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Abstract

In this paper, we have investigated the propagation characteristics of cosh-Gaussian laser beam in magnetoplasma using
relativistic nonlinearity. The field distribution in the medium is expressed in terms of beam width parameter an and
decentred parameter b. An appropriate nonlinear Schräodinger equation has been solved analytically using variational
approach. The behaviour of beam width parameter with dimensionless distance of propagation ξ for various b values is
examined. Self-phase modulation and self-trapping is also studied under variety of parameters. Further, the effect of
magnetic field on self-focusing of the beam have been explored.

Keywords: Cosh-Gaussian beam; Relativistic and magnetoplasma; Self-focusing and self-trapping; Self-phase
modulation

1. INTRODUCTION

Technological development in the field of laser physics has
ushered a new era where highly intense lasers are available.
This has opened new vistas of novel applications not only in
other fields but also in plasmas such as plasma based accelera-
tors (Esarey et al., 1996; Hartemann et al., 1998; Sarkisov
et al., 1999; Hora et al., 1988, 2000; Hauser et al., 1994), ad-
vanced laser fusion schemes (Tabak et al., 1994; Deutsch
et al., 1996; Regan et al., 1999), ionospheric radio wave
propagation, X-ray lasers (Lemoff et al., 1995), harmonic gen-
eration (Sprangle et al., 1990) and new radiation sources (Ben-
ware et al., 1998; Foldes et al., 1999; Fedotov et al., 2000). To
make these applications feasible, it is desirable that laser beam
should propagate several Rayleigh lengths (Rd). But in
vacuum, the laser beam propagation is limited by diffraction
characteristic distance Rd∼ k0+ a0

2+, where k0+ is wave-
number and a0+ is laser spot size in vacuum.
In a nonlinear medium like dielectrics, semiconductors

and plasmas, the phenomenon of self-focusing being genu-
inely nonlinear optical process is induced by modification of
refractive index of material to intense electromagnetic/laser
beam. The electronic nonlinear response of a medium leads
to nonlinear polarization that influences the propagation of
beam itself. Usually for an electromagnetic radiation such

as laser characterized by Gaussian intensity distribution,
the refractive index of the medium increases with electric
field intensity, leading to self-focusing of the beam. Histori-
cally, this phenomenon was predicted by Kerr in 1960 (As-
karyan, 1962; Chiao, 1964) and experimentally verified. In
such medium, refractive index is described by the formulae
n= n0= n2I, where n0 and n2 are linear and nonlinear coef-
ficient of refractive index and I is intensity of radiation. Kerr
induced self-focusing is relevant to many applications in
laser physics (Chen & Wang, 1991; Herrmann, 1994). This
phenomenon also predicted by Askaryan (1962) and
named as self-focusing of radiation. The possibility of self-
focusing or self-trapping of a laser beam in a solid has
been further discussed by Chiao (1964). This nonlinearly
generic process had been focus of attention for nearly five
decades and is still being actively persued by researchers
worldwide because of their relevance to a number of newly
discovered processes. Hora (1969) treated the process of self-
focusing due to the gradient of the light intensity. Basic non-
linear physical mechanisms that play crucial role in self-
focusing phenomenon are collisional, ponderomotive, relati-
vistic, heating type as reported in the research work (Sodha
et al., 1981, 1976). For example, ponderomotive nonlinear-
ity, resulting from intensity gradient of laser beam, is oper-
ational on the time scale of a0/vs, where a0 is the dimension
of the beam, and vs is the ion acoustic speed. As very high
power laser beams are used in experiments, the quiver
motion also reduces the local plasma frequency, resulting
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in relativistic self-focusing (Sprangle et al., 1987; Chessa
et al., 1998; Monot et al., 1995). Relativistic and ponderomo-
tive self-focusing has been investigated by a number of re-
searchers (Chen et al., 1998; Krushelnick et al., 1997). In a
variety of applications, the fundamental TEM00 mode plays
a vital role on account of its specific characteristics, and
such mode produces the smallest beam divergence and the
highest brightness with simple Gaussian intensity profile
(Soudagar et al., 1994). Most of the theoretical investigations
of self-focusing of laser beam in nonlinear medium including
plasmas have been carried out for simple Gaussian beam
(Kaur et al., 2010a, 2010b; Gill et al., 2010a) and cylindri-
cally symmetric Gaussian beam (Zakharov,1972; Anderson,
et al., 1979, 1983; Kruglov & Vlasov, 1985; Manassah et al.,
1988; Karlsson et al., 1992; Subbarao et al., 1998). Only a
few investigations have been reported on self-focusing of
super Gaussian (Nayyar, 1986; Grow et al., 2006; Fibich,
2007), self trapping of degenerate modes of laser beam
(Karlsson, 1992), self-trapping of Bessel beam (Johannisson
et al., 2003), elliptic Gaussian beam (Anderson et al., 1980;
Cornolti et al., 1990; Gill et al., 2000, 2004; Saini & Gill,
2006; Mahajan et al., 2009), hollow elliptic Gaussian beam
(Cai & Lin, 2004), Hermite-cosh-Gaussian beam (Patil
et al., 2007, 2008, 2010) and cosh Gaussian spiral field
(Konar et al., 2007). Focusing of dark hollow Gaussian elec-
tromagnetic beams in plasma has been reported (Gill et al.,
2010b; Sodha et al., 2009a, 2009b). Ring formation in elec-
tromagnetic beams in relativistic magnetoplasma is given
(Gill et al., 2010c). Recent investigations (Casperson et al.,
1997; Lu et al., 1999; Lu & Luo, 2000; Eyyuboglu &
Baykal, 2004, 2005; Konar et al., 2007) have focused on
the cosh-Gaussian spiral field and its propagation character-
istics highlighting potential applications. The propagation
properties of cosh-Gaussian laser beams are important tech-
nological issues since these beams possesses high power in
comparison to that of a Gaussian laser beam. With the avail-
ability of superintense laser pulse, the laser plasma inter-
actions has undergone a paradigm shift. The electron
oscillatory velocity at high laser intensity approaches the vel-
ocity of light and we enter a regime when relativistic effects
are of paramount importance. The situation is more relevant
in the fast ignition schemes of laser driven fusion. In such
case, long laser pulse converts the pellet into plasma ball,
heats the coronal region, and compresses the core to a super-
dense plasma. Propagation of intense laser in such plasma
involves the relativistic mass effect and plasma frequency
is lowered falling below the laser frequency, consequently
making the plasma transparent. Several models for propa-
gation in overdense plasma have been proposed (Vshivkov
et al., 1998; Fuchs et al., 1998; Pandey et al., 2006; Cattani
et al., 2000; Yu et al., 1998). Intense laser beam produce
self induced strong magnetic field of several megagauss.
Mostly used model to study self-focusing is based on

Wentzel-Kramer-Brillouin (WKB) and paraxial ray approxi-
mation (PRA) through a nonlinear parabolic wave equation
(Akhmanov et al., 1968; Sodha et al., 1976). Liu and Tripathi

(1994) used PRA and WKB approximation to study the com-
peting physical process of self-focusing and diffraction. The
main drawback of the PRA is that it overemphasizes the
importance of field close to beam axis and lacks global
pulse dynamics. Another global approach is variational ap-
proach, though crude to describe the singularity formation
and collapse dynamics is fairly genuine in nature to study
propagation and also it correctly predicts the phase. Vari-
ational approach is used in many other branches of science.
In the present investigation, the attention is being paid to ad-
dress the self-focusing and self-phase modulation of a beam
having cosh-Gaussian field distribution. Also the present
investigation extends to cover the effect of linear absorption
on to self-focusing. The paper is structured as the following:
In Section 2, we have given brief description of dielectric con-
stant and derived the equation for the beam width parameter an
using Variational approach in relativistic magnetoplasma. In
Section 3, we have introduced the concept of self-trapping.
In Section 4, we presented a detailed discussion of numerical
work carried out for the relevant parameters. Last, Section 5 is
devoted to the conclusions of the present investigation.

2. BASIC FORMULATION

The wave equation governing the propagation of electromag-
netic wave in extraordinary mode

δ+∇2
⊥A0+ − 2ιk0+

∂A0+
∂z

+ ω2

c2
e+(r, z)A0+ = 0, (1)

where δ+ = (1/2)(1+ e0+/e0zz) and e0zz = 1− (ω2
p/ω

2). ε0zz
is the dielectric tensor component along the z direction.ω is the
wave frequency, c is the speed of light in free space, k20+ =
e0(ω2/c2), e0 is the dielectric function on the axis of the
beam and the effective plasma permittivity ε+ (r, z) (Pandey
& Tripathi, 2009) is given by:

e+(r, z) = 1− ω2
p

ω− ωc

γ

( )
γ

. (2)

Here

ωc = eB0

m0c
, (3)

ωp = 4πn0e2

m0

( )1/2

, (4)

be the nonrelativistic plasma frequency and−e andm0 are the
electronic charge and rest mass, and the relativistic factor is

γ = 1+ e2|A2
0+|

m2
0c

2 ω− ωc

γ

( )2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

1/2

, (5)

γ = 1+ a2 1− ωc

γω

( )−2
[ ]1/2

, (6)
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where

a2 = e2|A2
0+|

m2
0c

2ω2
. (7)

Forωc/γω< 1, the equation can be solved iteratively. First we
choose ωc= 0, then γ = (1+ a2)1/2; by using this value of γ
in the right hand side of Eq. (8), we obtain

γ = 1+ a2 1− ωc

ω(1+ a2)1 2

( )−2
[ ]1/2

, (8)

γ = 1+ a2 + 2a2
ωc

ω

1

(1+ a2)1/2

( )
+ 3a2

ω2
c

ω2

1
(1+ a2)

( )[ ]1/2
,

(9)

The exact solution of Eq. (1) is not available and we therefore
seek either numerical or analytical approximate method.
Although several approximate methods are available, we
have used a powerful variational method, which have been
used in several nonlinear wave problem in many physical sys-
tems (Anderson, 1983). The results of this approach agree
quantitatively with that of moment theory and computer simu-
lations (Arevalo, 2005). In this approach, we can reformulate
Eq. (1) into a variational problem corresponding to a Lagran-
gian L so as to make δL/δz = 0, is equivalent to Eq. (1). Fol-
lowing (Anderson et al., 1979; Karlsson, 1992; Gill et al.,
2001), the Lagrangian L is given by:

L = ιk0+ A0+
∂A∗

0+
∂z

− A∗
0+

∂A0+
∂z

( )
− 1+ e0+

e0zz

( )
| ∂A0+

∂r
|2

+ ω2

c2
αA2

0+ − ω2
p

ω2

ωc

ω
αA2

0+ − ω2
p

ω2
αA2

0+ + ω2
p

ω2

(
1+ 5

ωc

ω

)(

×
(αA2

0+)
2

2

(
1
2
+ ωc

ω

)
− ω2

p

ω2

(
2+ ωc

ω

)
(αA2

0+)
3

3
ωc

ω

)
, (10)

where α = e2/m2
0c

2ω2.
Thus, the solution to the variational problem:

δ∫∫Ldrdz = 0, (11)

also solves the nonlinear Schrödinger Eq. (1). We can con-
struct the following ansatz for the field distribution of cosh-
Gaussian beam A0+ in extraordinary mode propagating
along the z-axis.

A0+(r, z) =
A′
0+
2

exp
b2

4

( )
exp(−2kiz)

exp− r

a+
+b

2

( )2

+exp− r

a+
−b

2

( )2
[ ]

exp ιq′+r
2+ ιf

[ ]
,

(12)

where ki is the absorption coefficient, q ′
+ is spatial chirp, and

a+ is the beam width parameter. Particularly, we have chosen
extraordinary mode for the beam propagation as ε0+ should
be positive for plasma to act as an overdense medium
(Misra & Mishra, 2009). Using A0+ given by Eq. (12) into
L, we integrate L to obtain:

<L> = ∫
∞

0 Ldr, (13)

<L> = <L0>+<L1> . (14)

Thus, we have arrived at reduced variational problem.
We solve the above integral to give:

<L0> = ιk0+
4

exp
b2

2
− 4kiz

( )
exp

−b2

2

( )
a+√π

4

√2
+ b2

2√2

( )

× A′
0+

∂A∗′
0+

∂z
− A∗′

0+
∂A0+
∂z

( )
+ k0+

2
exp

b2

2
− 4kiz

( )

× |A′
0+|2

d+
dz

exp
−b2

2

( )
a3+√π

2√2
1+ b2

8

( )
+ k0+

2

× exp
b2

2
− 4kiz

( )
|A′

0+|2
df

dz
exp

−b2

2

( )
a+√π

×
4

√2
+ b2

2√2

( )
1+ e0+

e0zz

( ) |A′
0+|2
4

× exp
b2

2
− 4kiz

( )
exp −b2

( )

×
2√π

a+√2
− 2b2√π

a+√2
+ b2√π

8a+√2
+ b4√π

a+2√2

( )

− 1+ e0+
e0zz

( )
4q2+a

3
+√πexp(−b2/2)

2√2
1+ b2

8

( )

× exp
b2

2− 4kiz

( ) |A′
0+|2
4

, (15)

<L1> =ω2

c2
α|A′

0+|2
4

exp
b2

2
− 4kiz

( )
1− ω2

p

ω2

ωc

ω
− ω2

p

ω2

( )

× exp
−b2

2

( )
4a+√π

√2
+ b2a+√π

2√2

( )
+ ω2

c2
ω2
p

2ω2

× 1+ 5
ωc

ω

( ) 1
2
+ ωc

ω

( )
(α|A′

0+|2)2
4

exp2
b2

2
− 4kiz

( )

× exp −b2
( )

a+√π 8+ 2b2
( )− ω2

c2
ω2
p

3ω2
2+ ωc

ω

( )ωc

ω

×
(α|A′

0+|2)3
4

exp3
b2

2
− 4kiz

( )
a+√π

2exp(−3b2/2)

√6

(

+ 4exp(−3b2/2)

3√6
+ 15

2
exp(−b2)+ 3

4
b2exp(−b2)

)
.

(16)
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We obtain Euler-Lagrange equations using δ< L>/δS = 0,
where S denotes A′

0+, A0+
∗′ , a+, q′+ etc. and following pro-

cedure of (Anderson et al., 1979), we get:

|A0 +′|2 a2+ = A2
+a

2
0+, (17)

q′ = − k0+
4a+d(z)

da+
dz

, (18)

d2a+
dz2

= 2 1+ (e0+/e0zz)
( )2(

1+ b2

8

) exp(−(b)2/2)

k20+a
3+

4− 4b2 + b2

4
+ b4

( )

− √2

a+

(
1+ b2

8

) exp b2/2− 4kiz
( )

(8+ 2b2) 1+ e0+
e0zz

( )

×
ω2
p

ω2
exp

−b2

2

( )
1+ 5

ωc

ω

( ) 1
2
+ ωc

ω

( )
α|A′

0+|2

+ 4√2
3a+

1+ e0+
e0zz

( )
exp(3

b2

2
− 8kiz)

1(
1+ b2

8

)ω2
p

ω2

ωc

ω

× 2+ ωc

ω

( )
(α|A′

0+|2)2
2exp(−3b2/2)

√6
+ 4exp(−3b2/2)

3√6

(

+ 15
2
exp(−b2)+ 3

4
b2exp(−b2)

)
, (19)

df

dz
= 1+ e0+

e0zz

( )
1

k0+

(
1+ b2

8

) exp − b2

2

( )

×
1

4a2+
− b2

4a2+
+ b2

64a2+
+ b4

16a2+

( )

− ω2

k0+c2
5√2
64

α|A′
0+|2exp b2/2− 4kiz

( )

×
1(

1+ b2

8

) exp − b2

2

( )
(8+ 2b2)

ω2
p

ω2
1+ 5

ωc

ω

( ) 1
2
+ ωc

ω

( )

+ ω2

k0+c2
exp 3

b2

2
− 4kiz

( )
ω2
p

ω2

ωc

ω
(α|A′

0+|2)2
1(

1+ b2

8

)

×
√2exp(−3b2/2)

24√6
+√2exp(−3b2/2)

36√6
+ 15√2exp(−b2)

96

(

+ 3√2b2exp(−b2)
48

)
− ω2

k0+c2
1
4

1− ω2
p

ω2

ωc

ω
− ω2

p

ω2

( )

+√2
4

ω2
p

ω2

ωc

ω
2+ ωc

ω

( )
α|A′

0+|2
exp(b2 − 8kiz)(

1+ b2

8

)

+ 4exp(−3b2/2)

3√6
+ 15exp(−b2)

2
+ 3b2exp(−b2)

4

)
. (20)

We usually write the above equations in the dimensionless

form using ξ = zc/ω0a20

d2an+
dξ2

= 2 1+ e0+/e0zz
( )2(

1+ b2

8

) exp(−(b)2/2)

a3n+
4− 4b2 + b2

4
+ b4

( )

− √2k20+a
2
0

an+(1+ b2/8)
exp b2/2− 4kiξ

( )
(8+ 2b2) 1+ e0+

e0zz

( )

×
ω2
p

ω2
exp

−b2

2

( )
1+ 5

ωc

ω

( ) 1
2
+ ωc

ω

( )
α|A′

0+|2

+ 4√2k20+a
2
0

3an+
1+ e0+

e0zz

( )
exp(3

b2

2
− 8k′iξ)

1(
1+ b2

8

)

×
ω2
p

ω2

ωc

ω
2+ ωc

ω

( )
(α|A′

0+|2)2
2exp(−3b2/2)

√6

(

+ 4exp(−3b2/2)

3√6
+ 15

2
exp(−b2)+ 3

4
b2exp(−b2)

)
,

(21)

df

dξ
= 1+ e0+

e0zz

( )
1+ b2

8

( )
exp − b2

2

( )
1

4a2n+a20
− b2

4a2n+a20

(

+ b2

64a2n+a20
+ b4

16a2n+a20

)
− k20+a

2
05√2

24
α|A′

0+|2

× exp b2/2− 4k′iξ
( ) 1(

1+ b2

8

) exp − b2

2

( )
(8+ 2b2)

ω2
p

ω2

× 1+ 5
ωc

ω

( ) 1
2
+ ωc

ω

( )
+ exp(3

b2

2
− 4k′iξ)

ω2
p

ω2

ωc

ω

× (α|A′
0+|2)2

1(
1+ b2

8

) √2exp(−3b2/2)

24√6
+√2exp(−3b2/2)

36√6

(

+ 15√2exp(−b2)
96

+ 3√2b2exp(−b2)
48

)
− k20+a

2
0

4

× 1− ω2
p

ω2

ωc

ω
− ω2

p

ω2

( )
+ k20+a

2
0
√2
4

ω2
p

ω2

ωc

ω
2+ ωc

ω

( )

× (α|A′
0+|2)2

exp(b2 − 8k′iξ)
(1+ (b2/8))

2exp(−3b2/2)

√6
+ 4exp(−3b2/2)

3√6

(

+ 15exp(−b2)
2

+ 3b2exp(−b2)
4

)
ω2

c2
, (22)

where k′i= ki Rd is the normalized absorption coefficient.

3. SELF-TRAPPED MODE

For an initially plane wave front, (da+/dz) = 0 and a+=1 at
z= 0, the condition (d2a+/dz2) = 0 leads to the propagation
of cosh-Gaussian beam in the uniform waveguide/self-
trapped mode.
By putting (d2a+/dz2) = 0 in Eq. (19), we obtain a relation

between equilibrium beam width parameter R( = ω0ae/c)
and intensity parameter α | A′

0+ |2 taking into account
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relativistic type nonlinearity. The expression when simplified
is given as follow:

ω0ae
c

( )2
= exp

−(b)2

2

( )
4− 4b2 + b2

4
+ b4

( )
√2α|A′

0+|2
[

× exp b2/2− 4kiz
( )

(8+ 2b2)
ω2
p

ω2
exp

−(b)2

2

( )
1+ 5

ωc

ω

( )

×
1
2
+ ωc

ω

( )
− 4

3
√2exp

(
3
b2

2
− 8kiz

)
ω2
p

ω2

ωc

ω
2+ ωc

ω

( )

× (α|A′
0+|2)2

2exp(−3b2/2)

√6
+ 4exp(−3b2/2)

3√6

(

+ 15
2
exp(−b2)+ 3

4
b2exp(−b2)

)]−1

. (23)

4. DISCUSSION

For an initially plane wavefront of the beam, (da+/dz) = 0 at
z= 0; hence initially beam width will decrease (focusing) or
increase (divergence), when (d2a+/dz2) = 0; a does not
change (a+= 1) and beam is said to propagate in the uniform
waveguide. Eqs. (21) and (22) are nonlinear ordinary differ-
ential equations governing the evolution of normalized beam
width of the laser beam and phase developed during the
propagation in magnetoplasma. It may further be mentioned
that the right-hand side of Eq. (21) contains several terms,
each representing some physical mechanism responsible for
the evolution of beam during its propagation in plasma.
First term on the right-hand side is diffraction term which
leads to divergence of beam as the beam propagate in the
medium whereas second and third term is due to relativistic
nonlinearity which is responsible for the convergence of the
beam. This nonlinear term oppose the phenomenon of dif-
fraction and depending on its numerical value as compared
to the diffractive terms, we can observe focusing/defocusing
of the beam. It is the relative competition of the various terms
which ultimately determines the fate of the beam width. Eq.
(22) describe associative longitudinal phase change as the
beam travel through medium. Eqs. (21) and (22) are coupled
nonlinear ordinary differential equations and can not solved
analytically. We therefore analyse them numerically and
find the solution. To highlight propagation characteristics,
we have performed numerical computation of Eqs. (21)
and (22) for the following set of parameters:

k0 = 1.25 × 103cm−1, a0 = 0.002cm, α|A′
0|2 = 0.5,

ω2
p

ω2
= 5

In Figure 1, we have displayed the variation of the beam
width parameter an+with normalized distance of propagation
ξ for the chosen set of parameters. This figure displays the
self-focusing effect for different values of absorption
coefficient(k′i ). It is observed that large value of absorption
coefficient weakens the self-focusing in the absence of de-
centred parameter (b= 0). Sharp self-focusing occurs up to

k′i< 2, but beam width parameter first decreases and then in-
creases slowly for k′i≥ 2. If k′i increase, the minimum shift to
the lower values of ξ occurs with increasing minimum di-
mension an+ of the beam. However, there is substantial de-
crease in self-focusing length with increase in absorption
coefficient (k′i). From Figure 2, it is observed that all curves
are seen to exhibit sharp self-focusing for finite value of de-
centred parameter (b) but self-focusing length increases with
absorption level (k′i). This occurs because of the decentred
parameter that changes the nature of self-focusing/defocus-
ing of the beam. Sharp self-focusing is observed in Figure 3
at finite value of decentred parameter (b), where decrease in
magnetic field leads to increase in self-focusing. Eq. (22) rep-
resents the phase change with distance of propagation. As

Fig. 1. (Color online) Variation of normalized beam width parameter an
with dimensionless distance of propagation ξ with b= 0 (in the absence of
decentred parameter) for different values of absorption coefficient k′i. The
parameters used here are: α|A′

0+|2 = 0.5, (ω2
p/ω

2) = 5, (ωc/ω) = 0.4.
Solid curve correspond to when k′i= 0, dashed curve correspond to when
k′i= 1, dotted curve correspond to when k′i= 2 and dotdashed curve corre-
spond to when k′i= 3.

Fig. 2. (Color online) Variation of normalized beam width parameter an
with dimensionless distance of propagation ξ with b= 2 (finite value of de-
centred parameter) for different values of absorption coefficient k′i. The para-
metersused here are: α|A′

0+|2 = 0.5, (ω2
p/ω

2) = 5, (ωc/ω) = 0.4. Solid
curve correspond to when k′i= 0, dashed curve correspond to when k′i= 1,
dotted curve correspond to when k′i= 2 and dotdashed curve correspond to
when k′i= 3.
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apparent from the form of this equation, beam width, magne-
ticfield, absorption coefficient, decentred parameter, and in-
tensity of the beam appear in this equation. Since an+ is
determined from Eq. (21), therefore even though we can
fix absorption coefficient, intensity and magnetic field, the
evolution of beam width parameter significantly affect the
longitudinal phase delay with ξ. Figures 4 and 5 depicts
such behavior where we have fixed magnetic field and inten-
sity parameter but taken different values of absorption coef-
ficient (k′i) for b= 0 and b= 1. It is observed that phase is
positive or negative depending on the value of decentred par-
ameter (b). In Figures 6 and 7, we have fixed k′i and intensity
parameter but taken different values of magnetic field (ωc/ω)
for b= 0 and b= 1. From Figure 6 it is observed that phase

decreases with increase in magnetic field when decentred
parameter, b= 0. However, the contrasting behaviour is ob-
served when finite value of decentred parameter (b) is con-
sidered as obvious from Figure 7.
In self-trapped mode, we put d2a+/dz

2= 0 in Eq. (19) to
highlight the features as how decentred parameter, b deter-
mines the behaviour of laser beam in magnetoplasma.
Figure 8 depicts the dependence of equilibrium radii R as a
function of A(=α |A′

0|
2) for three values of b. For low

values of b, the present investigation predicts higher values
of equilibrium radii with faster monotonic fall with increase
in intensity. However, increase in values of b results in lower
values of equilibrium radii as well as weaker dependence on
intensity. The behaviour is quite similar to the earlier

Fig. 3. (Color online) Dependence of normalized beam width parameter an
on the magnetic field as a function of dimensionless distance of propagation
ξ in a collisionless magnetoplasma with relativistic nonlinearity for finite
value of b. The parameters used here are: α|A′

0+|2 = 0.5, k′i =
0.5, (ω2

p/ω
2) = 5. Solid curve correspond to when (ωc/ω) = 0, dashed

curve correspond to when (ωc/ω) = 0.02 and dotted curve correspond to
when (ωc/ω) = 0.04, dotdashed curve correspond to when (ωc/ω) = 0.06.

Fig. 4. (Color online) Variation of the longitudinal phase delay f with di-
mensionless distance of propagation ξ with b= 0 (in the absence of de-
centred parameter) for different values of absorption coefficient k′i and
with the otherparameters the same as mentioned in Figure 1. Solid curve cor-
respond to when k′i= 0, dashed curve correspond to when k′i= 0.3, dotted
curve correspond to when k′i= 0.5 and dotdashed curve correspond to
when k′i= 0.7.

Fig. 5. (Color online) Variation of the longitudinal phase delay f with di-
mensionless distance of propagation ξ with b= 1 (finite value of decentred
parameter) for different values of absorption coefficient k′i and with the other
parameters the same as mentioned in Figure 1. Solid curve correspond to
when k′i= 0, dashed curve correspond to when k′i= 0.3, dotted curve corre-
spond to when k′i= 0.5 and dotdashed curve correspond to when k′i= 0.7.

Fig. 6. (Color online) Dependence of longitudinal phase delay f on the
magnetic field as a function of dimensionless distance of propagation ξ in
a collisionless magnetoplasma with relativistic nonlinearity for b= 0. The
parameters used here are: α|A′

0+|2 = 0.5, k′i = 0.5, (ω2
p/ω

2) = 5. Solid
curve correspond to when (ωc/ω) = 0, dashed curve correspond to when
(ωc/ω) = 0.02 and dotted curve correspond to when (ωc/ω) = 0.04, dot-
dashed curve correspond to when (ωc/ω) = 0.06.

Gill et al.188

https://doi.org/10.1017/S0263034611000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034611000152


prediction based on variational approach (Anderson & Bon-
nedal, 1979; Anderson, 1978).

5. CONCLUSIONS

In the present investigation, we have studied self-focusing
and self-phase modulation of laser beam in relativistic mag-
netoplasma. Equation for beam width parameter is derived
using variational approach. We find that study of cosh-
Gaussian beams can be analyzed like Gaussian beam in
plasma, but the decentred parameter and absorption coeffi-
cient are found to play key role on the nature of self-
focusing/defocusing of the beam.
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