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Heading angle is a vital parameter in maintaining a vessel’s track along a planned course and
should be guaranteed in a stable and reliable way. An innovative method of heading determi-
nation based on a fisheye camera, which is almost totally unaffected by electromagnetism and
geomagnetism, is proposed in this paper. In addition, unlike traditional astronomical methods,
it also has a certain degree of adaptability to cloudy weather. Utilising the super wide Field Of
View (FOV) of the camera, it is able to simultaneously image the Moon and the horizon. The
Moon is treated as the observed celestial body and the horizon works as the horizontal datum.
Two experiments were conducted at sea, successfully proving the feasibility of this method. The
proposed heading determination system has the merits of automation, resistance to interference
and could be miniaturised, making application viable.

K E Y W O R D S

1.Vessel. 2. Heading. 3. Fisheye camera. 4. Moon. 5. Horizon.

Submitted: 9 October 2017. Accepted: 3 February 2018. First published online: 30 April 2018.

1. INTRODUCTION. Accurate heading information is critical to the safe navigation of
vessels, and to date has usually been achieved by magnetic and gyro compasses. The mag-
netic compass is sensitive to electromagnetic and geomagnetic variation and deviations,
and requires careful calibration and compensation equipment (May, 1948). The gyro com-
pass is widely used at sea and is to some extent not dependent on external circumstances.
However, this particular method suffers from its own defect, that of error accumulation.
Also, gyroscopes used in vessels are often expensive due to their high quality (Broel-
mann, 1998). With the rapid development of Global Navigation Satellite Systems (GNSS),
GNSS-based heading determination techniques have been developed and this method is
relatively simple and reliable (Jurgens, 1990; Graas and Braasch, 1991). However, GNSS-
based heading and attitude devices are vulnerable to interference, both to the signals and
in extremis to the satellites themselves, and this can be considered as a fatal drawback in
extreme cases (Kaplan, 1999; John, 2011).
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Figure 1. Flowchart of the whole heading determination process.

Passive and stealthy, celestial orientation is a method to determine the azimuth of a ves-
sel or other vehicle through observations of celestial bodies (Hirt et al., 2010; Zhan et al.,
2015). Generally, stars are chosen as the observation targets. Unfortunately, on the deck of
a vessel, the visibility of stars might be blocked because of clouds in the sky, mist from
the sea and light or haze from the vessel itself. The Moon, whose visual magnitude can
reach about −12·5 in the full phase (26,000 times brighter than Sirius), is selected here as
a substitute for stars. Another problem is the requirement for a horizontal datum, which
could be hindered by vessel motion. Inertial units, or other external devices, have been
utilised, exacerbating the complexity and expense of the facilities (Levine et al., 1990; US
Naval Observatory, 2001). The fisheye camera, whose Field Of View (FOV) can reach or
even exceed 180◦ × 360◦, was innovatively introduced to simultaneously image the stars
and the horizon, determining the Astronomical Vessel Position (AVP) (Li et al., 2012a;
2012b; 2014). In this paper, in order to determine heading, the Moon is chosen as a sub-
stitute for stars, and a horizon-fitting algorithm to solve the camera’s attitude is proposed.
In addition, the fisheye-based heading determination method makes it possible to cover the
motion range of the Moon without extra servo control installations, and this characteristic is
important for system miniaturisation. Figure 1 shows the whole process of Moon-observing
heading determination from a macro perspective, which will be elaborated in the following
sections.

2. TRANSFORMATION FROM IMAGE SPACE TO OBJECT SPACE. Figure 2
shows the transformation mechanism between image space and object space when tak-
ing observations using the fisheye camera. In Figure 2, P is the point in image space, P′ is
the point in object space, O′ is the intersection between the principal optic axis and image
plane, named the principal point. O-XcYcZc is defined as the camera coordinate system, in
which the origin O represents the optical centre of the camera, axis Zc coincides with the
principal optic axis, axis Xc is perpendicular to axis Zc and parallel to axis x of the image
plane coordinate system and finally axis Yc is determined by the right-hand rule. As is
demonstrated, Ac is defined as the intersection angle between the vertical plane through P′

and the plane XcOZc is named azimuth, and θc is defined as the intersection angle between
the vector through P′ and the axis Zc, named the semi-angular field. Theoretically, point P′

could be determined with Ac and θc.
To achieve precise conversion between coordinates in object space and image space, a

projection model and a distortion model of the fisheye lens must be constructed. Normally,
fisheye projection models include an equidistance projection model, an equisolid projection
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Figure 2. Principle of lens projection.

model, a stereoscopic projection model, and an orthogonal projection model, etc. (Wang,
2006). In this paper, the lens chosen in experiments complies with the equisolid projec-
tion model. In addition, unlike in Gaussian optics, the “non-similar” theory is applied to
the fisheye lens to meet the requirements of a super-wide FOV. Therefore, a distortion
model is needed. Normally, the optical distortion of the fisheye lens could be divided into
radial distortion, eccentric distortion and in-plane distortion. Among these, the eccentric
and in-plane distortions are in the magnitude of 10−5 ∼ 10−7 when compared with radial
distortion, and thus they can be neglected. In order to describe radial distortion, a fourth
order polynomial is used in this paper, which is shown as follows (Yuan, 2012):

θc = 2 arcsin
r

2f
+ k1

(
arcsin

r
2f

)2

+ k2

(
arcsin

r
2f

)3

+ k3

(
arcsin

r
2f

)4

(1)

Where, θc denotes the semi-angular field of object point P′, f denotes the focal length
of the fisheye camera, (k1, k2, k3) denotes the radial distortion parameters, r denotes the
distance between image point P and principal point O′ in the image plane, which is defined
as

r =
√

(x − x0)2 + (y − y0)2 (2)

(x, y) denotes image point P’s coordinates in the image plane, and (x0, y0) denotes principal
point O′’s coordinates in the image plane.

In the image plane, the intersection angle between vector PO′ and axis x is equivalent
to the azimuth of P′ in the camera coordinate system. Therefore, Ac can be calculated as

Ac =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan
y − y0

x0 − x
x0 − x > 0, y − y0 > 0

arctan
y − y0

x0 − x
+ π x0 − x < 0

arctan
y − y0

x0 − x
+ 2π x0 − x > 0, y − y0 < 0

(3)
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(Ac, θc) could be converted to Three-Dimensional (3D) Cartesian coordinates as follows:

Sc =

⎡
⎣xc

yc
zc

⎤
⎦ =

⎡
⎣sin θc cos Ac

sin θc sin Ac
cos θc

⎤
⎦ (4)

3. EXTRACTION OF THE MOON CENTRE IN THE IMAGE PLANE. The aver-
age flattening of the Moon is approximately 1/3,476, and the lunar geometric centre does
not coincide with its centroid because the centroid is biased about 2 km towards the earth
(Ouyang, 2005; Li et al., 2012b). However, due to the long distance between the Moon
and the Earth, the Moon disk observed on the Earth could be approximately considered as
circular, with an angular radius of about 15′.

3.1. Algorithm to fit the Moon centre. Generally, a circular target will present an
approximate ellipse on the image plane when shot by a fisheye camera. Furthermore, with
the increase of the semi-angular field, the target’s image will get closer to the bound-
ary of the FOV, and the ellipticity will become more obvious. Similarly, the lunar edge
line is certain to form an approximate ellipse on the image plane. To fit the centre of the
Moon, an algorithm—Direct Least Squares Fitting of Ellipses (DLS), is introduced, whose
fundamental idea is briefly conveyed as follows (Fitzgibbon et al., 1996).

The general Equation of an ellipse is

F(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0, b2 − 4ac < 0 (5)

The inequality constraint b2 − 4ac < 0 could be changed as an equality constraint 4ac −
b2 = 1.

By introducing vectors

A = (a, b, c, d, e, f )T P = (x2, xy, y2, x, y, 1) (6)

F(x, y) could be rewritten as the vector form

FA(P) = PA (7)

|FA(Pi)| is defined as the algebraic distance of the point (xi, yi) to the fitting ellipse F(x, y) =
0, which reflects the fitting residual error at the point (xi, yi). Then a vector formed by
algebraic distances of all the fitting participants can be created, whose norm can be regarded
as a fitting accuracy index. The specific vector A minimising the norm mentioned above is
the direct least squares fitting value of elliptic coefficients.

Suppose the number of points participating in elliptical fitting is M , the coordinates of
the points are (x1, y1) . . . (xM , yM ). By introducing matrices

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xiyi y2
i xi yi 1

...
...

...
...

...
...

x2
M xM yM y2

M xM yM 1

⎞
⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)
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Figure 3. Moon phase.

the fitting assignment can be rewritten as (Halif and Flusser, 1998)

min
A

‖DA‖ st ATCA = 1 (9)

which can be solved by generalised eigenvectors

{
DTDA = λCA
ATCA = 1

(10)

It can be proved that Equation (10) has a sole positive eigenvalue λ, whose correspond-
ing eigenvector is exactly the coefficient vector of the best-fit ellipse for the given set of
points (Gander, 1981).

3.2. Method to vote in the real edge line of the Moon phase. The Moon has a periodic
phase change when observed from the Earth. The Moon phase is composed of a twilight
demarcation line and a real edge line, in which only the real edge line can be used to extract
the lunar centre. As a consequence, it is necessary to distinguish the two respective lines.

Normally, such problems tend to be solved by means of robust estimation, for example,
the method named Random Sample Consensus (RANSAC), whose basic idea is to search
for a best-fit model utilising inliers mixed up with outliers (Fischler and Bolles, 1981;
Hast et al., 2013). However, for the Moon, the outliers (the twilight demarcation line)
appear to frequently vote for a regular curve, therefore, this method might occasionally
become invalid. Furthermore, for better results, the setting of thresholds might have to
be artificially changed with the Moon phase cycle, which is considered to be a serious
obstacle in engineering practice. In order to overcome these problems and vote in the real
edge line accurately and adequately, a two-step scheme is proposed, which includes a half-
intercepted search for preliminary voting and a cyclic search for refinement voting. Making
use of the feature of the Moon phase, this method demonstrates good effectiveness and
stability.

3.2.1. Half-intercepted Search. Figure 3 is a sketch of the Moon’s phases, in which
the solid line denotes the real edge line and the dotted line denotes the twilight demarcation
line, whose length is always shorter than that of the former. For that reason, if intercepting a
half quantity of total Moon edge points as the search step, taking the norm of the algebraic
distance vector (‖DA‖ in Equation (9)) as the ellipse fitting accuracy index, the specific
half point set minimising the norm will definitely belong to the lunar real edge line. The
implementation steps are carried out as follows:

(1) Suppose the total number of edge points detected from the Moon phase is N , a half-
rounded continuous quantity ([N/2]) of points are expected to be intercepted for
ellipse fitting;
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(2) [N/2] is designated as the length of the search step, during which the search should
be kept underway until the step coincides with the first one chosen. In this way,
ellipse fitting is repeated N times;

(3) Calculate the norms of the algebraic distance vectors;
(4) The set of points corresponding to the minimal norm are the ones preliminarily

voted in.

3.2.2. Cyclic Search. The majority of points on the real edge line of the Moon phase
can be voted in utilising the method above. However, if we fit the Moon centre merely with
them, part of the precision may be lost. Considering this, a further search for the points
left should be implemented. To achieve this, a cyclic search method is proposed based on
the average of algebraic distances. The detailed implementation steps are carried out as
follows:

(1) Suppose the total number of Moon phase edge points is N , the real edge points pre-
liminarily voted in are (x1, y1), (x2, y2), . . . . . ., (xi, yi), . . . . . ., (x[N/2], y[N/2]), and the
coefficient vector of the fitting ellipse is A1. By introducing vector

Pi = (x2
i , xiyi, y2

i , xi, yi, 1) (11)

the average of algebraic distances from these points to the fitting ellipse can be
expressed as

d1 =
1

[N/2]

[N/2]∑
i=1

|PiA1| (12)

(2) Suppose one specific point left after the preliminary search process is (xt, yt). By
introducing vector

Pt = (x2
t , xtyt, y2

t , xt, yt, 1) (13)

the algebraic distance from this point to the fitting ellipse in step (1) is

dt =
∣∣FA1 (Pt)

∣∣ = |PtA1| (14)

(3) If dt < d1, point (xt, yt) can be treated as one of the Moon’s real edge points.
(4) Suppose there are W qualified points voted in from step (3). Arriving here, [N/2] + W

real edge points can be obtained, including (x1, y1), (x2, y2), . . . . . ., (xi, yi), . . . . . .,
(x[N/2]+W, y[N/2]+W). Using these points for the second elliptical fit, the coefficient
vector received is A2. Similarly, the average of algebraic distances from these points
to the latest fitting ellipse are expressed as

d2 =
1

[N/2] + W

[N/2]+W∑
i=1

|PiA2| (15)

(5) Calculate the algebraic distances from the points still left to the latest fitting ellipse
and determine whether they belong to the Moon’s real edge line, just as step (2)
and step (3) have conducted. Steps (2)-(4) should be repeated until no point could
be voted in from step (3). Arriving here, the real edge line of the Moon could be
considered to be completely discovered.

Figure 4 is a flowchart of the process described above.
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Figure 4. Flowchart of cyclic search.

4. VESSEL ATTITUDE DETERMINATION BASED ON OBSERVATION OF THE
HORIZON. According to the method described above, the coordinates of the Moon cen-
tre on the image plane can be extracted and can be further converted to camera coordinates.
In order to achieve a Moon-observing heading determination, the coordinates of the Moon
centre should be revised to the horizontal plane. The horizon is a natural intersection
between the sky and the water at sea, which supplies a natural horizontal datum perpendic-
ular to the local plumb line (Li et al., 2016). Given this beneficial condition, an algorithm
to solve the camera’s attitude based on horizon observation is proposed.

In Figure 5, O is the camera optical centre, OA and OB are two lines of view for the
observation of the horizon, which are at a tangent to the sea at points A and B. All the
tangent points constitute a horizontal circle, where O′ is the centre, r is the radius, and E
is the geocentre. OS is perpendicular to the sea surface, and point S is located on the sea
surface. The length of OS is h.

In �OAE, ∠OAE is a right angle, then

|OA| =
√

|OE|2 − |AE|2 =
√

(R + h)2 − R2 =
√

h2 + 2Rh (16)

∠OO′A is right angle, then

r =
∣∣O′A

∣∣ =
|OA| · |AE|

|OE| =
R
√

h2 + 2Rh
R + h

(17)

Figure 6 is a sketch for the camera shooting the horizon, in which O-XcYcZc is the camera
coordinate system. O-XchYchZch is defined as the camera horizontal coordinate system. In
the camera horizontal coordinate system, origin O is the optical centre of the camera, axis
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Figure 5. Principle of horizon observation.

Figure 6. Relationship between coordinate systems.

Zch points to the zenith, axis Xch is axis Xc’s projection on the horizontal plane and axis Ych
is determined by the right-hand rule. W is a point on the horizon and HW is the elevation
angle of W in the camera horizontal coordinate system.

Two steps are required for the transformation from O-XcYcZc to O-XchYchZch:

(1) Rotate γ radians around axis Xc, and the rotation matrix can be expressed as
RX(γ );

(2) Rotate ψ radians around axis Yc, and the rotation matrix can be expressed as RY(ψ);
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Rch
c is defined as the rotation matrix from O-XcYcZc to O-XchYchZch, which can be

calculated as
Rch

c = RY(ψ)RX(γ ) (18)

Its holonomic form is

Rch
c =

⎡
⎣cosψ sinψ sin γ − sinψ cos γ

0 cos γ sin γ
sinψ − cosψ sin γ cosψ cos γ

⎤
⎦ (19)

Sc denotes the 3D vector of point W in the camera coordinate system and it can be
transformed into the camera horizontal coordinate system as:

Sch =

⎡
⎣xch

ych
zch

⎤
⎦ = Rch

c · Sc =

⎡
⎣xc cosψ + yc sinψ sin γ − zc sinψ cos γ

yc cos γ + zc sin γ
xc sinψ − yc cosψ sin γ + zc cosψ cos γ

⎤
⎦ (20)

The tangent of point W’s elevation angle is

tan HW =
zch√

x2
ch + y2

ch

(21)

In fact, HW is equivalent to the value of ∠OAO′. Furthermore, in Figure 5, it is clear that
∠OAO′ = ∠OEA. So the following equation can be deduced

tan HW =
|OA|
|AE| =

√
h2 + 2Rh

R
(22)

By combining Equations (21) and (22), the following relationship can be established:

z2
ch

x2
ch + y2

ch
=

h2 + 2Rh
R2 (23)

Then the error equation for least square estimation can be written as

v =
z2

ch

x2
ch + y2

ch
− h2 + 2Rh

R2 (24)

which includes only two unknown parameters, namely, the pitch angle ψ and the roll angle
γ . The holonomic form of Equation (24) is

v = f (ψ , γ ) =
(xc sinψ − yc cosψ sin γ + zc cosψ cos γ )2

(xc cosψ + yc sinψ sin γ − zc sinψ cos γ )2 + (yc cos γ + zc sin γ )2 − h2 + 2Rh
R2

(25)

Linearizing Equation (25), and taking the initial value X0 =
[
ψ0 γ0

]T for the two
unknown parameters, the error equation can be represented as

V = Aδ
∧
X +L (26)

In Equation (26), V is the residual vector, A is the coefficient matrix, δ
∧
X is the correction

vector for unknown parameters, and L is the free vector for the error equation. A detailed
interpretation of Equation (26) is presented in the Appendix.
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Figure 7. Principle of heading determination by lunar observation.

Based on the least squares criterion, the estimated vector of the attitude parameters can
be calculated as

∧
X = −(ATA)−1ATL + X0 (27)

The process above requires iterative calculations. Generally, the two attitude parameters
do not fluctuate more than ±10◦ and they are sensitive to observations. Therefore, in the
normal calculation process, the initial values of the parameters can be taken conveniently
as 0, and the residual error can be controlled below 0·1′′ by iterating 4∼5 times.

5. METHOD TO RESOLVE THE HEADING ANGLE. The Moon centre position on
the image plane can be transformed into the camera coordinate system utilising the projec-
tion model and distortion model presented in Section 2. Then utilising the camera attitude
parameters calculated by the method presented in Section 4, the Moon centre position will
be further transformed into the camera horizontal coordinate system. In order to establish
contact with the horizon coordinate system (defined as a left-handed system here), the axis
Ych of the camera horizontal coordinate system should be reversed for conversion to a left-
handed system. Figure 7 is a sketch reflecting the key principle of heading determination by
lunar observation, where O denotes the camera’s optical centre, O-XhYhZ denotes the hori-
zon coordinate system, and O-Xch′Ych′Z denotes the converted camera horizontal coordinate
system (left-handed system), which share axis Z with the horizon coordinate system. At the
moment of camera exposure, L is the horizontal angle of the Moon centre in O-Xch′Ych′Z,
and A is its azimuth in O-XhYhZ. ξ is the heading angle—the intersection angle between
Xch′ and Xh. Also, ξ is equal to the intersection angle between the projection of axis Xc on
the horizontal plane and the south direction.

The formula to calculate heading angle is

ξ = A − L (28)

We now briefly introduce the calculation process for horizontal angle L.
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Suppose Sch′ is the vector of the Moon centre in O-Xch′Ych′Z, which can be calculated as

Sch′ =

⎡
⎣xch′

ych′

zch′

⎤
⎦ = PYRch

c Sc (29)

In Equation (29), Sc can be obtained from Equation (4), Rch
c can be obtained from

Equation (19), and PY is the reversal matrix of axis Y. Therefore, L can be calculated as

L =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan
ych′

xch′
xch′ > 0, ych′ > 0

arctan
ych′

xch′
+ π xch′ < 0

arctan
ych′

xch′
+ 2π xch′ > 0, ych′ < 0

(30)

As for the azimuth A, it can be calculated taking advantage of the exposure moment,
the lunar ephemeris and the vessel’s location. Generally, the hour angle method is used to
solve this (Adams, 1968; Robbins, 2013).

tan A =
cos δ sin t

sinϕ cos δ cos t − sin δ cosϕ
(31)

In Equation (31), ϕ is the astronomical latitude of the vessel, δ is the lunar declination,
and t is the lunar hour angle, which can be calculated as

t = S0 + Tut1 + λ− α (32)

In Equation (32), α is the lunar right ascension and λ is the astronomical longitude of the
vessel. The AVP written as (ϕ, λ) can be obtained from sequential shooting of the Moon and
information from the inertial navigation system about relative movement during the shoot-
ing. Tut1 is the Greenwich Universal Time (UT1) at the camera exposure moment, which
should be calculated from Coordinated Universal Time (UTC) and the Earth orientation
parameter —UT1-UTC. The former is recorded by a high-precision timer and the latter is
received from the bulletin communique issued regularly by International Earth Rotation
Service (IERS). S0 is the Greenwich sidereal time when the UT1 becomes zero.

6. EXPERIMENT ANALYSIS. To test the reliability of the heading determination
method, two experiments were carried out. The first was conducted in Huanghai coastal
waters on the night of 31 October 2012, while the second was in Bohai Bay on the night of
13 July 2017.

The Charge Coupled Devices (CCD) used in the two experiments were different, notably
in the array size (3056 × 3056 pixel and 2048 × 2048 pixel respectively) and the quantum
efficiency (64% and 96% respectively). The weather conditions during the two experiments
met the demand - good visibility of both the Moon and the stars. However, there was a
little mist on the sea surface. Fortunately, under moonlight illumination, the observation
of the horizon was almost unaffected. Since the ship was always in a state of roll, the
heading angle varied from time to time. Thus, it was difficult to obtain the true value of
heading angle at the camera exposure moment. To solve this, the average heading result

https://doi.org/10.1017/S0373463318000073 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000073


1258 JUN-YU PU AND OTHERS VOL. 71

Figure 8. Results of star-observing heading determination.

from hundreds of stars was taken as a reference to evaluate the accuracy of Moon-observing
heading determination.

During the 31 October 2012 experiment, 15 images were collected, while the number
was 50 for the 13 July 2017 experiment. Figure 8 demonstrates the mean square error of
heading angle for each image calculated from multiple stars, and the fluctuation ranges are
2·0 × 10−3 ∼ 6·6 × 10−3 ◦ and 2·1 × 10−3 ∼ 4·9 × 10−3 ◦ respectively. Among the for-
mer 15 images, the average mean square error is 4·6 × 10−3 ◦, while the magnitude of error
in the later 50 images is 3·4 × 10−3 ◦. Both experiments fully meet the accuracy demand
for a vessel’s heading and can act as a reference for Moon-observing heading determina-
tion. The accuracy of the 13 July 2017 experiment seems to be a little higher, which could
be attributed to the CCD’s better photosensitive performance, that is, the higher quantum
efficiency may help the camera alleviate the influence of fog and clouds, and thus it can
capture a clearer horizon and more stars, contributing to more stable and reliable results.

The data in Figure 9 show the deviation of heading results between the Moon and the
stars for each image. As is indicated in the upper figure, the deviations of the 31 October
2012 experiment vary from −0·045◦ to 0·026◦. Similarly, the situation for the 13 July 2017
experiment in the lower figure is −0·047◦ to 0·04◦. In addition, the average deviations
of the two experiments are 0·021◦ and 0·019◦, respectively. As can be seen from the two
graphs, in general, the results of Moon-observing heading determination have stable ran-
domness, mainly fluctuating in the range of −0·04◦∼0·04◦ and −0·05◦∼0·05◦. Following
this, the results of the first experiment tended to behave more steadily, and this is probably
because the higher resolution ratio of the CCD (3056 × 3056 pixel) can give a larger Moon
image in the image plane, which is helpful for the extraction of the Moon’s centre.

In general, the heading errors can be generated by methodological, algorithmic,
environmental or hardware causes. Normally, the main possible error causes are:
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Figure 9. Results of Moon-observing heading determination.

(1) The elevation angle of the Moon changes over time, and the magnitude of influence
on the horizontal angle L from the tangential component of the lunar centre extraction
error may change with elevation angle.

(2) The horizon extraction error may lead to a systematic deviation of camera attitude
parameters, further contributing to the L error.

(3) The inaccurate camera parameters (especially the principal point’s coordinate
(x0, y0)), stemming from the camera calibration error or parameter drift caused by
changes in environmental factors (temperature, humidity, air pressure, etc.), may lead
to the L error.

7. CONCLUSION. This paper focuses on a heading determination method using simul-
taneous imaging of the Moon and the horizon. A fisheye camera is utilised to achieve
a super-wide FOV. A two-step scheme is proposed to vote in the real edge line of the
Moon’s phase, and a Direct Least Squares Fitting of Ellipses algorithm is introduced to fit
the Moon’s centre. Furthermore, a fitting algorithm for the horizon to solve the camera’s
attitude is proposed. Finally, the fundamental principle to resolve the heading angle is pre-
sented. Results from two different experiments indicate that the average deviation between
our Moon-observing method and star-observing methods is approximately 0.02◦. The main
characteristics of this method are:

(1) Automatic operation. All the procedures can be completed by a fisheye camera and
a portable computer without manual intervention. The camera is responsible for
shooting and the computer undertakes control and processing.

(2) High-level anti-interference. This method has largely removed the restrictions
of electromagnetism and geomagnetism. Furthermore, it could also weaken the
influence of cloudy weather, to some extent.
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(3) Miniaturised system. The super-wide FOV of the fisheye camera can ensure cover-
age of the Moon and the horizon, avoiding the introduction of an external servo or
horizon devices.

Finally, it should be pointed out that the Moon is just regarded as a stable example
for observation; the stars could also be used as available observing targets in permissible
conditions, which can help greatly improving heading precision, especially when the Moon
is not visible.
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APPENDIX

The components of Equation (26) are

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
· · ·
vj
· · ·
vn

⎤
⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
a2
· · ·
aj
· · ·
an

b1
b2
· · ·
bj
· · ·
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

δ
∧
X =

⎡
⎣δ ∧
ψ

δ
∧
γ

⎤
⎦ L =

⎡
⎢⎢⎢⎢⎢⎢⎣

L1
L2
· · ·
Lj
· · ·
Ln

⎤
⎥⎥⎥⎥⎥⎥⎦

(A1)

where n denotes the number of points extracted from the horizon. The components of matrix A and
vector L can be calculated as

aj =
2(zch)j

(
∂zch

∂
∧
ψ

)
0

((xch)2
j + (ych)2

j ) − 2(zch)2
j

(
(xch)j

(
∂xch

∂
∧
ψ

)
0

+ (ych)j

(
∂ych

∂
∧
ψ

)
0

)
((xch)2

j + (ych)2
j )2

(A2)

bj =
2(zch)j

(
∂zch

∂
∧
γ

)
0

((xch)2
j + (ych)2

j ) − 2(zch)2
j

(
(xch)j

(
∂xch

∂
∧
γ

)
0

+ (ych)j

(
∂ych

∂
∧
γ

)
0

)
((xch)2

j + (ych)2
j )2

(A3)

Lj =
(zch)2

j

(xch)2
j + (ych)2

j
− h2 + 2Rh

R2 (A4)

The components
(
∂xch

∂
∧
ψ

)
0
,
(
∂ych

∂
∧
ψ

)
0
,
(
∂zch

∂
∧
ψ

)
0
,
(
∂xch

∂
∧
γ

)
0
,
(
∂ych

∂
∧
γ

)
0

and
(
∂zch

∂
∧
γ

)
0

denote the initial

values of ∂xch

∂
∧
ψ

, ∂ych

∂
∧
ψ

, ∂zch

∂
∧
ψ

, ∂xch

∂
∧
γ

, ∂ych

∂
∧
γ

and ∂zch

∂
∧
γ

. They can be calculated as

⎛
⎝∂xch

∂
∧
ψ

⎞
⎠

0

= −(xc)j sinψ0 + (yc)j sin γ0 cosψ0 − (zc)j cos γ0 cosψ0 (A5)

⎛
⎝∂ych

∂
∧
ψ

⎞
⎠

0

= 0 (A6)
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⎛
⎝∂zch

∂
∧
ψ

⎞
⎠

0

= (xc)j cosψ0 + (yc)j sin γ0 sinψ0 − (zc)j cos γ0 sinψ0 (A7)

(
∂xch

∂
∧
γ

)
0

= (yc)j sinψ0 cos γ0 + (zc)j sinψ0 sin γ0 (A8)

(
∂ych

∂
∧
γ

)
0

= −(yc)j sin γ0 + (zc)j cos γ0 (A9)

(
∂zch

∂
∧
γ

)
0

= −(yc)j cosψ0 cos γ0 − (zc)j cosψ0 sin γ0 (A10)

The components ψ0 and γ0 denote the initial values of the two attitude parameters.
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