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A characteristic feature of the onset of turbulence in shear flows is the appearance of
an ‘edge’, a codimension-one invariant manifold that separates ‘lower’ orbits, which
decay directly to the laminar state, from ‘upper’ orbits, which decay more slowly
and less directly. The object of this paper is to elucidate the structure of the edge
that makes this behaviour possible. To this end we consider a succession of low-
dimensional models. In doing this we isolate geometric features that are robust under
increase of dimension and are therefore candidates for explaining analogous features
in higher dimension. We find that the edge, which is the stable manifold of a ‘lower-
branch’ state, winds endlessly around an ‘upper-branch’ state in such a way that upper
orbits are able to circumnavigate the edge and return to the laminar state.
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1. Introduction
The Navier–Stokes (NS) equations may be viewed as a dynamical system of infinite

dimension. This is a view that has seen some remarkable successes in the problem
of turbulence in shear flows (Waleffe 1997; Eckhardt 2008). The latter problem is
approached theoretically by considering first a laminar shear flow (plane Couette
flow, pipe flow, etc.) and its stability as the Reynolds number R is increased. What
distinguishes the problem of shear flow from other hydrodynamic problems, and
indeed from many other problems in applied mathematics, is that the onset of the
turbulent or disordered state is not accompanied by an instability of the laminar
flow. This places particular importance on understanding the nature of the boundary
of the basin of attraction of the stable, laminar state and how it changes with R.
This boundary is an invariant set and, at least in straightforward examples, is of
codimension one. For sufficiently small values of R, the laminar flow is the only
steady state and it is globally stable: all perturbations die out (i.e. relaminarize). When
R exceeds a critical value RSN additional steady states may appear and it can no
longer be strictly true that all perturbations relaminarize. It nevertheless continues to
be true that relaminarization is ubiquitous: almost all orbits die out. Exceptions are
those lying on a certain codimension-one invariant manifold, called an edge (Duguet,
Willis & Kerswell 2008; Vollmer, Schneider & Eckhardt 2009), and separating orbits
that die out quickly from orbits that die out slowly. The edge is in many examples
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the stable manifold of an ‘edge state’ which may take one of a number of forms (e.g.
an equilibrium point, a periodic orbit, a chaotic saddle, etc.). A pair of relaminarizing
orbits may originate extremely close to one another, one just below the edge (a lower
orbit) and the other just above (an upper orbit). Orbits on the edge cannot relaminarize
as they tend, not to the laminar point, but to the edge state.

Is this edge the basin boundary? There is a convention involved in answering this
question. Intuitively a boundary separates one region from another whereas the edge
merely separates one part of the basin of attraction from another part of the same
region. However, a widely accepted mathematical definition of the boundary ∂S of a
set S ∈ Rn is

∂S consists of points x ∈ Rn such that any neighbourhood of x contains both points that
are in S and points that are not in S.

Under this definition edge points are indeed points of the basin boundary, and we
adopt this convention here (see also Lebovitz 2012).

The issue addressed in this paper is that of the geometric structure of the edge.
This question has been raised before in the specific form: how do upper orbits
relaminarize? It arises because familiar pictures of basin boundaries present obstacles
to relaminarization (see the discussion in Vollmer et al. (2009)). For example, if one
envisages the edge as a spherical surface surrounding the laminar point, an upper orbit
would have to penetrate this surface to relaminarize, and this is not possible since the
surface is an invariant set. If the edge is rather like a plane, it could not be a complete
plane separating phase space for the same reason. If the edge of either of these
examples is replaced by a subset of itself, it would have a boundary and this would
likewise be an invariant set which one should be able to identify in the dynamics.
These questions have led to speculations regarding the structure of the edge (Skufca,
Yorke & Eckhardt 2006). In the spirit that we are unlikely to understand that structure
in the infinite-dimensional case if we do not understand it in the finite-dimensional
case, we consider the latter in this paper.

In the context of the low-dimensional models discussed here, we find a consistent
picture of the edge and relate it to familiar invariant sets. We study it in a succession
of dynamical systems of increasing dimension. The strategy is to isolate properties of
the edge that are common to them all since we then have grounds to speculate that
these properties generalize to higher, perhaps infinite, dimension.

There are three principal sections, bracketed by preliminaries (§ 2) and a discussion
(§ 6) containing a distillation of the detailed information obtained in studying the
models of §§ 3–5. In § 3 we recapitulate results previously obtained for a two-
dimensional model (Lebovitz 2012) and present a cartoon generalization of it to a
three-dimensional model which turns out to contain, in a relatively simple setting, the
principal structures of the basin boundary found in the higher-dimensional models. We
consider a well-known four-dimensional model of Waleffe in § 4 and investigate the
structure of the edge, indicating its extent and complexity. Section 5 is devoted to a
six-dimensional model for which the basin boundary has a strong family resemblance
to those of the lower-dimensional models despite differences of detail.

2. Preliminaries
Suppose that the shear flow under investigation is described by the velocity field

U, and that the NS equations are modified by subtracting U from the total velocity.
This has the effect that the unperturbed flow is then represented by the solution u = 0
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of the modified NS equations. If a fixed set of n basis functions, satisfying the
boundary conditions and the condition of incompressibility, is then chosen and used
for a Galerkin projection of these modified equations, one finds

dx
dt
= Ax+ b(x), x ∈ Rn (2.1)

where the ith component xi of the vector x is the coefficient of the ith basis function.
The matrix A and the nonlinear term b inherit features of the full problem. The
matrix A is stable (i.e. all of its eigenvalues have negative real parts), and it is
non-normal. These conditions taken together imply that, while all solutions of the
linearized problem die out (or relaminarize), some of them may undergo a large-
amplitude transient before relaminarizing. The amplitude of this transient is found to
increase with R. This is a general feature of shear flows (cf. Butler & Farrell 1992).
The nonlinear term b is quadratic in x, reflecting the quadratic nonlinearity of the
NS equations. Moreover, one finds (x, b(x))= 0 where (·, ·) denotes the inner product,
reflecting conservation of energy of the corresponding Euler equations.

In earlier studies (Lebovitz 2009, 2012) emphasis was placed on discovering the
emergence of an edge via a homoclinic bifurcation as parameters change. Since in the
present paper it is the structure of the edge we wish to study, we restrict consideration
to parameter regimes in which the edge is already present.

Much of the description found below depends on relating various invariant sets
and manifolds to one another. We use standard notation such as O,Xlb,Xub to denote
equilibrium points, and B, SM,UM to denote the invariant sets basin of attraction,
stable manifold, unstable manifold, respectively. Thus, B(O) is the basin of attraction
of the origin, ∂B(O) is its boundary, SM(Xlb) is the stable manifold of the point Xlb,
etc.

3. Lowest dimensions
In this section we consider a two-dimensional and a three-dimensional model. Each

is of the shear-flow type of (2.1) but no further claim beyond that is made regarding
their faithfulness to the shear-flow problem.

3.1. A two-dimensional model
We begin with a model introduced by Lebovitz (2012):

ẋ1 =−δx1 + x2 + x1x2 − 3x2
2, ẋ2 =−δx2 − x2

1 + 3x1x2, δ = 1/R. (3.1)

We summarize some of its features as studied in Lebovitz (2012).
The critical value below which the origin is globally, asymptotically stable is

RSN = 2. There a saddle-node bifurcation occurs and for larger values of R there are,
in addition to the origin, two further equilibrium points: the lower-branch equilibrium
point Xlb and the upper-branch equilibrium point Xub. Of these Xub is initially stable
whereas Xlb is unstable for all R > RSN , with a one-dimensional stable manifold and a
one-dimensional unstable manifold, indicated by SM and UM in figure 1. The stability
properties of Xub change when R = 2.5 where a Hopf bifurcation takes place so we
consider a smaller value (we use R = 2.45 as an example) for which Xub is stable and
a larger value (we use R = 2.55) for which it is unstable with a complex-conjugate
pair of eigenvalues.

The qualitative properties of ∂B(O), the boundary of the basin of attraction of the
origin change only slightly under this change of R, and may be described as follows.
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(a) (b)

FIGURE 1. (Colour online) In the left-hand figure, the left-hand arc of the stable manifold
SM of Xlb winds around a periodic orbit P, which is itself the boundary of the basin of
attraction of Xub; ∂B(O) is the union of two invariant manifolds, SM(Xlb) and P. In the
right-hand figure Xub is now unstable and ∂B(O) is the union of SM(Xlb) with the point Xub.

(a) R = 2.45: we call attention to SM(Xlb), the stable manifold of Xlb, denoted by
SM in figure 1. It consists of two orbits tending to Xlb as t→∞. As t→−∞,
the right-hand orbit is unbounded, whereas the left-hand orbit winds around the
periodic orbit P and therefore remains in a bounded region of phase space. It is
clear that ∂B(O) is the union of two sets:

∂B(O)= SM(Xlb) ∪ P. (3.2)

The periodic orbit P separates points in B(O) from points in B(Xub), the basin of
attraction of Xub and therefore clearly forms one part of the boundary of B(O)
(called a ‘strong’ part in Lebovitz (2012)). Here SM(Xlb) does not separate B(O)
from any other set: it merely separates orbits in B(O) with one kind of evolution
from orbits in B(O) with a different kind of evolution. Therefore SM(Xlb) is an
edge (or a ‘weak’ part of the boundary, as defined by Lebovitz (2012)).

Consider the open set bounded by UM(Xlb) (the outer curves, shown in red
online, in figure 1) together with the laminar point O. Modify it by excluding the
point Xub. Any orbit beginning at a point in this modified region, when integrated
backwards in time, tends to P. Thus, this bounded, two-dimensional region is
UM(P). Furthermore, there is one orbit in UM(P) which tends (as t→+∞) to Xlb,
i.e. while UM(P) and SM(Xlb) are not the same, they have a non-trivial intersection
consisting of the left-hand arc of SM(Xlb). This is a bounded orbit and its α-limit
set is precisely P.

(b) R = 2.55. The stability of Xub ceases at R = 2.5 and with it its basin of attraction
and the periodic orbit P. Now

∂B(O)= SM(Xlb) ∪ {Xub} (3.3)

and consists solely of an edge: all orbits in the plane except those lying on ∂B(O)
relaminarize.

The unstable manifold UM(Xub) has essentially the same description as that of
UM(P) for the case R= 2.45 above. Again there is a single orbit, the left-hand arc
of SM(Xlb), representing the intersection UM(Xub) ∩ SM(Xlb). The α-limit set of the
left-hand arc of SM(Xlb) is now the (unstable) equilibrium point Xub.
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FIGURE 2. (Colour online) The stable manifold SM(Xlb) is now two-dimensional and forms
the edge. The unstable manifold UM(Xub) is likewise two-dimensional and has a one-
dimensional intersection with SM(Xlb).

It is clear that orbits beginning on one side of SM(Xlb) undergo a different evolution
from those beginning on the other side. Orbits beginning in the windings around Xub

may persist for a long time before relaminarizing.

3.2. A three-dimensional generalization
The proceeding discussion provides an understandable model of an edge state, but two-
dimensional dynamical systems have special properties which may fail to generalize to
higher-dimensional systems. As a first pass at trying to understand what may happen
in such generalizations, we augment the system (3.1) with the single equation

ẋ3 =−x3. (3.4)

The resulting equations continue to conform to the pattern of (2.1) above. Any of the
three equilibrium points (a1, a2) of the system (3.1) with (say) R = 2.55 becomes an
equilibrium point (a1, a2, 0) of the three-dimensional model. Building a cartoon on this
model, we arrive at the figure 2. Note that if we had considered the case R = 2.45
instead, the cartoon diagram would include the periodic orbit P as well, now lying in
the plane x3 = 0.

In this figure SM(Xub) is now the x3 axis. The unstable manifold UM(Xub) is
the same as in the two-dimensional model: it is a bounded, two-dimensional region
lying in the x1x2 plane, and it intersects SM(Xlb) along a single curve (the middle
curve, shown in green online, in figure 2) The ‘folds’ of the spiralling orbit of the
two-dimensional system have become two-dimensional ‘scrolls’ parallel to the x3 axis,
and the flow through a generic point near Xub is now trapped for a time within these
scrolls, ultimately relaminarizing. The same general picture holds in the case R= 2.45
except that the scrolls wind up, not on a straight line through Xub but on the cylinder
parallel to the x3 axis and containing the periodic orbit P. The stable manifold of P is
bounded by this cylinder; it forms the boundary of the basin of attraction of Xub.
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In both the two- and three-dimensional models, most orbits do not get particularly
close to Xlb: only those beginning very close to SM(Xlb) do that. Two points very near
a fold (or scroll) of SM(Xlb) but on opposite sides of it pass close to Xlb but must
continue to lie on opposite sides of SM(Xlb), and therefore have final evolutions toward
O that are quite different. Moreover, orbits that begin between inner folds (or scrolls)
must first wind their way out before approaching Xlb and may for this reason have very
long lifetimes.

We pass on now to a model adhering more closely to the fluid dynamics.

4. Waleffe’s four-dimensional model
The four-dimensional model proposed in Waleffe (1997) (hereafter referred to as

W97) adheres closer to the shear-flow problem in that its derivation is guided by
Galerkin projection onto modes believed to be decisive for the nonlinear development
of (in this case) plane Couette flow. When shifted so as to make the origin of
coordinates correspond to the unperturbed, laminar state, W97 takes the form

ẋ1 =−δr1x1 − σ2x2x3 + σ1x2
4, (4.1a)

ẋ2 =−δr2x2 + σ2x3 + σ2x1x3 − σ4x2
4, (4.1b)

ẋ3 =−δr3x3 + σ3x2
4, (4.1c)

ẋ4 =− (σ1 + δr4) x4 + x4 (σ4x2 − σ3x3 − σ1x1) . (4.1d)

Here δ = 1/R represents the reciprocal of the Reynolds number, whereas the
coefficients σi, ri, i = 1, . . . , 4 are positive numbers derived via Waleffe’s Galerkin
procedure. In this paper the values of the σ and the r are taken to be

(σ1, σ2, σ3, σ4)= (0.31, 1.29, 0.22, 0.68), (4.2a)
(r1, r2, r3, r4)= (2.4649, 5.1984, 7.6729, 7.1289). (4.2b)

They correspond (approximately) to the wavenumber values

α = 1.30, γ = 2.28. (4.3)

These are (approximately) the values adopted in other studies of this system such
as those of Dauchot & Vioujard (2000) (where slight numerical discrepancies from
those found here are attributable to correspondingly small differences adopted for these
parameters) and Cossu (2005).

The system (4.1) possesses the symmetry S = diag(1, 1, 1,−1). The hyperplane
x4 = 0 is therefore an invariant plane. It is not difficult to show that this plane lies in
the basin of attraction of the origin. Since orbits cannot cross it, any structure made up
of orbits, such as other invariant sets, lie in one or another of the two regions x4 > 0
and x4 < 0. We confine our attention to the region x4 > 0, bearing in mind that any
structures we find there are duplicated in the region x4 < 0.

4.1. Equilibrium points
The origin of coordinates is an asymptotically stable equilibrium point and therefore
has a basin of attraction B= B(O).

The transition from the purely laminar toward more complicated behaviour is
governed by the existence and the structure of the boundary of B. These are intimately
connected with Xlb and Xub, the lower- and upper-branch equilibrium points (figure 3)
and we now turn to an examination of these.
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FIGURE 3. (Colour online) The diagram of the norms of equilibrium solutions against the
Reynolds number R. For the chosen values of parameters in W97 there is a saddle-node
bifurcation at RSN = 106.1393. Changes in the eigenvalues at the upper branch equilibrium
point occur as indicated in the text, at the values RP1 = 106.2401 and RP2 = 139.73738. The
laminar solution ‖y‖ = 0 (not shown) is stable for all values of R.

4.1.1. The lower branch
This branch of equilibrium points has uniform stability properties: one unstable

and three stable eigenvalues for all values of R > RSN . There is accordingly a
three-dimensional stable manifold SM(Xlb) and a one-dimensional unstable manifold
UM(Xlb). As discussed more fully below (§ 4.2), SM(Xlb) is the edge and the two arcs
of UM(Xlb) both lead, via different paths, to O.

4.1.2. The upper branch
This branch undergoes a change in its stability properties at P2. From the outset

at SN to the nearby point P1, it is unstable with a complex pair of eigenvalues with
negative real part and two real, positive eigenvalues. It remains unstable at P1 but the
positive real roots coalesce and become a complex pair with a positive real part. At P2

this positive real part passes through zero and, for larger values of R, is negative. The
upper branch therefore becomes and remains stable for R> RP2 .

The bifurcation at P2 is of the Hopf type and is therefore accompanied by the birth
of a periodic orbit P. This orbit would be stable if it existed for R < RP2 , but it
appears (on numerical evidence) that the new periodic orbit exists for R > RP2 and
is therefore unstable. Since each upper-branch equilibrium point Xub is asymptotically
stable if R > RP2 , Xub has its own basin of attraction, which we will call D = B(Xub)

to distinguish it from the principal object of study B = B(O). We have numerical
evidence that the unstable periodic orbit P lies on ∂D and, in fact, that the stable
manifold of P coincides with ∂D.

The structure of solutions near Xub is important for understanding the edge because
it is the winding up of the latter around Xub (for R < RP2) or around D = B(Xub) (for
R> RP2) that allows orbits from both sides of the edge to relaminarize.
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Outermost fold
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FIGURE 4. (Colour online) The stable manifold of Xlb winds around Xub infinitely often,
producing a succession of three-dimensional folds. In this slice (the x4–x1 slice passing
through Xub) the outermost fold appears to be unbounded both to the left and the right
(the other folds are bounded and appear as closed curves in this view). Single quotes around
Xlb indicate that the latter fails to lie in the chosen hyperplane but is projected onto it.

4.2. The structure of ∂B

We first observe the edge character of the stable manifold of Xlb by checking the orbits
beginning ‘just above’ and ‘just below’ Xlb for some values of R. By ‘just above’ we
will mean initial values of x for which x4 is slightly greater than Xlb4, and by ‘just
below’ initial values of x for which x4 is slightly smaller than Xlb4, whereas xi = Xlbi

for i = 1, 2, 3 in both cases. Starting for values of R just greater than RSN , we find
that all orbits, whether starting above or below, relaminarize. Those starting above take
longer. We have done this for a large number of values of R, up to R = 10 000, and
find that this holds without exception.

We next construct parts of SM(Xlb) by a continuation method, starting at x = Xlb.
The parts that are constructed are the intersections of SM(Xlb) with various
hyperplanes, as indicated in the figures. In these figures, in order to emphasize the
nature of SM(Xlb) near the other equilibrium point Xub, the hyperplanes are chosen to
pass through this point.

Whereas SM(Xlb) cannot, by definition, belong to B, it can and does belong to
∂B. Indeed, it seems that SM(Xlb) = ∂B for some values of R. This is so for
R< RP2 ≈ 139.7 and we investigate an example of this (R= 135) first.

4.2.1. R=135
In this case ∂B consists of the union of SM(Xlb) with the single point Xub. The

intersection of this set with the hyperplane x2 = Xub2, x3 = Xub3 is shown in figure 4.
Points on any of these folds tend, under the flow, toward Xlb as t→∞. For example,

a point starting on the third fold, after making two loops about Xub, then tends toward
Xlb. Higher-order folds (not shown) get arbitrarily close to Xub, and orbits originating
on them make more loops (and require more time), before tending toward Xlb. A point
very close to a fold, but not exactly on it, will generate an orbit coming very close to
Xlb, but will then tend to O along one of the arcs of UM(Xlb): its final descent to O
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FIGURE 5. (Colour online) A slice (marked ‘edge’) is shown as in figure 4 but now in the
x3x4 plane. It is bounded in the +x3 direction. Projections of two orbits are also shown: they
start, one on either side of the fourth fold of the edge, very near the black dot on the edge and
illustrate the behaviour of such orbits as described in the text. The orbits are indistinguishable
until they approach Xlb. They linger there for a long time before tending toward O along the
two, opposite, unstable directions of Xlb.

will therefore depend on which side of the fold it originated from. The similarity with
the two-dimensional case (figure 1, R= 2.55) is clear.

However, the outermost fold of figure 4 appears to extend indefinitely in the
±x1 directions whereas, in order for the picture of an edge obtained from the two-
dimensional model to persist, there must be lines in phase space along which all folds
are bounded at least on one side. We therefore investigate a second slice through Xub

but in a different hyperplane (figure 5). Here we find indeed that SM(Xlb) is bounded
in the +x3 direction.

We next investigate the case when R= 145> RP2 .

4.2.2. R= 145
For values of R > RP2 the point Xub is stable. We consider its basin of attraction

D and its boundary ∂D. In this case ∂B is the union of two sets: a weak boundary
component (SM(Xlb), the edge) and a strong boundary component (∂D), shown in
figure 6. Consider ∂D first.

The Hopf bifurcation at R ≈ 139.7 results in a periodic orbit P for larger values of
R. For the current value, R = 145, P is found to have period T = 140.69 and Floquet
exponents with magnitudes

|λ| = 1.000, 1.2003, 0.5359× 10−3 (multiplicity 2). (4.4)

Thus, it is unstable with a three-dimensional stable manifold, SM(P); nearby orbits on
its stable manifold are drawn toward it very rapidly. We find numerically that P lies
on ∂D and indeed that orbits originating on ∂D are all attracted toward P, and we
conclude from this that ∂D= SM(P).

We now consider the edge, the weak component of ∂B. It is SM(Xlb) and we seek a
slice through it by the hyperplane x2 = Xub2, x3 = Xub3.
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FIGURE 6. (Colour online) The point Xub (shown as a green dot online) is now stable and the
x1x4 slice through its basin of attraction D is shown. The outermost fold of the edge (shown
in green online) extends a great distance into phase space and may not terminate, the second
fold terminates on the right but not the left and the inner windings intersect this slice as finite
closed curves.

This is also shown in figure 6. The first, or outermost, fold of the edge (shown in
green online) appears to cover the x1 axis: we surmise that, as in the case R = 135,
this would not be so along the x3 axis. The second fold (shown in red online) is highly
convoluted and appears to cover the negative, but not the positive, x1 axis. Subsequent
folds are finite closed curves that conform their shape to that of the indicated slice of
D= B(Xub).

The general similarity of these folds to those of the preceding case (R = 135) are
clear and the general features of the edge allowing all orbits to relaminarize would
likewise appear similar. The main difference is that there is now (i.e. for R = 145)
a region of phase space (D) where orbits are permanently trapped and unable to
relaminarize.

5. A six-dimensional model
We consider finally a six-dimensional system modelling plane Poiseuille flow via a

procedure similar to that used in Waleffe (1997) to model plane Couette flow. The
Galerkin basis functions onto which the NS equations are projected are discussed and
presented in some detail in Mariotti (2011). The resulting system, again shifted so that
the origin O represents the unperturbed, laminar flow, has the canonical structure (2.1)
where

A=



−k1 0 0 0 0 0
0 −k2 σ0 0 0 0
0 0 −k3 0 0 0
0 0 0 −k4 0 −σ3

0 0 0 0 −k5 0
0 0 0 σ3 0 −k6


(5.1)
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and

b =



−σ0x2x3

σ0x1x3 − σ1x4x5

−(σ4 + σ5)x5x6

σ2x2x5 − σ3x1x6

(σ1 − σ2)x2x4 + (σ4 − σ6)x3x6

(σ5 + σ6)x3x5 + σ3x1x4


. (5.2)

The constants ki, σi, i = 1–6 are all functions of wavenumbers α, β, γ in the x, y, z
directions, respectively. The formulas determining them may be found in Mariotti
(2011). Here we note only that ki is positive for each i = 1–6, confirming the
(expected) stability of the laminar solution. For the purposes of the numerical
calculations of the present section, the values of the wavenumbers are taken to be

α = 1.1, β = π/2, γ = 5/3. (5.3)

The system (2.1) with the choices of A, b(x) indicated above is easily found to
possess the group (of order four) of symmetries generated by

S1 = diag(1, 1, 1,−1,−1,−1) and S2 = diag(1,−1,−1, 1,−1, 1). (5.4)

The hyperplane x4 = x5 = x6 = 0 is invariant and lies in the basin of attraction of the
origin.

5.1. Periodic orbits
A search for equilibrium points failed. It included reduction to an eighth-order
polynomial in x5, a Gröbner-basis reduction using Matlab and a search for equilibria
asymptotically for large R. On the other hand, a search for a stable, periodic orbit,
in a region of phase space suggested by the linearly optimal direction for the system
ẋ = Ax, was successful. Having found one such orbit for a particular value of R (we
used R = 500), one can follow it as R changes using continuation software (we used
MatCont: cf. Dhooge, Govaerts & Kuznetsov (2003)). The result is a pattern very
similar to that seen in the preceding examples, with the difference that periodic orbits
(PO) play the roles previously played by equilibrium points. Such orbits exist for all
values of R > RSN ≈ 291.7. For the symmetry S3 = S1S2 they satisfy the condition
S3x(t)= x(t + T/2) where T is the period. From this one infers that the average values
of x2, x3, x4 and x6 all vanish for these orbits.

5.2. Bifurcations
The bifurcation and stability patterns of the family of periodic orbits depicted in
figure 7 are analogous to those of W97.

The lower-branch periodic orbits, POlb, are unstable for all values of R > RSN ≈
291.7 with a single Floquet multiplier of magnitude exceeding unity (cf. figure 7b).
Thus, SM(POlb) has dimension five (codimension one).

The upper-branch orbits, on the other hand, undergo stability changes. For values of
R barely exceeding RSN the pair of Floquet multipliers of unstable type are real but,
at the nearby value RP1 ≈ 292.4, they coalesce and become a complex-conjugate pair,
still of unstable type (cf. figure 7c). The stability of this pair changes at a third critical
value RP2 ≈ 305.5 and for larger values of R the upper-branch periodic orbit is stable.
Thus, for R> RP2POub possesses its own basin of attraction B(POub).
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FIGURE 7. (Colour online) (a) Projections of periodic orbits: the curve represents the
positions of the centres in the x1–x5 plane against R. The averaged values of coordinates
x2, x3, x4, x6 on these orbits all vanish. (b,c) Magnitudes of the three greatest Floquet
multipliers.

The bifurcation at R = RP2 is of Neimark–Sacker type and results, for R > RP2 ,
in the creation of an invariant torus. This torus has dimension five and forms the
boundary of the basin of attraction of POub, and hence plays a role analogous to ∂D,
the boundary of the basin of attraction of Xub, in W97.

5.3. The structure of the edge
We first consider the case with R > RP2 . As in the preceding examples, we use a
continuation method to identify the intersection of SM(POlb) with the hyperplane
x1–x5. Also in this case SM(POlb) has the characteristic of an edge: initial conditions
arbitrarily close but on different sides of SM(POlb) have qualitatively different
trajectories (see for example figure 8b, trajectories p4 and p5).

We found evidence that the edge is wrapped around B(POub), as indicated by the
fold shown in figure 8. The structure of the edge is clarified by considering a transect
of initial conditions crossing ∂B(POub) (figure 9). Moving the initial conditions along
the transect, we find that trajectories belonging to B(O) are characterized by discrete
steps in relaminarization time. These steps are associated to successive loops of the
trajectory around the torus orbit before it decays to the origin, i.e. every fold of
SM(POlb) determines a band of increasing relaminarization time (figure 9). Along the
transect direction toward ∂B(POub), the distance between two consecutive steps in
relaminarization becomes smaller, suggesting that the edge folds infinitely many times
around ∂B(POub). As a result, trajectories starting in B(O) but very close to ∂B(POub)

experience a convoluted relaminarization path (see trajectory p6 and p7 in figure 8c,
and the cartoon in figure 9b).
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FIGURE 8. (Colour online) Orbits for R = 307 > RP2 , for which POub is stable (cf. figure 7).
Upper- and lower-branch periodic orbits are projected onto the x1–x5 plane. The other
initial conditions are fixed at (x2, x3, x4, x6) = (−0.0511,−0.0391, 0.0016, 0.1260), which
correspond to a point on POub. (a) The trajectory p1 lies well on one side of SM(POlb) and
relaminarizes quickly and directly, p2 well on the other side and relaminarizes less quickly
and only after visiting a neighbourhood of POub; p3 lies in B(POub). (b) Here xA lies on
SM(POlb). One orbit (p4) starts very near to xA on one side of SM(POlb), is attracted toward
POlb, lingers for a while and then decays. A second orbit (p5) starts very near to xA on the
other side, follows essentially the same (shown in yellow online) path toward POlb, lingers a
while, but then has a different kind of decay (black): it first visits a neighbourhood of POub.
(c) Here xB lies on SM(POlb), but on an inner fold and close to the torus ∂B(POub). As a
result, two orbits starting close to xB, p6 and p7, experience a long and convoluted path around
the torus (blue). Both trajectories then approach POlb before eventually relaminarizing. Then
p6 (the lower orbit, shown in yellow online) decays immediately whereas p7 (the upper orbit,
shown in green online) first revisits a neighbourhood of the torus and only then decays.
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FIGURE 9. (Colour online) (a) Analysis of a transect of initial conditions crossing ∂B(POub),
for R = 307 > RP2 (cf. figure 8c). The transect is aligned along the direction X5, keeping
all of the other initial conditions fixed. The first point, pi, corresponds to a trajectory that
relaminarizes ‘directly’, while the last point, pe, corresponds to a trajectory that converges to
POub. The step-wise increase in relaminarziation time is associated with crossing folds on the
edge. (b) Cartoon of the phase space, with the laminar fixed point, POub, POlb, the torus orbits
and a trajectory as an example, explaining the steps in relaminarization time associated with
crossing folds on the edge.

A similar edge behaviour is found for RP1 < R < RP2 , with the difference that
B(POub) collapses to POub. Hence, our numerical explorations suggest the presence of
an edge structure for R> RP1 .

The emergent picture is consistent with the interpretation that, for a range of R
values (R > RP2 ≈ 305.5), ∂B(O) consists of the union of a weak part, or edge
(SM(POlb)), with a strong part (∂B(POub)). Analogously, for values RP1 < R < RP2 ,
∂B(O) consists only of the edge together with the single orbit POub.

6. Discussion
The most general conclusion that we draw from the preceding calculations is that

one can understand ubiquitous relaminarization in terms of the relations of invariant
manifolds in finite-dimensional systems of the form (2.1), as described in detail below
(§ 6.1). Our picture of the edge appears to be a consistent one, occurring in several
models of successively higher dimension. However, consistency is not the same as
truth, and there is a lot more to be discovered in this subject. For example, in
pipe flow there are multiple lower-branch states (Duguet et al. 2008), apparently all
lying on a single edge, and there are also multiple upper-branch states. Moreover,
the models considered here describe temporal behaviour, whereas the full problem
includes spatiotemporal behaviours. Even if the picture presented here continues to
provide a building block for ubiquitous relaminarization, a more complete description
of the edge and its relations to upper-branch states awaits further study.

In both the four-dimensional model of § 4 and the six-dimensional model of § 5
there is an interval of Reynolds number for which the boundary of the basin of
attraction of the laminar state (∂B(O)) consists solely of the edge. For larger values
of R the upper-branch state (Xub or POub) becomes stable and ∂B(O) is the union
of the edge with the basin boundary of the newly stable state. It is tempting
to see a parallel here with the Reynolds-number behaviour of actual shear flows
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(Avila et al. 2011; Mullin 2011): for a range of R the turbulence is transient, but
beyond a critical value there is (or may be) a turbulent attractor. On the other hand
this parallel may be a spurious artifact of the extreme truncation. An understanding of
how transient turbulence becomes persistent turbulence is a subject of current research.
Some of this concentrates on the nature of upper-branch states (Clever & Busse
1992, 1997; Kreilos & Eckhardt 2012) as does the present paper. In particular, the
work of Kreilos & Eckhardt (2012) features not one or a small number of periodic
orbits but a period-doubling cascade followed by the onset of chaos.

We briefly recapitulate the nature of the edge structure, and summarize the technique
for producing the diagrams of this paper.

6.1. The edge
The picture of the edge obtained from the models we have considered is a
codimension-one invariant manifold unbounded in some directions in phase space
but, importantly, bounded in other directions at least from one side. It is the latter
circumstance that enables a pair of orbits originating on opposite sides of this manifold
both to tend toward the stable, laminar point as t→∞. In the cases considered here
the edge is a very regular object which coincides with the stable manifold of either
an equilibrium point Xlb or a periodic orbit POlb: the ‘edge state’. In the work of
Skufca et al. (2006), for R less than a critical value Rc their edge state was a periodic
orbit, and the edge was likewise quite regular. For R> Rc the edge state was a chaotic
saddle. However, the edge itself remained regular. We therefore have some reason for
hoping that our characterization of the edge will continue to have meaning in some of
these ‘wilder’ cases.

This manifold cannot ‘end in thin air’ and the claim that it is finite in some
directions in phase space requires explanation. This explanation is found, in the
present paper, in its relation to a second state, the upper-branch equilibrium point
Xub (or the upper-branch periodic orbit POub). It is found that the edge winds around
the latter state infinitely often, never quite touching. Since the stable manifold of the
edge state is of codimension one, orbits starting near the edge but on opposite sides
of it tend to be entrained by its one-dimensional unstable manifold. When the edge
state is an equilibrium point, the unstable manifold consists of a pair of arcs, each of
which tends to the laminar point as t→∞. The entrained orbits tend to the origin,
although they follow quite different evolutions depending on the side of the edge from
which they originated. A similar picture is found when the edge state is a periodic
orbit, except that now the unstable manifold is two-dimensional.

The nature of an orbit and the time for its relaminarization depend on whether the
starting point of the orbit lies above the edge, in which case it must circumnavigate
the upper-branch state and its associated invariant manifolds, or below the edge, in
which case it has a more direct route to relaminarization. However, there are two
further contingencies that may contribute to the relaminarization time of an orbit. One
is proximity to the edge: the closer it is to the edge the longer it will linger near the
edge state before relaminarizing. The second is related to the fold structure of the edge
near the upper-branch state: an orbit that starts between two inner folds is trapped
within the fold structure until it winds its way out.

6.2. Technique
The computational technique for finding slices of the boundary of the basin of
attraction of the lower-branch states found in § 4 of this paper is straightforward.
We start with a point known to lie on that boundary. For example, in figure 4, the
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point Xlb is such a point. Alternatively, we may start with a pair of points of which
one relaminarizes quickly (an ‘inside’ point) and one slowly (an ‘outside’ point) and
produce, by bisection, such a pair that lie extremely close to one another, and which
therefore straddle the edge. We slightly alter one of their coordinates (x1 say) and
repeat this procedure so as to find a new pair of points straddling the edge. Once a
point in Rn lying on the edge has been located, we can move around in any direction
in Rn seeking more edge points in this way.

An alternative method is to locate and record edge points via the transect method
described in § 5. A lifetime landscape map (e.g. Skufca et al. 2006) is first constructed
to isolate the general locations of the edge folds. Then, refined transects across the
folds are used to identify discrete steps in relaminarization time (e.g. figure 9a), which
are associated with increasing loops of the trajectory around the upper-branch state.
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