation.
Note that, in this figure, we have restricted as far as possible the calculation of the
fluxes to the upward core of the plume.

Briggs (1984) assumes that once the plume reaches its maximum height, it falls
back down to its final rise or spreading height, zfinal , with no further entrainment.
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Figure 14. The volume flux for a range of F0 and N values: simulation S2 for which
zeq = 30.7b0, S3 for which zeq =22.7b0, S4 for which zeq = 17.7b0, S5 for which zeq = 10.5b0 and
S7 for which zeq = 3.79b0. The position of zeq is marked by a vertical dash in the corresponding
line type. The dotted line represents the volume flux for a plume in a uniform environment.
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Figure 15. The LES buoyancy flux for a variety of F0 and N values: simulation S1 (short
dashed), S2 (dotted), S3 (two dashes) and S4 (dot-dashed). The long dashed line is the
theoretical result (5.2) with α =0.1, and the solid line is the corresponding numerical solution
of the MTT model with α = 0.1.

This distance can be derived from (2.3) assuming that V remains constant over the
interval zmax to zfinal and using (5.2). Thus, we get

zfinal = zmax +
F

N2V

∣∣∣∣
z=zmax

=
13

16
zmax . (5.5)

Using the LES zmax , table 1 indicates that, for b0 � F
1/4
0 N−3/4, the LES zfinal is, on

average, 0.8zmax (in agreement with (5.5)) where zfinal is estimated as the height of the
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Figure 16. The same as figure 15 but for the square of the LES momentum flux. The
long-dashed line represents the theoretical result (5.3) with α = 0.1 and the solid line is the
corresponding numerical solution of the MTT model with α = 0.1.
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Figure 17. Cross-sections of mean w for plume S2 at z/zeq = 0.57 (solid), z/zeq = 0.81 (long
dashed), z/zeq = 1.11 (dotted), z/zeq =1.35 (dot-dashed) and z/zeq =1.58 (short dashed). Note
that zmax = 1.54zeq .

maximum width of the plume. However, substituting (5.4b) into (5.5) gives a value
of zfinal which is considerably lower than the LES zfinal . This suggests that, while the
assumption of ‘no further entrainment’ may be a reasonable practical assumption,
this may be the net result of a more complicated entrainment process.

5.2. Comparison of LES with the plume model of BK2000

Figure 17 shows the cross-section of the mean vertical velocity for plume S2
at increasing levels above the source. For z = 0.57zeq and z =0.81zeq , the vertical
velocity is always positive whereas for z = 1.11zeq and z =1.35zeq there is an annulus
surrounding the central region where the plume is, on average, descending. Figure 18
shows corresponding profiles of g′. As z increases above zeq , the buoyancy of the
plume becomes increasingly negative, which leads to negative vertical velocities (since
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Figure 18. Cross-sections of mean g′ for plume S2 at the same levels as in figure 17.

the right-hand side of (2.7) can be expressed as F/w and M � 0). The buoyancy
of the descending shell of the plume eventually becomes positive and so there is an
annulus of slightly positive buoyancy to the sides of the main plume for z =1.11zeq ,
which is larger than at z = 1.35zeq . We note that although we have defined the top
of the plume to be the level at which the centreline vertical velocity vanishes, there
is a region above this level, as exemplified by z = 1.58zeq , where an examination of
the scalar concentration shows that there are still significant levels of plume fluid and
which is characterized by negative vertical velocities. The corresponding cross-section
of buoyancy shows that the buoyancy of the plume core is still negative but much
less so than at z = 1.35zeq . This is suggestive of entrainment of warmer ambient fluid
above the plume; we will return to this point in § 5.3.

These results indicate that the region of the plume above zeq is characterized by
coherent concentric annuli consisting of either upward or downward motion. As
demonstrated in the previous subsection, such behaviour is not captured by the
simple plume model of MTT. BK2000 separate the upward (inner) and downward
(outer) parts of the plume into two co-flowing plumes as shown schematically in
figure 19. The model consists of six equations describing the evolution of (the square
of) the momentum flux, the volume flux and the buoyancy flux for each of the two
(upward and downward) plumes. Details of the numerical solution of the BK2000
model are given in the Appendix. BK2000 assume that there are three entrainment
mechanisms with three entrainment velocities, uα =αwu, uβ = βwd and uγ = γwd

which respectively define the velocity of entrainment from the downward into the
upward plume, from the upward into the downward plume and from the environment
into the downward plume. In this section, we use the same values of the entrainment
constants as BK2000 in the co-flowing region, namely, α = 0.085, β = 0.147 and
γ = 0.147. BK2000 consider two formulations of the buoyant body forces which lead
to different forms of the governing equation for the momentum flux. In the first case,
BK2000 assume that the pressure gradient is everywhere hydrostatic and that the
surfaces of constant pressure remain horizontal throughout both the upward and
downward plumes and the environment. In this case, the body force accelerating the
upward plume depends only on the density difference between the upward plume and
the environment so that the reduced gravity of the upward plume can be defined as
g′

u = (g/ρ0)(ρa(z)−ρu(z)), where ρu is the density of the upward plume. In the second
body-force formulation, BK2000 assume that the body force acting on the upward
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bu
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z

uγ

Figure 19. Schematic diagram showing the structure of the upper part of the plume with the
inner, upward, plume and the outer, downward, plume. The radii of the upward and downward
plumes are given by bu and bd , respectively, and wu and wd are the upward and downward
vertical velocities, respectively. The entrainment velocities between the upward and down-
ward velocities are uα and uβ and that between the downward plume and the environment
is uγ .

plume is the local density difference between the upward and downward plumes, that
is, g′

u + g′
d where g′

d = (g/ρ0)(ρd(z) − ρa(z)) is the reduced gravity of the downward
plume and ρd is its density. The downward body force changes correspondingly
between the two formulations. We find only small differences between the two body-
force formulations and as the first body force converges more readily we only present
results for this case.

Figures 20 and 21 show the volume and momentum fluxes, respectively, for
the BK2000 model. The model assumes that the limits of plume penetration are
determined by the points at which the momentum flux goes to zero (and indeed the
numerical solution breaks down beyond this point). Hence, the profiles of momentum
flux always begin and end at approximately zero. The region in which the plume turns
(from upward to downward motion) is not modelled but instead the fluxes are matched
between the one-dimensional upward and downward plume models. This treatment
leads to the abrupt cutoffs evident in the volume-flux profiles. The initial equilibrium
and maximum rise heights are the same as the MTT model, namely (5.1a) and (5.1b)
respectively. The final maximum rise height, zfmrh , and the maximum downward
penetration, zmdp , shown schematically in figure 22 can be calculated from the BK2000
model. The final rise height, zfinal , is calculated assuming that there is no further
entrainment (see the Appendix for details). These heights can be expressed in terms of
zeq as given by (5.1a): zfmrh = 1.28zeq , zfinal = 1.05zeq and zmdp =0.94zeq . Compared with
the LES plumes in table 1, zfmrh and zfinal are smaller than zmax and zfinal , respectively.

Figures 20 and 21 also show the (conditional) time-averaged LES volume and
momentum fluxes conditioned on w > 0 or w < 0 for plume S2 (note that here w

is the time-averaged vertical velocity). Both the downward volume and momentum
fluxes become zero slightly below zeq , indicating that the downward shell of the plume
penetrates below zeq . The level at which the fluxes become zero is approximately
0.9zeq compared with 0.94zeq predicted by the BK2000 model. In both the BK2000
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Figure 20. The upward (solid) and downward (dashed) volume fluxes: LES plume S2 (red);
original BK2000 model with α = 0.085, β = 0.147 and γ =0.147 (blue); the revised BK2000
model with plume-top entrainment (Vdown = 2Vup) and α = 0.05, β = 0.8 and γ = 0.01 (cyan).
The MTT volume flux with α = 0.1 is shown by the purple line. The unconditional LES volume
flux is shown by the dotted red line and the absolute ratio Vdown/Vup is shown by the dotted
black line. The position of the LES zmax relative to zeq is marked by the vertical black line.
The equilibrium value, zeq , is the appropriate value for either the LES plume or the BK2000
and MTT models.
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Figure 21. The same as figure 20 but for the momentum flux.

model and the LES data, the upward momentum flux is considerably larger than
the downward momentum flux, and the position of the peak values is lower in the
BK2000 model than that in the LES data.

5.3. Plume-top entrainment

It is evident from the LES results in figure 14 that, near the top of the plume, the
volume flux becomes negative, which implies that the downward volume flux is greater
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Initial max rise height

Final max rise height

Initial equilibrium height
F = 0

Final rise height

Max downward penetration

Figure 22. Schematic diagram showing the levels attained by the MTT plume (left) and
BK2000 plume (right) as described in the text. The dotted-line arrow indicates the rise of the
plume from zmdp to its final rise height assuming no further entrainment.

than the upward flux. We also note that, as shown in figures 2 and 17, there is a
region at the top of the plume in which the vertical velocity is negative. These results
are indicative of ‘plume-top entrainment’, whereby the plume entrains ambient fluid
from above the top of the plume, in the region in which the plume is overturning.

Plume-top entrainment has been extensively studied in a two-layer environment
(see e.g. Cardoso & Woods 1993; Lin & Linden 2005) where the entrainment at
the density interface is often characterized in terms of a Richardson number formed
from the density difference across the interface and the plume similarity solution
(Lin & Linden 2005). A pure plume from a point source in a stratified environment
is characterized by two parameters: the initial buoyancy flux F0 and the ambient
buoyancy frequency N . It is clear that although these parameters are sufficient to
non-dimensionalize the plume equations, no dimensionless group can be formed from
them. The dimensionless equations describe a single problem with no parameter that
can be varied independently and hence any data non-dimensionalized using F0 and N

should, in theory, collapse onto a single curve where b0 is not important. Figures 15,
16 and 23 each show that the collapse to a single set of results occurs to a reasonable
approximation for the buoyancy, momentum and volume fluxes throughout the depth
of the plume (and indicates that, for the plumes shown in these figures, b0/F

1/4
0 N−3/4

is sufficiently small for the collapse to be valid close to the source). We note that, for
z/(F 1/4

0 N−3/4) � 4.5, where the momentum and buoyancy fluxes vanish, the volume
flux oscillates with a dimensionless wavelength and amplitude which appears to
depend on N . A buoyant plume in a stratified environment generates gravity waves
that radiate in all directions and whose properties depend on N . Since the fluxes are
calculated by integrating over a fixed region, the volume flux only captures part of
the gravity waves and hence appears to oscillate.

In the present problem, for the reasons given above, attempting to construct a
Richardson number, Ri , from theoretical considerations yields a result that does not
depend on F0 or N , but which is a function of the entrainment constant alone.
Turner (1973, § 7.1.1) makes an analogous point with reference to convection between
horizontal plates: ‘The Richardson number cannot enter here, because there is no
externally imposed velocity, independent of the buoyancy forces’. That is, the single
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Figure 23. The volume flux for a range of F0 and N values: simulation S1 (short dashed), S2
(dotted), S3 (two dashes) and S4 (dot-dashed). The solid line is the numerical solution of the
MTT model with α = 0.1.

problem allows only a single instance of entrainment behaviour. Some of these
constraints are alluded to by Cardoso & Woods (1993), who studied a similar problem
to that examined here but with time dependence arising from an environment of
limited extent. To illustrate, using Briggs’ solution, we may construct Ri using (5.2)
and (5.3), taking the reduced gravity at the plume top, and the plume length and
velocity scales at the equilibrium height:

Ri ∼ |g′(zmax )|b(zeq )

w2(zeq )

=
F (zmax )

V (zmax )

V 3(zeq )

π1/2M5/2(zeq )

= 25/8 24

15
α

≈ 2.47 α.

Applying this value of Ri to the results of Lin & Linden (2005, figure 12) indicates
that, in the two-layer problem, the expected volume-flux contribution from plume-top
entrainment would be a substantial fraction (in the range 0.6–0.8) of the upward
volume flux.

To estimate the plume-top entrainment from the LES data, we calculated the
absolute ratio of the upward to downward volume fluxes, Vup/Vdown , at zmax . The
fluxes are relatively small in this region, so to estimate the sensitivity of this result
to the height chosen, we calculated the same ratio three grid points below this level.
As Vup/Vdown varies with the sample period, in figure 24 we present the mean ratio
averaged over typically 3–4 sample periods with error bars representing the standard
deviation. The large variation in the magnitude of the error bars between different
simulations is due to the small number of available samples. Despite the uncertainty
in Vup/Vdown , the numerical results generally show a ratio of Vup/Vdown � 0.5, implying
that the entrained volume flux, VE = Vdown − Vup , is at least as much as that in
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Figure 24. The absolute ratio of the upward to downward volume fluxes evaluated at zmax

(+ with solid error bars) and at the third grid level below zmax (× with dotted error bars).

the upward plume. Figure 24 shows the ratio Vup/Vdown tending towards 0.25 as

b0/F
1/4
0 N−3/4 decreases, which gives Vdown = 4Vup or VE = 3Vup . Figure 20 shows the

ratio Vdown/Vup as a function of height for plume S2. Although Vdown is large compared
with Vup at zmax , the fluxes themselves are small indicating that the amount of entrained
fluid at the plume top may be small despite the large value of Vdown/Vup . Furthermore,
below zmax , Vdown increases in magnitude whereas Vdown/Vup decreases. This may be
partly due to the cumulative effect of entrainment from both the environment and the
upward plume into the downward plume, but is also due to upward moving material
overturning and changing direction.

The ratio Vdown/Vup is considerably larger than that observed by Lin & Linden
(2005) at a comparable Ri. However, as discussed above, our result is obtained from
a direct measurement of the upward and downward volumes fluxes at, or near, the
top of the plume. Lin & Linden (2005) use a combination of theory and experiment
to calculate the entrainment by a fountain impinging on a density interface. The
interaction of the fountain with the fluid beyond the interface is not described
quantitatively, except for an indication of the vertical extent of penetration beyond
that point. This is approximately 0.4 times the distance between the source and the
interface for all their experiments. Thus, the entrainment is calculated at a depth of
approximately 70 % of the total extent of the fountain. This region is characterized by
upward and downward volume fluxes that are much larger than those expected near
the maximum extent of the fountain, and corresponds to a region around z/zeq ≈ 1.2
in our plume S2 (see figure 20). At this height, the ratio Vdown/Vup gives a value of VE

that is closer in magnitude to that observed by Lin & Linden (2005).
These results provide additional information with which to revise the model of

BK2000. Assuming that the entrained fluid comes from the maximum height (or
overturning height) of the model, the buoyancy flux in the downward plume is
unaffected, and the plume-top entrainment can be incorporated by a very simple
additional feature. Instead of using the final volume flux from the top of the upward
iteration directly as the initial condition for the downward iteration, we use the
volume flux increased by a chosen factor to represent the increase due to plume-top
entrainment. However, as shown in figure 20, the LES upward and downward volume
fluxes are small at zmax , and so the inclusion of Vdown in the initial condition for the
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descending plume is unlikely to alter the flow significantly. In the BK2000 model,
the process of overturning and direction reversal occurs only at the height at which
the momentum flux vanishes but in reality it is likely to occur at a range of heights
leading to smoother profiles than the BK2000 model can produce. This means that
there is uncertainty in the most appropriate height to diagnose VE for use in the
BK2000 model. Also, although there is a distinction in the BK2000 model, in reality
it may be hard to distinguish between entrainment from the upward to the downward
plume and material overturning and changing direction. Since the BK2000 plume
does not rise as high as the LES plume, we use the value of Vup/Vdown given by the
LES data at the level at which the BK2000 plume terminates. For the LES plume S2
this gives Vdown = 2Vup (see figure 20). (With Vdown = 4Vup , the downward momentum
flux can be made to agree reasonably well with the LES data but the downward
volume flux becomes much larger than the downward LES volume flux.) The sharp
top of the BK2000 plume then corresponds to the net effect of processes occurring
above this point.

We find that, with the revised model, it is possible to produce both volume and
momentum fluxes that are similar in magnitude to those observed, provided we tune
the entrainment coefficients α, β, γ in the co-flowing region (below the co-flowing
region α for the single plume remains at the default value of 0.1). Even with a
pre-determined value of plume-top entrainment, the remaining parameter space is
still large; however, several trials showed that the best agreement is found with
α, γ � β and β 
 0.147, its original value. (Adding plume-top entrainment to the
model with the original values of α, β and γ results in a downward volume flux
that is much larger than the equivalent LES flux.) Physically, this indicates that,
with or without plume-top entrainment, detrainment from the upward plume to the
downward is more important than vice versa and more important than entrainment
from the environment to the downward plume. The upward plume fluid is moving
against the buoyancy force upon it in this region, so the preference for detrainment
into the downward plume is perhaps not surprising especially as the detrainment
process in the model is parameterizing both mixing between the plumes and the bulk
overturning and direction reversal. This choice of entrainment coefficients rather than
the addition of plume-top entrainment affects the shape of the upward volume flux
which now more closely follows the equivalent LES flux. The addition of plume-top
entrainment (for given α, β and γ ) increases the magnitude of Vup , Vdown and the
downward momentum flux, but results in a downward plume that does not penetrate
to as great a depth. Physically, the entrainment of warmer fluid above the plume will
not only result in an increased volume flux but will also reduce the magnitude of the
buoyancy of the downward plume with the result that it will reach equilibrium with
the environment at a higher level than is the case with no plume-top entrainment.

The revised BK2000 model with plume-top entrainment and α = 0.05, β = 0.8
and γ = 0.01 is shown in figures 20 and 21, and the results of this refinement are
encouraging. In particular, the final maximum rise height has increased and the
positions of the peak values of the upward and downward momentum fluxes are
closer to their corresponding LES values. The peak value of the upward volume flux
is located closer to its LES counterpart and above this level, the upward volume
flux decreases in a manner more similar to the LES upward volume flux than is
the case for the original BK2000 model. Without the addition of substantial plume-
top entrainment, it was not found possible to capture the behaviour of both the
volume and momentum fluxes in this manner. Despite the better agreement with the
LES data, there are still substantial differences between the revised BK2000 model
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and the LES data. Of course, the LES plume is affected by the finite source size
and limited resolution; however, there are features of the BK2000 model that are
qualitatively different, such as the downward volume flux. Some of these differences
may result from inadequate modelling of the overturning region in the BK2000 model.
Additionally, in reality we would expect a further annulus of upward flow beyond the
downward shell (and possibly several more upward and downward annuli beyond).
This may produce a downward volume flux that decreases with decreasing z below
its peak value (i.e. more closely follows the shape of the LES downward volume flux)
by providing additional entrainment, detrainment and overturning mechanisms.

An important check on the revised model is its behaviour in the original BK2000
problem of a fountain in a stratified environment. It is found that the same factor of
plume-top entrainment (i.e. Vdown = 2Vup) and the revised values of the entrainment
constants produces results for the plume maximum and final rise heights that are
similar to those of BK2000. This indicates that it is possible to introduce plume-
top entrainment into the model, and so improve its correspondence with observed
behaviour, without reducing its range of applicability.

6. Conclusions
This study set out to make a quantitative comparison of LES of a buoyant

plume with the well-known plume equations of MTT. In a uniform environment,
the centreline vertical velocity and reduced gravity exhibit the expected scalings
sufficiently far above the source. We calculated a value of the entrainment constant,
α = 0.15, which is consistent with experimental and field measurements, and we found
no significant difference in the radial spreading rates of the vertical velocity and
reduced gravity. These results indicate that, in a uniform environment, our domain
size and resolution are sufficient to mitigate (though not eliminate) the effects of a
finite source and produce a well-developed plume that can be compared with a model
that assumes a point source.

In a stably stratified environment, the effects of the finite source persist up to
the point where the stratification becomes important; not even the smallest value of
b0/F

1/4
0 N−3/4 considered here truly exhibits the expected scalings below the equilibrium

level. Nevertheless, a comparison with the plume equations is still warranted: the
LES data provide a reasonable solution of the buoyancy and momentum equations
throughout the depth of the plume and the volume equation up to the equilibrium
level (figures 9–11), justifying the assumptions that underlie the plume equations,
such as neglect of the radial pressure gradient (see e.g. Linden 2000, § 3.4); there is
reasonable agreement of the LES buoyancy and momentum fluxes with the equivalent
MTT and Briggs’ model fluxes (see figures 13, 15 and 16); a simple empirical virtual
source correction leads to good agreement between the MTT and LES equilibrium
levels for all values of b0/F

1/4
0 N−3/4 (figure 12).

The more sophisticated model of BK2000, which distinguishes between the upward
and downward components of the upper plume, captures some aspects of the LES
plume though even qualitatively it differs significantly from the LES plume in places.
For example, the downward volume flux increases with decreasing z until an abrupt
cutoff, whereas the LES downward volume flux decreases smoothly to zero from its
peak value. Such flux comparisons are simpler to carry out with LES than in physical
experiments such as those of BK2000, who optimized their model for agreement of
plume penetration levels. The LES results point to characteristics of buoyant plumes
that are, so far, absent from the models of MTT and BK2000: a region of overturning
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in which plume-top entrainment plays a role. The inclusion of plume-top entrainment
as an additional feature of the BK2000 model, combined with tuning of the co-
flowing entrainment parameters (such that together they are a surrogate for the more
complicated processes of overturning, entrainment and detrainment that occur near
the top of the plume), leads to improved representation of the LES flux profiles and
rise heights while maintaining the penetration levels of the original fountain model.
However, even this small improvement does not obviate the need for a better model
of the overturning region at the top of the plume. This could perhaps be modelled by
giving a statistical distribution of plume properties with a corresponding distribution
of heights for reversal.

The authors would like to thank Paul Linden for his comments on an earlier version
of this manuscript.

Appendix. The BK2000 model
We solve the following dimensionless sets of equations: the upward and downward

volume flux (BK2000 (2.11a, b)), the upward and downward momentum flux with
the first body-force formulation (denoted by BFI in BK2000, (2.11e, f )) or the
second body-force formulation (denoted by BFII in BK2000, (2.11g, h)) and the non-
dimensionalized form of the equations for the upward and downward buoyancy flux
in a linearly stratified environment (BK2000 (3.1a, b)). Only the second entrainment
formulation (denoted by EFII in BK2000), which BK2000 prefer, is considered
here.

There is a typographical error in the expression of BK2000 (2.11g) in which the
exponent of the term (1+1/A) should be −1/2 and not +1/2, to match that in (2.11h).
The correct sign of the exponent can be obtained only after a moderate amount of
algebraic manipulation; however, the fact that the terms should match can easily be
verified by comparing the difference between (2.11g) and (2.11h) with the difference
between the dimensional equations (2.7) and (2.9).

We use a fourth-order Runge–Kutta method to solve the plume equations. BK2000
solve each of the upward and downward equation sets in turn, terminating when
the momentum flux passes through zero (or the downward plume reaches the lower
boundary). The output of one cycle is used as forcing for the next cycle in the other
direction. Iteration continues until the solutions in each direction are unchanged. An
iteration cycle starts with the basic (upward) plume equations (MTT). The mapping
of the outflow of the upward plume to the initial conditions of the downward plume
was performed by carrying the volume flux over directly and reversing the sign of
the buoyancy flux. The momentum flux was also carried over directly, although this
is merely to give an initial perturbation, since its value is near zero at this point.

As BK2000 point out, the level of maximum downward penetration may not
coincide with the final rise height of the plume, the level at which the plume fluid
spreads out. They state that this level may be found approximately by assuming
that the downward plume fluid at its maximum penetration rises to the final rise
height with no further entrainment. A similar ‘zero-entrainment’ approximation as a
short-cut to the final rise height was applied by Briggs (1984) to the outflow of a
basic plume in a stratified environment to estimate the final rise height. BK2000 do
not give the formula they use to calculate the final rise height, but it would appear
to be derivable in the manner of Briggs (1984). For generality, we consider a forced
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plume with initial momentum flux M0. The ambient density gradient is given by

dρa

dz
= −ρ0

g

F 2
0

M2
0

σ,

where σ =M2
0N

2/F 2
0 is the dimensionless buoyancy frequency. Hence, the

dimensionless reduced gravity of the downward plume, g̃′
d = g′

d/(M
−5/4
0 F

3/2
0 ), becomes

g̃′
d = M

5/4
0 F

−3/2
0 g

(ρd − ρ0)

ρ0

+ σ z̃,

where z̃ = M
−3/4
0 F

1/2
0 z and ρ0 is the ambient density at the lower boundary. At the

level of maximum downward penetration

ρd(z̃mdp) = ρ0(1 + g−1M
−5/4
0 F

3/2
0 (g̃′

d(zmdp) − σ z̃mdp))

and the final rise height is given by solving ρa(z̃final ) = ρd(zmdp). This yields the simple
relationship

z̃final = z̃mdp − g̃′
d(zmdp)

σ
.

Since the dimensionless reduced gravity is negative at the level of maximum downward
penetration, having overshot the equilibrium level on the way down, it can be seen
that z̃final > z̃mdp as expected. In the case where the downward plume reaches the lower
boundary, the correction is calculated in the same manner if necessary.

BK2000 developed their model for a turbulent fountain with non-zero initial
momentum and buoyancy fluxes. For a pure plume, M0 = 0, so it is necessary to follow
the MTT convention of non-dimensionalizing using F0 and N . The equations are
effectively the same, except that we replace M0 by F0/N in the non-dimensionalization.
For this non-dimensionalization, it follows that the only case to study is that of σ =1.

With BFII the initial plume did not rise as high as the final plume. The method of
solution had to be adapted in this case to accommodate the momentum flux in the
inner plume not tending to zero at the initial maximum rise height. This was done
by using the fluxes at the end of the inner-plume cycle to initialize a solution of the
simple-plume equations, and the concatenation of these two solutions was then used
as forcing for the outer plume.
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