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Abstract
Linear logic (LL) has been usedas a foundation (and inspiration) for the development of programming
languages, logical frameworks, and models for concurrency. LL’s cut-elimination and the completeness of
focusing are two of its fundamental properties that have been exploited in such applications. This paper
formalizes the proof of cut-elimination for focused LL. For that, we propose a set of five cut-rules that
allows us to prove cut-elimination directly on the focused system. We also encode the inference rules of
other logics as LL theories and formalize the necessary conditions for those logics to have cut-elimination.
We then obtain, for free, cut-elimination for first-order classical, intuitionistic, and variants of LL. We also
use the LL metatheory to formalize the relative completeness of natural deduction and sequent calculus
in first-order minimal logic. Hence, we propose a framework that can be used to formalize fundamental
properties of logical systems specified as LL theories.
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1. Introduction
Linear logic (LL) was proposed by Girard (1987) more than 30 years ago, but it still inspires com-
puter scientists and proof theorists alike, being used as a foundation for programming languages,
models of concurrency (Caires et al., 2016; Nigam et al., 2017; Olarte et al., 2018), and logical
frameworks (Cervesato and Pfenning, 2002; Miller and Pimentel, 2013). LL is a resource con-
scious logic where formulas can be consumed during proofs. For instance, the linear implication
F −◦ G can be interpreted as the fact that in order to produce G, F must be consumed. The behavior
of formulas in classical logic is recovered via the LL exponentials ! and ?: formulas marked with
? on the right side of the sequent can be weakened (discarded) or contracted (duplicated) at will.
This allows us to faithfully encode in LL both intuitionistic and classical logics.

In order to be a meaningful tool for reasoning about systems, programming languages and
other logics, two fundamental properties of LL are needed: cut-elimination Gentzen (1969) and
the completeness of focusing. Cut-elimination states that any proof with instances of the cut-rule
� �, F � �, F⊥

� �,� [Cut] can be transformed into a proof of the same formula without any instance
of [Cut]. The two main consequences of this theorem are (1) the system’s consistency, that is, it
is not possible to prove both � F and � F⊥ and (2) all proofs satisfy the subformula property,
that is, a proof of a formula F contains only sub-formulas of F. Focusing, on the other hand, is
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a proof search discipline proposed by Andreoli (1992) which constrains proofs by enforcing that
rules sharing some structural property, like invertibility, are grouped together. The completeness
of focusing states that if a formula has a proof, then it has a focused proof.

The combination of cut-elimination and focusing allows for the construction of powerful lin-
ear logical frameworks. By relying on these two properties, proof search is considerably improved.
Moreover, these properties can be used to engineer the types of proofs, thus allowing the specifi-
cation/encoding of a number of different proof systems (e.g., sequent calculus, natural deduction,
and tableaux systems) for different logics (Miller and Pimentel, 2013; Nigam and Miller, 2010).

In previous work (Xavier et al., 2017), we formalized two sequent systems for first-order clas-
sical LL in Coq (Bertot and Castéran, 2004): the one-sided dyadic system that considers sequents
of the form � � : � (separating the linear context � from the classical context �) and the tri-
adic system also known as focused system. We proved cut-elimination for the dyadic system and
completeness of focusing. We thus obtained the equivalence between the dyadic+cut, the dyadic,
and the triadic systems. The novelties of that work included (1) Quantifiers: Most of the for-
malizations of cut-elimination procedures in the literature deal with propositional systems. The
first-order quantifiers of LL were fundamental for encoding object logics (OLs) as LL theories.
Quantifiers in that work were specified with the technique of Parametric HOAS (Chlipala, 2008)
(e.g., dependent types in Coq). (2) Completeness of focusing: Cut-elimination theorems for a
number of proof systems have been formalized, including propositional LL (Chaudhuri et al.,
2019b). Our work was the first formalization of the LL’s completeness of focusing. (3) Encoding
proof systems: By relying on LL’s focusing property, it is possible to adequately encode a number
of proof systems (Miller and Pimentel, 2013; Nigam and Miller, 2010). We formalized such an
adequacy theorem for intuitionistic propositional logic.

This paper is an extended version of Xavier et al. (2017). The main additional contributions
are (1) Syntax: We use the Hybrid system for representing syntax of OLs (Felty and Momigliano,
2012). This approach does not use dependent types and has the advantage that it does not require
axioms to state properties of closed terms and formulas, as is required when using Parametric
HOAS. Hybrid’s mechanisms for encoding syntax are implemented definitionally via a de Bruijn
style encoding, and the required properties of the syntax are proved from these definitions. We
show that Hybrid is general enough to define OLs featuring binders, including the first-order
quantifiers and quantifiers on worlds in hybrid logics. In addition, Hybrid has so far mainly
been used for reasoning about the metatheory of programming languages (see Mahmoud and
Felty (2019); Felty and Momigliano (2009)). This is the first time we apply it to reasoning about
logics, which requires new techniques for encoding OLs. (2) Cut-elimination: Instead of prov-
ing cut-elimination for the dyadic (unfocused system), we propose a set of five cut-rules dealing
with focused and unfocused sequents. We then prove the cut-elimination theorem directly for
the focused system. For this reason, in this paper, we do not specify the dyadic system nor
the completeness of focusing. We proceed directly to the triadic system and show that the cut-
rule is admissible in that system. (3) Meta-level properties for OLs: In Xavier et al. (2017), we
showed how to specify propositional OLs as LL theories and prove adequacy of such specifi-
cations. Here, following Miller and Pimentel (2013), we give a step forward and formalize the
proof of necessary conditions for cut-elimination of first-order OLs specified in LL. This way,
we obtain cut-elimination theorems for some specific OL proof systems, including first-order
classical (system LK), minimal (LM), and intuitionistic (LJ) logics, and classical and intuition-
istic multiplicative-additive linear logic (MALL/iMALL). We also mechanize the expressiveness
result in Chaudhuri et al. (2019a): hybrid linear logic (HyLL) is not more expressive than LL.
Moreover, we propose an alternative encoding of HyLL which is cut-coherent and we prove
HyLL’s cut-elimination from it. Finally, we use the metatheory of LL to prove the mutual rela-
tive completeness of natural deduction and sequent calculus for first-order minimal logic. These
applications are certainly a compelling example of the meta-level reasoning of our framework for
drawing conclusions about fundamental properties of OLs.
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Organization. Section 2 introduces the syntax and the use of Hybrid to formalize OLs and
LL syntax. Section 3 formalizes the focused system and the proof of some structural properties.
In addition to our new way of encoding syntax, the following two sections are completely new
wrt Xavier et al. (2017). Section 4 proves the cut-elimination theorem for the focused system of
LL. Section 5 formalizes the necessary conditions for cut-elimination of OLs and describes the
aforementioned applications of our framework. Section 6 concludes the paper. Our formalization
is available at https://github.com/meta-logic/coq-fll. We present here some of the most important
definitions and key cases in proofs. For the sake of presentation, we omit some cases (e.g., in
inductive definitions) and we also change marginally the notation to improve readability. Also,
in Coq theorem statements, we assume that variables are implicitly universally quantified. The
reader may always consult the complete definitions and proofs in the source files.

2. LL Syntax
LL Girard (1987) is a resource conscious logic, in the sense that formulas are consumed when used
during proofs, unless they are marked with the exponential ? (whose dual is !). Formulas marked
with ? behave classically, that is, they can be contracted (duplicated) and weakened (erased)
during proofs. LL connectives include the additive conjunction & and disjunction ⊕ and their
multiplicative versions ⊗ and �, together with their units and the first-order quantifiers:

Note that (·)⊥ (negation) has only atomic scope. For an arbitrary formula F, F⊥ denotes the
result of moving negation inward until it has atomic scope. The connectives in the first line denote
the deMorgan dual of the connectives in the second line. Hence, for atoms A and B, the expression
(⊥& (A⊗ (!B)))⊥ denotes 1⊕ (A⊥

�(?B⊥)). The linear implication F −◦ G is a short hand for
F⊥

�G. The equivalence F ≡G is defined as (F −◦ G) & (G−◦ F).
The main issue when formalizing first-order logics in proof assistants is how to encode quanti-

fiers. At first glance, one might consider the following naive signature for the constructors fx and
ex of universally and existentially quantified formulas, respectively:
fx : (var → formula) → formula ex : (var → formula) → formula

In order to define substitutions of variables for terms on such formulas, it is necessary to define
a term type as the union of, for example, vars and functions, and also to implement substitution
from scratch. This means dealing with variable capture and equality of terms.

It is possible to avoid this unnecessary bureaucracy if substitution is handled by the meta-level
β-reduction. This means that a quantified formula Qx.F (Q ∈ {∀, ∃}) is represented as Q(λx.F),
where λ is a meta-level binder. In this case, we have
fx : (term → formula) → formula ex : (term → formula) → formula

This approach is called higher-order abstract syntax (HOAS) or λ-tree syntax (Miller
and Palamidessi, 1999; Pfenning and Elliott, 1988). In a functional framework, the type
(term → formula) ranges over all functions of this type. This is not desirable as it allows func-
tions, called exotic terms (Despeyroux et al., 1995), to pattern-match on the input term and return
a structurally (or logically) different formula for each case.

As a solution to this problem, we use the Hybrid system (Felty and Momigliano, 2012),
implemented in Coq, to support reasoning about OLs expressed using HOAS. Hybrid is imple-
mented as a two-level system, an approach first introduced in the FOλ�IN logic (McDowell and
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Miller, 2002). Using this approach, the specification of the semantics of the OL and the meta-level
reasoning about it are done within a single system but at different levels. In the case of Hybrid,
an intermediate level is introduced by inductively defining a specification logic (SL) in Coq, and
OL judgments are encoded in the SL. Hybrid has been used, for example, to prove properties of
a quantum programming language with linear features (Mahmoud and Felty, 2019); in that case
the SL was a simple LL. Here, the SL is our focused LL, and both the SL and the OLs we consider
are more complex than in previous work.

Hybrid provides an underlying low-level de Bruijn representation of terms to which the HOAS
representation of OL syntax can be mapped internally; the user works directly with the higher-
level HOAS representation. Using such a representation, α-conversion at the meta-level directly
represents bound variable renaming at the object level, and meta-level β-conversion can be used
to directly implement object-level substitution. As a consequence, we avoid the need to develop
large libraries of lemmas devoted to operations dealing with variables, such as capture-avoiding
substitution, renaming, and fresh name generation. The de Bruijn representation is introduced in
the file Hybrid.v as the type expr, defined inductively in Coq as follows:

Inductive expr : Set :=
| CON : con→ expr (* Constants *)

| VAR : var→ expr (* Free variables *)

| BND : bnd→ expr (* Bound variables *)

| APP : expr→ expr→ expr (* Application *)
| ABS : expr→ expr. (* Abstraction *)

Here, BND and VAR represent bound and free variables, respectively, and bnd and var are defined
to be the natural numbers. Thus, we represent infinite sets of variables using numbers and not
explicit variable names. The type con is a parameter to be filled in when defining the constants used
to represent an OL. The library then includes a series of definitions used to define the operator
lambda of type (expr → expr) → expr, which provides the capability to express OL syntax using
HOAS, including negative occurrences in the types of binders. Expanding its definition fully down
to primitives gives the low-level de Bruijn representation, which is hidden from the user when
reasoning about metatheory. In fact, the user only needs CON, VAR, APP, and lambda to define the
OL syntax. Two other predicates from Hybrid that will appear in our developments are proper:
expr → Prop and uniform: (expr → expr) → Prop. The proper predicate rules out terms that have
occurrences of bound variables that do not have a corresponding binder (dangling indices). The
uniform predicate is applied to arguments of lambda and rules out exotic terms, in this case functions
of type (expr → expr) that do not encode object-level syntax (i.e., functions that are not uniform
on their argument x, returning structurally different terms depending on x).

As mentioned, the type con is actually a parameter in the Hybrid library. In particular, it first
appears inside a section in Hybrid.v, and as a result, outside this section, expr has type Set → Set.
Once con is defined, then (expr con) is the actual type (element of Set) used to express OL terms.
In our case, the constants of the OLs we consider will be introduced later as an inductive type
called Econ and thus (expr Econ) is the type of terms and formulas of this OL. The type con is also
a parameter to any definition that uses it.

We define our focused LL as an SL in the next section. Here, we present the encoding of its
syntax and related definitions (file Syntax.v). LL formulas are defined by the inductive type oo:
Inductive oo : Set :=
| atom : atm→ oo
| perp : atm→ oo
| Top : oo
| One : oo
| Zero : oo

| Bot : oo
| AAnd : oo → oo→ oo
| MAnd : oo → oo→ oo
| AOr : oo → oo→ oo
| MOr : oo → oo→ oo

| Bang : oo → oo
| Quest : oo → oo
| All : (expr con→ oo)→ oo
| Some : (expr con→ oo)→ oo.

The type atm is defined for each OL and typically includes the atomic propositions of the
OL. Most of the constructors are straightforward encodings of the units and connectives of LL
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discussed above. The All and Some constructors each take a function as an argument, and thus the
bound variable in the quantified formula is encoded using lambda abstractions in Coq.

Just as we do at the object level, we must also rule out exotic terms at the SL level. Unlike at the
OL level where it is defined on functions involving the de Bruijn representation, here we define it
for type oo as the following uniform_oo predicate. We only show some cases:

Inductive uniform_oo: (expr con→ oo)→ Prop :=
| uniform_atom: forall (a: expr con→ atm), uniform_atm a→ uniform_oo (fun x⇒ (atom (a x)))
| uniform_Top: uniform_oo (fun x⇒ Top)
| uniform_AAnd: forall A B, uniform_oo A→ uniform_oo B→ uniform_oo (fun x⇒ (AAnd (A x) (B x)))
| uniform_All: forall (A: expr con→ expr con→ oo),

(forall y:expr con, uniform_oo (fun x⇒ (A y x))) → uniform_oo (fun x⇒ (All (fun y⇒ (A y x)))) [...]

Like atm, the uniform_atm predicate is a parameter to the SL; it must be defined for each OL. It
typically requires that Hybrid’s uniform predicate holds on all subterms of type expr con → expr
con. The other cases reflect the fact that functions defining quantifiers cannot do patternmatching,
thus returning the same shape of formula (regardless of the actual parameter) and replacing the
bound variable only at the atomic level.

Another consequence of the functional representation of formulas is that Coq’s axiom of
Functional Extensionality is needed to check whether two formulas are the same:

Axiom functional_extensionality_dep : forall {A} {B : A→ Type},
forall (f g : forall x : A, B x), (forall x, f x = g x) → f = g.

Given two function f and g, we conclude f = g whenever f (x)= g(x) for all x. In our setting, the
types of f and g are expr con → oo. We also note that the version of Hybrid used here requires a
description axiom from Coq’s classical library (Felty and Momigliano, 2012). This axiom is used
for historical reasons, because this version of Hybrid was adapted directly from a version written
in HOL, a proof assistant that implements a classical higher-order logic.

The rest of the file Syntax.v contains some definitions useful for the forthcoming results. In
particular, we define both the complexity and the De Morgan dualilties of LL formulas:
Fixpoint complexity (X:oo) :=
match X with

| atom A ⇒ 1
| MAnd F G ⇒ 1 + complexity F + complexity G
| Some FX ⇒ 1 + complexity (FX (VAR con 0)) [...]

Fixpoint dual (X: oo) :=
match X with

| perp A ⇒ atom A
| MOr F G ⇒ MAnd (dual F) (dual G)
| All FX ⇒ Some (fun x⇒ dual (FX x)) [...]

Note that in complexity, we apply the function FX to the free variable 0 (VAR con 0). In lemma
ComplexityUniformEq we show that, given an uniform_oo function FX and two proper terms X and
Y , complexity (FX x) = complexity (FX y). Some other definitions and lemmas in this file will be
introduced when needed in the following sections.

As mentioned in the introduction, in our previous work, we used Parametric HOAS (Chlipala,
2008) to encode the syntax of LL. There, the types term (for pre-terms) and llexp (for pre-formulas)
are inductively defined. The constructor var (t:T) in term denotes a place holder, and the LL quan-
tifiers in llexp have type (T → llexp) → llexp. In these definitions, T:Type is a parameter of the
specification. Since the representation of formulas must be independent of T, the actual type for LL
formulas is the dependent type LLExp := forall T:Type, llexp T (similarly for terms). The depen-
dent product, closing T, guarantees that functions in quantifiers cannot do pattern matching on
their parameters, thus avoiding exotic terms. In this setting, it is not possible to reason inductively
on llexp expressions. For this reason, the predicate Closed: LLExp → Prop is inductively defined
asserting that formulas cannot contain free variables (var x), since such terms can appear only in
the scope of quantifiers. This fact cannot be proved and it has to be assumed as an axiom. Proofs
then proceed by induction on the fact that the given LL formula is closed. This machinery allows
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Figure 1. Linear logic sequent calculus: c in [∀] is fresh, that is, does not appear in �.

for building the syntax of LL, but it does not offer any support for defining the syntax of the OL
that, in turns, is specified as an inductive set. Therefore, the problems related to binders appear
again at the OL level and we dealt only with propositional OLs in Xavier et al. (2017). As we shall
see, with Hybrid, we can encode first-order OLs straightforwardly.

3. Sequent Calculi
The proof system for one-sided (classical) first-order LL is depicted in Figure 1. A sequent has the
form � � where � is a multiset of formulas (i.e., exchange is implicit).While this system is the one
normally used in the literature, LL’s focused proof system is equipped with some more structure.
As shown by Andreoli (1992), it is possible to incorporate the structural rules of contraction [C]
and weakening [W] into the introduction rules. The key observation is that formulas of the form
?F can be contracted and weakened. This means that such formulas can be treated as in classi-
cal logic, while the remaining formulas are treated linearly. This is reflected in the syntax of the
so-called dyadic sequents which have two contexts, namely, the classical and the linear context.
Consider for instance the following (dyadic) rules:

� � :A⊥,A
[I] � �, F : �

� � : �, ?F [?] � �, F : �, F
� �, F : � [copy] � � : �1,A � � : �2, B

� � : �1, �2,A⊗ B [⊗]

Here, � is a set of formulas and � a multiset of formulas. The sequent � � : � is interpreted
as the LL sequent � ?�, � where ?� = {?F | F ∈ �}. It is then possible to define a proof system for
LL without explicit weakening (implicit in rule [I] above) and contraction (implicit in [copy] and
[⊗]). Notice that only the linear context � is split among the premises in [⊗]. The complete proof
system can be found in Andreoli (1992), and its formalization in Coq is described in Xavier et al.
(2017). We will not elaborate more about this system, since we shall work directly on the focused
(triadic) system described below.

3.1. Focused system
Focusing is a discipline on proofs aiming at reducing non-determinism during proof search and
it allows specifiers to engineer proofs, as we illustrate in Section 5. Proofs are organized in two
alternating phases: the negative phase contains only invertible rules and the positive phase con-
tains only non-invertible rules. The connectives �, ⊥, &, �, ?, and ∀ have invertible introduction
rules and are thus classified as negative. The remaining connectives ⊗, 1, ⊕, !, and ∃ are pos-
itive. Formulas inherit their polarity according to their main connective, for example, F ⊗G is
positive and F�G is negative. Although the bias assigned to atoms does not interfere with prov-
ability (Miller and Saurin, 2007), also formalized in Xavier et al. (2017), here we follow Andreoli’s
convention of classifying atomic formulas as negative and then, negated atoms as positive.

In LL’s focused proof system FLL (also called triadic system), there are two types of sequents
where � is a set of formulas, � a multiset of formulas, and L a list of formulas:
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Figure 2. The focused proof system FLL. A is an atom (with negative polarity), N is a negative formula, P is a positive formula
or a negated atom (A⊥), and S in rule [R⇑ ] is a positive formula or a literal (A or A⊥).

• � � : �⇑ L belongs to the negative phase. During this phase, all negative formulas in L are
introduced and all positive formulas and literals are moved to �.

• � � : � ⇓ F belongs to the positive phase. During this phase, all positive connectives at the
root of F are introduced.

The system is in Figure 2. Let us explain some of the rules from the conclusion to the premises.
The rules belonging to the negative phase (� � : �⇑ L) pick the first formula F of the list L. If F is
a negative formula, then it is decomposed (see, e.g., the rules [⊥], [�], [∀]). Note also that the rule
[?] stores the formula F into the classical context. The case when F is a literal or a positive formula
is handled by the rule [R⇑ ] that stores this formula into the linear context.

The negative phase ends when the list L is empty. In that case, the proof moves to the positive
phase by using the rules [D1] and [D2]. In both cases, a positive formula or a negated atom P is
selected (focused on). In [D1], P is taken from the linear context (and thus erased from it). In [D2],
a copy of P is taken from the classical context (thus making an implicit contraction). In all these
rules, the focus persists on the decomposed subformulas (e.g., F and G in the rule [⊗]).

The positive phase finishes by using the rule [1] or the initial rules ([I1] and [I2]). It is also
possible that the focused formula belongs to the negative phase. In that case, the rule [R⇓ ] (also
called release) is used to switch the polarity of the proof.

For an atom A, the sequent � � : � ⇓A⊥ must finish immediately by either [I1] (� =A) or
[I2] (A ∈ � and � = ·). On the other hand, the sequent � � : � ⇓A loses focusing and produces,
as unique premise, the sequent � � : �, A⇑ after an application of [R⇓ ] followed by [R⇑ ]. Due
to our choice of polarity for atoms, note that the rule [D1] cannot be used to focus on A in � � :
�,A⇑ (similarly for [D2]). Differently, in the sequent � � : �,A⊥⇑, the negated atom A⊥ can be
chosen for focusing and, in that case, the sequent must finish with the initial rules.

3.2. FLL system in Coq
The sequent rules of the triadic system (see file Sequent.v) are specified as follows:

Section SequentSystem.
Variable th : oo → Prop . (* the theory *)
Inductive seq: multiset oo→ multiset oo→ Arrow→ Prop := [...] (* see below *)
End SequentSystem.

The theory th: oo → Prop defines a set of LL formulas that represent axioms of an OL up to some
side condition that usually expresses well-formedness for a term of theOL. The proof of the propo-
sition (th F) cannot be discharged by using the logical rules of LL. Instead, it is proved by using the
machinery of Hybrid and the inductive definition of well-formedness for the OL (some examples
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in Section 5). We note that in previous applications of Hybrid to reasoning about OLs, for exam-
ple, Felty and Momigliano (2012), th is called prog because it is expressed in the form of a simple
logic program that encodes the inference rules of the semantics of a programming language. Since
some of the OLs in Section 5 are logics, we require a more flexible approach that allows us to
encode OL’s inference rules and their side conditions as shown below.

Due to Coq’s section mechanism, the variable th is nothing more than a parameter, and thus
the type of seq is (oo → Prop) → multiset oo → multiset oo → Arrow → Prop, indicating that the
first argument of seq is the underlying theory, the second and third arguments (lists up to per-
mutations) correspond to the classical and linear contexts, respectively, and the last argument is a
term of type Arrow. The latter type is inductively defined in Syntax.v with two constructors: up l
(representing the negative phase ⇑ L) and DW F (for the positive phase ⇓ F).

Let us show some examples of the specification of the rules starting with the initial rules:

| tri_init1’ : forall G A, seq G [atom A] (DW (perp A))
| tri_init2’ : forall G A, In (atom A) G → seq G [ ] (DW (perp A))

Here, A:atm is an atomic proposition (defined in the OL) and perp A stands for A⊥. In x L is the
Coq predicate stating that x belongs to the list l. Below are some of the rules of the positive phase:

| tri_tensor’ : forall B M N MN F G, Permutation MN (M + + N)→
seq B M (DW F) → seq B N (DW G) → (* two premises *)
seq B MN (DW (MAnd F G)) (* conclusion *)

| tri_rel’ : forall B F L, release F→ seq B L (UP [F]) → seq B L (DW F)
| tri_ex’ : forall B FX M t, uniform_oo FX→ proper t→ seq B M (DW (FX t))→ seq B M (DW (Some FX))

The rule for [⊗] (tri_tensor’) embeds the exchange rule by decreeing that the linear context
MN in the conclusion must be a permutation of the concatenation (++) of the contexts in the
two premises. The release rule [R⇓ ] checks if F must lose focusing (predicate release) and,
bottom-up, the proof continues with a sequent belonging to the negative phase. In the case of
the existential quantifier, we check that FX satisfies the uniform_oo condition and also, that the term
t is proper. In that case, the proof continues focused on the formula FX t (corresponding to F[t/x]).

For the negative phase, let us present the following rules:

| tri_par’ : forall B L M F G, seq B L (UP (F:: G:: M)) → seq BL (UP (( MOr F G) :: M))
| tri_store’ : forall B L M F, ∼ asynchronous F→ seq B (L ++ [F]) (UP M) → seq B L (UP (F:: M))

As expected, the [�] (tri_par’) rule decomposes F�G into F and G. The store rule [⇑ R] stores
the positive formula F (i.e., F is not asynchronous/negative) into the linear context.
Decision rules. The FLL system has three different decision rules:

| tri_dec1’ : forall B L L’ F, ∼IsPositiveAtom F→ remove F L L’→ seq B L’ (DW F) → seq B L (UP [ ])
| tri_dec2’ : forall B L F, ∼IsPositiveAtom F→ In F B→ seq B L (DW F) → seq B L (UP [ ])
| tri_dec3’ : forall B L F, th F →∼IsPositiveAtom F→ seq B L (DW F)→ seq B L (UP [ ])

In the first case (corresponding to [D1]), the inductively defined predicate remove F L L’ states that
L′ results from L after removing F. Condition ~IsPositiveAtomF guarantees that F is not a literal of
the form atom A. The rule tri_dec2 specifies the decision rule [D2] for the classical context. Finally,
the rule tri_dec3 (that we shall also denote as [D3]) checks whether F belongs to the theory (th F)
in order to, bottom-up, continue with the proof of � B : L⇓ F.
Inductive Measures. In our proofs, we usually proceed by induction on the height of the
derivations. Hence, we also specify an alternative system where this measure is explicit:
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Inductive seqN: nat→ multiset oo→ multiset oo→ Arrow→ Prop :=
| tri_init1 : forall B A n, seqN n B [atom A] (DW (perp A))
| tri_tensor : forall B M N MN F G n, Permutation MN (M+ +N)→

seqN n B M (DW F) → seqN n B N (DW G) → seqN (S n) B MN (DW (MAnd F G))
[...]

Note that the initial rule ends with any height n (and not necessarily with n= 0) and in rules with
two premises, both premises have the same height. This is without loss of generality since we can
show the following: if a sequent is provable with height n, then it is provable with heightm≥ n:

Theorem HeightGeq : seqN th n Gamma Delta arrow→ forall m, m≥n→ seqN th m Gamma Delta arrow.
We also include the following properties, relating the two definitions of sequents.

Theorem seqNtoSeq : seqN th n Gamma Delta arrow→ seq prog Gamma Delta arrow.
Theorem seqtoSeqN : seq th Gamma Delta arrow→ exists n, seqN prog n Gamma Delta arrow.

The first has a simple proof by induction on n. In the second, we proceed by induction on the
evidence that the sequent � � : � � (where � can be ⇑ L or ⇓ F) is provable. All the cases are
easy, but the case of All is representative of a class of admissible theorems such that attempting
their proofs in Coq results in subgoals of the following form:

Here P (FX x) expresses some property of (FX x), and x and y are two variables in the context for
which we have no information except that they both satisfy the proper predicate. Furthermore, the
context is such that we can prove on paper (but not in Coq) that forall x, proper x → P (FX x),
from which the conclusion follows. Thus, the proof of seqtoSeqN relies on an axiom expressing an
admissible theorem. We note that the analogous version of this theorem in the Parametric HOAS
approach (Xavier et al., 2017) also requires an axiom.
Notation 1.We shall use |–– b ; d ; (> l) and |–– b ; d ; (>> l) to denote, respectively,
the sequents � B :D⇑ L and � B :D⇓ F. Also, we shall use n |–– . . . (resp. th |–– . . .) when the
height n of the derivation (resp. theory th) needs to be explicit. [ ] denotes the empty list/context.
The LL formulas ∀x.FX, ∃x.FX, F ⊗G and F�G will be written as f{fx}, e{fx}, f ∗∗ g and f|g,
respectively.
Tactics and automation.We have included in file FLLTactics.v several tactics that simplify proofs
involving FLL sequents. Let us explain the most relevant ones.

The tactic solveF solves most of the auxiliary subgoals generated during proofs in FLL. For
instance, consider the rule [R⇑ ] in Figure 2 where the formula Smust be a positive formula or a
literal. Hence, the application of this rule generates a subgoal of the form asynchronous S checking
that S can be stored into the linear context. If S is indeed a formula that does not belong to the
negative phase, this subgoal can be easily solved:

Using Coq’s Ltac language1 for defining tactics, solveF performs a pattern matching on the
current goal being proved. If it is of the form ~asynchronous S, then the sequence of tactics intro
H; inversion H;auto is applied. Other subgoals considered in solveF include, for example, checking
whether a formula is not a positive atom (see the decision rules), checking whether the predicate
Permutation holds between two list of formulas (see rule [⊗]) and solving arithmetic goals:
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In the case of permutations, the tactic perm adapted from the CertiCoq project2 is applied; for
arithmetic goals, the Coq’s tactic lia for linear integer arithmetic is applied.

solveF also solves some (trivial) goals that assume an inconsistent set of hypotheses. This is the
case, for instance, of hypotheses of the form In x [] (asserting that x belongs to the empty list), a
:: L = [] (asserting that a non-empty list is equal to an empty list), etc. Such contradictions can
be easily detected and used to finish the current goal:

The goal of solveF is to avoid all the unnecessary bureaucracy during proofs and allow users
to apply directly FLL rules as in paper proofs. For that, suitable tactical notations are provided,
wrapping the use of solveF:

Tactic Notation "store" := apply tri_store ;solveF.
Tactic Notation "decide1" constr(G) := eapply tri_dec1 with (F:= G);solveF.

By typing store, Coq will apply the rule [R⇑ ] and, if possible, prove that the current formula
can be indeed stored. As another example, on a goal of the form � � : �⇑, the tactic decide1 f
tries to apply [D1] and checks whether F is not a positive atom and F ∈ �.

The tactic solveLL leverages the use of solveF to automate the proof of FLL sequents:

In the first case, on a sequent of the form � � : � ⇓ A⊥, solveLL tries to apply the initial rules
of the system ([I1] and [I2]). In the second and the third case, the following lemmas (proved in
StructuralRules.v) are considered:

InitPosNegDwN shows that the sequent � � :A⊥ ⇓ A is provable in at least four steps using the
rules [R⇓ ], [R⇑ ], [D1], and [I1]. Similarly for the theorem InitPosNegN.

On a focused sequent of the form� � : � ⇓ F, if F belongs to the negative phase, focusing must
be lost. This is the purpose of the following subcases of solveLL:

where the release rule [R⇓ ] is applied and solveLL is recursively called to perform the subsequent
steps of the negative phase.

Since the negative phase of the proof does not require any interaction with the user, much of
this phase can be automatized by applying the respective rule:
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In the first two cases, literals are stored (rule [R⇑ ]); in the third, formulas marked with ? are
stored into the classical context ([?]); if the current formula is� the proof ends with an application
of [�], etc.

Let us give an example to illustrate both proofs in FLL and the use of the tactics implemented.
Consider the following simple OL defining the natural numbers:
Inductive Atom : Set := p : uexp→ Atom. (* unary predicate symbol p *)
Inductive Econ : Set := | z : Econ | s : Econ. (* Constants used to build OL terms *)
(* Actual operators of the OL: Zero and Successor *)

Definition Z := (CON z) .
Definition S : (expr Econ)→ (expr Econ) := fun N:( expr Econ)⇒ (APP (CON s) N) .
Definition step := fun t:uexp⇒ perp (p t) ** atom (p (S t)). (* i.e., (p(t)⊥ −◦ p(s(t))⊥)⊥ *)
Definition stepPerp := fun t:uexp⇒ atom (p t) ** perp (p (S t)). (* i.e., (p(t) −◦ p(s(t)))⊥ *)

Consider the proof of the sequent � · : · ⇑ ?∃FX, p(0)⊥ −◦ p(2)⊥ where ∃FX is a shorthand for
∃t.(p(t)⊥ ⊗ p(S(t))) (see step above) and 0, 1, and 2 represent Z, S Z, and S (S Z), respectively:

Note the forward chaining proof style where, from p(0), we conclude p(1) to later show p(2). In
both steps, the formula ∃FX is focused on. The proof in Coq only requires some information
during the positive phase: which formula must be focused on; the witness for the rule [∃]; and
how to split the context in [⊗]. The other intermediary goals are solved automatically. In the first
line, the Coq’s notation “ . . .” applies the tactic specified in the header of the proof (Proof with
solveLL). Note also that the goal � ∃FX : p(2)⊥ ⇓ p(2) is automatically discharged.

Consider the proof below where ∃FX′ stands for ∃t.(p(t)⊗ p(S(t))⊥) (see stepPerp above):

This is a backward chaining proof where the goal p(2) is substituted with p(1) and later with
p(0). Note also that the only difference between ∃FX and ∃FX′ is the polarity of the atomic for-
mulas. See in Liang and Miller (2009), and Pimentel et al. (2015), a deeper discussion on how the
polarity assigned to atoms shapes the proofs in a focused system.
Inversion principles. During the proof of meta-theorems, it is usually necessary to reason under
the assumption that a given FLL sequent is provable. For instance, consider the goal:

https://doi.org/10.1017/S0960129521000323 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000323


Mathematical Structures in Computer Science 323

where the unspecified proposition G has to be proved from the fact that � B :M ⇓ ∃t.(step t) is
provable. Call this hypothesis H. Since seq and seqN are inductively defined, Coq’s tactic inversion
H derives all the necessary conditions that should hold to make that sequent provable. However,
some spurious cases are generated. In this particular example, inversion H generates two subgoals,
one of them assuming as hypothesis that the formula ∃t.(step t) can lose focusing (which is clearly
not the case). Therefore, instead of inversion, it is possible to apply the defined tactic FLLInversion:

The notation [solveF| ] means that the first subgoal (the spurious one) is solved with solveF
and the second one is left unchanged. Similar cases are considered for the other connectives.

But we can go further due to the focusing discipline. After the introduction of the existen-
tial quantifier, the tensor in p(t)⊥ ⊗ p(suc(t)) must be also introduced and focusing continues on
p(t)⊥ (and one of the initial rules must be applied). Moreover, focusing is lost on p(suc(t)) and
this atom is necessarily stored in the linear context. All this reasoning is performed by the tac-
tic FLLInversionAll that deduces all the necessary hypotheses from the fact that a FLL sequent
is provable by repeatedly calling the tactic FLLInversion. Coming back to our example, once
FLLInversionAll is applied, we end up with two subgoals. In both of them, we have as hypotheses
proper t and � B :N, p(suc(t))⇑ for some N. This means that FLLInversionAll showed that there
must be a proper term t due to the existential quantifier. Moreover, the proof has to lose focus-
ing and store the atom p(suc(t)) into the linear context. The two subgoals must establish G and,
in each case, the following additional hypotheses are available: (1) Permutation M ((atom (p t)) ::
N) and (2) In (atom (p t)) B. These cases result from the inversion of the fact that the sequent
� B :M ⇓ p(t)⊥ is provable. In the first case, it is assumed that the proof finishes with an appli-
cation of [I1] (and then, p(t) ∈M). In the second subgoal, the proof ended with an application of
[I2] (and p(t) ∈ B).

3.3 Structural properties
Exchange. Using strong induction on the height of the derivation, we show several structural
properties for FLL. For instance, we prove that equivalent multisets prove the same formulas
(preserving the height of the derivation):

From the previous results and using the library Morphisms, we are able to easily substitute equivalent
multisets during proofs using the tactic rewrite. A similar result can be also proved for the list of
formulas L in UP L. However, in this case, the height of the derivation is not preserved:

The proof of this theorem requires some lemmas showing the invertibility of the negative con-
nectives. In particular, in a sequent � � : �⇑ L, F, L′, the formula F can be decomposed or stored
at any time during the proof. Here are the cases for F = � and F =G�G′:

These lemmas are proved by induction on the sum of the complexity of the formulas in L.
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Figure 3. Cut-rules for the system FLL. In rule [⇓ CC], Fc is not an atom.

Weakening and Contraction. The following results show that weakening and contraction are
admissible in the classical context preserving the height of the derivation. Moreover, if a sequent
can be proved with a theory th, then it can be also proved with a stronger theory th’:

4. Metatheory: Cut-elimination for FLL
In Xavier et al. (2017), we mechanized the proof of the cut-elimination theorem for the dyadic
system of LL and completeness of the focused system (if a formula has a proof, then it has a
focused proof). Hence, as a corollary, we showed the equivalence of all these systems: dyadic +
cut, dyadic, and the triadic system. In this paper, we shall not deal with cut-elimination on the
dyadic system nor with completeness of focusing. Instead, we propose a set of cut-rules for FLL
and prove cut-elimination directly in that system. We present some of the most representative
proof transformations. For readability, we have avoided the Coq notation. In the Git repository,
the reader can find a PDF with the complete list of steps/cases needed in the proof.

The proposed cut-rules are [⇑C], [⇑ LC], [⇑ CC], [⇓ LC], and [⇓CC] (see Figure 3). The first
three rules deal with unfocused sequents and the last two with focused sequents. Note the side con-
dition in [⇓ CC] where the cut-formula, from now on denoted as Fc, cannot be an atom. Without
this restriction, [⇓CC] is not admissible. To see that, consider the sequent � � : · ⇓A⊥, which
is not provable in FLL. A non-valid application of [⇓ CC] with Fc =A will make that sequent
provable. As we shall see, this restriction makes the elimination of [⇑ CC] more involved.

As usual, the proof of cut-elimination proceeds by double induction on the complexity of the
cut-formula and the cut-height, that is, the sum of the premises’ heights of the cut-rule.We start in
Section 4.1 with the elimination of [⇑ C]. When Fc = ?F (resp. Fc does not belong to the negative
phase), we shall use an application of [⇑ CC] (resp. [⇑ LC]) to produce a simpler cut. Section 4.2
shows how to eliminate [⇑ LC] that, in turn, requires applications of [⇓ LC] and [⇑ C] when the
list L (in the left premise of the rule [⇑ LC]) is empty. The elimination of [⇑ CC] in Section 4.3 is
the most involved. Rule [⇓ CC] is used when the list L is empty and then, Fc cannot an atom. The
case when Fc is an atom is eliminated by proving some additional invertibility lemmas. Finally,
Section 4.4 shows how to eliminate [⇓ CC] and [⇓ LC]. In both cases, we use an application of
[⇑ CC] when the formula F loses focusing. The proofs of this section are in file CutElimination.v.

4.1 The cut-rule [⇑ C]
Assume that Fc is a negative formula. If Fc = ⊥, the application of [⇑ C] can be easily eliminated.
If the main connective is different from ?, the cut reduction uses induction on the complexity of
the formula as exemplified in the case F�G below:
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In the case Fc = ?F, F must be stored in the classical context and a reduction similar to that of
F�G fails. Instead, an application of [⇑ CC] (that internalizes the storing process) is needed:

When Fc does not belong to the negative phase, an application of [⇑ LC] is in order:

4.2 Elimination of [⇑ LC]
The elimination of [⇑ LC] when the list L is not empty is trivial: it suffices to permute the cut, thus
introducing the first formula in L (and reducing the height of the cut). For instance,

When the list L is empty, the left premise of [⇑ LC] must start with a decision rule. If the proof
continues by deciding on a formula different from the cut-formula, an application of [⇓ LC] is
needed to reduce the cut-height. Here the case for [D1]:

If the cut-formula (stored in the linear context) is selected for focusing (using [D1]), then,
depending on the polarity of Fc, we reduce the height of the cut by applying [⇑C]:

In the first case, Fc does not belong to the positive phase and the release rule is applied. In the
second case, Fc belongs to the positive phase and then, F⊥

c must lose focusing.

4.3 Elimination of [⇑ CC]
When the list L is not empty, we proceed as in [⇑ LC]. Otherwise, a decision rule must be used
on the left premise of the cut-rule and we have four cases (in [D2], Fc may be principal or not).
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In all of them, we replace an application of [⇑ CC] with an application of [⇓CC]. Due to the side
conditions of [⇓CC], Fc �=A. Here, the case when Fc is principal in [D2]:

[⇑ C] is applied on a smaller formula and [⇓ CC] on a shorter derivation.
The case when Fc =A. The proof reduction below:

works when F is taken either from �, from �, or from the theory (th F) and it loses focusing
(including the case F =!G). Note that, in the last two cases, � = �′. On the other hand, if F cannot
lose focusing, the proof relies on the following lemma, showing that there exists a (cut-free) proof
of the sequent � � : �′ ⇑ F.

Lemma 2 Consider the derivations below and assume that the rule [⇑ CC] is admissible for deriva-
tions of height k< n+m+ 1 where n and m are, respectively, the heights of [�] and [	]. Then, the
sequent � � : � ⇑ F is provable.

Note that this lemma can be used to show that the sequent � � : � ⇑ · is provable when F is a
positive formula or F =A⊥ (i.e., it cannot lose focusing):

(1) If F was taken from �, then we apply the store rule (on � � : �′ ⇑ F) and we conclude by
noticing that �′, F = �.

(2) If F was taken from � or from the theory th, then �′ = �. We conclude by using the
absorption lemmas below (for the classical context and the theory).

We can then complete the elimination of [⇑ CC] when the cut-formula is an atom:

where [
] exists due to Lemma 2. Hence, this lemma allows us to handle the case when Fc
is an atom. However, the proof of Lemma 2 is far from trivial: it requires proving some of
the invertibility lemmas needed by Andreoli in his proof of completeness. These lemmas were
already formalized in Xavier et al. (2017). Roughly speaking, these results show that applications
of positive rules can be switched:

Absorption classical context: If � �, F : � ⇑ F, L then � �, F : � ⇑ L
Absorption theory: If (th F), F is not a literal and � � : � ⇑ F, L then � �, : � ⇑ L
Absorption atom: If (th A⊥) and � � :A⊥,� � then � � : � �
Inversion of ⊗: if � � : � ⇑ F, L and � � : �′ ⇑ F′, L′ then � � : �,�′, F ⊗ F′ ⇑ L, L′
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Inversion of ⊕i: If � � : � ⇑ Fi, L then � � : �, F1 ⊕ F2 ⇑ L
Inversion of ∃: If � � : � ⇑ F[t/x], L then � � : �, ∃x.F ⇑ L.

Proof of Lemma 2.We proceed by induction onm. Ifm= 0 then either F is the unit 1 or a negated
atom. The case F = 1 is trivial. If F is a negated atom:

– If F = B⊥ and A �= B then either B ∈ � or �′ = B and the result is easy.
– If F =A⊥ we consider two cases: (1) if� =A the result is trivial (by storing A⊥ to later focus
on it); and (2), if � = · then the result holds by using the derivation [	].

Now consider the casem> 0. We proceed by case analysis on the last rule applied in [�]. If the
release rule is applied, we can use [⇑ CC] to exhibit a shorter derivation (n+m− 1):

If F =!G, then focusing is lost and we use [⇑CC] as above to obtain a proof of � � : · ⇑G. Then,
we obtain a proof of � � : · ⇑ !G by using [R⇑ ] to later focus on !G.

If [�] starts with [⊗] and F =G1 ⊗G2, by induction, we have proofs of both: �
� : �1 ⇑G1 and � � : �2 ⇑G2 where � = �1 ∪ �2. By the inversion lemma of ⊗, � � :
�1,�2,G1 ⊗G2 ⇑ ·. Using the store rule, we conclude � � : �1,�2 ⇑G1 ⊗G2 as needed. The
case F =G1 ⊕G2 (resp. F = ∃x.G) follows similarly, by induction and using the inversion lemma
for ⊕ (resp. ∃). �

4.4 Elimination of [⇓ CC] and [⇓ LC]
The procedure for these two rules is simple since, in the left premise, the focused formula is neces-
sarily principal. Then, it is possible to permute the cut to obtain a shorter derivation. If the proof
changes polarity, then an application of [⇑ CC] (or [⇑ LC] in the case of [⇓ LC]) is in order:

4.5 The main result
Now we can prove the main result of this section. We proceed by mutual induction on the five
rules and using the reductions presented in the preceding sections.

Theorem (Cut-elimination). The rules [⇑ C], [⇑ LC], [⇑CC], [⇓ LC], [⇓CC] are admissible.

We have also proved for FLL identity elimination, that is, for any well-formed formula F and
context �, the sequent � � : · ⇑ F, F⊥ is provable. Since we are dealing with a focused system, the
proof of this theorem is not immediate (as in the case of unfocused systems) and some invertibility
lemmas are required. The reader can find the details in IdElimination.v.

Before closing this section, we note that rules [⇓ LC] and [⇑ LC] allow us to introduce negative
formulas into the linear context, while the system FLL always decomposes such formulas during
the negative phase. We can add as a side condition that Fc is a positive formula or a literal in
both rules. In that case, our proof remains unchanged. To see that, note that [⇑ LC] is used in the
elimination of [⇑ C] when, precisely, Fc does not belong to the negative phase. [⇓ LC] is used in
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the elimination of [⇑ LC] and vice versa. If both rules have the same side condition, the reductions
presented here continue to be valid.

5. Applications
It is possible to use our framework to reason about LL specifications. For instance, we may encode
the states of a system as atomic predicates s,t, etc., and define a theory storing formulas of the
form F = s⊥ ⊗ t. When focusing on F, the atom s is consumed and t is produced, thus faithfully
encoding the state transition s→ t. Hence, we can prove in FLL reachability properties such as the
state s′′ is reachable from s. When needed, the cut-rule in FLL can be used to show that some state
s′′ is reachable from s and s′ is reachable from s′′. Specifying the syntax (for states) and transition
rules is easy. As an example, the directory OL/TSystem contains the specification of the transition
rules for the biochemical system studied in Despeyroux et al. (2018) along with the proofs of some
of its properties. The state of the system takes the form T(t), C1( �x1), · · · , Cn( �xn) where the atom
T(t) represents the current time unit and Ci( �xi) the state of a cell. The 171 transition rules of
the model consume and produce such atoms to model a cell’s life cycle. The resulting proofs are
relatively short due to the automatic tactics implemented.

We can also encode the inference rules of other logical systems as LL theories for different pur-
poses. This is a more interesting application, since the syntax of the OL usually includes binders
(e.g., the first-order quantifiers). The present section explores these encodings and their applica-
tion in: (1) proving cut-elimination of the OL by relying on the metatheory of FLL; (2) formalizing
the proof that HyLL is not more expressive than LL; and (3) showing the equivalence between
the natural deduction and sequent calculus systems for minimal logic. These results are certainly
a compelling application of the infrastructure provided by our framework to reason about LL
specifications.

We proceed as follows. Section 5.1 describes how to encode the syntax of an OL. As a run-
ning example, we shall use the system LK for first-order classical logic. An LK sequent of the form
� � �will be encoded as the FLL sequent� ���, ��� : · ⇑ where �·� and �·� are predicates that we
introduce in Section 5.2. The inference rules of LK will be encoded as an LL theory and we shall
prove that this encoding is adequate. In Section 5.3, we formalize the notion of cut-coherence
(Miller and Pimentel, 2013), a necessary condition for cut-elimination of the OL specified as an
LL theory. Cut-coherence states that the right and left inference rules of the OL are self-dual
and Theorem 4.5 allows for proving the OL’s cut-elimination theorem. We shall see that this
result applies for different systems that can be adequately encoded in LL including classical (LK),
minimal (LM), and intuitionistic (LJ) logics and variants of LL (Sections 5.3 and 5.4).

In Section 5.5, we formalize a result from Chaudhuri et al. (2019a). Namely, we prove that the
inference rules of HyLL can be adequately encoded as LL theories. This shows that HyLL’s judg-
ments based on worlds (F@w, F holds at world w) do not increase the expressiveness power of
LL. For this encoding, we have to deal with binders on first-order terms and worlds, and both are
uniformly handled in Hybrid. We also present the second encoding of HyLL that, although ade-
quate only at the level of proofs, allows us to establish cut-coherence and hence, cut-elimination
for HyLL. Finally, Section 5.6 shows that it is possible to prove the (LL) equivalence between the
encodings of two different logical systems, thus obtainingmutual relative completeness results. In
particular, we prove that the LL encoding of the right (resp. left) rules of LM are equivalent to the
introduction (resp. elimination) rules of a natural deduction system for minimal logic. This shows
that both systems prove the same formulas.

The encodings presented here for LK, LJ, and LM are not the same as the ones introduced in
Miller and Pimentel (2013). Our encodings can be proved to be adequate at the level of derivations
(Nigam and Miller, 2010): there is a 1-1 relation between the set of derivations in the OL and
focused derivations in FLL. In op. cit., the encodings are adequate only at the level of proofs: an OL
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sequent is provable iff its encoding is provable in FLL. This weaker notion of adequacy is enough
to show that cut-coherence implies cut-elimination for the OL. However, it requires proving extra
meta-theorems showing that a non-adequate application of the encoded rule cannot prove more
sequents (some examples in Section 5.5). The cut-coherence result for HyLL in Sec. 5.5 is new.

5.1 Specifying the syntax of the OL
OL formulas are built from terms, atomic propositions, and connectives. The file OLSyntax.v
defines the following type class that makes the definition of the OL syntax easier:

Class OLSyntax := {
OLType:Set; (* OL terms *) constants : Set ; (* 0-ary connectives *)

connectives : Set ; (* binary connectives *) quantifiers : Set}. (* quantifiers *)

The first field determines the type for building terms at the object level. This set can be Coq’s
Empty_set in the case of propositional OLs. The other fields define the constants used to repre-
sent the OL connectives, quantifiers, and units (0-ary connectives). For example, the following
constants determine the syntactic elements of first-order classical logic:

Inductive Constants := TT | FF . (* true and false units *)

Inductive Connectives := AND | OR | IMPL . (* conjunction, disjunction and implication *)
Inductive Quantifiers := ALL | EX . (* universal and existential quantifiers *)

These definitions can be used to instantiate the class OLSyntax:

Instance SimpleOLSig : OLSyntax:= {|
OLType := nat; (* natural numbers will be the terms of the OL *)
constants := Constants ; connectives := Connectives ; quantifiers := Quantifiers |}.

We then inductively define the type Econ that will instantiate the type con of Hybrid to build the
actual constants of the OL syntax of type expr Econ (see Section 2):

Inductive Econ: Set :=
| oo_term : OLType→ Econ . (* terms *) | oo_atom : nat→ Econ (* atomic props *)

| oo_cons : constants→ Econ (* units *)

| oo_bin : connectives→ Econ (* connectives *) | oo_q : quantifiers→ Econ (* quantifiers *)

In oo_atom, the parameter n:nat is the identifier of the atomic proposition (at the object level). With
these definitions, it is possible to provide more suitable “constructors” to work with:

Definition uexp : Set := expr Econ. (* uexp is the type of OL terms, atoms and formulas *)
Definition t_term (t:OLType) := (CON (oo_term t)) . (* terms *)

Definition t_atom (id:nat) (A:uexp) := APP (CON (oo_atom id)) A. (* atoms *)

Definition t_cons (lab :constants) := CON (oo_cons lab) . (* constants *)

Definition t_bin (lab : connectives) : uexp→ uexp→ uexp := (* connectives *)

fun M1:uexp⇒ fun M2:uexp⇒ (APP (APP (CON (oo_bin lab )) M1) M2).
Definition t_quant (lab : quantifiers) : (uexp→ uexp)→ uexp := (* quantifiers *)

fun M:uexp→ uexp⇒ (APP (CON (oo_q lab)) (lambda M)).

Note that these definitions are the only place where the constructors of the expr type (con, APP and
lambda) are seen explicitly. Once the new constructors above are defined, we use only these. For
instance, at the object level, the conjunction A∧ B is written as t_bin AND A B and the universal
quantified formula ∀x.FX as t_quant ALL FX.

There is also a predicate establishing when a uexp term is indeed a well-formed OL formula:
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(* OL terms can be built only with t_term *)

Inductive isOLTerm : uexp→ Prop := | isOLTermT : forall t, isOLTerm (t_term t).
(* Formulas can be atomic propositions or formulas built from the OL connectives *)

Inductive isOLFormula : uexp→ Prop :=
| isFAtom : forall t id , isOLTerm t→ isOLFormula (t_atom id t) (* atoms *)
| isFQ : forall lab (FX : uexp→ uexp), (* quantifiers *)

uniform FX→ (forall (t:uexp), proper t→ isOLFormula (FX t))→ isOLFormula (t_quant lab FX) .

We omit the definitions for constants and connectives which are similar. Note that the quanti-
fied formula t_quant ALL FX is a valid OL formula whenever FX is uniform and, for all proper term t,
the resulting formula FX t is also a valid formula.

It is important to show that both syntax and inference rules of anOL are adequately represented
in Hybrid. Adequacy for inference rules is stated and proved in Section 5.2. Adequacy of syntax
encoding, also called representational adequacy, is discussed for the lambda calculus as an OL in
Hybrid in Ambler et al. (2002) and proved in detail in Crole (2011), adequacy for a fragment of a
functional programming language known as Mini-ML is proved in Felty and Momigliano (2012),
and adequacy for a quantum programming language whose core is a linear lambda calculus is
discussed in detail in Mahmoud and Felty (2019). The OLs described here are similar to these
others in the sense that the quantifiers in this paper are represented in the same manner as the
lambda operator of the lambda calculus in the cited papers, and thus such adequacy results can be
adapted fairly directly. In particular, the predicates uniform and proper are important for this task.

In addition, proving representational adequacy requires defining an encoding function
between OL terms and their representation in Hybrid, and showing that this function is a bijec-
tion; for this task also, previous proofs can be adapted directly. Here the isOLFormula is important
for this proof. It is also important for reasoning about the OL. In particular, under the assumption
that isOLFormula F holds, we are able to reason inductively on the structure of F.

We define the size of OL formulas with the inductively defined predicate lengthUexp satisfying
the expected properties: lengthUexp A 1 if A is a (well-formed) OL atomic formula or a constant;
if lengthUexp F n and lengthUexp G m, then lengthUexp (t_bin c F G) (n +m +1) for any connective
c, etc.

Finally, in file OLSyntax.v, we define the LL signature containing the predicates up and down to
represent, respectively, �·� and �·�. These predicates will be used in the next section:

Inductive atm : Set := up : uexp → atm | down : uexp → atm.

Inductive atm : Set := up : uexp→ atm | down : uexp→ atm .

5.2 OL inference rules as LL theories and adequacy
In Miller and Pimentel (2013), LL was used as a logical framework for specifying a number of
logical systems. The idea is to use the predicates �·� and �·� for identifying objects that appear on
the left or on the right side of the sequents in the OL. Hence, for instance, object-level sequents
of the form B1, . . . , Bn � C1, . . . , Cm (where n,m≥ 0) are specified as the multiset of atomic LL
formulas �B1�, . . . , �Bn�, �C1�, . . . , �Cm�. As a mnemonic, formulas on the (L)eft side of object-
level sequents are encoded with the predicate starting with �. Depending on the presence of the
structural rules of weakening and contraction in the OL, the above formulas can be stored in
the linear or in the classical context of FLL. For instance, in LK, the structural rules apply on both
sides of the sequent and the LK sequent� � �will be encoded as the FLL sequent� ���, ��� : · ⇑
where ��� = {�Fi� | Fi ∈ �} (similarly for ���).

Inference rules of the OL are specified as rewriting clauses that replace the active formula in
the conclusion of the rule by the resulting formulas in the premises. The LL connectives indicate
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how these object-level formulas are connected: contexts are copied (&) or split (⊗), in different
inference rules (⊕) or in the same sequent (�).

Consider for instance the following rules for conjunction in classical logic:
�, F −→ �

�, F ∧G−→ �
∧L1

�,G−→ �

�, F ∧G−→ �
∧L2

� −→ F,� � −→G,�
� −→ F ∧G,� ∧R

These rules yield the following LL formulas where �F ∧G�⊥ and �F ∧G�⊥ are the heads of the
clauses (the principal formula in the conclusion of each inference rule):

∧L : ∃F,G.(�F ∧G�⊥ ⊗ (?�F�⊕?�G�)) ∧R : ∃F,G.(�F ∧G�⊥ ⊗ (?�F�&?�G�))

The formulas resulting from the encoding of the logical rules are not arbitrary. In fact, those
formulas are bipoles (Andreoli, 1992) that, when focused on, are completely decomposed into their
atomic subformulas. Below are the resulting derivations when focusing on ∧L and ∧R:

Consider the derivation on the left that starts by focusing on the formula ∧L stored in the
theory th. The connectives ∃,⊗ and ⊕ must be all introduced during the positive phase. In the
left branch of this derivation, the initial rule [I2] must be applied and, necessarily, �F ∧G� ∈ �.
Focusing is lost on the formula ?�F� and �F� is stored in the classical context during the negative
phase. What we observe, bottom-up, is that the active formula F ∧G is decomposed and the whole
positive phase (after the resulting negative phase) ends by storing the atom �F� into the classical
context. This derivation reflects exactly an application of the rule∧L1 at the object level. Similarly,
if instead of [⊕l ] we apply [⊕r ], the atom �G� is stored, thus reflecting the behavior of ∧L2.

Now consider the second derivation (on the right) that starts by focusing on ∧R. Note that this
derivation ends up with two premises, corresponding exactly to the two premises of the rule ∧R.

Let us consider an alternative presentation and encoding for conjunction:

In ∧L, focusing is lost on the formula ?�F��?�G� and both, �F� and �G� are stored into the
classical context. Since the linear context in this encoding is always empty, any of the two con-
junctions of LL adequately encode the behavior of the rule ∧R. However, we prefer the use of ⊗
instead of & since, as we shall see, this allows us to prove that the left/right rules are self-dual.

TheOL theory. LL formulas specifying OL inference rules take the form ∃F(H ⊗ B) whereH is
the head of the rule and B its body. The head H can be easily inferred, while the body B is specific
for each connective/rule. Hence, the following class is defined:

Class OORules := { rulesCte : constants→ ruleCte ;
rulesBin : connectives→ ruleBin ; rulesQ : quantifiers→ ruleQ }.

where ruleCte, ruleBin, and ruleQ are records specifying the body of the right and left rules for
each connective. Let us exemplify the situation with rulesBin; the other cases are similar:

Record ruleBin := { ru_rightBody : uexp→ oo; (* body of the right introduction rule *)
ru_leftBody : uexp→ oo}. (* body of the left introduction rule *)
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The specification of LK requires a term of type ruleBin for each binary connective:

Definition rulesBC (c:connectives) : ruleBin :=
match c with | AND⇒ {| ru_rightBody := fun F G⇒ (? u|F|) ** (? u|G|) ;

ru_leftBody := fun F G ⇒ (? d|F|) | (? d|G|) |}
| OR ⇒ {| ru_rightBody := fun F G⇒ (? u|F|) | (? u|G|) ;

ru_leftBody := fun F G ⇒ (? d|F|) ** (? d|G|) |}
| IMPL := {| ru_rightBody := fun F G ⇒ (? d|F|) | (? u|G|);

ru_leftBody := fun F G ⇒ (? u|F|) ** (? d|G|) |} end.

where u|F| (resp. d|F|) denotes the atom �F� (resp. �F�).
The encoding of the rule is obtained by adding the head of the rule to its body. This is the

purpose of the following definitions:

Definition makeLRuleBin (c : connectives) := fun F G⇒ dˆ| t_bin c F G| ** (rulesBin c).(rb_leftBody) F G .
Definition makeRRuleBin (c : connectives) := fun F G⇒ uˆ| t_bin c F G| ** (rulesBin c).(rb_rightBody) F G.

where dˆ| F| denotes �F�⊥. Similar constructors for constants and quantifiers are defined. Using
them, it is possible to build the LL theory corresponding to the encoding of all the inference rules:

Inductive buildTheory : oo→ Prop :=
| bcteR : forall C, isOLFormula (t_cons C) → buildTheory (makeRRuleConstant C)
| bcteL : forall C, isOLFormula (t_cons C) → buildTheory (makeLRuleConstant C)
| bconnR : forall C F G, isOLFormula ( t_bin C F G) → buildTheory (makeRRuleBin C F G)
| bconnL : forall C F G, isOLFormula ( t_bin C F G) → buildTheory (makeLRuleBin C F G)
| bQconnR : forall C FX, isOLFormula (t_quant C FX) → buildTheory (makeRRuleQ C FX)
| bQconnL : forall C FX, isOLFormula (t_quant C FX) → buildTheory (makeLRuleQ C FX) .

Notice the inclusion of the well-formed predicate (isOLFormula): in order to focus on the
formula (makeLRuleBin AND F G), encoding the rule ∧L, both F and G must be well-formed OL
formulas.

In addition to the inference rules of theOL, we require an LL formula specifying the application
of the initial rule at the object level:

Note that in RINIT, focus cannot be lost on �F�⊥ or on �F�⊥. This adequately encodes the initial
rule at the object level: F must be present on both, the left (�F�) and right (�F�) side of the OL
sequent.

Adequacy. The provability relation · � · of LK can be specified as an inductive predicate in Coq:

Inductive LKSeq : multiset uexp→ multiset uexp→ Prop :=
| LKinit : forall Gamma Delta F, LKSeq (F:: Gamma) (F:: Delta)
| LKAndL : forall Gamma Delta F G, LKSeq (F :: G :: Gamma) Delta→ LKSeq ( (t_bin AND F G) :: Gamma) Delta
[...]

and we can prove that the LL encoding is sound and complete:

Theorem Adequacy: isOLFormulaL Gamma→ isOLFormulaL Delta→
(LKSeq Gamma Delta) ↔ seq OLTheory (LEncode Gamma ++ REncode Delta ) [ ] (> [])).
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Given a list of (OL) formulas�, LEncode Gamma (resp. REncode Gamma) returns ��� (resp. ���). The
predicate isOLFormulaL Gamma states that all the formulas in Gamma satisfy isOLFormula. The proof of
this theorem is almost straightforward by using the tactics of the framework (see LK.v). For sound-
ness (→ ), we proceed by induction on the fact that the sequent � � � is provable. In each case,
it suffices to apply the corresponding LL rule stored in OLTheory. For completeness (<-), we have as
hypothesis that the sequent � ���, ��� : · ⇑ is provable. Since ��� and ��� contain only atomic
formulas, such a proof must start with [D3] (thus focusing on one of the formulas in OLTheory).
In each case, by using the tactic FLLInversionAll, we can derive all the consequences from the fact
that such a sequent is provable and the result follows by induction.

5.3 Cut-coherence and cut-elimination

The rule
� � F,� �, F � �

� � �
cut in LK can be adequately encoded as ∃F.(?�F�⊗?�F�). Note that

focusing is lost on both ?�F� and ?�F�, thus producing two premises: one where F is added into
the left side of the sequent and the other where F is added into the right side. The following
theory

Definition RCUT F := ?u|F| ** ?d|F|.
Inductive OLTheoryCut (n:nat) : oo→ Prop := (* OLTheory + Cuts on formulas of size at most n *)
| oothc_theory : forall OO, OLTheory OO→ OLTheoryCut n OO
| oothc_cutn : forall F m , isOLFormula F→ lengthUexp F m→ m <= n→ OLTheoryCut n (RCUT F).

adds to OLTheory the rule RCUT applied on formulas of size (lengthUexp) at most n. Since there are
no OL formulas of size 0, clearly the theory (OLTheoryCut 0) is equivalent to OLTheory. Moreover,
the theory (OLTheoryCut n) is stronger than the theory (OLTheoryCut m) wheneverm≤ n.

Cut-coherence. Let BR and BL be the instances (after introducing the existential variables) of
the right and left body of the encodings of the logical rules of a given connective. Miller and
Pimentel (2013) define cut-coherence as the property that, using a theory containing RCUT, the
sequent � · : ·⇑ B⊥

R �B⊥
L is provable. In our case, the definition of cut-coherence needs to be more

specific regarding the size n of the (OL) cut-formula. This is needed in order to consider the
weakest theory (OLTheoryCut n) that makes the sequent above provable. We have a definition for
each kind of connective, for instance,

For units, RCUT is not needed for proving the duality (EmptyTheory F does not hold for any F).
For a binary connective F �G, it is enough to consider a theory able to prove both the duality
for F and G. We then say that a system is cut-coherent if all its rules satisfy the cut-coherence
condition.

Proving cut-coherence is rather simple. Consider for instance the case of conjunc-
tion in LK. After the negative phase, we need to prove the following sequent � :
(!�F�⊥⊗!�G�), !�F�⊥, !�G�⊥ ⇑ . By focusing on RCUT F, we can replace !�F�⊥ with ?�F� (simi-
larly for G). Hence, the goal is to prove � �F�, �G� : !�F�⊥⊗!�G� ⇑ which is easy by focusing
on !�F�⊥⊗!�G�. Note that RCUT was applied only on subformulas of F ∧G.
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Regarding the first-order OL quantifiers, consider the following LL formulas encoding the right
and left inference rules for the universal quantified formula fx.FX:

∀R : ∃ FX.(�fx.FX�⊥ ⊗ ∀x.?�FX x�) ∀L : ∃ FX.(�fx.FX�⊥ ⊗ ∃x.?�FX x�)

As expected, the right rule uses the LL universal quantifier to create a fresh variable x and stores
�FXx� into the classical context. On the other side, the left rule uses the LL existential quantifier
and, for a given term t, �FX t� is stored. The bodies of these rules are clearly cut-coherent. In
order to prove this result, we have to show that given two (OL) proper terms x and y, if the size
of (FX x) is n, then the size of (FX y) is also n. This is indeed the case since FX is uniform (and
it cannot return different formulas depending on its parameters). However, proving this fact is
not doable with the infrastructure we have and the cut-coherence of these rules relies on the fol-
lowing admitted axiom: Axiom OLSize: uniform FX → proper t → proper t’ → lengthUexp (FX t)
n → lengthUexp (FX t’) n.

The OL cut-elimination theorem. Now we are ready to formalize the cut-elimination proce-
dure for OLs satisfying cut-coherence. We start with the following theorem:

In words, assuming that: the cut-formula (FCut) is a well-formed OL formula of size ≤ n; �

contains only atoms of the shape �·� and �·� (IsPositiveAtomFormulaL Gamma); there are cut-free
proofs (OLTheory) of the sequents � �FCut�, � : · ⇑ · and � �FCut�, � : · ⇑ · of height, respectively,
h1 and h2; then, there is a proof of the sequent � � : · ⇑ · with the theory that considers cuts on
formulas strictly smaller than FCut (pred n).

This proof proceeds by induction on h1 + h2. Note that the sequents in the hypotheses must
start by focusing on one of the formulas in OLTheory. Hence, we are in the following situation:

(1) � �FCut�, � : · ⇓ R1 (2) � �FCut�,� :⇓ R2

where R1 =H1 ⊗ B1 and R2 =H2 ⊗ B2. If H1 = �FCut�⊥ and H2 = �FCut�⊥ we are in the case
where the cut formula is principal in both premises. Hence, after decomposing the heads of the
rules, we are in the following situation:

(1′)� �FCut�,� : · ⇓ B1 (2′)� �FCut�,� :⇓ B2

We know that decomposing B1 and B2 necessarily ends up generating zero, one or two
premises, where more atoms of the form �·� and �·� are added into the classical context. Consider
that one of these premises is � �FCut�,�, �′ : ·⇑. By induction (on a shorter derivation), it must
be the case that � �, �′ : ·⇑ is provable and then, the sequent � � : · ⇓ B1 is also provable. By
applying the same reasoning on (2’), we can show that

(1′′)� � : · ⇓ B1 (2′′)� � :⇓ B2

Both sequents are provable in the theory OLTheoryCut (pred n) . Due to cut-coherence, the
sequent S = � · : ·⇑ B⊥

1 , B
⊥
2 is provable and, by weakening, the sequent S ′ = � � : ·⇑ B⊥

1 , B
⊥
2 is

also provable. We conclude by using the cut-rule of FLL twice: cutting S ′ with (1′′) and then
cutting the resulting sequent with (2′′). Hence, the principal cases of cuts at the object level are
all eliminated by cuts at the meta-level, which, in turn, can be eliminated in virtue of Theorem
4.5. In the case of 0-ary connectives, remember that cut-coherence can be proved with the empty
theory and then, no further applications of RCUT are introduced. Moreover, the cases when the
cut-formula is an (OL) atomic proposition can be easily eliminated.
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The non-principal cases are handled as usual: the application of the inference rule is permuted
down the cut, thus reducing the height of the cut.

By induction on the size n of the cut-formula and from OLCutStep we conclude

This means that the theories (OLTheoryCut n) and OLTheory prove the same sequents and hence,
the cut-rule, at the object level, is admissible.

This concludes the proof of cut-elimination for cut-coherent OLs featuring weakening and
contraction on both sides of the sequent. Since the rules of LK adhere to this condition and the
encoding was proved to be adequate, what we obtain is a proof of cut-elimination for first-order
classical logic.

5.4 Controlling the structural rules
The encoding in the previous section marks the atoms �·� and �·� with the exponential ?, thus
capturing the fact that formulas can be weakened and contracted. What if the structural rules
apply only on the left side of the sequent (as in intuitionistic systems) or they do not apply at all
(as in substructural logics)? This section addresses this situation by defining an adequate cut-rule
for those systems and proving that cut-coherence implies cut-elimination of the OL.

Intuitionistic systems. In single-conclusion systems, the structural rules apply on the left side
of the sequent but not on the right side. Consider for instance the system LJ for intuitionistic
logic. Sequents are of the shape � � F where F is a formula. Such a sequent will be encoded as the
FLL sequent � ��� : �F� ⇑ where the right formula is stored into the linear context while the left
formulas are stored into the classical context.

Below we encode the rules for implication in LJ:

The use of ! in the body of →L is fundamental to guarantee that the encoding is adequate at the
level of derivations: the proof of !�A� must consider only the classical context and then, the atom
�G� must necessarily be placed on the left premise of this rule:

Hence, we obtain two premises, each of them corresponding to the premises after the applica-
tion of the rule at the object level. The other rules of LJ can be encoded similarly and we can prove
that the encoding of LJ as the LL theory OLTheory is adequate (see LJ.v):

Theorem Adequacy: isOLFormulaL Gamma→ isOLFormula G→
(LJSeq Gamma G) ↔ seq OLTheory (LEncode Gamma) [ u|G | ] (> [])).

The cut-rule
� � F �, F �G

� �G Cuti is encoded as Definition RCUTi F := !u|F| ∗∗ ?d|F|.
Again, the exponential ! guarantees that the resulting premises will have exactly one atom of the
form �·� in the linear context.
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Using RCUTi, it is possible to prove that the bodies of the encoded rules are cut-coherent. Hence,
the principal cases during the cut-elimination procedure can be eliminated by using the cut-rule
at the meta-level (FLL) as we explained in the previous section. We thus obtain

where OLTheoryCuti corresponds to the theory OLTheory extended with RCUTi.

Substructural logics. If the OL at hand does not admit structural rules neither on the left- nor
on the right-hand side of the sequent, the resulting encoding must reflect this fact by storing
the encoded formulas in the linear context. For instance, in a two-sided presentation of MALL,
sequents of the form � � � are encoded as � · : ���, ��� ⇑ ·. For instance, the rules for additive
conjunction in MALL are encoded as follows:

5.5 Hybrid linear logic (HyLL)
HyLL (Despeyroux and Chaudhuri, 2014) is a conservative extension of intuitionistic LL where
the truth judgments are labeled by worlds of the form F@w (“F is true at world w”). In fact, w is
an expression built from a given monoid 〈W, •, ι〉.

HyLL sequents take the form � : � �G@w where � is the unbounded context (weakening and
contraction apply to it) and � is the linear context. These sequents will be encoded as the FLL
sequent � ��� : ���, �G@w� ⇑ .

The syntax of HyLL includes the LL connectives plus the hybrid connectives:
F,G ::= p | F ⊗G | 1 | F −◦ G | F &G | � | F ⊕G | 0 |!F | ∀x.F | ∃x.F | (F at w) |↓w.F | ∀w.F |

∃w.F
The last three connectives bind the worldw in F. The expression F atw is a mobile proposition:

it carries with it the world at which it is true. The formula ( ↓ u.F)@w fixes F to the world w and
∀w.F means that F holds in all world w (similarly for ∃w.F).

The specification of this syntax follows as in Section 5.1 but, in �X� and �X�, we assume that X
is a well-formed judgment:

Inductive isWorldExp : uexp→ Prop :=
| isWorldExp’ : forall w:W, isWorldExp (t_world w)
| isWorldExp’’ : forall wexp wexp’, isWorldExp wexp→ isWorldExp wexp’→ isWorldExp (t_wop wexp wexp’)
Inductive isOLJudgment : uexp→ Prop :=
| isOL : forall F wexp , isOLFormula F→ isWorldExp wexp→ isOLJudgment (F@ wexp).

The setW is a parameter of the specification defining the carrier set of the monoid. Legal world
expressions are built from elements in W (t_world w) or combining valid expressions through •
(t_wop wexp wexp’). Hence, F@w is a valid judgment whenever F is a valid formula built from the
syntax above and w is a valid world expression.

In the previous section, the exponential ! was used to adequately specify intuitionistic systems.
In HyLL, this does not work since the resulting FLL sequents may have several formulas in the
linear context: exactly one formula of the shape �G@v� and zero or more (left) atoms �F@w�. In
Chaudhuri et al. (2019a), the HyLL inference rules were encoded as an LL theory and the problem
of controlling the right formula �G@v� was solved in the encoding of linear implication:
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Note that in −◦L, after consuming the atom representing the principal formula, the (unique)
right formula of the shape �G@v� is also consumed. Later, �G@v� is necessarily stored together
with the formula �F′@w�. This adequately captures the behavior of −◦L in HyLL.

The reader can find the complete encoding in Chaudhuri et al. (2019a) and the proof of
adequacy in HyLL.v:

Theorem Adequacy: isOLJudgmentL Gamma→ isOLJudgmentL L→ isOLJudgment (F@ w)→
HyLL Gamma L (F @ w) ↔ seq OLTheory (CLEncode Gamma) (REncode (F@ w) :: (LEncode L)) (> []).

Due to the careful management of the unique right formula in the encoding, the above ade-
quacy result is at the level of derivations, similar to those presented in the previous sections. This
means that every proof in HyLL can be exactly mimicked by a derivation in FLL and hence, HyLL
is not more expressive than LL. However, the bodies of −◦L and −◦R are not cut-coherent and we
cannot prove the cut-elimination theorem for HyLL through the cut-coherence argument.

In HyLLCut.v, we present an alternative encoding of HyLL without the units (�, 1, 0). This
encoding is adequate at the level of proofs. For instance, the rule−◦R remains as above and the left
rule is encoded as: −◦L : ∃F, F′,w.�F −◦ F′@w�⊥ ⊗ (�F@w� ⊗ �F′@w�). Note that, on the sequent
� ��� : �F −◦ F′@w,�,�′�, �G@v� ⇑, focusing on −◦L may produce as premises the following
sequents: � ��� : ��, F′@w� ⇑ and � ��� : ��′�, �G@v�, �F@w� ⇑. In the first (resp. second)
sequent, we have only left formulas (resp. two right formulas). This is clearly not the image of
any valid HyLL sequent. Fortunately, we can prove the following:

Theorem OnlyLeft: ∼ seqN OLTheory n (LEncode Gamma) (LEncode L) (> []).

In words, there is no proof of a sequent with only left atoms. This is proved by induction on
n. We know that the only possibility is to focus on one of the rules in OLTheory. The proof cannot
start by focusing on the initial rule (since there is no a formula �G@v� in the context). The other
cases follow from induction.3 Relying on the above theorem, we can prove the following:

Theorem Adequacy: isOLJudgmentL Gamma→ isOLJudgmentL L→ isOLJudgment (F@ w)→
HyLL Gamma L (F @ w) ↔ seq OLTheory (LEncode Gamma) (REncode (F@ w) :: (LEncode L)) (> []).

Moreover, we can use the (linear) cut-rule RCUTl to prove cut-coherence for this encoding, thus
obtaining cut-elimination for HyLL (and hence, also for intuitionistic MALL):

5.6 Sequent calculus and natural deduction
Our last application considers the equivalence of the LL formulas specifying different inference
systems (Miller and Pimentel, 2013). We start by encoding the elimination and introduction rules
of a natural deduction system for minimal intuitionistic logic (see NDSeq.v):
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These rules faithfully capture the inference rules and adequacy can be proved at the level of
derivations. Consider the encoding for conjunction, implication, and the universal quantifier for
the system LJ in Section 5.4. Similarly as we did for cut-coherence, we use the specification of the
cut-rule to prove the equivalences →E≡→L, →I≡→R ∧E ≡ ∧L, ∧I ≡ ∧R, ∀E ≡ ∀L, and ∀I ≡ ∀R.

Let ND and SQ be the theories containing, respectively, the rules for natural deduction and
sequent calculus for first-order minimal logic (connectives →, ∧, and ∀) as well as the rule RCUT.
Using the above equalities, and the FLL cut-rule, we can prove that:

Therefore, we are using the metatheory of LL (and its cut-elimination theorem) to establish
a fundamental result for first-order minimal logic: the mutual relative completeness of natural
deduction and sequent calculus.

6. Related and FutureWork
The resource awareness of LL has found application in many different areas, including the specifi-
cation and verification of programming languages, concurrent systems and, as illustrated here,
proof systems. The cut-elimination and completeness of focusing theorems are central to all
these applications. We have proposed a novel proof of cut-elimination for FLL and, in Xavier
et al. (2017), we mechanized the proof of completeness of focusing. Having a formalization of
these theorems is of paramount importance because they have served as the foundation to many
results in the literature. In particular, we have used our framework to formalize the results in
Miller and Pimentel (2013) and Chaudhuri et al. (2019a). We have presented alternative encod-
ings to the ones in Miller and Pimentel (2013) and proposed an encoding of HyLL that satisfies
cut-coherence. Other applications such as the encoding of transition systems and the proof of
reachability properties can be found in the repository.

When developing our framework, along the way we also improved Hybrid by adding a variety
of new lemmas and proof techniques, trying to keep them as general as possible so that they can be
applied easily to other OLs and future proof developments. With the support for syntax provided
by Hybrid, it was straightforward to consider OLs with binders including first-order quantifiers
and worlds’ binders in HyLL. Future work on Hybrid will include new infrastructure for increas-
ing the class of properties that can be proved about OLs with quantifiers; this work will include,
for example, eliminating the axiom OLSize introduced in Section 5.3.

Intuitionistic propositional LL was implemented in Coq (Power and Webster, 1999) and
Isabelle (Kalvala and Paiva, 1995), but the main goal in those papers was to provide proof search,
and thus no meta-theorems were proved. Cut-elimination and invertibility lemmas were proved
for a formalization of several LL calculi in Abella (Chaudhuri et al., 2019b). The reader may also
refer to YALLA,4 and embedding of propositional LL in Coq.

A generic method for formalizing sequent calculi in Isabelle/HOL is proposed in Dawson and
Goré (2010). The meta-theorems are parametrized by the set of rules and for cut-elimination,
weakening must be admissible. The authors have applied the method to provability logics.

Completeness of focusing was proved for intuitionistic propositional logic in Twelf and Agda
(Simmons, 2014). The proof follows the technique developed in Pfenning (2000) where sequents
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are annotated with terms and the problem is reduced to type-checking. The method in Simmons
(2014) could be used to prove completeness of focusing of LL as well. A possible candidate
implementation is the one from Reed (2009) on a modified version of Twelf. Unfortunately, this
development was never carried out.

When proving the cut-elimination property for focused systems, it is natural to have different
cut-rules handling the different phases of the proof. For instance, in Liang and Miller (2009),
seven cut-rules were used in the cut-elimination procedure for LJF (a focused proof system for
intuitionistic logic). The proof in Abella5 of cut-elimination for focused propositional MALL uses
three different cut-rules. The rules and procedure described in Section 4 seem to be the first cut-
elimination procedure for full first-order focused LL.

As illustrated here, LL is general enough for capturing intuitionistic and classical behaviors in
OLs. However, in order to specify more complex modalities such as the ones of S4 or substruc-
tural features in multi-conclusion intuitionistic systems, LL is not enough and extensions of it are
needed, for example, subexponential LL (SELL, see e.g., Nigam et al. (2016, 2017)). Alternatively,
in Lellmann et al. (2017), it is shown how a linear nested sequent (LNS) calculus for LL can be used
as the basis for encoding, in a modular way, different modalities of OLs. In Olarte et al. (2020),
we have shown how to extend the notion of cut-coherence for LNS-based systems, thus allowing
us to prove cut-elimination for different modal logics. We are currently working on a extension
of our Coq implementation to consider, as SL, a focused LNS presentation of LL and prove the
cut-elimination results in op cit.
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Notes
1 https://coq.inria.fr/refman/proof-engine/ltac
2 https://github.com/PrincetonUniversity/certicoq
3 If the units are considered, the above result does not hold since, for example, the HyLL formula 0@w on the left finishes
any sequent. In that case, we have to analyze also the cases of (ill-formed) sequents with two right formulas and show that,
indeed, non-legal applications of the rules cannot prove more OL sequents.
4 https://perso.ens-lyon.fr/olivier.laurent/yalla/
5 https://github.com/meta-logic/abella-reasoning
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