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Abstract

We investigate conditions in order to decide whether a given sequence of real numbers
represents expected maxima or expected ranges. The main result provides a novel
necessary and sufficient condition, relating an expected maxima sequence to a translation
of a Bernstein function through its Lévy–Khintchine representation.

Keywords: Expected maxima; expected range; Bernstein function; Lévy–Khintchine
representation; order statistics

2010 Mathematics Subject Classification: Primary 62G30; 60E05
Secondary 44A60

1. Introduction

Let X be an integrable random variable (RV) and suppose that X1 : k ≤ · · · ≤ Xk : k are the
order statistics arising from k independent copies ofX. Based solely on the expected values of
order statistics,

μi : k = EXi : k, i = 1, 2, . . . , k, k = 1, 2, . . . ,

Hoeffding (1953) constructed a sequence of RVs Xk that converge weakly to X, and thus,
characterized the distribution function (DF) F of X through the triangular array μi : k . Since
each μi : k is a linear function of μi : i , 1 ≤ i ≤ k (see Arnold et al. (1992, p. 112) or David
and Nagaraja (2003, p. 45)), it immediately follows that the sequence {μk}∞k=1 of the expected
maxima μk = μk : k uniquely determines the DF. Hill and Spruill (1994), using a theorem of
Müntz (1914), improved this result by showing that F is characterized by any subsequence
{μk(j)}∞j=1 with

∑∞
j=1 1/k(j) = ∞.

Moreover, Hill and Spruill (1994) proved the following continuity result.

Theorem 1.1. Let {Xn}∞n=1 be a sequence of integrable RVs, {μk}∞k=1 a sequence of real
numbers, and writeμk(Xn) for the expected maxima of k independent and identically distributed
(i.i.d.) copies of Xn. If μk(Xn) → μk as n → ∞ for all k ≥ 1 then the following are
equivalent:

(i) there exists an integrable RV X such that Xn
w−→X as n → ∞ (‘

w−→’ denotes weak
convergence) and μk(X) = μk for all k ≥ 1;

(ii) μk = o(k) and
∑k
j=1(−1)j

(
k
j

)
μj = o(k) as k → ∞.

To conclude weak convergence based on this result, it is helpful to recognize whether a given
sequence {μk}∞k=1 represents the expected maxima of some RV. This question received its own
interest, going back to Kadane (1971), (1974), Mallows (1973), Huang (1998), and Kolodynski
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(2000). In the sequel, a sequence that represents expected maxima of some RV will be called
the expected maxima sequence (EMS). Kadane (1974) proved that a necessary and sufficient
condition for the EMS is that the sequence {μk+2 − μk+1}∞k=0 is the moment sequence of a
finite measure in the open interval (0, 1); i.e. there exists a finite measure τ in [0, 1] such that

τ({0}) = τ({1}) = 0 and μn+2 − μn+1 =
∫

[0,1]
un dτ(u), n = 0, 1, . . . . (1.1)

According to the well known characterization by Hausdorff (1921), this is equivalent to

(−1)s�s(μk+2 − μk+1) ≥ 0, s ≥ 0, k ≥ 0,

(see Huang (1998)), where ‘�’ is the forward difference operator (�0αk = αk,�
1αk = �αk =

αk+1−αk,�s+1 = ��s), plus conditions on the sequenceμk that guarantee τ({0}) = τ({1}) =
0. Kolodynski (2000) completed Huang’s result, proving that the boundary conditions on the
measure τ are equivalent to μk = o(k) and

∑k
j=1(−1)j

(
k
j

)
μj = o(k) as k → ∞. Hence,

another complete characterization of EMSs is as follows (see Kolodynski (2000)).

Theorem 1.2. A sequence {μk}∞k=1 represents the expected maxima of a nondegenerate inte-
grable RV if and only if the following three conditions are satisfied:

(i) (−1)s+1�sμk > 0 for all s ≥ 1 and k ≥ 1;

(ii) μk = o(k) as k → ∞;

(iii)
∑k
j=1(−1)j

(
k
j

)
μj = o(k) as k → ∞.

The aim of this paper is to shed some light on these necessary and sufficient conditions,
noting that it is rather difficult to check either Kadane’s condition (1.1) or Theorem 1.2(i)–(iii)
in practical situations; we thus provide a much easier sufficient condition (of a different nature)
in Corollary 3.3. In Section 2 we present an alternative proof of Theorem 1.2; the interest in
this proof lies in its constructive part (see Remark 2.1(ii)).

Section 3 contains the main results, Theorems 3.1 and 3.2, with illustrative examples
indicating their usefulness. The main result of Theorem 3.1 characterizes the EMSs using
a novel method that relates any such sequence to a translation of a suitable Bernstein function
through its Lévy–Khintchine representation. Finally, in Section 4 we provide similar results
concerning sequences of expected ranges. Several examples are given.

2. A probabilistic proof of Theorem 1.2

For completeness of the presentation, we state a probabilistic proof that only uses the result
from Hill and Spruill (see Theorem 1.1, above) plus the Hoeffding construction; thus, we do
not invoke results from the moment problem.

Proof of Theorem 1.2. Assume first that μk = EXk : k = μk(X) for some integrable and
nondegenerate RV X with DF F . Then we have

μk =
∫ ∞

−∞
[1(x > 0)− Fk(x)] dx

(1 denotes an indicator function), and, thus, (−1)s+1�sμk = ∫ ∞
−∞ Fk(x)(1 − F(x))s dx > 0.

Also,
μk

k
=

∫ 1

0
uk−1F−1(u) du,
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where F−1(u) = inf{x : F(x) ≥ u}, 0 < u < 1, is the left-continuous inverse of F . Thus, by
dominated convergence, we conclude that limk→∞ μk/k = 0. Similarly,

lim
k→∞

∫ 1

0
(1 − u)k−1F−1(u) du = 0,

and it is easily seen that
∫ 1

0 (1 − u)k−1F−1(u) du = −(1/k)∑k
j=1(−1)j

(
k
j

)
μj .

Conversely, assume that (i)–(iii) are satisfied and define the numbers

βi,n = n!
(i − 1)! (n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

i + j
μi+j , 1 ≤ i ≤ n, n ≥ 1. (2.1)

It is easily checked that, for every n ≥ 2 and 1 ≤ i ≤ n− 1,

βi+1,n − βi,n =
(
n

i

)
(−1)n−i+1�n−iμi > 0.

Therefore, we can define the sequence of discrete uniform RVs Xn by

P(Xn = βi,n) = 1

n
, 1 ≤ i ≤ n,

noting that the support of Xn is the set {β1,n, . . . , βn,n} with β1,n < β2,n < · · · < βn,n. Fix
now k ≥ 1 and set Zn,k = max{Xn,1, . . . , Xn,k}, where Xn,1, . . . , Xn,k are i.i.d. copies of Xn.
It is clear that P(Zn,k = βi,n) = (i/n)k − ((i − 1)/n)k . Thus,

μk(Xn) = EZn,k

=
n∑
i=1

βi,n

[(
i

n

)k
−

(
i − 1

n

)k]

=
n∑
i=1

[(
i

n

)k
−

(
i − 1

n

)k]
n!

(i − 1)! (n− i)!
n−i∑
j=0

(
n− i

j

)
(−1)j

i + j
μi+j .

Substituting s = i + j so that s ∈ {1, . . . , n} and j = s − i, we obtain

μk(Xn) =
n∑
s=1

(
n

s

)
μs

nk

s∑
i=1

(−1)s−i
(
s − 1

i − 1

)
[ik − (i − 1)k]

=
n∑
s=1

(
n

s

)
μs

nk

s−1∑
i=0

(−1)s−1−i
(
s − 1

i

)
[(i + 1)k − ik]

=
n∑
s=1

(
n

s

)
μs

nk

k−1∑
m=0

(
k

m

){s−1∑
i=0

(−1)s−1−i
(
s − 1

i

)
im

}
,

where the term im should be treated as 1 if i = m = 0.
The expression in the curly brackets is a multiple of a Stirling number of the second kind;

see Charalambides (2002, Theorem 8.4 and p. 164). Despite this, we can assign a simple
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probabilistic meaning to the sum, showing that it vanishes whenever 1 ≤ m < s − 1. Indeed,
define

S(s,m) :=
s−1∑
i=0

(−1)s−1−i
(
s − 1

i

)
im,

and consider m distinct balls and s − 1 distinct cells (s ≥ 2,m ≥ 1). If we put the balls into
the cells at random, then the probability that every cell is occupied by at least one ball is given
by the inclusion-exclusion principle:

p(s,m) := P(every cell contains at least one ball) =
s−1∑
i=0

(−1)i
(
s − 1

i

)(
s − 1 − i

s − 1

)m
.

Hence,

p(s,m) = 1

(s − 1)m

s−1∑
i=0

(−1)s−1−i
(
s − 1

i

)
im = 1

(s − 1)m
S(s,m).

Since the probability p(s,m) is obviously zero whenever 1 ≤ m < s − 1, we conclude that
S(s,m) = 0 for s ≥ 3 and m = 1, . . . , s − 2. In other words, and since S(s, 0) = 0 for
s ≥ 2, we can write S(s,m) = S(s,m)1(s ≤ m + 1), m ≥ 0, s ≥ 2. Moreover, since
p(s, s − 1) = (s − 1)!/(s − 1)s−1 (for s ≥ 2), and S(1, 0) = 1 by convention, we also have

S(s, s − 1) = (s − 1)! and S(s, 0) = 1(s = 1), s ≥ 1.

Therefore,
S(s,m) = S(s,m)1(s ≤ m+ 1), m ≥ 0, s ≥ 1.

Using this observation, we see that, for n ≥ k,

μk(Xn) =
n∑
s=1

( k−1∑
m=0

(
k

m

)
S(s,m)1(s ≤ m+ 1)

)(
n

s

)
μs

nk

=
k∑
s=1

( k−1∑
m=s−1

(
k

m

)
S(s,m)

)(
n

s

)
μs

nk
,

since, for s > k, we have 1(s ≤ m+ 1) = 0 for all m = 0, . . . , k − 1. Hence,

lim
n→∞μk(Xn) =

k∑
s=1

( k−1∑
m=s−1

(
k

m

)
S(s,m)

)
lim
n→∞

(
n

s

)
μs

nk
.

Clearly, limn→∞
(
n
s

)
μs/n

k = 0 for s < k. Thus, only the last term (s = k) survives, yielding

lim
n→∞μk(Xn) =

(
k

k − 1

)
S(k, k − 1) lim

n→∞

(
n

k

)
μk

nk
= kS(k, k − 1)

μk

k! = μk.

Since μk(Xn) → μk as n → ∞ for all k ≥ 1 and, by assumption, (ii) and (iii) are satisfied, it
follows from Theorem 1.1 that there exists an integrableX such thatXn

w−→X and μk(X) = μk
for all k, completing the proof. �
Remark 2.1. (i) The construction used in the proof follows the line of Hoeffding (1953); the
difference here is that the numbers βi,n in (2.1) are not assumed to be expectations of (some)
order statistics.
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(ii) The proof shows that, under (i), we can always construct a sequenceXn such thatμk(Xn) →
μk for all k ≥ 1. However, without (ii) and (iii) it is possible that Xn

w−→ Y with μk(Y ) �= μk;
see the examples given in Kolodynski (2000) and in Hill and Spruill (1994).

Example 2.1. Let μk = k − 1/(k + 1). Then the values mk = μk+2 − μk+1 = 1 + 1/((k +
2)(k+3)) correspond to the moments of a finite measure in the interval [0, 1]. More specifically,
one can verify thatmk = 7

6EY k , where FY = 6
7F1 + 1

7F2 with F1 being the degenerate DF at 1
(the Dirac measure) and F2 is the DF of a beta(2, 2) RV with density f2(y) = 6y(1 − y),
0 < y < 1. Also, a direct calculation using Newton’s formula shows that, for k ≥ 0 and s ≥ 1,

s∑
j=0

(−1)j+1
(
s

j

)(
k + j − 1

k + j + 1

)

= 0 + s

s−1∑
j=0

(−1)j
(
s − 1

j

)
+

s∑
j=0

(−1)j
(
s

j

) ∫ 1

0
xk+j dx

= s1(s = 1)+
∫ 1

0
xk(1 − x)s dx.

Using the above calculation, it is seen that

(−1)s+1�sμk =
s∑
j=0

(−1)j+1
(
s

j

)
μk+j = 1(s = 1)+ k! s!

(k + s + 1)! > 0, k ≥ 1, s ≥ 1,

and
∑k
j=1(−1)j

(
k
j

)
μj = k/(k + 1) − 1(k = 1). Thus, μk satisfies (i) and (iii), but it is

not an EMS since it fails to satisfy (ii). After some algebra it can be seen that the numbers
βi,n in (2.1) are given by βi,n = i/(n + 1) − 1 + n1(i = n) and the sequence of discrete
uniform RVs Xn, constructed in the proof, converges weakly to a uniform(−1, 0) RV X with
μk(X) = −1/(k + 1); thus, as n → ∞, μk(Xn) → μk for all k ≥ 1 (because (i) is satisfied;
see Remark 2.1(ii)), Xn

w−→X and μk(X) �= μk for all k. A similar calculation reveals that the
sequence μ̃k = k/(k + 1)− 1(k = 1) = 1 − 1/(k + 1)− 1(k = 1) satisfies

(−1)s+1�sμ̃k = 1(k = 1)+ k! s!
(k + s + 1)! ,

k∑
j=1

(−1)j
(
k

j

)
μ̃j = k − 1

k + 1
, k ≥ 1, s ≥ 1.

Therefore, (i) and (ii) hold but (iii) fails for μ̃k . Now, the corresponding RVsXn are uniformly
distributed over {i/(n + 1) − n1(i = 1)}ni=1 and, as n → ∞, μk(Xn) → μ̃k for all k ≥ 1,
Xn

w−→ X which is uniform(0, 1) and, of course, μk(X) = k/(k+ 1) �= μ̃k only for k = 1; see
the example in Hill and Spruill (1994. Erratum). Note that μ̃k and μk are dual sequences in
the sense that if μk were the EMS for some RV X then μ̃k would be the EMS for −X and vice
versa; see Kolodynski (2000, p. 297).

3. Necessary and sufficient conditions via integral forms

Although the problem of characterizing sequences that represent expected maxima is com-
pletely solved by Theorem 1.2 (or (1.1)), it is usually a difficult task to check conditions (i)–(iii)
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(equivalently, to verify the existence of τ in (1.1)) for a given sequence, e.g. μk = √
k or μk =

log k. In this section we seek a different kind of necessary and sufficient condition, involving the
notion of integral forms, according to the following definition (see also Definition 3.2, below).

Definition 3.1. We say that a function g : [1,∞) → R admits a generalized integral form if
there exists a finite (positive) measure μ in (0,∞), and measurable functions h and s, with
h ≥ 0, such that ∫

(0,∞)

h(y)e−y(1 − e−y) dμ(y) < ∞,

g(x) =
∫
(0,∞)

h(y)(s(y)− e−xy) dμ(y), x ≥ 1.
(3.1)

We shall denote by G the class of all such functions and by G∗ the subset of G that contains all
nonconstant functions g ∈ G; (3.1) will be denoted by g = Gs(h; μ). In the particular case
where h(y) = h0(y), with

h0(y) = ey

1 − e−y , 0 < y < ∞, (3.2)

we say that g is written in canonical form, and we denote (3.1) by g = Gs(μ) ≡ Gs(h0; μ).
Before proceeding to the main result we present some auxiliary results.

Lemma 3.1. Every g ∈ G can be written in canonical form.

Proof. For g = Gs(h; μ) ∈ G, we can define the measure ν by

ν(A) =
∫
A

e−y(1 − e−y)h(y) dμ(y), A Borel, A ⊆ (0,∞).

By (3.1), ν is finite, since
∫
(0,∞)

dν(y) = ∫
(0,∞)

e−y(1 − e−y)h(y) dμ(y) < ∞. Thus,

g(x) =
∫
(0,∞)

h0(y)(s(y)− e−xy)(e−y(1 − e−y)h(y)) dμ(y)

=
∫
(0,∞)

h0(y)(s(y)− e−xy) dν(y) for all x ≥ 1,

yielding g = Gs(ν). �
Lemma 3.2. Let g1 = Gs1(μ1) and g2 = Gs2(μ2) be two functions in G. Then, the following
are equivalent:

(i) g1(k)− g2(k) = c (constant), k = 1, 2, . . . ;

(ii) g1(x)− g2(x) = c (constant) for all x ≥ 1;

(iii) μ1 = μ2.

Proof. Since the implications (iii)�⇒ (ii)�⇒ (i) are trivial, we show (i)�⇒ (iii). Clearly, (i)
implies that g2(k)− g2(1) = g1(k)− g1(1), i.e.∫

(0,∞)

h0(y)(e
−y − e−ky) dμ1(y) =

∫
(0,∞)

h0(y)(e
−y − e−ky) dμ2(y), k = 2, 3, . . . .

(3.3)
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Consider the measures νi (i = 1, 2) defined by νi((0, u]) = μi([− log u,∞)), 0 < u < 1.
Changing variables y = − log u in (3.3), and since h0(− log u) = 1/(u(1 − u)), we obtain∫

(0,1)
(1 + u+ · · · + un) dν1(u) =

∫
(0,1)

(1 + u+ · · · + un) dν2(u), n = 0, 1, . . . .

By induction on n, it follows that the finite measures ν1 and ν2 have all their moments equal,
and since they have bounded supports, they are identical; see, e.g. Billingsley (1995, p. 388,
Theorem 30.1). Therefore, for every y ∈ (0,∞), μ1((0, y]) = ν1([e−y, 1)) = ν2([e−y, 1)) =
μ2((0, y]), yielding μ1 = μ2. �

Corollary 3.1. The measure μ in the canonical form of g ∈ G is unique. In particular, g(x) =
Gs(μ)(x) = 0 if and only if μ = 0; any nonvanishing constant function g /∈ G.

In the following proposition we show that every function g ∈ G∗ is a translation of a
Bernstein function. Recall that a nonnegative function β : [0,∞) → [0,∞) is called Bernstein
if it is continuous on [0,∞), infinitely differentiable in (0,∞), and its nth order derivative
β(n) satisfies (−1)n+1β(n)(x) ≥ 0 (n = 1, 2, . . . , x > 0); see Schilling et al. (2012, p. 21,
Definition 3.1) (in the sequel, the value β(0) will be defined by continuity as β(0+)).
Proposition 3.1. Let g = Gs(h;μ) ∈ G∗. Then g is continuous on [1,∞), infinitely differen-
tiable in (1,∞), and its nth order derivative is given by

(−1)n+1g(n)(x) =
∫
(0,∞)

ynh(y)e−xy dμ(y) > 0, n = 1, 2, . . . , x > 1. (3.4)

Proof. Note that the right-hand side of (3.4) is strictly positive for all x > 1, because it
can be written as

∫
(0,∞)

ynh0(y)e−xy dν(y), where ν �= 0 is the measure in the canonical form
of g; see Lemma 3.1 and Corollary 3.1. Also, the function g is continuous at x = 1 since for
y > 0 and ε ∈ (0, 1), 1 − e−εy ≤ 1 − e−y . Hence, by (3.1) and dominated convergence,
g(1 + ε)− g(1) = ∫

(0,∞)
h(y)e−y(1 − e−εy) dμ(y) → 0 as ε ↘ 0.

Regarding (3.4), we see that

∂n

∂xn
(h(y)(s(y)− e−xy)) = (−1)n+1ynh(y)e−xy (n = 1, 2, . . .)

is continuous in x > 1 for every fixed y > 0. Fix δ > 1. Then, with θ = δ − 1 > 0,

ynh(y)e−xy ≤ h(y)e−y(1 − e−y) y
ne−θy

1 − e−y

≤ h(y)e−y(1 − e−y) sup
y>0

yne−θy

1 − e−y , x > δ, y > 0.

The (positive) function t (y) = yne−θy/(1 − e−y) is bounded:

t (y) ≤

⎧⎪⎪⎨
⎪⎪⎩

y

1 − e−y ≤ 1

1 − e−1 , 0 < y ≤ 1,

yne−θy

1 − e−1 ≤ max{e−θ , (n/θ)ne−n}
1 − e−1 , y > 1.
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Thus, choosing, e.g. C = max{1, (n/θ)ne−n}/(1 − e−1), we see that∣∣∣∣ ∂n∂xn (h(y)(s(y)− e−xy))
∣∣∣∣ = ynh(y)e−xy ≤ Ch(y)e−y(1 − e−y), y > 0, x > δ.

Since the dominant function K(y) = Ch(y)e−y(1 − e−y) is integrable with respect to μ, it
is permitted to differentiate (3.1) under the integral sign (see, e.g. Ferguson (1996, p. 124)),
yielding (3.4) for x > δ > 1; and since δ > 1 is arbitrary, we conclude (3.4). �

From Proposition 3.1, we see that if g ∈ G∗ then the function B(x) := g(x + 1) − g(1),
x ≥ 0, is Bernstein (of a particular form). It is known that every Bernstein function β can be
expressed by its Lévy–Khintchine representation (LKR)

β(x) = a0 + a1x +
∫
(0,∞)

(1 − e−xy) dν(y), x ≥ 0; (3.5)

see Schilling et al. (2012, p. 21, Theorem 3.2). Of course, it is much simpler to verify
the converse, i.e. every function that is expressed as in (3.5) is Bernstein (see the proof of
Proposition 3.1). The triplet (a0, a1; ν) in the LKR is uniquely determined by β, the measure ν
satisfies

∫
(0,∞)

min{1, y} dν(y) < ∞, and the constants a0, a1 are nonnegative. Comparing
the LKR of B with the canonical form of g = Gs(μ) ∈ G∗, we see that (see (3.1))

a0 + a1x +
∫
(0,∞)

(1 − e−xy) dν(y) = g(x + 1)− g(1)

=
∫
(0,∞)

e−yh0(y)(1 − e−xy) dμ(y), x ≥ 0.

That is, a0 = a1 = 0 and dν(y) = e−yh0(y) dμ(y) is the LKR of B(x) = g(x + 1) − g(1).
Conversely, if B∗ denotes the class of Bernstein functions with LKR triplet (0, 0; ν), ν �= 0, it
is not difficult to show that g(x + 1)− g(1) ∈ B∗ implies that g ∈ G∗. Hence, g ∈ G∗ if and
only if B ∈ B∗, and we conclude with the following proposition.

Proposition 3.2. A function g : [1,∞) → R belongs to G∗ if and only if B(x) := g(x + 1)−
g(1), x ≥ 0, is a Bernstein function that admits an LKR of the form (3.5) with a0 = a1 = 0,
ν �= 0.

We are now in a position to state and prove the main result.

Theorem 3.1. For a real sequence {μk}∞k=1 the following are equivalent:

(i) there exists a nondegenerate integrable RV X such that μk(X) = μk for k = 1, 2, . . . ;

(ii) the sequence {μk}∞k=1 is the restriction to the natural numbers of a function g ∈ G∗
(for G∗, see Definition 3.1), i.e. μk = g(k), k = 1, 2, . . . ;

(iii) there exists a Bernstein function B with LKR triplet (0, 0; ν), ν �= 0 (see (3.5)), such
that μk = μ1 + B(k − 1), k = 1, 2, . . . .

If one of (i), (ii), or (iii) is fulfilled by {μk}∞k=1 then the function g ∈ G∗ in (ii) is unique, and
admits the representation

g(x) =
∫
(0,∞)

λey

1 − e−y

(
μ1

λ
e−y(1 − e−y)+ e−y − e−xy

)
dFY (y), x ≥ 1, (3.6)
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where λ = μ2 −μ1, FY is the DF of the RV Y = − logF(V ), F is the DF of X, and the RV V
has density

fV (x) = 1

λ
F(x)(1 − F(x)), −∞ < x < ∞;

the Bernstein function B in (iii), which is also unique, is related to g by B(x) = g(x+ 1)−μ1,
x ≥ 0.

Proof. (ii) �⇒ (i). Suppose that μk = g(k), k = 1, 2, . . . , for some g = Gs(h; μ) ∈ G∗.
It suffices to verify conditions (i)–(iii) of Theorem 1.2 for μk . From (3.4), g′(x) > 0 for x > 1.
Hence, by monotone convergence and by continuity of g at 1+,∫ x

1
g′(t) dt = lim

ε↘0

∫ x

1+ε
g′(t) dt = lim

ε↘0
[g(x)− g(1 + ε)] = g(x)− g(1), x > 1. (3.7)

It should be noted that the differentiability of g in (1,∞) plus continuity at 1 are not sufficient
for concluding (3.7), as the example g(x) = (x − 1) sin(1/(x − 1)) shows. Now, by induction
on s (and by using (3.7) when k = 1), it is easily seen that

s∑
j=0

(−1)s−j
(
s

j

)
g(k + j)

=
∫ k+1

k

∫ t1+1

t1

· · ·
∫ ts−1+1

ts−1

g(s)(ts) dts · · · dt2 dt1, s ≥ 1, k ≥ 1.

Therefore, since μk+j = g(k + j),

(−1)s+1�sμk =
s∑
j=0

(−1)j+1
(
s

j

)
g(k + j)

=
∫ k+1

k

∫ t1+1

t1

· · ·
∫ ts−1+1

ts−1

(−1)s+1g(s)(ts) dts · · · dt2 dt1;

the last expression verifies condition (i) of Theorem 1.2, because the integrand is strictly positive
(see (3.4)). Condition (ii) of Theorem 1.2 is simply deduced from dominated convergence since
(1 − e−ky)/k ≤ 1 − e−y and, obviously, (1 − e−ky)/k → 0 as k → ∞. Hence,

lim
k→∞

μk

k
= lim
k→∞

μk+1 − μ1

k
= lim
k→∞

∫
(0,∞)

e−yh(y)
(

1 − e−ky

k

)
dμ(y) = 0.

Set now νk = ∑k
j=1(−1)j

(
k
j

)
μj , so that ν1 = −μ1. It is not difficult to check that νs+1 −νs =

(−1)s+1�sμ1 > 0, where �sμ1 = ∑s
j=0(−1)s−j

(
s
j

)
μj+1. Defining ys := (−1)s+1�sμ1 >

0, we have

νk = −μ1 +
k−1∑
s=1

(−1)s+1�sμ1 = −μ1 +
k−1∑
s=1

ys.

If it can be shown that limk→∞ yk = 0 then it will follow that

lim
k→∞

νk

k
= lim
k→∞

y1 + · · · + yk−1

k
= 0,
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which means that the sequence μk satisfies condition (iii) of Theorem 1.2. Due to (3.1),

yk =
k∑
j=0

(−1)j+1
(
k

j

)
g(j + 1)

=
k∑
j=0

(−1)j+1
(
k

j

) ∫
(0,∞)

h(y)(s(y)− e−(j+1)y) dμ(y)

=
∫
(0,∞)

h(y)e−y(1 − e−y)k dμ(y) → 0 as k → ∞,

by dominated convergence.
(i) �⇒ (ii). Let F be the DF of X, and set α = inf{x : F(x) > 0}, ω = sup{x : F(x) < 1}.

By the assumption thatX is nondegenerate, it follows that −∞ ≤ α < ω ≤ +∞, and the open
interval (α, ω) has strictly positive (or infinite) length. We define the family of DFs {F t , t ≥ 1},
and denote by Xt a generic RV with DF F t , so that X1 = X. Since X is integrable, the same
holds for each Xt . Indeed, F t(x) ≤ F(x) and 1 − F t(x) ≤ t (1 − F(x)) for all x ∈ R and
t ≥ 1, yielding

EX−
t =

∫ 0

−∞
F t(x) dx ≤

∫ 0

−∞
F(x) dx < ∞,

EX+
t =

∫ ∞

0
(1 − F t(x)) dx ≤ t

∫ ∞

0
(1 − F(x)) dx < ∞,

whereX+ = max{X, 0} andX− = max{−X, 0} denote, respectively, the positive and negative
part of any RV X. This enables us to define the function g : [1,∞) → R by

g(t) := EXt =
∫ ∞

−∞
[1(x > 0)− F t(x)] dx, t ≥ 1;

by definition, g(k) = μk for k = 1, 2, . . . . For t ∈ [1,∞), write

g(t)− g(1) =
∫ ω

α

[F(x)− F t(x)] dx

=
∫ ω

α

F (x)(1 − F(x))
F (x)− F t(x)

F (x)(1 − F(x))
dx

=
∫ ω

α

F (x)(1 − F(x))
e−δ(x) − e−tδ(x)

e−δ(x)(1 − e−δ(x))
dx, (3.8)

where δ(x) = − logF(x); note that 0 < F(x) < 1 for all x ∈ (α, ω), so that δ(x) > 0.
Setting λ = μ2 − μ1 = g(2) − g(1) = ∫ ω

α
F (x)(1 − F(x)) dx > 0, we readily see that

fV (x) := F(x)(1 −F(x))/λ defines a probability density on R with support (α, ω). Consider
an RV V with density fV . Then (3.8) can be written as

g(t)− g(1) = λE

{
eδ(V )

1 − e−δ(V ) (e
−δ(V ) − e−tδ(V ))

}
, t ≥ 1,

where δ(V ) = − logF(V ) is a strictly positive RV, because α < V < ω with probability 1.
Setting Y := δ(V ) > 0, we obtain

g(t)−g(1) = λE

{
eY

1 − e−Y (e
−Y −e−tY )

}
= λ

∫
(0,∞)

h0(y)(e
−y−e−ty) dFY (y), t ≥ 1,
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where h0(y) = ey/(1 − e−y) (see (3.2)) and FY is the DF of Y . If we introduce the measure μ
defined by μ(A) = λP(Y ∈ A) for a Borel set A ⊆ (0,∞), the above relation takes the form

g(t)− g(1) =
∫
(0,∞)

h0(y)(e
−y − e−ty) dμ(y), t ≥ 1.

Moreover, since h0(y) > 0,

0 <
∫
(0,∞)

h0(y)e
−y(1 − e−y) dμ(y) =

∫
(0,∞)

dμ(y) = μ((0,∞)) = λ < ∞.

Observing that

g(1) = μ1 = μ1

λ

∫
(0,∞)

dμ(y) =
∫
(0,∞)

h0(y)

(
μ1

λ
e−y(1 − e−y)

)
dμ(y),

we obtain

g(t) = g(1)+ (g(t)− g(1))

=
∫
(0,∞)

h0(y)

(
μ1

λ
e−y(1 − e−y)+ e−y − e−ty

)
dμ(y), t ≥ 1,

proving both (3.1) and (3.6).
Finally, the equivalence of (ii) and (iii) follows from Proposition 3.2, and uniqueness (of g

and μ) is evident from Lemma 3.2. �
The following definition provides a helpful tool in verifying whether a given function g

belongs to G∗.

Definition 3.2. Let g : [1,∞) → R be an arbitrary function. We say that g admits an integral
form if there exist measurable functions h1 : (0,∞) → R and s : (0,∞) → R, with h1 ≥ 0,
such that

0 <
∫ ∞

0
h1(y)e

−y(1 − e−y) dy < ∞ (3.9)

and

g(x) =
∫ ∞

0
h1(y)(s(y)− e−xy) dy, x ≥ 1. (3.10)

We shall denote by I the class of all such functions and, provided that h1 satisfies (3.9),
representation (3.10) will be denoted by g = Is(h1).

Lemma 3.3. It holds that I ⊆ G∗.

Proof. Assume that g = Is(h1) ∈ I and define the (positive) measure μ by

μ((0, y]) =
∫ y

0
h1(x)e

−x(1 − e−x) dx, y > 0.

By definition, μ is absolutely continuous with respect to the Lebesgue measure on (0,∞), with
Radon–Nikodym derivative

dμ(y)

dy
= h1(y)e

−y(1 − e−y) for almost all y > 0.
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Clearly, μ is finite, and (3.10) can be written as

g(x) =
∫ ∞

0
h0(y)(s(y)− e−xy)(h1(y)e

−y(1 − e−y)) dy

=
∫
(0,∞)

h0(y)(s(y)− e−xy) dμ(y), x ≥ 1,

yielding the integral representation in (3.1). Moreover, from (3.9),

0 <
∫
(0,∞)

h0(y)e
−y(1 − e−y) dμ(y) =

∫
(0,∞)

dμ(y) =
∫ ∞

0
h1(y)e

−y(1 − e−y) dy < ∞.

Hence, g = Gs(μ) with μ �= 0. �
Corollary 3.2. The function h1 in the integral representation (3.10) of any g = Is(h1) ∈ I is
(almost everywhere) unique.

Proof. If we express g = Is(h1) ∈ G in its canonical form as g = Gs(μ) (see Lemma 3.1),
then the functionh1(y)/h0(y) is a Radon–Nikodym derivative ofμwith respect to the Lebesgue
measure. The result follows from Corollary 3.1 and the fact that the Radon–Nikodym derivative
is almost everywhere unique. �

We can now state the following result which provides a sufficient condition that is useful for
most practical situations.

Corollary 3.3. If a function g : [1,∞) → R belongs to I (see Definition 3.2) then the
sequence μk = g(k), k = 1, 2, . . . , represents the expected maxima sequence of an integrable
nondegenerate random variable.

Proof. This is evident from Theorem 3.1 and Lemma 3.3. �
If g = Gs(μ) ∈ G∗ (see Definition 3.1) and the measure μ has a Radon–Nikodym

derivative hμ with respect to the Lebesgue measure, condition (3.1) is equivalent to (3.9)
and (3.10). Indeed, in this case,

g(x) =
∫
(0,∞)

h0(y)(s(y)− e−xy) dμ(y) =
∫ ∞

0
hμ(y)h0(y)(s(y)− e−xy) dy,

and it is sufficient to choose h1 = h0 · hμ. Hence, g = Gs(μ) ∈ I if and only if the measure μ
in the canonical form of g is (nonzero and) absolutely continuous with respect to the Lebesgue
measure. However, given an arbitrary sequence μk , even if it can be shown that it is an EMS
(using, e.g. Theorem 1.2, Theorem 3.1, Corollary 3.3, or (1.1)), we would like to decide if it
corresponds to an absolutely continuous RV. We note at this point that the condition g ∈ I is
neither necessary nor sufficient for concluding that the EMS {g(k)}∞k=1 corresponds to a density
(see Remark 3.1, below). An interesting exception where this fact can be deduced automatically
is described in the following definition.

Definition 3.3. Denote by F the subclass of absolutely continuous RVs X with interval sup-
ports (α, ω) = (αX, ωX), −∞ ≤ α < ω ≤ +∞, having a differentiable DF F in (α, ω), and
such that their density f (x) = F ′(x) is strictly positive and continuous in (α, ω).

Theorem 3.2. For a given sequence {μk}∞k=1, the following statements are equivalent:

(i) the sequence μk represents an expected maxima sequence of an integrable RV X ∈ F ;
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(ii) there is an extension g : [1,∞) → R of the sequence μk (i.e. μk = g(k), k = 1, 2, . . .),
such that g admits an integral representation of the form (3.10), with h1 satisfying (3.9)
and, furthermore, h1 is strictly positive and continuous in (0,∞).

Moreover, if (i) or (ii) holds then the function g is unique, and the continuous version of h1
in the integral representation (3.10) is uniquely determined by

h1(y) = e−y

f (F−1(e−y))
, 0 < y < +∞, (3.11)

where f and F−1 are, respectively, the density and the inverse DF of the unique RV X ∈ F
with expected maxima μk; any other version h2 is equal to h1 almost everywhere in (0,∞).

Proof. Assume first that (i) holds, letF be the DF ofX, and set (α, ω) = {x : 0 < F(x) < 1}.
Since X ∈ F , λ := μ2 − μ1 > 0. Using (3.6) and the fact that V has density

fV (x) = 1

λ
F(x)(1 − F(x)), α < x < ω,

the additional assumption X ∈ F implies that Y = − logF(V ) has a continuous, strictly
positive, density

fY (y) = e−2y(1 − e−y)
λf (F−1(e−y))

, 0 < y < ∞,

with f and F−1 being, respectively, the derivative and the ordinary inverse of the restriction in
(α, ω) of F . Substituting dFY (y) = fY (y) dy in (3.6) we obtain (ii) with h1 as in (3.11).

Assume now that (ii) holds. From (3.10),

μk − μ1 = g(k)− g(1) =
∫ ∞

0
h1(y)(e

−y − e−ky) dy, k = 1, 2, . . . . (3.12)

Also, from Corollary 3.3 we see that the sequence μk = g(k) is an EMS of a unique (nonde-
generate) RV X. It remains to show that X ∈ F , i.e. that its DF F belongs to F . To this end,
define the function

G(u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c1 −

∫ 1/2

u

1

t
h1(− log t) dt, 0 < u ≤ 1

2 ,

c1 +
∫ u

1/2

1

t
h1(− log t) dt, 1

2 < u < 1,
(3.13)

where c1 is a constant to be specified later. By the assumption on h1, G is strictly increasing
and differentiable in the interval (0, 1). Moreover, G is integrable, since by (3.9) and Tonelli’s
theorem,∫ 1

0
|G(u)− c1| du =

∫ 1/2

0

∫ 1/2

u

1

t
h1(− log t) dt du+

∫ 1

1/2

∫ u

1/2

1

t
h1(− log t) dt du

=
∫ 1/2

0
h1(− log t) dt +

∫ 1

1/2

1 − t

t
h1(− log t) dt

=
∫ ∞

log 2
e−yh1(y) dy +

∫ log 2

0
(1 − e−y)h1(y) dy

< ∞.
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LetU be a uniform(0, 1)RV and define the RV Y := G(U)with DFFY ; i.e.G = F−1
Y . Clearly,

E|Y | = E|G(U)| < ∞. We can show that Y ∈ F . Indeed, setting αY := limu↘0G(u) and
ωY := limu↗1G(u), we see thatG : (0, 1) → (αY , ωY ) is strictly increasing and differentiable,
with continuous, strictly positive, derivative G′(u) = h1(− log u)/u. This means that its
inverse, G−1 = FY : (αY , ωY ) → (0, 1), has also a continuous, strictly positive, derivative
fY (y) = F ′

Y (y) = 1/G′(G−1(y)). Observe that FY (y) = G−1(y) tends to 0 as y approaches
αY from above, so that, by monotone convergence,∫ y

αY

fY (x) dx = lim
a↘αY

∫ y

a

F ′
Y (x) dx = lim

a↘αY
[FY (y)− FY (a)] = FY (y), αY < y < ωY .

Taking limits as y ↗ ωY in the above relation, and using again monotone convergence and the
fact that G−1(y) tends to 1 as y ↗ ωY , we see that∫ ωY

αY

fY (x) dx = lim
y↗ωY

∫ y

αY

fY (x) dx = lim
y↗ωY

FY (y) = lim
y↗ωY

G−1(y) = 1;

hence, Y ∈ F . According to the implication (i) �⇒ (ii), the sequence μ̃k := μk(Y ) admits an
extension g2 : [1,∞) → R of the form

g2(x) =
∫ ∞

0
h2(y)(s2(y)− e−xy) dy, x ≥ 1,

such that h2 satisfies (3.9) (with h2 in place of h1) and is continuous and strictly positive in
(0,∞). Therefore, we have

μ̃k − μ̃1 = g2(k)− g2(1) =
∫ ∞

0
h2(y)(e

−y − e−ky) dy, k = 1, 2, . . . . (3.14)

We can calculate the same quantities directly from G = F−1
Y as follows:

μ̃k − μ̃1 =
∫ 1

0
kuk−1G(u) du−

∫ 1

0
G(u) du

= −
∫ 1/2

0
kuk−1

∫ 1/2

u

1

t
h1(− log t) dt du+

∫ 1/2

0

∫ 1/2

u

1

t
h1(− log t) dt du

+
∫ 1

1/2
kuk−1

∫ u

1/2

1

t
h1(− log t) dt du−

∫ 1

1/2

∫ u

1/2

1

t
h1(− log t) dt du.

Since all integrands in the last four integrals are nonnegative, we can interchange the order of
integration. Thus,

μ̃k − μ̃1 = −
∫ 1/2

0
tk−1h1(− log t) dt +

∫ 1/2

0
h1(− log t) dt

+
∫ 1

1/2

1 − tk

t
h1(− log t) dt −

∫ 1

1/2

1 − t

t
h1(− log t) dt

=
∫ ∞

log 2
(−e−ky + e−y)h1(y) dy +

∫ log 2

0
((1 − e−ky)− (1 − e−y))h1(y) dy

=
∫ ∞

0
(e−y − e−ky)h1(y) dy, k = 1, 2, . . . . (3.15)
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From (3.12), (3.14), and (3.15), we see that

g(k)− g(1) = μk − μ1 = μ̃k − μ̃1 = g2(k)− g2(1), k = 1, 2, . . . .

Therefore, since g and g2 belong to I ⊆ G∗, it follows from Lemma 3.2 that g(x) − g2(x) =
μ1 − μ̃1 (constant), x ≥ 1. Choosing the constant c1 in (3.13) so that μ̃1 = μ1, we obtain
μ̃k = μk for all k, which implies that g = g2 and F = FY ∈ F .

Uniqueness of g and h1 follows immediately from Theorem 3.1 and Corollary 3.2, respec-
tively. �
Remark 3.1. Assume that g ∈ G∗. The additional assumption g ∈ I is neither necessary nor
sufficient for the EMS {g(k)}∞k=1 to arise from an absolutely continuous RV.

(i) Consider the RV X with density f (x) = 1
2 1(−2 < x < −1)+ 1

2 1(1 < x < 2) so that
μk = μk(X) = 2(k/(k+1)−2−k). Hence, μ1 = 0, λ = μ2 − μ1 = 5

6 , and, from (3.6),
we see that FY = 3

5F1 + 2
5F2, where F1 is the degenerate DF at log 2 and the DF F2 has

density f2(y) = 6e−2y(1 − e−y), y > 0. Since μ({log 2}) = λP(Y = log 2) = 1
2 , the

function g(x) = 2(x/(x + 1)− 2−x) = Gs(μ)(x) ∈ G has a non absolutely continuous
canonical measure μ. Thus, g /∈ I.

(ii) For h1(y) = 1(0 < y < 1) and s(y) = 1, (3.10) yields Is(h1)(x) = g(x) = 1 − (1 −
e−x)/x, x ≥ 1. It is easily checked that the particular EMS {g(k)}∞k=1 corresponds to
the DF F with inverse F−1(u) = (1 + log u)1(e−1 < u < 1). However, this F does not
have a density, since it assigns probability e−1 at the point 0.

Example 3.1. Let μk = kθ , 0 < θ < 1, and define g(x) = xθ , x ≥ 1. Representation (3.10)
follows from

xθ =
∫ x

0

θ

t1−θ dt = θ

(1 − θ)

∫ x

0

∫ ∞

0
y−θe−ty dy dt = θ

(1 − θ)

∫ ∞

0
y−θ

∫ x

0
e−ty dt dy,

where the change in the order of integration is justified by Tonelli’s theorem. Therefore,

xθ = θ

(1 − θ)

∫ ∞

0

1 − e−xy

y1+θ dy, x ≥ 0, 0 < θ < 1. (3.16)

Thus, (3.10) is satisfied with h1(y) = βθy
−1−θ , where βθ = θ/(1 − θ) > 0, and s(y) = 1.

Note that (3.6) suggests using a different function s, namely,

s̃(y) = e−y + e−y − e−2y

2θ − 1
;

hence, s in the representations (3.10) or (3.1) need not be unique. Since (3.9) is obviously
fulfilled, from Corollary 3.3 we see that the sequence kθ is an EMS. More precisely, from
Theorem 3.2 we see that the particular EMS, kθ , corresponds to the RVX ∈ F with distribution
inverse G given by (3.13) (with h1(y) = βθy

−1−θ ), i.e.

F−1(u) = G(u) = θ

(1 − θ)

∫
(− log u)−1−θ

u
du = (− log u)−θ

(1 − θ)
+ C.

Since μ1 = ∫ 1
0 F

−1(u) du = 1, we find that C = 0 and the parent DF admits the explicit
formula F(x) = exp(−λx−1/θ ), x > 0, where λ = (1 − θ)−1/θ > 0; thus, 1/X is Weibull.
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Moreover, it is evident from Theorem 3.2 and (3.16) that {(k + c)θ }∞k=1 is an EMS for every
c ∈ [−1,∞) and θ ∈ (0, 1), and the corresponding functions in the representation (3.10) are
h1(y) = βθe−cy/y1+θ and s(y) = ecy .

Example 3.2. Let μk = log k and define g(x) = log x, x ≥ 1. To see representation (3.10),
write (for x > 0)

log x =
∫ x

1

1

t
dt =

∫ x

1

∫ ∞

0
e−ty dy dt =

∫ ∞

0

∫ x

1
e−ty dt dy =

∫ ∞

0

e−y − e−xy

y
dy,

(3.17)
yielding h1(y) = 1/y and s(y) = e−y . Again (3.9) is obviously fulfilled and from Corol-
lary 3.3 we see that the sequence log k is an EMS. More precisely, (3.13) yields F−1(u) =
− log(− log u)+ C, 0 < u < 1. By the substitution y = − log u, we obtain

μ1 =
∫ 1

0
F−1(u) du = C −

∫ ∞

0
e−y log y dy = C + γ,

where γ is Euler’s constant; see, e.g. Lagarias (2013, p. 535). Since μ1 = log 1 = 0, it
follows that C = −γ and F(x) = exp(−e−(x+γ )) is an extreme value (Gumbel) distribution.
Furthermore, Theorem 3.2 and (3.17) enable us to verify that {log(k+c)}∞k=1 is an EMS for every
c ∈ (−1,∞); the corresponding functions in the representation (3.10) are h1(y) = e−cy/y and
s(y) = e(c−1)y .

Example 3.3. The harmonic number function was defined by Euler as

H(x) =
∫ 1

0

1 − ux

1 − u
du =

∫ ∞

0

e−y

1 − e−y (1 − e−xy) dy, x > −1; (3.18)

see Lagarias (2013, p. 532). It satisfies

H(0) = 0, H(n) = 1 + 1

2
+ · · · + 1

n
(n = 1, 2, . . .),

H(x) = H(x − 1)+ 1

x
, x > 0.

From Theorem 3.2, we conclude that, for every c ∈ (−2,∞), the sequence {H(k+c)}∞k=1 is an
EMS from an absolutely continuous RV; indeed, (3.18) shows that the function g(x) = H(x+c)
satisfies (3.9) and (3.10) with h1(y) = e−(c+1)y/(1 − e−y) and s(y) = ecy . The standard
exponential corresponds to c = 0 and the standard logistic to c = −1; see Example 4.1, below.
The function ψ(x) = (d/dx) log(x) = ′(x)/(x) admits a similar representation due to
Gauss; see Lagarias (2013, p. 557). It follows that {ψ(k + c)}∞k=1 is an EMS for c > −1.
However, this fact is evident from the corresponding result for H , due to the relationship
ψ(x)+ γ = H(x − 1), x > 0. Finally, the easily verified identity

μk := 1 + 1

2θ
+ · · · + 1

kθ
= 1

(θ)

∫ ∞

0

yθ−1e−y

1 − e−y (1 − e−ky) dy (θ > 0, k = 1, 2, . . .)

yields that this μk is an EMS for every θ > 0 (choose h1(y) = (θ)−1yθ−1e−y/(1 − e−y) and
s(y) = 1 in (3.10)).
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Remark 3.2. It is known that the class of Bernstein functions is closed under composition; see
Schilling et al. (2012, p. 28, Corollary 3.8). Therefore, the connection of EMSs to Bernstein
functions (Theorem 3.1) provides an additional tool in verifying that a given sequence is an
EMS. For instance, Example 3.1 with c = −1 shows that g1(x) := (x−1)θ (x ≥ 1, 0 < θ < 1)
belongs to I; thus, from Lemma 3.3 and Proposition 3.2, B1(x) := g1(x + 1) − g1(1) = xθ

(x ≥ 0) is Bernstein. By the same reasoning, Example 3.2 (with c = 0) shows that B2(x) :=
log(x + 1) (x ≥ 0) is Bernstein and, hence, β(x) := B1(B2(x)) = (log(x + 1))θ (x ≥ 0)
is also a Bernstein function with LKR as in (3.5). Observing that a0 = β(0) = 0 and a1 =
limx→∞ β(x)/x = 0, we see that the LKR triplet of β is of the form (0, 0; ν), ν �= 0. Hence,
from Proposition 3.2, we see that, for any θ ∈ (0, 1], the function g(x) := β(x− 1) = (log x)θ

(x ≥ 1) belongs to G∗, and we conclude, from Theorem 3.1, that (log k)θ is an EMS. Note
that, for any δ > 0, (log x)1+δ /∈ G, since the second derivative changes its sign in the interval
(1,∞); see Proposition 3.1.

4. Sequences of expected ranges

Denote byRk(X) = Xk : k−X1 : k = maxi Xi−mini Xi the (sample) range based on k i.i.d.
copies X1, . . . , Xk of an RV X. In this section we consider the similar question concerning
expected ranges. That is, we want to decide whether a given sequence {ρk}∞k=1 represents an
expected ranges sequence (ERS), i.e. whether there exists an integrable RV X with

ERk(X) = ρk, k = 1, 2, . . . .

The following result is the range analogue of Theorem 1.2.

Theorem 4.1. A sequence {ρk}∞k=1 is an ERS of a nondegenerate integrable RV if and only if
the following three conditions are satisfied:

(i) (−1)s+1�sρk > 0 for all s ≥ 1 and k ≥ 1;

(ii) ρk = o(k) as k → ∞;

(iii) ρk = ∑k
j=1(−1)j

(
k
j

)
ρj for all k ≥ 1.

Proof. Conditions (i)–(iii) are necessary. Indeed, if ρk = ERk(X) for some integrable RVX
with DF F , then we have

ρk =
∫ ∞

−∞
[1 − Fk(x)− (1 − F(x))k] dx, k ≥ 1.

Therefore, for all s ≥ 1, k ≥ 1,

(−1)s+1�sρk =
∫ ∞

−∞
[Fk(x)(1 − F(x))s + F s(x)(1 − F(x))k] dx > 0,

proving (i). With F−1(u) = inf{x : F(x) ≥ u}, 0 < u < 1, we can write

ρk

k
= ERk(X)

k
=

∫ 1

0
[uk−1 − (1 − u)k−1]F−1(u) du → 0 as k → ∞,
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by dominated convergence; this verifies (ii). Finally,

k∑
j=1

(−1)j
(
k

j

)
ρj =

∫ ∞

−∞

k∑
j=1

(−1)j
(
k

j

)
[1 − Fj (x)− (1 − F(x))j ] dx

=
∫ ∞

−∞
[1 − Fk(x)− (1 − F(x))k] dx

= ρk,

which is (iii).
Conversely, assume that (i)–(iii) hold, and consider the sequence μk = 1

2ρk . Obviously,
conditions (i)–(iii) of Theorem 1.2 are fulfilled by μk . Hence, we can find an integrable RV X

such that EXk : k = 1
2ρk for all k ≥ 1. Since, however, EX1 : k = − ∑k

j=1(−1)j
(
k
j

)
EXj :j

(for any integrableX), condition (iii) yields EX1 : k = − 1
2ρk; thus, E[Xk : k −X1 : k] = ρk , and

the proof is complete. �

Remark 4.1. (i) Condition (iii) implies that ρ1 = 0 (trivial) and ρ3 = 3
2ρ2. Condition (i) shows

that 0 = ρ1 < ρ2 < · · · .

(ii) The random variable X, constructed in the sufficiency proof of Theorem 4.1, is sym-
metric, i.e. X

d= −X (where ‘
d=’ means equality in distribution). To see this, let Yi = −Xi

with Xi being i.i.d. copies of X used in the proof. Then EYk : k = E max{−X1, . . . ,−Xk} =
−E min{X1, . . . , Xk} = 1

2ρk = EXk : k for all k ≥ 1; thus, by the result of Hoeffding, we see
thatX andY have the same DF. In fact, this is the unique symmetric RV having the given expected
ranges. Indeed, if Y is any symmetric RV with ERk(Y ) = ρk then, since EYk : k = −EY1 : k
(by symmetry), we should have ρk = 2EYk : k for all k ≥ 1.

(iii) For any integrable Y , we can find a symmetric integrableX with the same expected ranges.
Indeed, if ρk = ERk(Y ) for arbitrary Y (not necessarily symmetric) then the sequence ρk
satisfies conditions (i)–(iii) of Theorem 4.1. Thus, based on these values ρk , we can constructX
as in the necessity proof, and this X is symmetric. This fact seems to be quite surprising at
first glance. However, we observe that a DF F is symmetric (i.e. it corresponds to a symmetric
RV X) if and only if F−1(u) = −F−1((1 − u)+), 0 < u < 1, where F−1(t+) denotes
the right-hand limit of F−1 at the point t ∈ (0, 1). Using this, it is easy to verify that the
left-continuous inverses of the DFs of X and Y are related through

F−1
X (u) = 1

2 [F−1
Y (u)− F−1

Y ((1 − u)+)], 0 < u < 1. (4.1)

We conclude that the RV X, whose distribution inverse is defined by (4.1), is the unique
symmetric RV with the same expected ranges as Y .

Example 4.1. It is well known that the order statistics from the exponential distribution have
means

EYi : k =
k∑

j=k−i+1

1

j
, 1 ≤ i ≤ k,

and, therefore,

ρk = ERk(Y ) = E[Yk : k − Y1 : k] = 1 + 1

2
+ · · · + 1

k − 1
(ρ1 = 0).
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From Theorem 4.1 and Remark 4.1, we know that there exists a unique symmetric RV X with
expected ranges ρk . Since F−1(u) = − log(1 − u), (4.1) shows that

F−1
X (u) = 1

2
log

(
u

1 − u

)
, 0 < u < 1,

which corresponds to a logistic RV with mean 0 and variance π2/12. This is in accordance with
the recurrence relation μk+1 = 1/k + μk , satisfied by the expected maxima of the standard
logistic distribution (with mean 0 and variance π2/3), first obtained by Shah (1970); see also
Arnold et al. (1992, p. 83).

Example 4.2. The expected ranges of a Bernoulli(p) RV are 1 − pk − (1 − p)k . The same
expected ranges are obtained from a three-valued RV, assigning (equal) probabilities min{p, 1−
p} at ± 1

2 , and the remaining mass 1 − 2 min{p, 1 − p} at 0.

Remark 4.2. If Y is symmetric around its mean μ then, obviously, the symmetric RV with
the same expected ranges is X = Y − μ. In particular, if Y is uniform(a, b) then X is
uniform(− 1

2 (b − a), 1
2 (b − a)); if Y is N(μ, σ 2) then X is N(0, σ 2). However, it should be

noted that there exist nonnormal (nonuniform) RVs with expected ranges like normal (uniform);
see Arnold et al. (1992, pp. 145–146). To highlight the situation, assume that X is N(0, 1)
with density φ, and let � be its DF with inverse �−1. Let 0 < ε <

√
2π and define h(u) =

�−1(u)+ u(1 − u)ε. Then, h ∈ L1(0, 1) and h′(u) = 1/φ(�−1(u))+ (1 − 2u)ε > 0 for all
u ∈ (0, 1). The fact that h′(u) > 0 is obvious for 0 < u ≤ 1

2 and it remains to verify that

ε <
1

(2u− 1)φ(�−1(u))
,

1

2
< u < 1.

This is indeed satisfied because

inf
1/2<u<1

{
1

(2u− 1)φ(�−1(u))

}
= 1

sup1/2<u<1{(2u− 1)φ(�−1(u))} ≥ √
2π

since

sup
1/2<u<1

{(2u− 1)φ(�−1(u))} = sup
x>0

{(2�(x)− 1)φ(x)} ≤ sup
x>0

φ(x) = 1√
2π

.

Defining the RV Y = h(U), where U is uniform(0, 1), we see that F−1
Y = h; thus, Y is

nonnormal, and

ERk(Y ) = k

∫ 1

0
(uk−1 − (1 − u)k−1)�−1(u) du+ kε

∫ 1

0
(uk−1 − (1 − u)k−1)u(1 − u) du

= k

∫ 1

0
(uk−1 − (1 − u)k−1)�−1(u) du

= ERk(X) for all k ≥ 1.

Similar examples can be found for most RVs. For example, a uniform(0, 1) RVX has the same
expected ranges as a beta( 1

2 , 1) RV Y with density fY (y) = (2
√
y)−11(0 < y < 1).

From Remark 4.2, it is clear that, in contrast to the expected maxima sequences, the sequences
of expected ranges are far from characterizing the location family of the distribution.

We summarize these facts in the following theorem.
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Theorem 4.2. (i) A sequence {ρk}∞k=1 represents the expected ranges of an integrable RV if and
only if it represents the expected maxima of a symmetric (around 0) integrable RV.

(ii) For every integrable Y , there exists a unique symmetric integrableX with the same expected
ranges as Y ; X and Y are related through (4.1).

(iii) The integrable RVsX and Y have the same expected ranges if and only if the (generalized)
inverses F−1

X and F−1
Y of their DFs satisfy

F−1
X (u)− F−1

Y (u) = F−1
X ((1 − u)+)− F−1

Y ((1 − u)+), 0 < u < 1, (4.2)

i.e. if and only if the function h(u) = F−1
X (u)− F−1

Y (u) is symmetric around 1
2 for almost all

u ∈ (0, 1).

Proof. (i) and (ii) are discussed in Remark 4.1; note that the symmetric RVXwhose expected
maxima are the expected ranges of Y is given by (see (4.1))

F−1
X (u) = F−1

Y (u)− F−1
Y ((1 − u)+), 0 < u < 1.

To prove (iii), assume first that h := F−1
X − F−1

Y is almost everywhere symmetric around 1
2 .

Then

ERk(X)− ERk(Y ) = k

∫ 1

0
[uk−1 − (1 − u)k−1]h(u) du = 0 for all k ≥ 1,

because the integrand, g(u) = [uk−1 − (1 − u)k−1]h(u), is antisymmetric around 1
2 (i.e.

g(1 − u) = −g(u) for almost all u).
Conversely, ERk(X) = ERk(Y ) for all k implies that

∫ 1

0
[uk−1 − (1 − u)k−1][F−1

X (u)− F−1
Y (u)] du =

∫ 1

0
uk−1g(u) du = 0 for all k ≥ 1,

where g(u) = [F−1
X (u)− F−1

Y (u)] − [F−1
X (1 − u)− F−1

Y (1 − u)]. Since g ∈ L1(0, 1) and∫ 1
0 u

ng(u) du = 0 for n = 0, 1, . . . , it follows that g = 0 almost everywhere in (0, 1). This
means that, for almost all u ∈ (0, 1),

F−1
X (u)− F−1

Y (u) = F−1
X (1 − u)− F−1

Y (1 − u),

which, taking left limits to both sides, yields (4.2). �

Therefore, every ERS is just a translation of an EMS from a symmetric RV (around its mean),
and we can apply Theorem 3.1 to obtain the following characterization.

Theorem 4.3. Let Xs be the class of nondegenerate, integrable RVs that are symmetric around
their means. A sequence {μk}∞k=1 is an EMS from an RVX ∈ Xs if and only if it can be extended
to a function g = Gs(μ) ∈ G∗ and, furthermore, the (unique) measure μ in the canonical form
of g satisfies

μ((0, y]) = μ([− log(1 − e−y),∞)), 0 < y < ∞. (4.3)

If such an extension g exists, it is unique (and it is given by (3.6)).
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Proof. Let μk = μk(X) be the EMS of an RV X ∈ Xs . By Theorem 3.1, μk admits
an extension g = Gs(μ) ∈ G∗. Also, X − μ1 is symmetric around 0 and, according to
Theorem 4.2(i), ρk = μk − μ1 is an ERS. In particular, ρk = μk − μ1 satisfies condition
(iii) of Theorem 4.1, i.e. (μk − μ1) = ∑k

j=1(−1)j
(
k
j

)
(μj − μ1), k = 1, 2, . . . . Substituting

μj − μ1 = g(j)− g(1) = ∫
(0,∞)

h0(y)(e−y − e−jy) dμ(y) (j = 1, 2, . . . , k), we obtain

∫
(0,∞)

h0(y)(e
−y − e−ky) dμ(y)

=
k∑
j=1

(−1)j
(
k

j

) ∫
(0,∞)

h0(y)(e
−y − e−jy) dμ(y)

=
∫
(0,∞)

h0(y)(1 − e−y − (1 − e−y)k) dμ(y), k = 1, 2, . . . . (4.4)

Consider the measure ν defined by ν((0, y]) = μ([− log(1 − e−y),∞)), 0 < y < ∞. Clearly,
ν �= 0 is finite. Changing variablesy = − log(1−e−w) in (4.4), and sinceh0(− log(1−e−w)) =
h0(w), 0 < w < ∞ (see (3.2)), we obtain

∫
(0,∞)

h0(y)(e
−y − e−ky) dμ(y) =

∫
(0,∞)

h0(w)(e
−w − e−kw) dν(w), k = 1, 2, . . . .

(4.5)
Setting s0(y) = e−y , we see that the function g2 := Gs0(ν) ∈ G∗, and (4.5) shows that
g(k) − g2(k) = μ1 (constant) for k = 1, 2 . . . ; hence, μ = ν (see Lemma 3.2). Therefore,
for all y ∈ (0,∞), μ((0, y]) = ν((0, y]) = μ([− log(1 − e−y),∞)), 0 < y < ∞, and (4.3)
follows.

Conversely, assume that there exists an extension g = Gs(μ) ∈ G∗ of μk with μ satisfy-
ing (4.3). From Theorem 3.1, we see that μk is an EMS and, thus, ρk = μk − μ1 is also an
EMS. This means that the sequence ρk satisfies conditions (i) and (ii) of Theorem 4.1 (or of
Theorem 1.2). Moreover,

k∑
j=1

(−1)j
(
k

j

)
ρj =

k∑
j=1

(−1)j
(
k

j

) ∫
(0,∞)

h0(y)(e
−y − e−jy) dμ(y)

=
∫
(0,∞)

h0(y)(1 − e−y − (1 − e−y)k) dμ(y), k = 1, 2, . . . .

Substituting y = − log(1 − e−w) in the last integral, and in view of (4.3), it is easily seen that
this integral is equal to ρk , and we conclude that condition (iii) of Theorem 4.1 is also satisfied
by ρk . Thus, ρk is an ERS and, therefore, it is an EMS from a (unique) symmetric (around 0)
RV Y (see Theorem 4.2(i)); i.e. μk = μ1 + ρk is the EMS ofX = μ1 + Y , which is symmetric
around its mean μ1.

Uniqueness follows from Lemma 3.2. �

Corollary 4.1. A sequence {ρk}∞k=1 is an ERS of a nondegenerate RV if and only if ρ1 = 0 and
there exists an extension g = Gs(μ) ∈ G∗ of ρk such that the measure μ satisfies (4.3).
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Corollary 4.2. Assume that the function g admits an integral representation of the form (3.10)
with h1 satisfying (3.9); i.e. g = Is(h1) ∈ I. Then:

(i) the sequence μk = g(k) is an EMS of a symmetric (around its mean) nondegenerate RV
if and only if

h1(− log(1 − e−y)) = (ey − 1)h1(y) for almost all y ∈ (0,∞); (4.6)

(ii) the sequence ρk = g(k) is an ERS of a nondegenerate RV if and only if ρ1 = 0 and (4.6)
is satisfied.

Proof. The assumption on g implies that g ∈ I ⊆ G∗ and, thus, g = Gs(μ) for a unique
μ �= 0 (see Lemmas 3.1 and 3.3 and Corollary 3.1). From (3.9), we see that μ is absolutely
continuous with respect to the Lebesgue measure on (0,∞), with Radon–Nikodym derivative
hμ := h1/h0 (where h0(y) = ey/(1 − e−y); see (3.2)). Moreover, if ν is the measure defined
by ν((0, y]) = μ([− log(1−e−y),∞)), 0 < y < ∞, then ν is also absolutely continuous with
respect to the Lebesgue measure, since

ν((0, y]) = μ([− log(1 − e−y),∞)) =
∫ ∞

− log(1−e−y)
hμ(x) dx, 0 < y < ∞.

From this expression, it follows that a Radon–Nikodym derivative of ν is given by

hν(y) := dν(y)

dy
= e−y

1 − e−y hμ(− log(1 − e−y)), 0 < y < ∞.

Since μ = ν if and only if hμ = hν almost everywhere (a.e.) in (0,∞), we conclude that (4.3)
is equivalent to (4.6). The result follows from Theorems 4.3 and 4.2(i). �

Example 4.3. If H is the harmonic number function then g(x) := H(x + c) = Is(h1)(x)

(c > −2), where h1(y) = e−(c+1)y/(1 − e−y) and s(y) = ecy ; see (3.18). It is easily seen
that (4.6) reduces to (ey − 1)c+1 = 1 a.e., and, thus, it is satisfied if and only if c = −1. This
shows that the only symmetric RV in this family is the logistic, completing both Examples 3.3
and 4.1.

Example 4.4. For g(x) := log(x + c) = Is(h1)(x) (c > −1), h1(y) = e−cy/y, and s(y) =
e(c−1)y ; see (3.17). Hence, (4.6) is written as (ey − 1)c−1 = − log(1 − e−y)/y a.e. and,
obviously, this identity cannot be fulfilled (by any value of c > −1). Hence, all EMSs of
Example 3.2 correspond to asymmetric RVs.

Example 4.5. For g(x) := (x + c)θ = Is(h1)(x) (c ≥ −1, θ ∈ (0, 1)), h1(y) = βθe−cy/y1+θ
and s(y) = ecy , where βθ > 0 is a constant; see (3.16). Therefore, (4.6) is now reduced to the
identity (ey −1)c−1 = (− log(1− e−y)/y)1+θ a.e. Obviously, this is impossible (for all values
of c ≥ −1 and θ ∈ (0, 1)). Hence, all EMSs of Example 3.1 correspond to asymmetric RVs.

Example 4.6. For g(x) := 1 − 1/(x + c) = Is(h1)(x) (c > −1), h1(y) = e−cy and s(y) =
e(c−1)y . Therefore, (4.6) is now reduced to the identity (ey − 1)c−1 = 1 a.e. Obviously, this
identity is satisfied if and only if c = 1 (which corresponds to a standard uniform RV). Hence,
{g(k)}∞k=1 is an EMS for every c > −1 (Theorem 3.2), but the corresponding RV is asymmetric,
unless c = 1. Using (3.13), it is recognized that c = 0 corresponds to the RV 1 − Y , with Y
being a standard exponential.
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