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Abstract

Interaction between energetic electrons and a circularly polarized laser pulse in a relativistic plasma channel is studied.
Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the channel and absorbing
angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field
~inverse Faraday effect!. The magnitude of this magnetic field is calculated and related to the amount of the absorbed
energy.

One of the most important processes that accompany laser–
matter interaction is the magnetic field generation. Mag-
netic fields could have a significant effect on the overall
nonlinear plasma dynamics. Particularly, extremely high
~megagauss! magnetic fields play an essential role in prop-
agation of laser pulses, laser beam self-focusing, and pen-
etration of laser radiation into overdense plasma. Recently,
ultrahigh self-generated magnetic fields have been revealed
in experiments~Najmudin et al., 2000! and in numerical
simulation~Shenget al., 1998!.

Among the various mechanisms~Stamper, 1991! which
are responsible for the magnetic field generation, we will
consider the inverse Faraday effect~Steiger & Woods, 1972;
Gorbunovet al., 1996! resulting from the electron motion in
the circularly polarized electromagnetic wave. During inter-
action with a circularly polarized laser pulse, plasma elec-
trons absorb not only the laser energy but also the amount of
the total angular momentum of the laser pulse. This angular
momentum transfer leads to the electron rotation and the
generation of the axial magnetic field by the azimuthal elec-
tron current.

Here we will consider another mechanism for laser–
plasma angular momentum exchange. Both experiments
~Key et al., 1998! and Particle-In-Cell~PIC! simulations
~Pukhov & Meyer-ter-Vehn, 1997! demonstrate relativisti-
cally strong laser plasma channels or filaments in a near-
critical plasma. A circularly polarized Gaussian laser pulse
propagates along thez axis with vector potential

A ~r , t ! 5 A0 exp~2r 20R2 2 j2
20T 2!@ex sin~j1! 1 ey cos~j1!# ,

~1!

wherej1 5 vt 2 vz0vph, j2 5 z0vgr 2 t, vph andvgr are the
phase and group velocity of the pulse, respectively,cT.. R.
For simplicity, we will considervph . vgr . c. General case
vphÞ c andvgr Þ c is considered by Kostyukovet al.~2001!.
The ponderomotive force

Fpond 5 2
r

R2

A0
2 exp~22r 20R2 2 2j2

20T 2!

4gmc2 ~2!

pushes out electrons from the high intensity region. Heree
andm are the charge and the rest mass of electron,c is the
speed of light,g 5 !1 2 v20c2 is the relativistic gamma
factor of the electron. The ion channel along thez axis is
formed with the electron expelling. It is seen From Eq.~2!
that the ponderomotive force is essentially reduced for hot
electrons withg .. 1. They may not be pushed out from the
ion channel and can oscillate across thez axis ~“betatron”
oscillation!. Laser–electron energy exchange occurs at the
resonance between electron betatron oscillation and laser
field V0!g 5 v 2 kvz, whereV is the betatron frequency
~Pukhov, 1999!. It was recently observed in simulations
~Pukhov, 1999; Tsakiriset al., 2000! that electrons effec-
tively absorb laser energy at this resonance. In the case of a
circularly polarized laser pulse, the electrons can resonantly
absorb the significant amount of the angular momentum too.
The main objective of the paper is to calculate the generated
magnetic field.
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The Hamiltonian of the electron motion in the ion channel
and in the laser field is

H 5 c!mc2 1 ~p41 eA0c!2 1 pz
2 1

mV2~x2 1 y2!

2
, ~3!

whereV 5 vpi is the effective ion frequency in the channel.
For simplicity, we neglect the self-generated magnetic field
of hot electrons. From here on we will use the unitiesv21

for the time,c0v for the length, the momentum and vector
potential are normalized bymc and mc20e, respectively.
Assuming thatpz

2 .. 1 1 ~p4 1 A!2 and using canonical
transformation we can derive the Hamiltonian for the elec-
tron near “betatron resonance”

H 5 pz 1
M 2

2pz

1
eI

!pz

1 A0 expS2
j2

2

T 2D! e~I 1 L!

2pz
302

3 sin@j1 2 uL 2 u# , ~4!

wheree 5 V0v, M 2 511 A2 is the electromagnetic mass of
an electron in the circularly polarized electromagnetic wave,
eI0!pz 5 p4

20~2pz! 1 e2~x2 1 y2!02 is the transversal elec-
tron energy in ion channel,L is the angular momentum of
the electron,u and uL are the angle variables canonically
conjugated toI andL, respectively.

Let us now consider in more detail the transversal elec-
tron dynamics in the ion channel at the absence of the laser
pulse. It follows from Eq.~4! that the Hamiltonian of the
transversal motion is

H4 5
p'

2

2pz

1
e2r 2

2
5

eI

!g
. ~5!

Integrating the Hamiltonian equations we obtain

r 2 5
I

e!g
1
!I 2 2 L2

!ge
sin~2uL !, uL 5

e

!g
t. ~6!

Equation~6! describes the all electron trajectories defined
by the constant of motionI andL ~2I , L , I !. If angular
momentum,L, is equal to zero, then the electron motion is
just one-dimensional oscillations. IfL is equal toI or 2I,
then the electron performs circular motion with radius

r0 5 !I 0!ge2 .

In the general case~an arbitrary value ofL! the electron
trajectory is confined between the maximal radius,

rmax~I, L! 5 !~I 1!I 2 2 L2!0!ge2 ,

and minimal radius,

rmin~I, L! 5 !~I 2!I 2 2 L2!0!ge2 .

We assume that all electrons have the same value ofL0

and I0 and evenly distributed over the anglesw andu and
along thez direction. Then electron distribution function is

F~I, L, r ! 5
N

2p
E

0

2p E
0

2p

dw du
1

r
d~I 2 I0!d~L 2 L0!

3 d@r 2 r ~I, L,u!#d@w 2 w~I, L,u!# , ~7!

where N is the linear density of the electrons along the
channel.

After integrating over the angles, we obtain the expres-
sion for the electron distribution function:

F~I, L, r ! 5
2N

p

d~I 2 I0!d~L 2 L0!

!@rmax
2 ~I, L! 2 r 2# @r 2 2 rmin

2 ~I, L!#
, ~8!

where rmin~I, L! , r , rmax~I, L!. If electrons are evenly
distributed over angular momentum2I0 , L0 , I0, then
integrating the electron distribution function~8! overL, L0,
andI, we obtain the electron density in the channel

n~r,w! 5 5
N~e!g!

2pI0

, r 2 ,
2I0

e!g
,

0, r 2 .
2I0

e!g
.

~9!

Using Eq.~8! the expression forw component of the elec-
tron current density in the channel can be derived:

jw 5
1

p2 eN
L

rg

d~I 2 I0!d~L 2 L0!

!@rmax
2 ~I, L! 2 r 2# @r 2 2 rmin

2 ~I, L!#
. ~10!

Solving Maxwell’s equation¹ 3 B 5 4pj , the axial compo-
nent of the static magnetic field can be found

Bz~r ! 5 5
sign~L!

2eNe

!g
d~I 2 I0!d~L 2 L0!, 0 , r , rmin

sign~L!
eNe

!g
d~I 2 I0!d~L 2 L0!

3S12
2

p
arcsin

Ir 2e!g 2 L2

e!gr 2!I 2 2 L2D,

rmin # r # rmax

0, r . rmax.

~11!

The magnetic flux generated by the hot electrons along the
channel is

F 5EEB{ds5
2peNL

g
d~I 2 I0!d~L 2 L0! ~12!
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and the mean axial magnetic field in the ion channel is

^B& 5
F

prmax
2 5

2eNe

!g

L

I 1!I 2 2 L2
d~I 2 I0!d~L 2 L0!. ~13!

It follows from Hamiltonian~4! that the interaction can be
described by the one action variableg . pz and by the
conjugated angle variableC 5 j1 2 uL 2 u. Hamiltonian~4!
takes a form in new variables

H 5 H0 1 H;, H0 5
M 2

2g
1

e~g 1 g1!

!g
,

H; 5 A0 expS2
t 2

d2D! e~g 1 g2!

g302 sinC, ~14!

whered 5 2l~M 2g22 1 2eg2102 1 2eg1g2302!21 is the
laser pulse duration in the coordinate system of the electron,
l 5 Tv whereg1 andg2 are the constants of the motion.

The resonance condition is

Ĉ 5
]H0

]g
5 2

M 2

2g2 1
e

2!g
1

eg1

2g302 5 0. ~15!

From virial theorem we can write

e~g0 1 g1!!g0 5 eI0!g0 5 p4,0
2 02 1 e2r0

202 ' p 4,0
2 , ~16!

wherep4,0 is the transverse momentum at the initial moment
of time andr0 is the initial radius of the electron location. At
the resonance,gres5 g0 andp4, res5 p4,0 and the resonance
energy is

gres . SM 2 1 p4,0
2

2e
D203

. ~17!

In the limit M 5 1 andp4,0 5 0, vph 5 c, the expression for
resonance electron energy coincides with one calculated by
Pukhov~1999!.

Let us now calculate the laser pulse energy absorbed by
hot electrons. In this case, we can consider the last term in
the Hamiltonian~14! as a perturbation and use the pertur-
bation theory. One of the simplest ways to derive averaged
change ing to the second order inA0 is to use Madey’s
theorem~Madey, 1979!. According to the theorem, the
second-order change ing is

Dg 5 ^g 2 g0&6C0
5

1

2

]

]g0

^g;
2 ~g0!&,

g; 5E ]H; @g0,C~0! ~g0,t,C0!, t #

]C
dt. ~18!

The obtained expression is similar to one for the Landay
damping:GL ; *Pk@k~]f0]v!# , wherePk is the Cerenkov
emission power. In our case^g;

2 ~I 0!& is the betatron emis-

sion power. Then the absorbed energy per electron can be
calculated with the averaging over the electron distribution
function at the initial moment of time,F~I 0!,

Q 5EDgF~I 0! dI 0 5 2
1

2
E^g;

2 ~I 0!& ZGF~I 0! dI 0,

ZG [ S ]

]g0

1
]

]I0

1
]

]L0
D. ~19!

To calculate the absorption energy we consider the cold
electron beam with the distribution functionF~ pz, p4, r ! 5
d~ pz 2 gb!d@H4~ pz, p4, r ! 2 W4# , whereH4 5 eI0!g .
p4

20g is the effective transversal energy of electron,W4 ..
M0g.

IntroducingX 5 e!gb0W4 , the absorbed power is

Q .
pA0

2

2gb

l2X2~12 2X !~X 2 1!exp@2F~X,l!# ,

F~x,l! 5 l2~12 2X !2, ~20!

The physical meaning ofF~X,l! is the detuning between
the phases of laser wave and electron. IfF~X,l! 5 0, the
resonance between laser wave and electrons takes place. For
l .. 1, the electrons absorb the maximum of laser energy at
X . 102 1 10~2!20l! and the electrons transfer the maxi-
mum of energy to the laser atX . 102 2 10~2!20l!. The
maximum of the absorbed energy as a function of the nor-
malized pulse durationl 5 vT .. 1 is

Q .
pA0

2

16gb

l

!2
expF2

1

2G. ~21!

Relation~21! is similar to one describing the gain of free
electron laser in small signal regime~Madey, 1979!.

According to Eq.~13!, the electrons with distribution
functionF~g, I, L! induce the magnetic field

Bind 5E^B~I !&F~I ! dI 5E 2eNeL

I 1!I 2 2 L2

F~I !

!g
dI . ~22!

The electrons have symmetrical distribution over the angu-
lar momentumL 5 L0 if 2I0 # L # I0 andL 5 0 if L , 2I0

or L . I0 at the initial moment of the ion channel formation.
Then there is no generated quasistatic magnetic field at this
moment there. After interaction with the laser pulse, the
distribution overg, I, L is modified and the hot electrons can
generate a magnetic field. In this case, the induced quasi-
static field is

Bind 5E^B~I !&F~I ! dI 5E^B@I ~I 0!# !&F~I 0! dI 0. ~23!
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B@I ~I 0!# can be derived with Taylor’s expansion using the
fact that

B@I ~I 0!# 5 B~I 0! 1 Dg ZGB~I 0! 1
^g;

2 &

2
ZG2B~I 0!. ~24!

Here we use the averaging overC0 and the relationDg 5
D I 5 DL, which follows from Hamiltonian~4!. Using
Madey’s theorem~18!, we can reduce Eq.~24! to a more
convenient form

Bind~I 0! 5 B~I 0! 1 2
12 ZG@^g;

2 ~I 0!& ZGB~I 0!# . ~25!

Averaging with distribution functionF0~I 0! and integrating
by part we obtain

Bind 5 2E ^g;
2 ~I 0!& ZGB~I 0!

2
ZGF~I 0! dI 0. ~26!

The difference from expression~19! for the absorbed energy
is an additional factor ZGB~I 0!:

ZGB~I 0! 5
2eN

I0 1!I0
2 2 L0

2

e

!g0
S2

L0

2g0

1 ! I0 2 L0

I0 1 L0
D. ~27!

Integrating by part, we can rewrite Eq.~24! in the form

Bind 5E F~I 0!

2
ZG@^g;

2 ~I 0!& ZGB~I 0!# dI 0. ~28!

In the same way we calculated the absorbed energy, we find
for cold electron beam

Bind . S12
p

4D~2 2 X !QS2eNe2

W4gb
D. ~29!

Introducing the density of the electron beam in the chan-
nel after the laser pulse propagationnb . N0~prmax

2 ! .

Ne!g0~2pI0! . Ne20~2pW4!, Eq. ~29! can be rewritten in
the form

vce

v
. 0.2~2 2 X ! fe2S Q

gbmc2D, ~30!

wherevbe
2 . f V2 andf 5nb0ni is the effective neutralization

factor in the channel. The maximum of the magnetic field is
vce0v . 0.21fe2. For experimental conditione2 ' 1

4
_ ~Gahn

et al., 1999!, f . 0.5~Borghesiet al., 1997!, the intensity of
the azimuthal magnetic field can be up to 5 MG.
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