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Generation of surface waves by shear-flow
instability
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We consider the linear stability of an inviscid parallel shear flow of air over water
with gravity and capillarity. The velocity profile in the air is monotonically increasing
upwards from the sea surface and is convex, while the velocity in the water is
monotonically decreasing from the surface and is concave. An archetypical example,
the ‘double-exponential’ profile, is solved analytically and studied in detail. We show
that there are two types of unstable mode which can, in some cases, co-exist. The
first type is the ‘Miles mode’ resulting from a resonant interaction between a surface
gravity wave and a critical level in the air. The second unstable mode is an interaction
between surface gravity waves and a critical level in the water, resulting in the growth
of ripples. The gravity–capillary waves participating in this second resonance have
negative intrinsic phase speed, but are Doppler shifted so that their actual phase speed
is positive, and matches the speed of the base-state current at the critical level. In both
cases, the Reynolds stresses of an exponentially growing wave transfer momentum
from the vicinity of the critical level to the zone between the crests and troughs of a
surface wave.

Key words: capillary waves, critical layers, waves/free-surface flows

1. Introduction
The windy generation of ocean surface waves – with wavelengths between

millimetres and hundreds of metres – is a central problem in physical oceanography.
The early investigations of Miles (1957, 1962) viewed wave growth as an
exponentially growing instability on a pre-exisiting shear flow in an atmosphere
above a still ocean. A more complete model includes a shear flow in the water as
a representation of the wind-drift layer just below the sea surface: see figure 1 and
Valenzuela (1976). Experimental evidence reinforced the hypothesis that wave growth
is via an exponentially growing mode of instability that amplifies initial small wavelets
(e.g. Kawai 1979). Following these pioneering works, attention has been focused on
the normal modes of instability of a unidirectional sheared flow, U(z), along the axis
of x, with a base-state density profile

ρ(z)
def=
{
ρa if z> 0,
ρw if z< 0.

(1.1)
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z

x

U(z)

FIGURE 1. (Colour online) The coupled shear flow with the ‘double-exponential’ velocity
profile in (4.1). Following Valenzuela (1976), the shear flow extends into the water with a
shallow ‘wind-drift’ layer.

The subscripts ‘a’ and ‘w’ refer to air and water, and typically ρw/ρa ≈ 820. The
references in the upper block of table 1 are directed at this problem of wave
generation by wind.

On the other hand, starting perhaps with Stern & Adam (1974), there is a second
and larger stream of work directed mainly at understanding the generation of ripples
by a shear-flow instability strictly within the wind-drift layer. (Following Lighthill
(1978), ‘ripples’ are surface waves with length less than ∼7 cm.) This second stream
is summarized in the lower block of table 1. In this literature the dynamics of air is
usually ignored by setting ρa = 0.

Lighthill (1962) gave a physical interpretation of the Miles mode: the air shear flow
is perturbed by a free-surface wave, and the perturbation in the air grows most rapidly
in the vicinity of a critical level at an altitude zc > 0. The Miles instability relies
crucially on transfer of energy and momentum from the critical level to the surface
wave; the growth rate of the Miles instability is linearly proportional to the small
parameter ρa/ρw.

Critical-level dynamics also plays a crucial role in the rippling instability of Stern &
Adam (1974). But in this case the critical level is in the water at a depth zc < 0. The
critical-layer interaction involves surface waves with negative intrinsic phase speed that
are Doppler shifted so that they travel in the same direction as the wind. A necessary
condition for this strong Doppler shifting, and therefore a necessary condition for
rippling instability, is that

Us > cmin, (1.2)

where Us is the surface speed in figure 1 and cmin ≈ 23 cm s−1 is the minimum speed
of capillary–gravity waves. We show that if (1.2) is satisfied then the growth rate of
the rippling instability can be very much larger than that of the Miles instability, and is
insensitive to the dynamics of air, e.g. the rippling instability exists even if ρa = 0.

We caution that experimental evidence shows ripples amplifying on accelerating
wind-driven surfaces even though Us is less than cmin (Veron & Melville 2001). This
point seems not to have been fully appreciated in the theoretical literature and we
dwell further on it in the conclusion.

Another important point, which is not immediately clear from this literature, is that
the shear flow in figure 1 supports the two different modes of instability described
above. To our knowledge, only Caponi et al. (1992) have attempted to understand
the co-existence of these two different modes of instability. One of our goals is to
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Citation Orr–Sommerfeld
or Rayleigh?

Air? Wind-
drift

Rippling
instability

Miles
instability

layer? discussed? discussed?

Valenzuela (1976) OS Yes Yes No Yes
Kawai (1979) OS Yes Yes No Yes
van Gastel, Janssen &
Komen (1985)

OS Yes Yes No Yes

Wheless & Csanady
(1993)

OS Yes Yes No Yes

Zeisel, Stiassnie & Agnon
(2008)

OS Yes Yes Perhaps Yes

Miles (1957) R Yes No No Yes
Miles (1962) OS Yes No No Yes
Stern & Adam (1974) R No Yes Yes No
Morland, Saffman &
Yuen (1991)

R No Yes Yes No

Caponi et al. (1991) R No Yes Yes No
Caponi et al. (1992) R Yes Yes Yes Yes
Morland & Saffman
(1993)

R Yes No No Yes

Shrira (1993) R No Yes Yes No
Longuet-Higgins (1998) R No Yes Yes No
Miles (2001) R No Yes Yes No
Zhang (2005) R No Yes Yes No
Bakas & Ioannou (2009) R No Yes Yes No
This work R Yes Yes Yes Yes

TABLE 1. Survey of the model assumptions made by some theoretical papers on
gravity–capillary wave generation. The references in the upper block of are directed at
the problem of wave generation by wind; those in the lower block consider the generation
of ripples by a shear-flow instability within the wind-drift layer. The third column refers to
whether the paper includes the dynamics of air by considering ρa 6= 0. The fourth column
refers to whether the paper includes a model of the wind-drift layer in the water.

give a unified account of both instabilities to better understand the different physical
processes required by the different mode types. To this end we recapitulate and extend
Lighthill’s arguments in § 3.

In principle, the Miles instability can excite gravity waves with lengths greater
than 1 m. The Miles instability is therefore important as a mechanism for generating
long gravity waves in the open ocean (Hristov, Miller & Friehe 2003; Janssen 2004).
However, with laboratory investigations in mind, most of the studies of the Miles
mode in the upper block of table 1 have confined attention to wavelengths less than
10 cm, i.e. to ripples and their near neighbours. For these short laboratory waves,
the critical level is very close to the water surface and usually lies within a viscous
sublayer. In addition to viscosity, for these short waves one must deal with capillarity
and the wind-drift layer. Thus the studies in the upper block of table 1 all solve
the Orr–Sommerfeld equation in both air and water. Of necessity there are many
non-dimensional control parameters, and even specification of the basic-state shear
flow U(z) can be arduous. It is difficult to get a good picture of the essential nature
of the two unstable modes from numerical solutions of the Orr–Sommerfeld equation.
Indeed, with the possible exception of Zeisel et al. (2008), the computational studies
in the upper block of table 1 did not consider surface flows fast enough to satisfy (1.2)
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Unstable surface waves 279

and therefore did not encounter the rippling mode, even though the rippling mode can
co-exist with the Miles mode on centimetre laboratory scales.

For simplicity in this work we ignore the effects of viscosity and focus instead
on a detailed characterization of the inviscid instabilities resulting from the coupled
air–water shear flow. For the Miles instability, neglect of viscosity requires that the
critical level should be above the viscous sublayer.

We show that both the Miles mode and the rippling mode of instability can be
exhibited and understood in detail using the simple ‘double-exponential’ model for the
coupled shear flow in figure 1. Results based on the double-exponential velocity profile
are likely to be representative of smooth monotonic (Uz > 0) shear flows which are
concave (Uzz > 0) in the water and convex (Uzz < 0) in the air. These profiles do not
have a proper inflection point (Uzz = 0) because Uzz changes discontinuously at the sea
surface, where ρ(z) is also discontinuous. If the surface were rigid, the flow would
therefore be stable according to Rayleigh’s inflection-point criterion. However Stern
& Adam (1974) and Morland et al. (1991) have shown that free-surface shear flows
without inflection points are unstable. Because of the free surface, and contrary to the
conclusion of Yih (1972), Rayleigh’s theorem does not apply. The stability problem
posed by inflectional velocity profiles beneath a free surface admits an additional
class of unstable ‘inflectional’ modes, for which see Dimas & Triantafyllou (1994),
Longuet-Higgins (1998) and Engevik (2000).

In § 2 we formulate the inviscid linear stability problem, which amounts to
Rayleigh’s equation in the air and in the water with a dynamic boundary condition
at the sea surface. In § 3 we obtain general results showing how a growing
capillary–gravity wave modifies the basic-state shear flow via induction of an Eulerian
mean flow at second order in wave amplitude. This analysis reveals some surprising
aspects of the wave–mean interaction due to free-surface dynamics. In particular, a full
understanding of the mean-flow induction requires accounting for the momentum in
the region below the wave crests and above the troughs; to this end, we generalize
the irrotational still-water no-air formula for the crest–trough momentum given by
Phillips (1977). In § 4 we specialize the stability problem to the double-exponential
profile in (4.1) and solve the stability problem in terms of hypergeometric functions.
Solution of the resulting dispersion relation immediately reveals both the Miles mode
and the rippling mode. Section 5 is a detailed study of the rippling mode based
on the mild approximation ρa = 0. We provide an analytic characterization of the
stability boundary and with extensive computations document the main properties of
the most rapidly growing mode throughout the parameter space. Section 6 develops
an approximate solution of the rippling stability problem that compares well with
the more exact results from § 5. Good estimates of the growth rate and phase speed
of unstable eigenmodes are obtained without recourse to hypergeometric functions.
However the main advantage of this development is that it provides insight into
interaction of ripples with vortical disturbances concentrated at a subsurface critical
layer. Section 7 discusses the Miles instability and shows how the small growth rate
of the Miles mode is obtained perturbatively from the general formulation of § 2.
Section 8 is the conclusion.

2. Formulation of the linear stability problem
The linearized inviscid equations of motion for incompressible two-dimensional

perturbations on a base-state shear flow U(z) are

ρ (ut + Uux + wUz)=−px, (2.1)
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280 W. R. Young and C. L. Wolfe

ρ (wt + Uwx)=−pz, (2.2)
ux + wz = 0. (2.3)

In (2.1) and (2.2), p(x, z, t) is the disturbance pressure; the total pressure is

ptotal = pa − ρ(z)gz+ p, (2.4)

where pa is the constant atmospheric pressure and g is gravitational acceleration.
The base-state shear flow is

U(z)
def=
{

Ua(z) if z> 0,
Uw(z) if z< 0.

(2.5)

To remove Kelvin–Helmholtz instabilities we limit attention to velocity profiles that
are continuous at the undisturbed sea surface, z = 0, so that Ua(0) = Uw(0) = Us. The
linearized kinematic condition at z= 0 is

(∂t + Us∂x) η = ws, (2.6)

where ws
def=w(x, 0, t) is the vertical velocity of the sea surface and η(x, t) is the

displacement.
The dynamic boundary condition at z= 0 is that the jump in ptotal is balanced by the

force of surface tension with coefficient T . This requirement determines the jump in
disturbance pressure:

p(x, 0+, t)− p(x, 0−, t)=−(ρa + ρw)
(
g′ − γ ∂2

x

)
η, (2.7)

where

γ
def= T

ρa + ρw
, g′ def= g

ρw − ρa

ρw + ρa
. (2.8)

2.1. Streamfunction and vorticity
We introduce a streamfunction ψ with the convention (u,w)= (ψz,−ψx); the vorticity
is

ζ
def= uz − wx =∇2ψ. (2.9)

Eliminating the pressure between (2.1) and (2.2), we have

ζt + Uζx + wUzz = 0. (2.10)

If Uzz = 0 we recover the irrotational case, ζ = 0, as a solution of (2.10).

2.2. The Rayleigh equation
If the streamfunction is represented as a harmonic modal disturbance,

ψ(x, z, t)= φ(c, k; z)eik(x−ct) + c.c., (2.11)

then the pressure p and the surface displacement η are expressed in terms of φ(c, k; z)
as

p(x, z, t)= ρ[Uzφ − (U − c)φz] eik(x−ct) + c.c. (2.12)

and

η(x, t)=− φ(0)
Us − c

eik(x−ct) + c.c. (2.13)
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Kinematic surface tension γ 7.2× 10−5 m3 s−2

Acceleration due to gravity g 9.8 m s−2

Capillary–gravity wavenumber kmin =√g′/γ 370 m−1

Capillary–gravity wavelength λmin = 2π/kmin 0.017 m
Capillary–gravity phase speed cmin = (4 g′γ )1/4 0.23 m s−1

Capillary–gravity time scale (kmincmin)
−1 0.0118 s

Density of air ρa 1.25 kg m−3

Density of seawater ρw 1025 kg m−3

Density ratio ρw/ρa 820

TABLE 2. Numerical values of gravity–capillary parameters and other quantities.

In terms of φ(z), the vorticity equation (2.10) becomes the Rayleigh equation

φzz −
(

k2 + Uzz

U − c

)
φ = 0. (2.14)

We take k > 0, and c= cr + ici is a complex phase velocity.
Using (2.12) and (2.13), the z= 0 boundary condition in (2.7) can be written as

[εΞa(c, k)+ (1− ε)Ξw(c, k)] (c− Us)
2 + S (c− Us)− g′ − γ k2 = 0, (2.15)

where

Ξa(c, k)
def=−φz(c, k; 0+)

φ(c, k; 0) , Ξw(c, k)
def= φz(c, k; 0−)

φ(c, k; 0) . (2.16)

Also in (2.15), the density-weighted jump in shear at the sea surface is

S
def=(1− ε)Uz

(
0−
)− εUz

(
0+
)
, (2.17)

where

ε
def= ρa

ρa + ρw
; (2.18)

ε is a crucial small non-dimensional parameter in what follows.
The modal stability problem consists of obtaining a decaying (as z→±∞) solution

of the Rayleigh equation (2.14) and then evaluating the Ξ . With Ξa and Ξw in hand,
one obtains the dispersion relation from the surface boundary condition (2.15).

The simplest example is U(z) = 0, so that φ = exp(−k|z|) is the solution of (2.14).
In this case Ξw(c, k) = Ξa(c, k) = k, and the well known gravity–capillary dispersion
relation c=±cgc(k), with

cgc(k)
def=
√

g′

k
+ γ k, (2.19)

is quickly recovered from (2.15). The gravity–capillary phase speed cgc has a
minimum value cmin = (4g′γ )1/4 at the wavenumber kmin =√g′/γ (see table 2).

Before considering further examples with non-zero U(z) we obtain some general
results that shed light on the energetics of the instability and the failure of the
inflection-point criterion.
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282 W. R. Young and C. L. Wolfe

3. Momentum and energy conservation laws
3.1. Wave energy

From the linearized equations of motion (2.1)–(2.3) we obtain the kinetic energy
equation

d
dt

1
2

∫∫
ρ
(
u2 + w2

)
dx dz︸ ︷︷ ︸

def= K̃E

+
∫∫

ρuwUz dx dz=
∫

ws1p dx, (3.1)

where ws(x, t) is the vertical velocity of the surface and 1p
def= p(x, 0+, t)− p(x, 0−, t) is

the jump in disturbance pressure. Further in (3.1), K̃E is the kinetic energy of the wave
in both air and water. The right-hand side of (3.1) is the transfer of energy to the wavy
surface. Using the surface boundary conditions (2.6) and (2.7), this transfer due to the
correlation of the pressure jump 1p with surface velocity ws can be written as

d
dt

P̃E =−
∫

ws1p dx, (3.2)

where the potential and surfacial energy of the wave is

P̃E
def= 1

2
(ρa + ρw)

∫
gη2 + γ η2

x dx. (3.3)

Combining (3.1) and (3.2) to eliminate
∫

ws1p dx, we obtain the wave energy
equation

d Ẽ

dt
+
∫∫

ρuwUz dx dz= 0, (3.4)

where Ẽ
def= K̃E + P̃E is the total energy of the wave. If the flow U(z) is unstable, so

that Ẽ is increasing, then the Reynolds stress uw must be negatively correlated with
shear Uz > 0. This negative correlation could be in either the air, or the water, or both.

3.2. Acceleration of the mean flow and total momentum conservation
Denote an x-average by an overline. For example, the mean-square displacement of the
sea surface is

η2 = 1
L

∫ L

0
η2 dx, (3.5)

where L is a large length. Thus if U (z, t) is the second-order-in-amplitude
modification of the base-state flow U(z) – so that the total mean flow is U(z)+U (z, t)
– then the mean x-momentum equation is

(ρU )t + (ρuw)z = 0. (3.6)

Integrating (3.6) separately in the air and in the water, and adding these expressions
gives

d
dt

∫ ∞
−∞
ρU dz+ (ρa + ρw)wsus = 0, (3.7)

where

us(x, t)
def=(1− ε)u(x, 0−, t)− εu(x, 0+, t) (3.8)

is effectively a tangential velocity at the free surface.
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We obtain another expression for the free-surface correlation wsus by considering
the linearized x-momentum equation (2.1) evaluated on either side of the sea surface.
Evaluating the jump gives

(∂t + Us∂x) us + Sws =
(
g∂x − γ ∂3

x

)
η, (3.9)

where S is the density-weighted jump in shear, defined in (2.17). Multiplying (3.9) by
η, x-averaging, and combining this with the free-surface condition (2.6), one eventually
obtains

dJs

dt
= wsus, (3.10)

where

Js
def= 1

2 S η2 + ηus; (3.11)

Js is the mean momentum density of the air and water in the zone below the wave
crests and above the troughs. The expression in (3.11) generalizes the irrotational
still-water no-air formula given by Phillips (1977).

We summarize these considerations by saying that to order amplitude-squared,

Eulerian mean flow= U(z)+U (z, t)+Js(t)δ(z). (3.12)

Using (3.11), the strength of the sea-surface singularity, Js(t), can be evaluated using
only first-order-in-amplitude quantities obtained, for instance, from the solution of the
Rayleigh equation.

Eliminating wsus between (3.7) and (3.10) provides total momentum conservation in
the form

d
dt

(∫ ∞
−∞
ρU dz+ (ρa + ρw)Js

)
= 0. (3.13)

The conserved quantity
∫
ρU dz + (ρa + ρw)Js, is the momentum of the wavy

disturbance, correct to second order in amplitude. If waves grow, starting with very
small amplitude at an initial time, then time integration of (3.13) gives∫ ∞

−∞
ρU dz+ (ρa + ρw)Js = 0. (3.14)

The mean flows associated with the exponentially growing unstable modes found later
in this paper satisfy (3.14).

3.3. Pseudomomentum
Following Taylor (1915), another expression for the surface Reynolds stress wsus is
obtained by multiplying the vorticity equation (2.10) by ρζ and averaging. If the
base-state shear flow U(z) has no inflection points then, using the Taylor identity

wζ = (uw)z, (3.15)

the result can be written as (
ρ ζ 2

2Uzz

)
t

+ (ρuw)z = 0. (3.16)
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The quantity ζ 2/2Uzz is the Eulerian pseudomomentum density of the wave (Bühler
2009). Eliminating the Reynolds stress divergence between (3.6) and (3.16) we obtain

d
dt

(
ρU − ρζ 2

2Uzz

)
= 0. (3.17)

If waves grow, starting with very small amplitude at an initial time, then time
integration of (3.17) shows that the induced mean flow on either side of the sea
surface is related to the disturbance vorticity by

U = ζ 2

2Uzz
. (3.18)

Substituting (3.18) into (3.14), we write disturbance momentum conservation so that
the sign of the various terms is made clear:

ρw

2

∫ 0

−∞

ζ 2

|Uzz| dz− ρa

2

∫ ∞
0

ζ 2

|Uzz| dz+ (ρa + ρw)Js = 0. (3.19)

The |Uzz| arise, because, as indicated in figure 1, we are considering basic states with
Uzz > 0 in the water and Uzz < 0 in the air. The disturbance momentum equation (3.19)
shows how an unstable mode can grow spontaneously from infinitesimal amplitude
without changing the net momentum of the fluid.

Because of the term (ρa + ρw)Js in (3.19), one cannot conclude that momentum
lost by the air above the crests is transmitted to the water beneath the troughs. Explicit
solutions of the linearized stability in later sections will show that the crest–trough
recoil, Js, is always important in the total momentum balance. In fact, in the Miles
instability, the dominant balance in (3.19) is between the second and third terms:
the air flow loses momentum which is transmitted to the crest–trough zone; there
is no acceleration of the water below the troughs. And in the rippling instability
the dominant balance in (3.19) is between the first and third terms: momentum is
transferred from the crest–trough zone to the ocean below the troughs; air plays no
role. Thus the disturbance momentum equation (3.19) provides a neat classification of
the two unstable modes.

3.4. Total energy conservation
Multiplying the mean-flow equation (3.6) by U(z), integrating over both air and water,
and using earlier expressions for Ew and Js, one obtains the total energy conservation
law

d
dt

(∫ ∞
−∞
ρ U U dz+ (ρa + ρw)UsJs + Ẽ

)
= 0. (3.20)

The combination
∫
ρ U U dz+ (ρa + ρw)UsJs on the left of (3.20) can be interpreted

by squaring the total mean velocity in (3.12) and integrating in z to obtain the kinetic
energy of the mean flow as∫ ∞

−∞

1
2
ρU2 dz+

∫ ∞
−∞
ρ UU dz+ (ρa + ρw)UsJs︸ ︷︷ ︸

=O(a2)

+O(a3). (3.21)

If the disturbance amplifies spontaneously with infinitesimal initial amplitude, then the
total energy of the disturbance is zero, i.e. the O(a2) terms on the right of (3.21) are
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zero. To emphasize the definite sign of some terms in the disturbance energy, we use
(3.18) to write this requirement as

ρw

2

∫ 0

−∞

ζ 2U

|Uzz| dz− ρa

2

∫ ∞
0

ζ 2U

|Uzz| dz+ (ρa + ρw)UsJs + Ẽ = 0. (3.22)

On the left-hand side above, only the crest–trough energy density, UsJs, has indefinite
sign.

The disturbance energy equation (3.22) is analogous to the disturbance momentum
equation (3.19): in both relations there is the crest–trough momentum density Js with
indefinite sign. However, one can linearly combine (3.22) with (3.19) to eliminate Js

and obtain the wave energy Ẽ as

Ẽ =
∫ ∞
−∞
ρ(Us − U)

ζ 2

2Uzz
dz. (3.23)

In the basic states under consideration here (Us − U)/Uzz is positive for all z, and
(3.23) is a pure expression of the relation between the spontaneous growth of wave
energy Ẽ and the Eulerian pseudomomentum ζ 2/(2Uzz).

4. The double-exponential model
We now consider the ‘double-exponential’ base-state velocity profile

U(z)=
{

U∞ − (U∞ − Us)e−z/ha if z> 0,
Usez/hw if z< 0.

(4.1)

In this example the density-weighted jump in shear, defined in (2.17), is

S= (1− ε)Us

hw
− εU∞ − Us

ha
. (4.2)

4.1. The double-exponential dispersion relation
The double-exponential has the advantage that the Rayleigh equation (2.14) can be
solved exactly (Hughes & Reid 1965; Morland & Saffman 1993). In the air, the
solution is

φ(c, k; z> 0)= e−kz

F

(
αa, βa, 2κa + 1; U∞ − Us

U∞ − c
e−z/ha

)
F

(
αa, βa, 2κa + 1; U∞ − Us

U∞ − c

) , (4.3)

where F is the Gaussian hypergeometric function

F(a, b, c; ξ) def= 1+ ab

c

ξ

1! +
a(a+ 1)b(b+ 1)

c(c+ 1)
ξ 2

2! + · · · (4.4)

and

κa
def= kha, αa

def= κa −
√

1+ κ2
a , βa

def= κa +
√

1+ κ2
a . (4.5)

This solution requires ci 6= 0 so that the argument of the hypergeometric function in
(4.3) does not lie on the branch line that runs along the real axis from ξ = 1 to ∞.
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Likewise, the solution in the water is

φ(c, k; z< 0)= ekz

F

(
αw, βw, 2κw + 1; Us

c
ez/hw

)
F

(
αw, βw, 2κw + 1; Us

c

) , (4.6)

with

κw
def= khw, αw

def= κw −
√

1+ κ2
w, βw

def= κw +
√

1+ κ2
w. (4.7)

Note that the α are negative, and αaβa = αwβw =−1.
Because the base-state velocity in figure 1 is continuous at the air–water interface

z= 0, the amplitude function φ is also continuous at z= 0. In (4.3) and (4.6) we have
implemented this condition and adopted the normalization φ(c, k; 0)= 1.

The hypergeometric solutions above provide an exact description of the nearly
singular flow at the critical level. The flow is nearly singular because small non-zero
ci ensures that the Rayleigh denominator U(z) − c is non-zero at the critical level
where U(zc) = cr. Non-zero ci also ensures that ξ does fall on the real axis, i.e. the
hypergeometric branch line is the analytic counterpart of the critical layer.

Using the differentiation identity for hypergeometric functions, we find that the Ξ
defined in (2.16) are

Ξa(c, k)= k − 1
ha(1+ 2κa)

U∞ − Us

U∞ − c

F

(
αa + 1, βa + 1, 2κa + 2; U∞ − Us

U∞ − c

)
F

(
αa, βa, 2κa + 1; U∞ − Us

U∞ − c

) , (4.8)

Ξw(c, k)= k − 1
hw(1+ 2κw)

Us

c

F

(
αw + 1, βw + 1, 2κw + 2,

Us

c

)
F

(
αw, βw, 2κw + 1,

Us

c

) . (4.9)

The dispersion relation for the double-exponential profile is obtained by substituting
S in (4.2) and the hypergeometric expressions in (4.8) and (4.9) into the boundary
condition (2.15). The eigenrelation c(k) is then obtained by numerical solution of the
dispersion relation (which we accomplished in Mathematica). Typical solutions of the
dispersion relation are shown in figures 2 and 3.

4.2. The unstable modes
Figure 2 shows that there are two different unstable modes. At low wavenumbers there
is a slowly growing prograde mode, familiar as the classical wind-wave generation
mechanism described by Miles (1957, 1962) and Janssen (2004). The growth rate of
this long-wave instability is linearly proportional to ε in (2.18) and is therefore small.
There is also a rapidly growing high-wavenumber retrograde mode resulting in the
amplification of ripples. The growth rates and wavenumbers are so different that to
make both unstable modes visible in figure 2 it is necessary to use a logarithmic
scale. The unstable bands overlap at intermediate wavenumbers, but growth rates are
extremely small in this overlap.

The properties of the retrograde rippling mode are not affected by changing the
asymptotic air speed U∞: all rippling curves in figures 1 and 2 coincide to within the
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FIGURE 2. Three solutions of the dispersion relation (2.15) using the ‘double-exponential’
Ξ in (4.8) and (4.9). The three solutions for c(k) = cr(k) + ici(k) correspond to U∞ = 2, 5
and 8 m s−1. (a) cr(k), normalized by the gravity–capillary speed cgc(k) in (2.19); the three
cases coincide to within the line width. (b) The growth rate kci. The necessary condition for
rippling instability in (4.10) is satisfied with Us = 2cmin. For the high-wavenumber rippling
instability (dashed), the three cases coincide to within the line width. On the other hand, the
growth rate of the low-wavenumber Miles mode (solid) is sensitive to U∞. In this illustration,
the parameters in (4.1) are Us = 2cmin = 46 cm s−1, ha = 1 m and hw = 2/kmin = 0.54 cm.

line width as U∞ varies from 2 to 8 m s−1. Thus the rippling mode can be understood
by neglecting the dynamics of air (see §§ 5 and 6).

Comparison of figure 2 with figure 3 shows that the result of reducing the surface
speed Us from 2cmin to cmin/2, while holding all other parameters fixed, is to eliminate
the rippling instability. This elimination illustrates a main conclusion of Caponi et al.
(1991): activation of the rippling instability requires

cmin < Us, (4.10)

where Us = U(0) is the sea-surface velocity and cmin ≈ 23 cm s−1 is the minimum
phase speed of capillary–gravity waves in still water (see table 2). The rippling mode
of instability results from destabilization of ripples propagating with intrinsic phase
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FIGURE 3. Three solutions of the dispersion relation (2.15) using the ‘double-exponential’
Ξ ’s in (4.8) and (4.9). The three solutions for c(k) = cr(k) + ici(k) correspond to U∞ = 2,
5 and 8 m s−1. (a) cr(k), normalized by cgc(k) in (2.19); the three curves coincide to
within the line width for both pro- and retrograde modes. (b) The growth rate kci. In
this case, with Us = cmin/2, there is no rippling instability. The parameters in (4.1) are
Us = cmin/2= 11.5 cm s−1, ha = 1 m and hw = 2/kmin = 0.54 cm.

speed −cgc(k), i.e. waves which in still water would propagate against the shear flow
in the negative direction (‘retrograde’ modes). If (4.10) is satisfied then retrograde
ripples can be Doppler shifted by the shear flow so that their actual phase velocity is
slightly positive, and can therefore equal the flow speed in the water at a critical level
depth zc < 0 satisfying U(zc)= cr. This is the physical basis of the necessary condition
for rippling instability in (4.10). The slowest ripples – those with wavenumbers close
to kmin – are most vulnerable to Doppler shifting and thus the rippling instability is
centred on kmin. These physical arguments are confirmed by a detailed solution in § 5.

The air–water semicircle theorem proved by Morland & Saffman (1993) shows that
waves with k less than

k∞
def= g

U2∞
(4.11)
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are stable. The wavenumber k∞ is the low-wavenumber cut-off of the Miles instability
and is indicated in figures 2 and 3. The physical basis of this condition is that the
Miles mode results from the destabilization of a long gravity wave propagating with
an intrinsic phase speed +cgc(k) (a ‘prograde’ mode). There is a resonant interaction
between the irrotational wave velocity in the air and a critical level at an altitude
zc > 0 where U(zc)= cr. Waves with k < k∞ travel faster than the wind in (4.1) so that
critical-level resonance is not possible: long and very fast gravity waves with k < k∞
are therefore stable. The Miles instability is discussed in greater detail in § 7.

5. Rippling instability: ε = 0

The cleanest separation of the two modes of instability in figure 2 is based on the
small parameter ε = ρa/(ρa + ρw). In particular, the main properties of the retrograde
rippling mode are unaffected by setting ε to zero. Thus in this section, and in the next,
we focus on the retrograde rippling mode with ε = 0. The solid curves in figure 4
show a survey of ε = 0 solutions of the double-exponential dispersion relation as a
function of the two control parameters

ḡ
def= ghw

U2
s

and γ̄
def= γ

hwU2
s

. (5.1)

With ε = 0, ḡ and γ̄ are the only remaining control parameters characterizing rippling
instability of the exponential velocity profile. Our goal is to understand the main
features revealed by this survey of rippling instability in this two-parameter space.

5.1. The high- and low-wavenumber cut-off wavenumbers of rippling instability: c= 0

Morland et al. (1991) noticed that if c = 0 then there is an elementary solution of the
water Rayleigh equation:

φw(0, k; z)= eqz/hw, (5.2)

where

q(k)
def=
√

1+ κ2
w, (5.3)

with κw = hwk. This c = 0 and ε = 0 solution locates the rippling stability boundary:
the phase speed cr is zero because the current has just managed to arrest the intrinsic
propagation of the −cgc gravity–capillary wave. As Us increases the arrest first occurs
at a critical level located at z = −∞, where both U(z) and cr are zero. As the current
speed increases, the ripple is Doppler shifted so that it travels in the positive direction
cr > 0, and the critical level moves upwards towards z = 0. The growth rate of the
rippling instability increases as the current speed (and vorticity gradient) at the critical
level increases. Thus both cr and ci become positive close to the stability boundary
defined by c= 0.

With the solution in (5.2), Ξw(c, k)= q/hw, and thus the ε = 0 and c= 0 version of
the dispersion relation (2.15) is√

1+ κ2
w − 1− ḡ− γ̄ κ2

w = 0, (5.4)

where ḡ and γ̄ are the control parameters in (5.1).
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FIGURE 4. (Colour online) (a–c) Solid curves show cr(k) determined from numerical
solution of (2.15) with ε = 0 and ḡ = 0.125, 0.25, 0.5 and 1 for (a) γ̄ = 0.001, (b) γ̄ = 0.01,
and (c) γ̄ = 0.1. The dotted curves are the approximation to cr by c−sgc in (6.3). (d–f ) Solid
curves show ci(k) corresponding to the solid curves in (a–c); ḡ = 1 is visible as a slight
thickening of the abscissa in (d,e). Both ḡ= 1 and ḡ= 0.5 are visible as a slight thickening of
the abscissa in (f ). The dotted curves show the approximation to ci(k) obtained by taking the
imaginary part of (6.14).

The two real solution of (5.4) for κw provide the high and low cut-off wavenumbers
of the instability. These ‘neutral’ wavenumbers are therefore

hwk±neut(ḡ, γ̄ )=
1
γ̄

√√√√1
2
− γ̄ − γ̄ ḡ±

√(
1
2
− γ̄

)2

− ḡγ̄ , (5.5)

and the rippling unstable range of wavenumbers is

k−neut(ḡ, γ̄ ) < k < k+neut(ḡ, γ̄ ). (5.6)
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FIGURE 5. (Colour online) (a) The marginal curve, γ̄ = (1 + ḡ − √2ḡ+ ḡ2)/2, is the
stability boundary of the rippling mode in the (ḡ, γ̄ )-parameter plane. (b) The wavenumber of
incipiently unstable ripples, kmarg in (5.8), as a function of γ̄ .

These cut-off wavenumbers are indicated in figure 2(b): k−neut(ḡ, γ̄ ) is the low-
wavenumber cut-off of the rippling instability and k+neut(ḡ, γ̄ ) is the high-wavenumber
cut-off.

5.2. The marginal curve
Equation (5.5) provides an elementary characterization of the rippling unstable region
of the (ḡ, γ̄ )-parameter plane. Specifically, the cut-off wavenumbers k±neut are real if
and only if

γ̄ 6 1
2

[
1+ ḡ−

√
2ḡ+ ḡ2

]
. (5.7)

The inequality above is a necessary and sufficient condition for rippling instability of
the exponential profile with ρa = 0. The marginal curve in the (ḡ, γ̄ )-parameter plane
– the right-hand side of (5.7) – is shown in figure 5(a). On the marginal curve

k+neut = k−neut = h−1
w

√
1

4γ̄ 2
− 1︸ ︷︷ ︸

def= kmarg

. (5.8)

The marginal wavenumber, kmarg, is show as a function of γ̄ in figure 5(b).
Below the marginal curve, in the region characterized by the inequality (5.7),

the wavenumbers k+neut and k−neut are real and distinct, and the flow is unstable. In
the strongly unstable part of the parameter space, far from the marginal curve in
figure 5(a), k−neut � k+neut so that the unstable band of wavenumbers is very wide. For
example, if γ̄ → 0, then expanding (5.5) gives

k−neut = h−1
w

√
ḡ(2+ ḡ)+ O(γ̄ ), (5.9)

k+neut = h−1
w

[
γ̄ −1 − (1+ ḡ)

]+ O(γ̄ ). (5.10)

The expressions above show that the width of the rippling band varies as γ̄ −1 as
γ̄ → 0.
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5.3. Gravity–capillary units
The control parameters ḡ and γ̄ in (5.1) are convenient for the analysis in § 6. But
alternative control parameters, with some advantages in applications, are based on the
wavenumber kmin at which gravity–capillary waves in still water have minimum phase
speed cmin (see table 2). The alternative control parameters are

ĥw
def= hwkmin =

√
ḡ

γ̄
and Ûs

def= Us

cmin
= 1

(4ḡγ̄ )1/4
. (5.11)

In terms of Ûs and ĥw the cut-off wavenumbers in (5.5) are

k±neut = kmin

√
2Û4

s − 2
Û2

s

ĥw

− 1± 2
Û2

s

ĥw

√(
Û2

s ĥw − 1
)2 − ĥ2

w. (5.12)

The necessary and sufficient conditions for instability are that

Ûs > 1 and
1

Û2
s − 1

6 ĥw. (5.13)

The wavenumber on the marginal curve, ĥw = (Û2
s − 1)

−1
, is

kmarg = kmin

√
2Û2

s − 1. (5.14)

Figure 6 shows the marginal curve, and contours of k±neut/kmin, in the (Ûs, ĥw)

parameter plane.
Using Us/cmin and hwkmin as the control parameters has the advantage that one

can see the effects of independently changing the profile parameters Us and hw.
For example, if Us = 2cmin = 0.46 m s−1 then from (5.13), the required depth for
instability is hw = 1/(3kmin) ≈ 0.9 mm. If hwkmin = 0.5 then incipient instability
requires Us =

√
3cmin ≈ 0.4 m s−1. It is gratifying that the exponential model produces

simple analytic relations for the marginal condition.
The right-hand side of (5.14) is always greater than one, so that kmarg > kmin and

incipient instability is strictly within the capillary band. In other words, close to the
marginal curve in figure 6, the unstable band of wavenumbers satisfies

kmin < k−neut < k < k+neut. (5.15)

The ‘capillary sliver’ defined by the inequality above is the shaded region in figure 6.
Within the sliver only capillary waves (with λ < λmin) are unstable. Above and to the
right of the sliver the low-wavenumber cut-off k−neut is a gravity wave and thus the
range of unstable wavenumbers straddles kmin. Thus, according to the linear theory,
a necessary condition for generation of waves longer than λmin is that the control
parameters Ûs and ĥw put the system above the shaded sliver in figure 6.

5.4. Properties of the most unstable mode
Extensive computations using the ε = 0 hypergeometric dispersion relation are
summarized in figure 7 by showing the main properties of the most unstable rippling
mode. Figure 7(a) shows the real part of c, normalized by cmin. Figure 7(b) shows
the growth rate of the most unstable mode. The growth rate is normalized by
kmincmin ≈ 85 s−1, so that the 0.025-contour in figure 7(b) is an e-folding time of about
half a second: because the gravity–capillary time scale (kmincmin)

−1 is short, waves
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FIGURE 6. (Colour online) The marginal curve ĥw = (Û2
s − 1)

−1
and contours of k+neut/kmin

(dashed) and k−neut/kmin (solid) in the (Ûs, ĥ)-plane. The flow is stable below the marginal
curve. In the shaded sliver both k+neut/kmin and k−neut/kmin are greater than one, i.e. the instability
is totally within the capillary band. Note that solid curves corresponding to k−neut/kmin > 1 exist
within the shaded sliver but are not shown.

with rather small non-dimensional growth rates still amplify quickly. The growth rate
increases very rapidly with Ûs, and is less sensitive to variations in ĥw. Figure 7(c)
shows the wavelength of the most unstable wave, normalized by λmin = 17 mm. The
most rapidly growing waves are close to the gravity–capillary transition. Figure 7(d)
shows the ratio ci/cr, which equals the e-folding time of the most unstable wave,
1/(kci), multiplied by the frequency kcr.

5.5. Energy and momentum of unstable ripples
Figure 8 shows the streamfunction and vorticity of an unstable rippling mode. The
streamfunction in figure 8(a) is a slightly distorted version of the familiar irrotational
streamfunction. Although the distortion is slight, the systematic tilt of the streamlines
produces the vital Reynolds stress correlation uw < 0: from the energy equation (3.3),
uw < 0 is required for a wave to extract energy from the shear flow with Uz > 0.
Figure 8(b) shows the vorticity, ζ = ∇2ψ , and the small structure associated with the
critical layer.

Figure 9 shows how the base-state shear flow, Us exp(z/hw), is modified by the
Reynolds stress divergence of the growing wave in figure 8. As indicated by the
argument surrounding (3.18), the below-trough Eulerian mean flow is accelerated at
every depth. However the mean-flow acceleration is fastest within the critical layer
where the disturbance vorticity is largest. This submarine acceleration is balanced by
recoil in the zone above the wave troughs, i.e. by the surface density Js in (3.13).
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FIGURE 7. Properties of the most unstable rippling mode in the (Ûs, ĥw) parameter plane; the

thick curve is the stability boundary ĥw = (Û2
s − 1)

−1
. (a) The real part of the phase speed

scaled with cmin = 0.23 m s−1. (b) Growth rate scaled with kmincmin = 85 s−1. (c) Wavelength
of the most unstable wave scaled by λmin = 0.0170 m. (d) The ratio ci/cr.

5.6. Other wind-drift profiles, and cautionary comments on ‘broken-line’ profiles

Without presenting the details here, we have shown that smooth concave water current
profiles, with the same surface velocity and surface shear, have stability boundaries
that are close to those of the exponential. That is, once the surface velocity and
shear are matched, the marginal curve of the rippling instability in figure 5(a) is not
sensitive to details of the current profile, as long as the profile is smooth.

An important exception is provided by ‘broken-line’ velocity profiles used in many
of the studies in the lower block of table 1, including Stern & Adam (1974). We have
shown by comparison with the exponential profile, that broken-line profiles have very
much greater growth rates than smooth profiles, even when there are so many broken
line segments that the two velocity profiles are visually identical. And in the broken-
line case the band of unstable wavenumbers is very much narrower than that of a
visually identical smooth profile. In the broken-line case, the crucial second derivative
Uzz is a set of δ-functions and is therefore qualitatively different from that of the
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FIGURE 8. (a) The disturbance streamfunction ψ and (b) the vorticity ζ = ∇2ψ of an
unstable mode. The parameters are ḡ = 0.125, γ̄ = 0.01 and hwk = 1.545 (corresponding
to the most rapidly growing wave); zc is the depth of the critical level, i.e. in dimensional
variables cr = Usezc/hw . The plots are normalized to give a maximum value of unity and the
contour interval is 0.1.

smooth profile. In particular, critical-level dynamics is seriously misrepresented. The
differences are so strong that broken-line profiles must be regarded as very unreliable
approximations to smooth profiles.

6. Approximations to the phase speed c= cr + ici of the rippling mode
Continuing with ε = 0, we turn now to the growth rate of the rippling mode and

develop an approximation to the complex phase speed c= cr+ ici. (This approximation
is shown as the dotted curves in figure 4.) Our approach is close to the variational
approximation of Miles (2001), which is motivated by the neutral solution of Morland
et al. (1991) in (5.2). Thus we begin by considering a simple approximation to the
exact Ξw(c, k) in (4.9):

Ξw(c, k)≈ q(k)h−1
w , (6.1)

where we recall that q(k) =
√

1+ (hwk)2. We take the neutral solution, φ =
exp(qz/hw), as a leading-order, non-irrotational approximate solution of Rayleigh’s
equation, even if c 6= 0.
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FIGURE 9. (Colour online) (a) The Reynolds stress divergence of the unstable wave in
figure 8. (b) Modification of the base-state flow U(z) = Us exp(z/hw) by the Reynolds
stresses in (a). To qualitatively illustrate the modification of the mean flow we assign a
small amplitude to ζ .

6.1. A first approximation to the dispersion relation

With the approximate Ξw(c, k) in (6.1), the ε = 0 version of the surface boundary
condition (2.15) is a quadratic equation for c, with solutions

c= c−sgc(k) and c= c+sgc(k), (6.2)

where the ‘sheared gravity–capillary’ wave speeds are

c±sgc(k)
def=Us

[
1− 1

2q
±
√

ḡ+ γ̄ k2

q
+ 1

4q2

]
, (6.3)

where ḡ and γ̄ are non-dimensional parameters defined in (5.1). The dotted curves in
figure 4(a–c) show that c−sgc(k) is close to cr(k) of the rippling mode.

The designation of the dispersion relation (6.3) as ‘gravity–capillary wave’ comes
from examination of the high-wavenumber limit of (6.3):

c±sgc(k)→ Us ±
{√

g/k if γ = 0√
γ k if γ /(hwU2

s ) > 0
as k→∞. (6.4)

In (6.4) the dispersion relation c= c±sgc(k) is recognizable as the Doppler-shifted phase
speed of gravity–capillary waves. The disturbance with speed c+sgc is always travelling
in the positive direction faster than Us. Thus there can be no critical layer interaction
between the fast c+sgc-wave and the current in the water. Instead, the c+sgc-wave has a
critical layer in the fast flowing air. But because are considering ρa = 0, this critical
level is inconsequential. In fact the c+sgc-wave is destabilized with a growth rate linearly
proportional to ε (see § 7 for further discussion of this Miles mode). On the other
hand, we now show that the slow c−sgc-wave is destabilized by critical-level resonance
with the current in the water.
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6.2. Doppler shifting and critical-layer interactions
The sheared gravity–capillary waves can satisfy the condition

0< c−sgc(k) < Us, (6.5)

which is an analogue of the necessary condition for rippling instability in (4.10).
Thus a critical-layer interaction between a c−sgc-wave and the water current is possible.
Interaction between a c−sgc-wave and a critical layer in the water is the physical basis of
the approximation developed in this section.

This argument also indicates that surface tension plays a stabilizing role at high
wavenumbers: short capillary waves travel quickly so that Doppler shifting cannot
produce the necessary condition for instability in (6.5): this is evident in figure 4(c)
where cr = 0 at the high-wavenumber cut-off of the rippling instability. The high-
wavenumber cut-off is a result of fast c−sgc-capillaries overcoming the Doppler shift and
propagating in their intrinsic (i.e. negative) direction against the base-state current.

6.3. Why is the first approximation accurate even if cr/Us = O(1)?
The success of the approximation cr(k) ≈ c−sgc(k) in figure 4(a–c) encourages
development of an improvement to the approximation (6.1) that delivers the imaginary
part of the phase speed, i.e. the growth rate of the instability. But before undertaking
this, one might ask why is the initial approximation (6.1) so effective? The c = 0
solution of Morland et al. (1991) in (5.2) is used to motivate (6.1), yet in figure 4(a,b)
we see that cr(k) ≈ c−sgc(k) works well even as cr → Us. To better understand this
triumph of perturbation theory, we write the non-dimensional water Rayleigh equation
as

φz̄z̄ − q2φ = c̄φ

ez̄ − c̄
(6.6)

where z̄
def= z/hw and c̄

def= c/Us. Outside of the critical layer, the right-hand side of (6.6)
is small relative to the left if c̄ is small, or if q2 is large. Examining figure 4, we see
that when c̄r = O(1), q2 is large. In other words, the condition determining the validity
of (6.1) is

|c̄|
q2
� 1, (6.7)

and this captures the entire unstable range.

6.4. An improved approximation to the dispersion relation

To improve (6.1), multiply (6.6) by eqz̄ and integrate from z̄=−∞ to 0. One finds

φz̄(0)− qφ(0)= c̄
∫ 0

−∞

φ(z̄)eqz̄

ez̄ − c̄
dz̄. (6.8)

Now replace φ(z̄) on the right of (6.8) by φ(0) exp(qz̄) to obtain

Ξw(k, c)≈ q (1+Ω) , (6.9)

where

Ω(c, k)
def= c̄

q

∫ 1

0

ξ 2q−1

ξ − c̄
dξ (6.10)
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is related to the dispersion function introduced by Miles (2001). Substituting (6.9)
into the boundary condition (2.15) gives the improved dispersion relation, which in
dimensional variables is(

c− c+sgc(k)
) (

c− c−sgc(k)
)≈−(c− Us)

2Ω(c, k), (6.11)

with the sheared gravity–capillary speeds, c±sgc(k), given in (6.3).
Unfortunately Ω(c, k) in (6.10) cannot be evaluated in elementary terms: Ω(c, k) is

a hypergeometric function. To obtain a simple approximation to the imaginary part of
c, we use cr ≈ c−sgc to further simplify (6.10) as

1
ξ − (c̄r + ic̄i)

≈ PV
U0

Usξ − c−sgc

+ iπU0δ
(
Usξ − c−sgc

)
, (6.12)

where PV is ‘principal value’. The Plemelj formula above requires cr ≈ c−sgc and
0< ci� cr. Thus (6.10) becomes

Ω ≈ c−sgc

q

(
PV
∫ 1

0

ξ 2q−1

Usξ − c−sgc

dξ + iπ
Us

(
c−sgc

Us

)2q−1
)
. (6.13)

With the approximations made above, the factor c − c+sgc on the left of (6.11) can be
approximated by c−sgc − c+sgc, and thus finally

c≈ c−sgc +
(c−sgc − Us)

2

c+sgc − c−sgc

c−sgc

q

(
PV
∫ 1

0

ξ 2q−1

Usξ − c−sgc

dξ + iπ
Us

(
c−sgc

Us

)2q−1
)
. (6.14)

The imaginary part of (6.14) is elementary and is shown as the dotted curves in
figure 4(d–f ). This provides a tolerable approximation to ci computed from the exact
hypergeometric dispersion relation (2.15).

6.5. Discussion of the approximate dispersion relation
The approximation (6.14) is most accurate when cr and ci are both much less than
Us, and when ci� cr. These conditions are met on, and close to, the marginal curve
in figure 5(a) and in this neighbourhood the approximation (6.14) is asymptotically
valid. Numerical solution of the exact dispersion relation is most difficult where ci is
small and thus (6.14) is a useful complement to the hypergeometric solution. More
importantly, the approximation (6.14) provides physical insight into the nature of this
instability as an interaction between the sheared capillary–gravity wave c−sgc and a
subsurface critical layer. The approximation identifies waves near the gravity–capillary
transition as most likely to amplify via this rippling instability: disturbances with
wavelength close to λmin have the smallest phase speeds and are thus most easily
Doppler shifted so that the resonance condition (6.5) is satisfied.

7. The Miles instability
7.1. Expansion in ε� 1

We now show that the main properties of the prograde Miles mode in figures 2 and 3
follow from a regular expansion in powers of ε = ρa/(ρa + ρw). Begin by observing
that the dispersion relation (2.15) can be written as

D0(c, k)+ εD1(c, k)= 0, (7.1)
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where

D0(c, k)
def= Ξw(c, k)(c− Us)

2 + S0 (c− Us)− g− γ k2, (7.2)

D1(c, k)
def= [Ξa(c, k)−Ξw(c, k)] (c− Us)

2 + S1 (c− Us)+ 2g. (7.3)

In the above

S0 = Uz(0−) and S1 =−Uz(0−)− Uz(0+). (7.4)

An expansion of the solution, c(k, ε), as a regular perturbation series,

c(k, ε)= c0(k)+ εc1(k)+ · · · , (7.5)

produces the leading-order balance

D0 (c0(k), k)= 0. (7.6)

The problem (7.6) involves only the flow in the water. For the Miles mode, the
relevant solution is the prograde mode, corresponding to the solid curve in figures
2(a) and 3(a). The phase speed of the prograde mode, c0(k), is always larger than
the flow in the water: c0(k) > Uw(z). Thus there is no critical level in the water, and
therefore no instability at leading order, i.e. the relevant solution of (7.6) is a forward
Doppler-shifted capillary–gravity wave.

At O(ε) the expansion of the dispersion relation (7.1) results in

c1 =− D1(c0, k)

∂cD0(c0, k)
. (7.7)

The instability is expressed via the imaginary part of c1, e.g. as in (7.9) below. Using
the hypergeometric solution of the double-exponential profile (4.1) we have verified
the accuracy of the approximation (7.7). The approximate growth rate, that is εk Im c1,
obtained from (7.7) is indistinguishable from the curves in figures 2(b) and 3(b).
Figure 10 shows a further comparison in which the surface velocity Us is varied with
U∞ fixed. Again, the approximation (7.7) is accurate to within the line width.

The Miles instability results from the air critical level at an altitude zc > 0
determined by

c0(k)= U(zc). (7.8)

The small growth rate of the prograde mode is obtained by taking the imaginary part
of (7.7), which comes only from numerator. Using results from the Appendix, this
imaginary part is

Im D1 ≈ (c0 − Us)
2π

U′′c
|U′c|
|φc|2
|φs|2 , (7.9)

where U′c = Uz(zc), U′′c = Uzz(zc), φc = φ(zc) and φs = φ(0).

7.2. The case Us = 0

The simplest illustration is the special case originally considered by Miles: Us = 0 and
γ = 0. Then Ξw(c, k)= k and

D0(c, k)= kc2 − g. (7.10)
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FIGURE 10. The three curves indicated in the legend, with different values of surface
velocity Us, show the growth rate of the Miles mode computed from the complete dispersion
relation (2.15) and also from (7.7) using analytic differentiation of the hypergeometric
functions; the curves coincide to within the line width. Other parameters are U∞ = 5 m s−1,
ha = 1 m and hw = 2/kmin = 0.54 cm. The thin curve with the dots superposed is the Us = 0
growth rate computed from the approximation (7.15); the departure at large k is because
(7.15) does not account for capillarity.

The leading-order solution is therefore c0(k) =√g/k and the results above imply that
the growth rate, ωi = εk Im c1, is

ωi(k)=−ε
√

g

k

π

2
U′′c
|U′c|
|φc|2
|φs|2 . (7.11)

This is Miles’ classic result for the growth rate of surface gravity waves. Miles (1957)
proceeded to estimate the factor (|φc|/|φs|)2 in (7.11) using an ad hoc approximation.
However Morland & Saffman (1993) showed that this further simplification of (7.11)
results in an unreliable estimate of the growth rate.

In the particular case of the exponential velocity profile in (4.1), the critical-level
condition (7.8) implies that

e−zc/ha = 1− 1
U∞

√
g

k
= 1−

√
m

κa
, (7.12)

where

m
def= gha

U2∞
= hak∞ (7.13)

is the main control parameter of the Miles mode. Our goal is to characterize the
growth rate of the Miles instability as a function of the non-dimensional wavenumber
κa = hak and the control parameter m.

We use the hypergeometric solution in (4.3) to evaluate the final factor in (7.11) and
write the growth rate in (7.11) as

ha ωi

εU∞
= σ(κa,m), (7.14)
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FIGURE 11. (a) The non-dimensional growth rate σ(κa,m) in (7.15) as function of κa at
four values of m indicated on the curves. The low-wavenumber cut-off is at κa = m. (b) A
comparison of the small-m approximation (7.16) (the dashed curve) with the growth rate
computed from (7.15) (the solid curve) at m= 0.001.

where the non-dimensional function σ(κa,m) is

σ(κa,m)= π
2

√
m

κa

(
1−

√
m

κa

)2κa
[

F (αa, βa, 2κa + 1; 1)∣∣F (αa, βa, 2κa + 1; ezc/ha
)∣∣
]2

. (7.15)

The function σ(κa,m) is shown in figure 11(a) for selected values of m. In figure 11(a)
the low-wavenumber cutoff is at κa = m (equivalent to k = k∞ in dimensional
variables). There is no high-wavenumber cut-off: as κa→∞ the function σ in (7.15)
is simplified asymptotically by replacing the final squared factor by one. Figure 12
shows the maximum growth rate, and the wavenumber of maximum growth computed
from (7.15).

7.3. The growth rate of the Miles instability as m→ 0

Because of the factor ε � 1 on the right of (7.14), the growth rate of the Miles
instability for open-ocean waves (with lengths greater than a metre) is small, unless
m� 1 and the base-state shear, U∞/ha, is large. For example, for the most unstable
case shown in figures 2 and 3, m = 0.15 and ha/U∞ = 0.125 s, yet the e-folding time
is in excess of 15 min. And in figure 10, with m = 0.39 and ha/U∞ = 0.2 s, the
e-folding time is more than 3 h. Thus it is of interest to record an m→ 0 asymptotic
simplification of (7.15):

σ(κa,m)≈ 1
2πm1/3

(2πm2/3/3)2

(2πm2/3/3)2 + (κa − κmaxa )2
, (7.16)
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FIGURE 12. (a) The most unstable wavenumber as a function of m and (b) the maximum
non-dimensional growth rate, σmax(m) = σ(hakmax,m). The dashed curves are the small-m
approximations in (7.16) and (7.17).

where the wavenumber of maximum growth is

κmaxa
def=m1/3 + m2/3

(
1
3
+ 2

9
ln

1
m

)
+ O

(
m ln

1
m

)
. (7.17)

We suppress the details of the hypergeometric asymptotics behind these formulae.
The main features of (7.16) and (7.17) are that for very small m the most

unstable wavenumber is of order m1/3h−1
a and the maximum growth rate is of order

εU∞/(m1/3ha). Figure 11(b) compares the approximation (7.16) to the growth rate
computed from (7.15). The approximation (7.16) is accurate only for very small values
of m, and then only for wavenumbers close to the wavenumber of maximum growth,
i.e. κa values within O(m2/3) of κmaxa .

The results (7.16) and (7.17) are also subject to the restriction noted by Morland &
Saffman (1993) that m > ε (or that the limit ε→ 0 is taken before m→ 0). If instead
m→ 0, with fixed ε, then the problem limits to Kelvin–Helmholtz instability and the
approximation (7.5) is not valid.
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FIGURE 13. (a) The streamfunction in the air of the most rapidly growing Miles mode and
(b) the vorticity in the vicinity of the critical level. This illustration shows the most rapidly
growing mode on a shear flow with Us = 5 m s−1 and ha = 0.255 m (and therefore m = 0.1).
The wavelength is 1.70 m, and the e-folding time, (kci)

−1, is 244 s. The phase speed is
1.63 m s−1 and the critical-level height is zc = 0.10 m.

7.4. The unstable Miles mode

Figure 13 shows an unstable Miles mode in the air (the flow in the water is
indistinguishable from an irrotational gravity wave). In figure 13(a) the critical level
is evident as the region of rapid variation of the streamfunction. The critical layer is
shown in an expanded view of the vorticity field in figure 13(b). The Reynolds stress
of the disturbance vanishes above the critical level, i.e. the streamlines in figure 13(a)
have the requisite tilt to produce a non-zero Reynolds correlation only below the
critical level and above the wave crests.

Following the discussion of mean flow acceleration in §§ 3.2 and 3.3, the flow in
the air is decelerated in the neighbourhood of the critical level and the momentum
extracted from this critical layer is transferred into the zone below the wave crests
and above the troughs. The deceleration in the critical layer is evident from the
pseudomomentum formula (3.18): note that in the air Uzz < 0 at all heights, and
therefore the induced mean flow, U (z, t), is necessarily negative. The momentum lost
from the critical layer is balanced by the crest–trough momentum Js in (3.10) and
(3.12), i.e. the waves are ‘pushed’ as the air slows down. Notice that there is no
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mean-flow acceleration in the water below the wave troughs: beneath the troughs the
flow is irrotational and the Reynolds stress is therefore zero.

In terms of energetics, the first term in (3.22) is negligible because ζ = 0 in the
water. Thus the dominant energy balance of the unstable Miles mode is

(ρa + ρw)UsJs + Ẽ = 1
2

∫ ∞
0
ρa
ζ 2U

|Uzz| dz. (7.18)

The terms on the left of (7.18) are the wave energy, Ẽ, and the energy of the second-
order mean flow in the crest–trough region. Both these left-hand terms are positive,
and are balanced by the term on the right, which can be regarded as the atmospheric
reservoir of base-state energy that is being tapped by the growing gravity wave.

8. Conclusion and discussion
We have a presented a unified discussion of the unstable modes on an air–water

coupled shear flow. There are two types of unstable mode with very different
properties: unstable ripples and the Miles mode. The wave–mean interaction of the
two different unstable modes is explained in § 3 and provides a useful classification of
the two instabilities.

Our main example has been the double-exponential velocity profile. At the technical
level, it is now relatively easy to compute hypergeometric functions. Thus the double-
exponential profile in (4.1), with its hypergeometric dispersion relation, might now be
regarded as a canonical example. The double-exponential serves as an alternative to
broken-line velocity profiles, which misrepresent critical-level dynamics and thus badly
misjudge growth rates and the range of unstable wavenumbers.

A necessary condition for rippling instability is that the surface velocity Us is
faster than cmin = 23 cm s−1, and once this condition is exceeded ripple growth is fast
– see figures 2 and 7(b). Thus the rippling instability, if it is activated, will usually
be the fastest growing mode. Detailed solution of the double-exponential stability
problem delineates the stability boundary in the two-dimensional parameter space (as
in figures 5 and 6), and provides the growth rate of the unstable ripples.

The growth of ripples results in an acceleration of the Eulerian mean current
beneath wave troughs which is balanced by recoil in the above-trough region. The
subsurface acceleration is greatest at the depth of the critical level. One might
speculate that this mechanism may be a link in the chain of processes that move
momentum out of an initial viscous wind-drift layer and into the deeper ocean. In this
respect, Caponi et al. (1991) say of the rippling instability: ‘a motivation for this work
was the attempt to understand and explain simply some aspects of the generation of
waves by wind, in particular the time for the appearance of relatively short waves and
their phase speeds, when wind starts blowing over a flat calm, we have so far been
unable to find concrete experimental data to support the prospect that this mechanism
can play a primary role in wind-wave generation’.

But since 1991 experimental data have appeared and are not supportive of the
speculations in the previous paragraph. For example, Melville, Shear & Veron (1998)
show that the initial depth of the shear-layer profile increases as

√
νt, with ν the

kinematic viscosity of water. This viscous process is first interrupted by the appearance
of gravity–capillary waves with lengths of about one or two centimetres, and these
ripples amplify very much faster than the

√
νt deepening of the wind-drift layer.

Langmuir circulations subsequently appear as a secondary instability of the surface
wave field (Veron & Melville 2001). The

√
νt-shear profile – modelled by Melville
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et al. (1998) using the error function and its relatives – is very similar to the
exponential profile used here. However, in the laboratory, ripples first appear at surface
speeds significantly less than 23 cm s−1, e.g. in Veron & Melville (2001) ripples
appear at a surface speed of ∼16 cm s−1. We have no explanation for this significant
difference between the laboratory and linear stability theory. This is, of course, not the
only instance in which linear stability theory fails. But here the failure is particularly
painful because of the compelling significance of cmin for the critical-layer problem.

It seems that the necessary condition for rippling, Us > cmin, can be satisfied only
in rather extreme conditions, such as the high-speed liquid jet realized experimentally
by Itoh et al. (2007) or in the wake of a hydrofoil (Dimas & Triantafyllou 1994;
Longuet-Higgins 1998). For ocean waves, our current understanding of generation is
limited to the slowly growing Miles instability, which has been observed in the open
ocean (Hristov et al. 2003). There is no comparable theory for the cat’s paw ripples
which soon form after a breeze starts to blow across a smooth flat sea surface.
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Appendix. Properties of Ξa(c, k) and Ξw(c, k)
Useful general expressions for Ξa and Ξw in (2.16) are obtained by multiplying the

Rayleigh equation by φ∗(z) and integrating over the domain. Thus one finds that

Ξa(c, k)=
∫ ∞

0
|φz|2 +

(
k2 + Uzz

U − c

)
|φ|2 dz/|φs|2, (A 1)

and

Ξw(c, k)=
∫ 0

−∞
|φz|2 +

(
k2 + Uzz

U − c

)
|φ|2 dz/|φs|2, (A 2)

where φs
def= φ(0).

In § 7 we need the imaginary part of Ξa(c, k) in the case where ci � cr. In this
event the denominator U(z)− c in (A 1) results in a near-singularity at the critical level
zc defined via (7.8). A useful formula is obtained by taking the imaginary part of (A 1)
and using

lim
ci↓0

ciUzz

(U − cr)
2 + c2

i

= π U′c
|U′c|

δ(z− zc), (A 3)

where U′c
def=Uz(zc) and U′′c

def=Uzz(zc). Taking the imaginary part of (A 1) and using
(A 3) we have

lim
ci↓0

ImΞa(c, k)= π U′′c
|U′c|
|φc|2
|φs|2 , (A 4)

where φc
def= φ(zc).
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