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Abstract
With many micromanipulator designs emerging in micro and nanosystem applications, the element of compliance
in the mechanisms is gaining attention. Several designs consider motions limited in a plane for high accuracy and
repeatability as needed in micro/nano manipulation applications. Extending this to a full spatial configuration with
coupled motions of series and parallel linkages with flexure joints of 1-degree-of-freedom (DOF) and 3-DOF needs
a systematic analytical approach. One such approach for compliance analysis is presented in this article for a mecha-
nism designed at Indian Institute of Technology Kharagpur. To validate the analytical models, finite element analysis
simulations are performed with the help of the Abaqus-6.14 software package. Following the successful validation,
the effect of structural parameters on the performance is presented with the help of the analytical expressions. We
explore the performance of the mechanism with different dimensions of flexures of a particular type. Results indicate
that the design with dissimilar dimensional parameters can give superior performance.

1. Introduction
With several recent developments in nanotechnology, there is considerable interest in exploring,
manipulating, assembling, and fabrication of structures and systems at the micro and nanoscales.
Nowadays, micromanipulators are being used for manipulation and motion generation in microscale
environments such as in optical microscopes, electron microscopes and applications wherein 2D/3D
micromanipulation of materials is carried out.

In the case of robotic manipulation, compliance is generally perceived as an undesirable but unavoid-
able characteristic. The external loading and self-weight lead to a nonnegligible deflection of the end
effector. This deflection affects the accuracy of the operation and degrades the quality of the final prod-
uct. While this is true for a large scale, high payload, and high range manipulation, there are situations
wherein the external loads are extremely low, required motion is in micro/nano scales, and accuracy is of
paramount importance. A flexure-based compliant mechanism such as the one discussed in this article
is highly suitable in this context. Compliant mechanisms are a category of mechanisms that involve the
deformation of some of its joints or members for creating movements [1]. This particular class of mech-
anisms purposefully incorporates compliance into the system to exploit certain benefits. For instance,
the compliant flexure joints eliminate backlash and friction, thus, offering better accuracy. Furthermore,
the low weight of these mechanisms ensures that they have negligible deformation/deflection due to self-
weight. The flexure-based compliant mechanism has a limitation on the range of motion. However, as
the required motions are in micro/nano scales, this shortcoming practically does not matter. To sum up,
for specific applications involving low payload, precision micromanipulation, the benefits of inclusion
of compliance outweigh its limitations; consequently, flexure-based compliant mechanisms are widely
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employed in such cases. Compliant mechanisms at microscales are increasingly being used for precise
actuation or motion/force sensing mechanisms in micro electro mechanical systems.

Compliant mechanisms with serial structure offer large workspace and dexterous maneuverability, but
as they have cantilever structures, they are more prone to deform/deflect under loading. Moreover, the
serial arrangement of members leads to the accumulation of errors. In addition, at high speeds, vibration
becomes a severe challenge in serial structured mechanisms. All these reasons make serial structure
unsuitable for fast and precise micromanipulation. To conquer the limitations of serial structures, parallel
structures have drawn extensive attention. Here, several independently actuated links connect the end
effector to the base. The parallel structure ensures improved rigidity and higher load-carrying capacity.
Moreover, this arrangement avoids error accumulation providing better positioning. Therefore, it can be
concluded that a compliant mechanism with a parallel kinematic structure is the most preferred solution
for micro-motion applications. These types of mechanisms are popularly known as compliant parallel
micromanipulators (CPMs).

In the design process of a CPM, compliance analysis or stiffness analysis plays a significant role
[2–4]. Analytical compliance modeling allows us to observe the effect of structural parameters of the
CPM on performance. It also helps us to understand the static, modal, and dynamic behavior of the
system whereby it is possible to provide in the design of a CPM with high stiffness that leads to higher
natural frequency, good repeatability, dexterous, and precise manipulation [2].

A coverage of different methods of compliance modeling can be found in the work of Ling et al. [5].
The finite element analysis (FEA) has been often used to do compliance modeling and is considered
most accurate. Alternatively, researchers use pseudo-rigid body (PRB) modeling [6–9]. However, since
the PRB model considers the compliance of the members in their working or on-axis direction only,
it is not much useful for complete compliance analysis of a spatial mechanism. This method is mostly
used for CPM with simpler designs or in cases where undesired or out of axis deformations are very low
or negligible. A highly accurate analytical model can be formulated by considering the full nonlinear
model of all the members of the mechanism [10, 11]. Unfortunately, such models become too involved
for a spatial CPM with a large number of members. Further, the nonlinear method does not offer much
benefit for a system undergoing small deformations. Therefore, it is suitable only where the system is
subjected to large deformations like that of a compliant mechanism with distributed compliance. In the
present context, with consideration of 6D compliance, a lumped parameter model of the members can
be used as a compromise [2, 12, 13]. With the assumption of Hooke’s law, this lumped model can be
formulated very easily by using the matrix method.

Although an extensive amount of research has already been done in the area of compliance or
stiffness analysis [3, 4, 14–17], most of these study deal with the case of planar mechanisms or in
applications involving planar motions. There is not much work available for spatial mechanisms hav-
ing multiple degree-of-freedom (DOF). Some of the other recently reported works can be seen in
refs. [18–22].

In a previous work of the authors, a compliant Stewart platform-based micromanipulator for high
range 6-DOF motion applications was proposed [23]. It was shown that for its size, the design gives a
better range of motion than other similar CPMs. The model has a full 6-DOF spatial motion capability
that is achieved using six separate parallelogram linkages. The kinematic structure of these linkages
so arranged offers a unique 6-DOF motion similar to that of a Stewart platform but at micro and
nanoscales. However, carrying out a full compliance model of such a micromanipulator is not an easy
task. The parallel paths of compliances in the combination of rigid and flexure linkages used along
with a spatial disposition of each member needs a systematic process to build accurate models. In
such a case, we consider a model for full 6-DOF motion with lumped compliance parameters in our
paper.

The matrix method is used to derive the expressions for output compliance and input compliance.
The proposed CPM takes into consideration parallelogram linkages in each limb to achieve a higher
range of motions in a plane. The analytical expression for the amplification ratio (AR) for such paral-
lelogram linkages has been derived in the article. Since the behavior of a compliant mechanism greatly
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Figure 1. A flexure member subjected to a general force vector at its free end.

depends on the compliance of the flexures incorporated in the design, factors like the type of joints, its
geometrical parameters, and material are considered. In this article, we consider the spatial mechanism
with two classes or types of flexure joints; and we allow different geometrical parameter for one of the
types/classes. This is an important consideration in spatial CPM as compared to planar CPM that often
assumes the same geometric features at flexure joints mostly due to manufacturing considerations. We
determine the advantage of providing varied geometry and compliance in one type of flexure joints on
the performance of the spatial mechanism.

The contributions of this article are as follows. We present a thorough approach to an analytical
compliance analysis of a spatial 6-DOF micromanipulator, which has not been addressed much in the
literature. For a spatial 6-DOF micromanipulator, the compliances are interwoven with the geometry of
motion and the derivation of expression needs a systematic approach to represent the effective spatial
compliance matrix. This procedure is highlighted and customized for a specific design of a system
developed at Indian Institute of Technology (IIT) Kharagpur. The article also presents a procedure to
obtain the analytical expression for the AR in terms of the compliance factors. The analytical expression
of the AR is significant as it allows the designer to achieve a better amplification of motion by changing
flexures’ geometry. Moreover, the availability of the analytical relations allows a designer to optimize
the CPM’s geometry for the desired behavior. In most of the available work, authors do not consider the
connecting links’ compliance and assume them as rigid members in their models. In our work, we have
also incorporated the compliance of the connecting links along with that of the joints and have shown
that the geometry of the connecting links has a significant effect on amplification of motion indeed. This
is needed to access the cross-coupled effects of both joints and linkages in the distributed compliance
system in all 6-DOF. Finally, the work establishes that the provision of flexures with different geometrical
parameters can improve performance.

The organization of the rest of the article is as follows: In Section 2, the methodology used for com-
pliance modeling has been discussed. A representation to define and to carry out transformation in the
spatial domain is presented. Section 3 outlines the design of the micromanipulator briefly. The analytical
model of output compliance, input compliance, and AR has been derived in Section 4. Validation of the
derived mathematical model has been done in Section 5 with the help of Abaqus-6.14 simulation. Based
on the analytical models, Section 6 presents the effect of dimensional parameters on the performance of
the CPM. This section also presents the effects of dissimilar geometry. In the end, concluding remarks
have been summarized in Section 7.

2. Compliance modeling of a CPM based on matrix method
Compliance modeling is carried out using the concept of a compliance matrix. For any flexure or com-
pliant member, it can be shown that a compliance matrix maps the force vector and the displacement
vector. Figure 1 shows a typical member in its frame i subjected to a generalized force at its end.
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The 6 × 6 local compliance matrix for this member can be represented as

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CxFx 0 0 0 0 0

0 CyFy 0 0 0 CyMz

0 0 CzFz 0 CzMy 0

0 0 0 CθxMx 0 0

0 0 CθyFz 0 CθyMy 0

0 CθzFy 0 0 0 CθzMz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where compliance factor CxFx represents the displacement in x-direction due to a unit force in x-direction.
Whereas CyMz denotes the displacement in y-direction due to a unit moment Mz about z-axis. The other
members of the matrix can be defined in a similar manner. The compliance factors for different types of
flexures have been formulated in several refs. [24–26].

In Eq. (1), Ci denotes the local compliance at Oi. The absence of superscript in Ci means that the
compliance is defined with respect to the fixed end or ground. Now, to transfer this compliance into any
other coordinate system, let us say Oj, we can use the following expression as described in ref. [12]

Cj = Tj
i Ci

(
Tj

i

)T (2)

where transformation matrix Tj
i is defined as

Tj
i =

[
Rj

i S
(
rj

i

)
Rj

i

0 Rj
i

]
(3)

where Rj
i is a rotation matrix which represents orientation of coordinate system Oi with respect to Oj, rj

i

represents the position vector of the point Oi with respect to Oj. S(r) is the skew-symmetric matrix, and
for a position vector: r = [rx ry rz], it has the following form

S(r) =
⎡
⎢⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎥⎦ (4)

A flexure-based CPM may have members connected in a serial, a parallel, or in a compounded
series–parallel configuration. The procedure to derive the compliance equation of a generalized system
is presented in the following section.

2.1. Procedure for obtaining output compliance, input compliance, and amplification ratio for a
generalized CPM with series–parallel configuration

This section discusses the procedures to formulate analytical models for output compliance, input com-
pliance, and AR for a general CPM. The outlined methods can easily be applied to the other designs.
Let us consider a typical simplified CPM as shown in Fig. 2. The CPM has N-limbs (S1, S2, . . . , SN) with
m number of flexure members. The limb S1 comprises of a serial chain of joints and links; S2 comprises
of series of sub chains SS1 and SS2; SS1 is a parallel chain of joints and linkages; SS2 and SS1 are in
series. The combined S1, S2, .., SN are all in parallel chain configuration. Limb-SN incorporates a motion
amplification system wherein F is the input point and D is the output point.

2.1.1. Output compliance
The output compliance of this mechanism is the compliance of the whole system at output point O.
Firstly, we should determine the compliance of each of the limbs. In the first limb S1, flexure-1 and
flexure-2 are in series, so their compliances can be added after transforming them to point A.

CA = TA
1 C1

(
TA

1

)T + TA
2 C2

(
TA

2

)T (5)
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Figure 2. Schematic diagram of a generalized compliant parallel manipulator.

The limb-S2 itself has a combination of series and parallel connections, therefore, it is further divided
into subsystems SS1 and SS2. Compliance of subsystem SS2 at B is

CB: SS2 = CB = TB
3 C3

(
TB

3

)T (6)

The subsystem SS1 contains flexure-4 and flexure-5 in parallel. These compliances will first be trans-
formed to the point C, and then, the inverse of these transformed compliances will be added. The desired
compliance of the subsystem will be the inverse of the obtained sum. The equation for this process is
presented below.

CB
C: SS1

= CB
C =

((
TC

4 C4

(
TC

4

)T
)−1 +

(
TC

5 C5

(
TC

5

)T
)−1
)−1

(7)

The superscript B in the notation here indicates that point B is considered the reference or fixed point.
Subsystems SS1 and SS2 are in a serial chain. Therefore, the total compliance of the limb-S2 at C can

be obtained by adding the transformed compliances of SS1 and SS2 as given below.

CC = TC
B CB

(
TC

B

)T + CB
C (8)

This process will be done for each of the limbs. Finally, the compliance for the last limb-SN at point
E is

CE = TE
mCm

(
TE

m

)T + TE
DCD

(
TE

D

)T (9)

We have determined the compliance of all the limbs at their output points. Since all the limbs are in
parallel, the output compliance of the full mechanism at O can be obtained by the following equation as
done earlier.

CO =
((

TO
A CA

(
TO

A

)T
)−1 +

(
TO

C CC

(
TO

C

)T
)−1 + . . . .. +

(
TO

E CE

(
TO

E

)T
)−1
)−1

(10)

2.1.2. Input compliance
Input compliance is defined as the compliance of the actuated (or input) point of the CPM. If the CPM
has a symmetric design, all the actuated points would yield identical input compliance. However, an
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Figure 3. Schematic diagram of the modified CPM for input compliance determination.

asymmetric CPM may provide different values of input compliance. The generalized CPM in consid-
eration here has an asymmetric design. In what follows, we shall try to determine one of the input
compliances. The other input compliances can be obtained using a similar procedure.

Let us consider the input point B (Fig. 2) in limb-S2 for input compliance determination. The next
step is to rearrange the system to make B the output point. Figure 3 shows the modified system after such
rearrangement. The desired compliance is nothing but the output compliance of this modified system,
which can be obtained by following the process discussed in the last section.

2.1.3. Amplification ratio or displacement amplification
The current generalized CPM contains a motion amplifier in the limb SN (Fig. 2). The AR for this system
would be the ratio of displacement of its output point D to that of input point F. The determination of
the AR typically involves the following steps.

1. Isolate the motion amplification system from the full mechanism as shown in Fig. 4.
2. Consider the mechanism left after removing the amplification system (Fig. 4a), and write force–

displacement/(moment–rotation) equations at the bifurcation point (D).
3. Write force–displacement/(moment-rotation) equations for the separated amplification system

(Fig. 4b) at input point F and point D.
4. Solve the algebraic equations generated from Step (2) and Step (3) to formulate the expression

for AR.

3. Design of the 6-DOF flexure-based stewart platform-like CPM
Before carrying out the compliance analysis of the micromanipulator in consideration, we shall briefly
discuss its design. The design of the mechanism is based on the Stewart platform [27, 28]. A compliant
version of the mechanism developed at IIT Kharagpur is being considered [23]. In the design, right
circular revolute and right circular spherical flexures (Figs. 5a and 5b, respectively) have been utilized
in each limb of the mechanism. As mentioned earlier, the current design has a provision of parallelogram
linkages in each limb. The kinematic diagram for a limb in Fig. 6 shows the locations wherein the flexure
joints will be placed.

Figure 7 presents a detailed engineering description of the limb with flexure joints of the microma-
nipulator designed at IIT Kharagpur. All the revolute flexures in the parallelogram mechanism have been
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(a) (b)

Figure 4. Schematic diagram for amplification ratio determination.

(a) (b)

Figure 5. Design elements of the micromanipulator.

Figure 6. Kinematic diagram of a limb of the mechanism.

provided with identical dimensions. The full design of the Stewart CPM involves six limbs connected
in a parallel configuration as shown in Fig. 8(b), which mimics the 6-DOF Stewart platform shown in
Fig. 8(a). Figure 9 presents two views of the micromanipulator wherein the top view shows the relative
description of the links and the side view/elevation is shown to represent the effect of motion/loads used
in compliance analysis.
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Figure 7. A limb of the micromanipulator with dimensions.

(a) (b)

Figure 8. The general Stewart platform and compliant version of the micromanipulator.

4. Full 6-DOF spatial compliance modeling of the flexure-based stewart platform-like CPM
As per the objective of this work, for our micromanipulator, consider the following in our study:
(a) output compliance of the entire mechanism, (b) input compliance at an input point of a limb, and
(c) AR of the parallelogram linkage for a limb.

Output compliance of the present CPM can be defined as the motion of the end-effector point M
(Fig. 9) when a unit external load is applied at the same point [29]. As per the compliance matrix defined
in Eq. (1), output compliance has many components or factors. These factors describe the force/moment–
displacement/rotation behavior of the CPM at the output point. The output compliance plays a very
crucial role for accurate manipulation when the end effector is subjected to an external force or loading.
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Figure 9. Output compliance, input compliance, and amplification ratio.

A CPM with low output compliance (or high output stiffness) can perform its motion with precision
without being influenced by external loads.

Input compliance for a CPM relates the input force and the resulting input motion [30]. For the given
Stewart platform-based CPM, input compliance is the compliance of input point A in y-direction with
respect to link G of the parallelogram mechanism of the limb (Fig. 9). For safe operation, this input
compliance should be more than the output compliance of the actuator.

The AR for the parallelogram linkage is defined as the ratio of output motion (motion of point D
in y-direction in its local coordinate frame) to the input motion (motion of point A in y-direction in its
local coordinate frame) of the parallelogram mechanism of the limb (Fig. 9). Again, the input and output
motions are defined with respect to the link G, which is the actuator’s reference link. The compliance
or stiffness of the actuators is not considered in the present study. The analytical expressions for com-
pliances are generated by symbolic computation software Maple-18 [31], as these expressions can get
cumbersome.

4.1. Modeling of output compliance
There are three different types of compliant members used in the design of the CPM in consideration:
revolute flexures, spherical flexures, and deformable connecting links (modelled as Euler−Bernoulli
beams as applicable). In compliance modeling, each of these members needs to be assigned coordinate
frames. Figure 10 illustrates the scheme of coordinate system assignment followed in this article.

With reference to Fig. 9, we can observe that the micromanipulator consists of six similar limbs with
parallelogram linkages connected in a parallel configuration. In what follows, the expression of output
compliance for one of the limbs will be derived.

4.1.1. Modeling the output compliance of a single limb
Referring to Fig. 7, it may be noted that the design of the limb involves several compliant members.
For easier identification of these members, the key nodes and points are assigned numbers, as shown in
Fig. 11. These comprise one of the three elements described in Fig. 10. The flexible members are shown
in the legend table of Fig. 11; all other members in the system are considered as rigid. It can be seen
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Figure 10. Coordinate system assignment scheme for compliant members.

Figure 11. Numbering of key nodes and points in the limb-1 of the mechanism.

that every member has been assigned two nodes. Out of these two nodes, one would be the output node
based on how we proceed in the micromanipulator design for a particular calculation. The compliant
member will be referred by this output node.

For the sake of convenience, a limb of the micromanipulator can further be divided into three subsys-
tems (Fig. 11): (i) compliant universal joint (From base to U), (ii) compliant parallelogram mechanism
(From U to D), and (iii) compliant spherical joint (from D to P1). The connectivity graph of all the
members in the limb has been depicted in Fig. 12.

The first subsystem is the universal joint. It is constructed by the combination of three revolute flexures
(joint-2, joint-4, and joint-6). For the universal joint, we can see that joint-2 and joint-4 are in parallel
connection, and their end is in serial connection with joint-6 (Fig. 12). Hence, the compliance of the
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Figure 12. Connectivity graph of members in a limb for output compliance determination.

universal joint at point U can be written as

Cu =
((

Tu
2 C2

(
Tu

2

)T
)−1 +

(
Tu

4 C4

(
Tu

4

)T
)−1
)−1

+ Tu
6 C6

(
Tu

6

)T (11)

where C2, C4, and C6 are the compliance matrices for revolute flexure, and Tu
2 , Tu

4 , and Tu
6 are correspond-

ing transformation matrices. The detailed description of all the transformation and compliance matrices
used in this article can be found in the appendices. The second subsystem is the parallelogram mecha-
nism. Considering the series and parallel connection of different members (Fig. 12), the compliance of
point D with respect to point U can be expressed as

CU
D =

((
TD

8 C8

(
TD

8

)T + TD
9 C9

(
TD

9

)T + TD
10C10

(
TD

10

)T)−1 + (
TD

12C12

(
TD

12

)T

+ TD
16C16

(
TD

16

)T + TD
17C17

(
TD

17

)T)−1
)−1

(12)

The third and final subsystem is the compliant spherical joint. For this joint, compliance at P1 with
respect to point D is

CD
P1 = TP1

19 C19

(
TP1

19

)T (13)

where C19 is the compliance matrix for spherical flexure joint. For the current design of the compliant
spherical flexure, errors in the analytical relations (from ref. [25]) were very high; hence for this flexure
values of compliance factors has been taken from FEA simulations.

Figure 11 shows that the universal joint, parallelogram linkage, and spherical joint are serially con-
nected. Therefore, from Eqs. (11) to (13), the final expression of compliance for full limb at P1 (with
respect to ground) is

CP1 = TP1
u Cu

(
TP1

u

)T + TP1
D CU

D

(
TP1

D

)T + CD
P1 (14)

The expression of output compliance for other five limbs can be formulated by following similar
procedure.

4.1.2. Output compliance of the full model
The full compliant model of the current CPM is composed of six limbs connected in the parallel con-
figuration, as shown in Fig. 9. Firstly, to derive the output compliance, the local compliances of these
limbs will be transformed to the global coordinate frame M. Then, taking into account their parallel
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connection, the final output compliance at M can be expressed as

CM =
((

TM
P1CP1

(
TM

P1

)T
)−1 +

(
TM

P2CP2

(
TM

P2

)T
)−1 +

(
TM

P3CP3

(
TM

P3

)T
)−1

+
(

TM
P4CP4

(
TM

P4

)T
)−1 +

(
TM

P5CP5

(
TM

P5

)T
)−1 +

(
TM

P6CP6

(
TM

P6

)T
)−1)−1

(15)

Above is the equation for output compliance of the full micromanipulator.

4.2. Amplification ratio and input compliance
The provision of motion amplifier is common in flexure-based micromanipulators. The motion amplifi-
cation in a compliant micromanipulator depends not only on its kinematics but also on the compliances
of the members in it. Therefore, an analytical analysis in present context becomes essential as it
can give the designer insights on the influence of design parameters on amplification. The analytical
model can also be employed to optimize the geometry of mechanism for obtaining maximum possible
amplification.

As defined before, the AR is the ratio of output motion to the input motion in the parallelogram
mechanism of a limb. To formulate the expression for AR, the parallelogram mechanism of one of
the limbs needs to be separated from the full mechanism. It should be noted that the input and output
motions are defined with respect to the link G, and they do not involve the rigid-body motions of the
parallelogram mechanism. Therefore, for the determination of input and output motion, the link G is
assumed to be fixed in the present case. Figure 13(a) shows the separated parallelogram mechanism of
limb-1 with suitable reactions. This separated mechanism will be referred to as parallelogram-1. Out of
all six actuator locations, if actuation is only taking place at parallelogram-1, then the reaction forces
at point D on the parallelogram-1 can be assumed to be in the plane of the mechanism. Even if any
out-of-plane reaction forces occur, they will have a negligible effect on the amplification process of
the mechanism. Moreover, since point D is situated at the output of the parallelogram mechanism, its
planar rotation can be assumed to be zero. Let uA be the input displacement, which is nothing but the
displacement of point A in the y-direction (Fig. 13a). Similarly, let uB be the output displacement, which
is again nothing but the displacement of point D in y-direction (Fig. 13a). Additionally, the rotation
of the point D has been denoted as θD. In what follows, we shall write the force–displacement (and
moment–rotation) equations for parallelogram-1 at point D (output point) and point A (input point). As
the horizontal reaction at D (FD

′) does not have a significant contribution in the amplification process,
it has been omitted in the calculations.

uA = CG
A (2, 2) × FA − U1 × FD − U2 × MD (16)

uD = −CG
D(2, 2) × FD − CG

D(2, 6) × MD + U1 × FA (17)

θD = −CG
D(6, 6) × MD + U2 × FA − CG

D(6, 2) × FD = 0 (18)

Here CG
A is the compliance at point A with respect to G, and CG

A (2, 2) is a compliance factor of the
matrix CG

A . CG
D represents the compliance at the point D with respect to G. U1 relates the y-displacement

at A (i.e., uA) due to force in the y-direction at location D (i.e., FD). From Maxwell’s reciprocal theorem,
U1 should also relate the y-displacement at D (i.e., uD) as a result of force at A (i.e., FA). Similarly another
parameter U2 relates MD and uA; therefore, it will relate FA and θD as well.

The mechanism that is obtained after removing the parallelogram-1 from the full mechanism will
now be considered. This mechanism will also have point D. Figure 13(b) depicts this mechanism with
reactions. So once again, the force–displacement (and moment/rotation) equations at point D can be
written as
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(a)

(b)

Figure 13. Amplification ratio formulation.

uD = CD(2−6)(2, 2) × FD + CD(2−6)(2, 6) × MD (19)

θD = CD(2−6)(6, 6) × MD + CD(2−6)(6, 2) × FD = 0 (20)

where CD(2−6) is the compliance of the mechanism excluding limb-1 at point D.
For the original full mechanism, if input compliance is CG

in, the following expression will also be valid
at point A:

uA = CG
in(2, 2) × FA (21)

We now have six force–displacement (and moment–rotation) equations (Eqs. 16−21). Eliminating
FD, FA, MD, U1, and U2 from these equations, the expression for AR in terms of the compliance values
is finally obtained as

AR = uD

uA

=
√

Num

Den
(22)

where,

Num =
{

CG
A (2, 2)

(
CD(2−6)(2, 2)

)2(
CD(2−6)(6, 6)

)2 − 2CG
A (2, 2) CD(2−6)(2, 2) CD(2−6)(2, 6) CD(2−6)(6, 2) CD(2−6)

(6, 6) + CG
A (2, 2)

(
CD(2−6)(2, 6)

)2 (
CD(2−6)(6, 2)

)2 − (
CD(2−6)(2, 2)

)2 (
CD(2−6)(6, 6)

)2
CG

in(2, 2)

+ 2CD(2−6)(2, 2) CD(2−6)(2, 6) CD(2−6)(6, 2) CD(2−6)(6, 6) Cin(2, 2)

− (
CD(2−6)(2, 6)

)2 (
CD(2−6)(6, 2)

)2
Cin(2, 2)

}
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Figure 14. Connectivity graph of members for calculation of CG
A .

and

Den =
{(

CG
in(2, 2)

)2
(

CG
D(2, 2)

(
CD(2−6)(6, 6)

)2 − CG
D(2, 6) CD(2−6)(6, 2) CD(2−6)(6, 6) − CG

D(6, 2) CD(2−6)(6, 2)

CD(2−6)(6, 6) + CG
D(6, 6)

(
CD(2−6)(6, 6)

)2 + CD(2−6)(2, 2)
(
CD(2−6)(6, 6)

)2 − CD(2−6)(2, 6) CD(2−6)(6, 2)

CD(2−6)(6, 6)
)}

.

From Eq. (22), additional information in terms of the expressions of CG
A , CG

D, CD(2−6), and Cin is needed.
These expressions have been derived in the following sections.

4.2.1. Expression for CG
A

With reference to Fig. 14, if we start from point G and proceed clockwise, we can observe that flexure
member 8, 9, 10, 16, and 13’ are in serial connection. Hence, their resultant transformed compliance at
A can be given as

CG
A:8,9,10,16,13′ = TA

8 C8

(
TA

8

)T + TA
9 C9

(
TA

9

)T + TA
10C10

(
TA

10

)T + TA
16C16

(
TA

16

)T + TA
13′C13′

(
TA

13′
)T (23)

Similarly, while proceeding anticlockwise from G, we can find joint-12 and 13” to be serially
connected. Their resultant transformed compliance at A is

CG
A:12,13′′ = TA

12C12

(
TA

12

)T + TA
13′′C13′′

(
TA

13′′
)T (24)

The compliances CG
A:8,9,10,16,13′ and CG

A:12,13′′ are in parallel. Moreover, these two compliances together
make a serial connection with the last flexure member, flexure-15, to reach the desired point of interest
which is A. The final required expression can be calculated as

CG
A = ((

CG
A:8,9,10,16,13′

)−1 + (
CG

A:12,13′′
)−1)−1 + TA

15C15

(
TA

15

)T (25)

4.2.2. Expression for CG
D

The compliance CG
D is same as CU

D , which has already been obtained in Section 4.1.1 (Eq. 12). The same
equation is presented below for CG

D.

CG
D =

((
TD

8 C8

(
TD

8

)T + TD
9 C9

(
TD

9

)T + TD
10C10

(
TD

10

)T
)−1 +

(
TD

12C12

(
TD

12

)T + TD
16C16

(
TD

16

)T

+TD
17C17

(
TD

17

)T
)−1
)−1

(26)

4.2.3. Expression for CD(2−6)

In Section 4.1.2, the expression for output compliance of the current CPM was formulated (Eq. 15). The
same equation is presented below.
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Figure 15. Simplified connectivity graph of steps involved in calculation of CD(2−6).

Figure 16. Simplified connectivity graph of members for calculation of input compliance.

CM =
((

TM
P1CP1

(
TM

P1

)T
)−1 +

(
TM

P2CP2

(
TM

P2

)T
)−1 +

(
TM

P3CP3

(
TM

P3

)T
)−1

+
(

TM
P4CP4

(
TM

P4

)T
)−1 +

(
TM

P5CP5

(
TM

P5

)T
)−1 +

(
TM

P6CP6

(
TM

P6

)T
)−1
)−1

(27)

In this equation, if we remove the first term in the right-hand side, the resulting expression would be
the compliance at M for the mechanism without limb-1. Let us denote this compliance as CM(2−6). CM(2−6)

when connected serially with the spherical joint of limb-1 can give us the desired compliance (CD(2−6)).
Figure 15 outlines this process.

The final expression, obtained after following the steps mentioned above, is written below.

CD(2−6) = TD
MCM(2−6)

(
TD

M

)T + TD
18C18

(
TD

18

)T (28)

4.2.4. Expression for CG
in

The expression for CD(2−6) was derived in the previous section. Connection of CD(2−6) with the
parallelogram-1 represents the full CPM (Fig. 16). In this context, the problem of determining the input
compliance is nothing but finding out the compliance of point A with respect to G.

As member 8, 9, and 10 are serially connected, their transformed compliance at A is

CG
A : 8,9,10 = TA

8 C8

(
TA

8

)T + TA
9 C9

(
TA

9

)T + TA
10C10

(
TA

10

)T (29)
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Table I. Dimensional and simulation parameters.

Dimensional parameters for each limb (Fig. 7) (lengths in mm and angles in degrees)
r=2 b = 4 t = 1 rc=2 bc=8 tc=1 l3=45 l4=15
l5=83 l2n=7 l7=2 l8=3 l9=13.41 l10=5 l11=5 rs=4
ts=1.5 l12=4 l13=5.4 l14=13.52 rr=2 br=4 tr=1 αi=12
a = 5 w = 4 g = 1.75 pl=13.5
For complete mechanism (Fig. 9)

αp=33.58 rp=34.33 l15=5
Simulation parameters
Element size (in
limbs)

Element
type

Young’s
modulus (E)

Poisson’s
ratio (ν)

2 mm C3D10 200 GPa 0.3

This compliance is in parallel connection to CD(2−6) as shown in Fig. 16. Therefore,

CG
A : D =

((
TA

DCD(2−6)(T
A
D)T
)−1 + (CG

A : 8,9,10)−1
)−1

(30)

The rest of the process is similar to that followed in the derivation of compliance CG
A . The expressions

involved in the process are presented below.

CG
A : (D,16,13′) = CG

A : D + TA
16C16

(
TA

16

)T + TA
13′C13′

(
TA

13′
)T (31)

CG
A : 12,13′′ = TA

12C12

(
TA

12

)T + TA
13′′C13′′

(
TA

13′′
)T (32)

From Eqs. (31) and (32), the final expression can be written as

CG
in = (

(CG
A : (D,16,13′))

−1 + (CG
A : 12,13′′ )−1

)−1 + TA
15C15

(
TA

15

)T (33)

This is the required expression for input compliance.

5. Comparison and validation of model using FEA
The analytical models for output compliance, input compliance, and AR of the CPM in consideration
were obtained in the previous section. In this section, these models will be validated by FEA through
Abaqus-6.14 simulations [32]. The various dimensional parameters (defined in Figs. 7 and 9) and sim-
ulation parameters for CPM are given in Table I. In the simulation, all the revolute flexures in the
parallelogram linkages have been given identical dimensions.

Figure 17 represents the FEA model of the CPM prepared in Abaqus-6.14 environment. The 10
node tetrahedral element C3D10 has been used to create mesh of the CPM. As the deformations are
mainly expected to be concentrated in the flexure joint locations, they have been provided with a fine
mesh by setting curvature control to 0.01. A convergence analysis was done to determine the suitable
mesh size. In the FEA model, a unit force in y-direction is applied at the input point (A) of the limb-1
(Fig. 18a) while keeping the link G fixed. The resulting displacements at point A (input displacement)
and D (output displacement) in y-direction are observed. The input motion obtained in such a manner
is nothing but the input compliance of the CPM in consideration. Whereas the ratio of the output and
input displacement represents the AR. The output compliance in the FEA model can be determined
by the application of a unit force/moment at the output point M of the CPM (Fig. 18b) and obtaining
the corresponding displacement/rotation. Table II elaborates on the results obtained from the analytical
(matrix) model and FEA simulations. Here, FEA results have been considered as the benchmark or true
result for calculating the deviations.

For output and input compliance, deviations were found to be from around 7% to 11%. These errors
mainly originate from the inaccuracy of expressions of the adopted compliance factors for the flexure
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Figure 17. FEA model of the CPM.

(a)

Input compliance determination Output compliance determination

(b)

Figure 18. Input and output compliance determination using FEA simulations.

joints. Now let us look at the results for AR. From Eq. (22), we can observe that the derived expression
for AR involves many compliance factors. Now, these factors themselves have errors ranging from 5%
to 15%. This can be the reason for a high 24.3% deviation in AR result.

In order to reconcile the values closely, we assume that compliance values obtained by FEA are closer
to reality than the analytical values and substitute them back into the expression for AR; it reduces the
error from 24.3% to less than 15%. Finally, it can be established that the formulated expressions in
Section 4 agree to the FEA results with acceptable deviations.

6. Influence of dimensional parameters on CPM’s compliances and AR
In Section 4, we formulated the analytical relationships for the given CPM. With the help of those
expressions, we can observe the effect of CPM dimensions on its performance. We have seen that each
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Table II. Comparison of results obtained from analytical and FEA model.

Output compliance (µm/N) Input compliance Amplification

Model x-direction y-direction z-direction (µm/N) ratio (AR)
Matrix model 5.749 5.749 11.344 0.300 6.757
FEA 6.184 6.185 12.736 0.319 5.436
Deviation (%) 7.034 7.049 10.930 5.956 −24.301

(a) (b)

Figure 19. Effect of flexure dimensions on compliance.

Figure 20. Effect of flexure and beam parameters on AR.

limb of the current design has a parallelogram mechanism. This parallelogram mechanism incorporates
four revolute flexures (8, 10, 12, and 17). As stated earlier, the dimensional parameters (rr, br, and tr

(Fig. 5a)) of all these flexures are the same. The effect of dimensional parameters on output compliance,
input compliance, and AR has been shown in Figs. 19(a), 19(b), and 20, respectively.

6.1. Effect of dissimilarity in flexure parameter on the typical limb AR
The results in the earlier sections have shown that the performance of the CPM depends on geometrical
parameters of the flexure. In general, most of the available CPMs in literature are designed with the
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(a) (b)

Figure 21. Effect of dissimilar flexures.

assumption that a particular class of flexures have similar geometrical parameters when used repeat-
edly. It means that, for instance, if a CPM is made up of revolute flexures, then all of them would have
the same radii, thicknesses, and widths. Manufacturing tolerances and variation can cause some devi-
ation in the AR of the linkage. Furthermore, even additional coupled effects due to any dissimilarities
can affect the AR. However, at the same time, one can introduce dissimilarity to alter the spatial com-
pliance/performance of the micromanipulator. We shall consider the limb’s parallelogram mechanism
(Fig. 13a) to explore this possibility in this section. In the parallelogram mechanism, the thickness of
the four revolute flexures: flexure-8, 10, 12, and 17, will be changed one at a time, and its effect on the
AR will be observed. Figure 21(a) represents an equivalent compliance scheme of the series–parallel
chain of a typical limb shown. The input at a and the output of the link in the same plane is considered.
The rest of the manipulator has an equivalent compliance Cothers in the same plane. In this exercise, we
change the compliance by adjusting thicknesses tr8, tr10, tr12, and tr17 independently, as mentioned. The
result of this exploration is presented in Fig. 21(a). In this figure, point C (flexure thickness (tr) = 1 mm)
corresponds to the original design value. Furthermore, it will be a starting point for variation in this
exploration. We reduce the thickness up to 50% and increase it to around 300%. The results presented
in Fig. 21(b) reveal the following:

(i) Any increase in the flexure thickness increases the stiffness and reduces the AR significantly.
Whereas a reduction in flexure thickness reduces the stiffness and increases the AR by a lesser
amount. Further, the closer joints (one joint away) have less effect than the farther ones (more
than one joint away) in the chain.

(ii) Thickness of flexure-12: This flexure is located on the input limb, nearest to the input point. For
the higher thickness values, this flexure manifests the least reduction in AR compared to other
flexures. While flexure-8, 10, and 17 yield almost the same result for a decrease in thickness, that
is, a surge in the AR value, flexure-12 reveals different behavior for the same range of variation.
During a decrease in the thickness of flexure-12, as we start approaching point C, we observe
a drop in the rate of change of AR. Just beyond point C, AR stays constant for a while, and
ultimately it starts decreasing. This observation can be explained as follows. The proper working
of the parallelogram mechanism for amplification requires the input limb to rotate about flexure-
12. For this to happen, flexure-12 should have a certain amount of flexibility as well as strength.
As per on scheme, when the thickness of flexure-12 was decreased, the rest of the flexures’
thicknesses were kept constant. So, while this change does make the flexure-12 more flexible,
it also renders the joint weak to resist the external load and moments applied by the rest of the
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Figure 22. Stretching of a thin flexure.

mechanism. Therefore, beyond a limit, the decrease in thickness will only result in stretching of
the joint and lead to a significant weakening of the mechanism.

Let us understand this phenomenon through an FEA simulation. We shall reconsider the FEA
model of the whole CPM as done previously in Section 5. In one of the parallelogram linkages of
this model, flexure-12 thickness has been reduced to 0.2 mm. All other dimensions are the same
as before (Table I). Material, element type, and curvature control settings are also unchanged.
However, the element size is kept smaller (0.5 mm) due to the presence of a thin flexure. We
subject the parallelogram (with thin flexure) to an input force of 4 N. The system’s response in
Fig. 22 shows the flexure stretching that was predicted earlier.
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As a consequence of the joint stretching, some part of the input motion gets lost. For the
reasons mentioned above, we observe a reduction in AR for flexure-12 for low thickness values
in Fig. 21(b). Thus, to obtain a high AR, as a guideline, we can state that the flexure nearest to
the input point should not be designed weaker than other flexures and can be used as a baseline
constant.

(iii) Thickness of flexure-17: As shown in Fig. 21(a), flexure-17 is on the left side of the input limb.
This flexure also exhibits a reduction in AR for an increase in thickness. However, in this case,
the rate of decline is more than that of flexure-12. On the other hand, if we decrease the thickness,
then unlike flexure-12, we observe an increase in AR.

(iv) Thickness of flexure-8 and flexure-10: Two flexures are more than one joint away from input
actuation point. Flexure-8 lies on the right side of the bottom limb in the parallelogram mech-
anism. As we increase its thickness, it leads to a reduction in AR. Moreover, a decrease in the
thickness causes growth in AR. The change in AR for flexure-8 and flexure-10 (the other flexure
in the same limb) is almost coincident. It is also important to note that in the opposing parallel
paths, the AR reduces very sharply by increasing the thickness of the flexure. In fact, for higher
thickness values, these two flexures produce more reduction in AR than the other two remaining
flexures (flexure-12 and 17).

The effect of change in thickness for each joint in the parallelogram linkage has been understood from
previous discussions. Now, if the aim is to improve the AR, then to achieve that, we can fix the geometry
of flexure-12 and decrease the thickness of any of the other three joints. It should be appreciated that
this is, in fact, one of the many ways to improve AR. In the present case, at a time, the thickness of only
one flexure was changed, the rest being the same. A more detailed study of the combined effects of the
stiffness variation can give a better design choice. An optimization study can also be carried out in this
context.

7. Conclusions
The compliance modeling of a full 6-DOF series–parallel flexure-based Stewart platform-like micro-
manipulator was presented in this article. The matrix method has been considered to carry out the
mathematical modeling. The compliance matrix, which depends on the dimensions and material of
the member, was utilized in the matrix method. The analytical expression for output compliance was
formulated for the current design by dividing the full CPM into multiple subsystems. Furthermore, the
AR relation was also obtained for the parallelogram linkage of a limb. Finally, the expression for input
compliance of the CPM has been derived. The validation of the analytical model was performed using
FEA in the Abaqus-6.14 environment. Simulation results revealed that analytical models have less than
15% deviations from the FEA model. Then with the help of formulated analytical models, the effect of
some major dimensional parameters on the performance of the CPM was presented in various plots. In
the end, it has been indicated that dissimilarity of geometrical parameters of the flexures may lead to
better performance in terms of displacement amplification.

We should keep in mind that limits on output and input compliance constrain the geometry of any
CPM. Furthermore, being the thinnest part of the mechanism, the flexures are most prone to material
failures. There would also be upper limits on flexure sizes based on space constraints. All these fac-
tors should be considered while finalizing the flexure geometry. Such models, along with the analytical
models derived in this paper, can be extremely helpful in discovering optimal configurations in future.
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A. Compliance matrices of flexures

1. Compliance matrix for revolute flexures with geometry (rr, br, tr) [33]:

Cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c5 0 0 0 0 0

0 c1 0 0 0 c3

0 0 c2 0 −c4 0

0 0 0 c8 0 0

0 0 −c4 0 c6 0

0 c3 0 0 0 c7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

where, c1 = 9 π r5/2
r

2 E br t5/2r
+ 3 π r3/2

r

2 E br t5/2r
; c2 = 12 π rr

2

E br
3 (
√

rr
tr

− 1
4
); c3 = 9

2
π rr

3/2

E br tr5/2 ;

c4 = 12 rr

E br
3 (π

√
rr
tr

− 1 − π

2
); c5 = 1

E br
(π
√

rr
tr

− π

2
); c6 = 12 1

E br
3 (π

√
rr
tr

− 1 − π

2
);

c7 = 9
2

π
√

rr

E br tr5/2 ; c8 = 9
4

π
√

rr

G br tr5/2 ; G = E
2 (1+ν)

.

2. Compliance matrix for connecting links (modelled as Euler-Bernoulli beams) with geometry
(depth-a, width-w, length-l) [33]:

Cb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b5 0 0 0 0 0

0 b1 0 0 0 b3

0 0 b2 0 −b4 0

0 0 0 b8 0 0

0 0 −b4 0 b6 0

0 b3 0 0 0 b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

where, b1 = 4 l3

E a3 w
; b2 = 6 l2

E a3 w
; b3 = 4 l3

E a w3
; b4 = 6 l2

E a w3
; b5 = l

E a w
; b6 = 12 l

E a w3
; b7 =

12 l

E a3 w
; b8 = 10 l

G a3w
.

3. Compliance matrix for spherical flexure with geometry (rs = 4 mm, ts = 1.5 mm):

Cs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s5 0 0 0 0 0

0 s1 0 0 0 s3

0 0 s1 0 −s4 0

0 0 0 s8 0 0

0 0 −s4 0 s6 0

0 s3 0 0 0 s6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

where, s5 = 10.490 × 10−6 mm/N; s1 = 875.000 × 10−6 mm/N; s3 = s4 = 199.000 × 10−6 mm/
N-mm; s6 = 49.760 × 10−6 rad/N-mm; s8 = 63.930 × 10−6 rad/N-mm. For the current design of
the compliant spherical flexure, errors in the the analytical relations (from [25]) were very high.
Moreover, any other accurate formulation could not be found in the literature for the concerned
flexure. Therefore, for this flexure, values of compliance factors (presented above) has been taken
from FEA simulations.
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B. Transformation matrices

Tu
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 b/2 + g + rc + tc/2 −l2n − rc

0 1 0 −b/2 − g − rc − tc/2 0 −r

0 0 1 l2n + rc r 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B1)

Tu
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −b/2 − g − rc − tc/2 −l2n − rc

0 1 0 b/2 + g + rc + tc/2 0 −r

0 0 1 l2n + rc r 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B2)

Tu
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 l2n 0

0 0 0 0 0 0

0 −1 0 0 0 −l2n

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B3)

TD
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l6 + rr + tr/2

0 1 0 0 0 l11/2 + l5 − 2 rr

0 0 1 l6 − rr − tr/2 −l11/2 − l5 + 2 rr 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B4)

TD
9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l6 + rr + tr/2

0 1 0 0 0 l11/2 + 2 rr

0 0 1 l6 − rr − tr/2 −l11/2 − 2 rr 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B5)

TD
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l6 + rr + tr/2

0 1 0 0 0 l11/2

0 0 1 l6 − rr − tr/2 −l11/2 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B6)
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TD
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l10/2

0 1 0 0 0 l11/2 + l5 − 2 rr

0 0 1 l10/2 −l11/2 − l5 + 2 rr 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B7)

TD
16 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l10/2

0 1 0 0 0 l11/2 + 2 rr

0 0 1 l10/2 −l11/2 − 2 rr 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B8)

TD
17 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l10/2

0 1 0 0 0 l11/2

0 0 1 l10/2 −l11/2 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B9)

TP
19 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 −l9

1 0 0 0 0 0

0 0 1 0 −l9 0

0 0 0 −1 0 0

0 0 0 1 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B10)

TP1
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −(l9 + 2 rs + l8 + l7 + l3)

0 1 0 0 0 (l11/2 + l5 + l4/2)

0 0 1 (l9 + 2 rs + l8 + l7 + l3) −(l11/2 + l5 + l4/2) 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B11)

TP1
D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −(l9 + 2 rs + l8 + l7 + l3)

0 1 0 0 0 0

0 0 1 (l9 + 2 rs + l8 + l7 + l3) 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B12)
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TM
Pi =

[
RM

Pi S(rM
Pi)R

M
Pi

0 RM
Pi

]
(B13)

where,

RM
Pi =⎡

⎢⎣
cos (ψi) cos (θi) cos (ψi) sin (θi) sin (φi) − sin (ψi) cos (φi) cos (ψi) sin (θi) cos (φi) + sin (ψi) sin (φi)

sin (ψi) cos (θi) sin (ψi) sin (θi) sin (φi) + cos (ψi) cos (φi) sin (ψi) sin (θi) cos (φi) − cos (ψi) sin (φi)

− sin (θi) cos (θi) sin (φi) cos (θi) cos (φi)

⎤
⎥⎦

where i varies from 1 to 6 for all limbs. Angles (in degrees) for the corresponding rotation matrices
are as follows: ψ1 = 187.825, θ1 = 12, φ1 = 90;ψ2 = 172.175, θ2 = 12, φ2 = 90;ψ3 = 307.875, θ3 = 12,
φ3 = 90;ψ4 = 292.175, θ4 = 12, φ4 = 90;ψ5 = 67.825, θ5 = 12, φ5 = 90;ψ6 = 52.175, θ6 = 12, φ6 = 90.

Also, SM
P1 =

⎡
⎢⎢⎢⎣

0 l14 −rp sin
(
π (60−αp/2)

180

)
−l14 0 −rp cos

(
π (60−αp/2)

180

)
rp sin

(
π (60−αp/2)

180

)
rp cos

(
π (60−αp/2)

180

)
0

⎤
⎥⎥⎥⎦ ;

SM
P2 =

⎡
⎢⎢⎢⎣

0 l14 −rp sin
(
π (60+αp/2)

180

)
−l14 0 −rp cos

(
π (60+αp/2)

180

)
rp sin

(
π (60+αp/2)

180

)
rp cos

(
π (60+αp/2)

180

)
0

⎤
⎥⎥⎥⎦ ;

SM
P3 =

⎡
⎢⎢⎢⎣

0 l14 rp sin
(
π (60+αp/2)

180

)
−l14 0 −rp cos

(
π (60+αp/2)

180

)
−rp sin

(
π (60+αp/2)

180

)
rp cos

(
π (60+αp/2)

180

)
0

⎤
⎥⎥⎥⎦ ;

SM
P4 =

⎡
⎢⎢⎢⎣

0 l14 rp sin
(
π (60−αp/2)

180

)
−l14 0 −rp cos

(
π (60−αp/2)

180

)
−rp sin

(
π (60−αp/2)

180

)
rp cos

(
π (60−αp/2)

180

)
0

⎤
⎥⎥⎥⎦ ;

SM
P5 =

⎡
⎢⎣

0 l14 −rp sin
(
π αp

360

)
−l14 0 rp cos

(
π αp

360

)
rp sin

(
π αp

360

) −rp cos
(
π αp

360

)
0

⎤
⎥⎦ ;

SM
P6 =

⎡
⎢⎣

0 l14 rp sin
(
π ap
360

)
−l14 0 rp cos

(
π αp

360

)
−rp sin

(
π αp

360

) −rp cos
(
π αp

360

)
0

⎤
⎥⎦ .

TA
8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l14 − pl − l10/2

0 1 0 0 0 l13

0 0 1 l14 + pl + l10/2 −l13 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B14)
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TA
9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l14 − pl − l10/2

0 1 0 0 0 −l5 + 4 rr + l13

0 0 1 l14 + pl + l10/2 l5 − 4 rr − l13 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B15)

TA
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −l14 − pl − l10/2

0 1 0 0 0 −l5 + 2 rr + l13

0 0 1 l14 + pl + l10/2 l5 − 2 rr − l13 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B16)

TA
16 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 −l12 − 2 rr − l10/2

0 1 0 0 0 −l5 + 4 rr + l13

0 0 −1 l12 + 2 rr + l10/2 l5 − 4 rr − l13 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B17)

TA
13′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 −l12 − 2 rr − l10/2

0 1 0 0 0 0

0 0 −1 l12 + 2 rr + l10/2 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B18)

TA
13" =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 l12 + 2 rr + l10/2

0 1 0 0 0 0

0 0 1 −l12 − 2 rr − l10/2 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B19)

TA
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 l12 + 2 rr + l10/2

0 1 0 0 0 l13

0 0 1 −l12 − 2 rr − l10/2 −l13 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B20)
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TA
15 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 l12 + 2 rr

−1 0 0 0 0 0

0 0 1 0 −l12 − 2 rr 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B21)

TA
D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 l12 + 2 rr + l10

0 1 0 0 0 −l5 + 2 rr + l13 − l11/2

0 0 1 −l12 − 2 rr − l10 l5 − 2 rr − l13 + l11/2 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B22)

TD
M =

[
RD

M S(rD
M)RD

M

0 RD
M

]
(B23)

where, RD
M = (RM

P1)
−1;

and

S(rD
M) =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −K1 sin

(
π
(
60 − αp/2

)
180

)
K2 + l14

cos (π/15)
+ rp − l14

sin (π/15)

K1 sin

(
π
(
60 − αp/2

)
180

)
0 −K1 sin

(
π
(
60 − αp/2

)
180

)

−K2 − l14

cos (π/15)
− rp + l14

sin (π/15)
K1 sin

(
π
(
60 − αp/2

)
180

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again, where, K1 = rp + (l9 + 2 rs + l8 + l7) sin
( π

15

)
; K2 = l7 + l8 + 2 rs + l9.
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