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Recall that M is easy if it is consistent with every combinator. We say that M is m-easy if
there is no proof with < m + 1 steps that M is inconsistent with any combinator. Obviously,
if M is easy, it is m-easy for each m. Here we shall show that for infinitely many m there are
m but not m+ 1 easy terms.

1. m-easy combinators

Given two combinators M and N, we define the graph G(M, N) as follows: the points
of G(M, N) are the combinators modulo beta conversion, and we make P adjacent to Q
if there exists an R such that P = RM and Q = RN, or, P = RN and Q = RM where
= denotes S conversion. Now the proof theoretic properties of the equation M = N are
reflected by the properties of G(M, N). For example, M = N is inconsistent <> G(M, N) is
connected < K and K. lie in the same G(M, N) component. In particular, if we wish to
count steps in proofs it is convenient to count edges in G(M, N).

Recall that M is easy if it is consistent with every combinator. We say that M is m-easy
if there is no proof with < m + 1 steps that M is inconsistent with any combinator i.e.,
if for each N the diameter of G(M, N) is at least m. Obviously, if M is easy, it is m-easy
for each m. Here we shall show that for infinitely many m there are m but not m + 1 easy

terms.
Defining terms E(n), F(n), G(n) as follows:
E(0) :=x. K

E(n+1) := ix. xI E(n)x

F(n) := Ax. xxI E(n)(xx) Ax. xx 1 E(n)(xx)

G(n) = Ax. F(n)(xx) Ax. F(n)(xx),

we shall show that G(n) is n-easy but not 2n + 5 easy.
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2. Lower bounds on the failure of Church—Rosser

Let M be given. A term X is said to be an F-term of type n, M,k if it has the form
F(mIE(k{)X;...IE(k)X,

where —1 < t, k — 1 < k;, and each X; is an F-term of type n, M, k. A term Y is said to

be a G-term of type n, M,k if it has the form

(@) Yi(...(Yi(Ax. Yip1(xx) Ax. Yiio(xx)))...)

where —1 < t, and each Y; is an F-term of type n, M,k or

(b) Yi(...(Y,N)..)

where 0 < ¢, each Y; is an F-term of type n, M, k, and

BT(M) [ BT(N)

Observe that the notion of an F-term of type n, M,k does not depend on M but that
of a G-term of type n, M,k does.
We define relations — ), =), =) as follows:

— X+ Y < X is a G-term of type n, M,k and Y := M.

— X i>w Y = X = X[Z,...,Z,], where each Z; is a G-term of type n, M,k and
Y =X[M,...,M].

— X —) Y < there exists a Z such that X — Z 1>, Y.

— For 0 <t we define the relation —» ;) by

— X —(k,t) Y < there exists Zy,...,Z;—1 X — (k) Z = (k) - (k) Zi_4 — (k) Y.

We shall prove the following proposition.

Proposition 2.1. The diagrams

Q0 «Pi—p R
and

0 <1 Pi—g R
can be completed to

Q¢ T « R,
and

Q0 —>»Q i4-1) T 41y R «— R,
respectively.
Therefore the diagram
T (<11 Q «— P i—>¢) R

can be completed to

R—>U

Il
0 P U > Xy Y gopet Z « T

when 0 < k and 0 < k.
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This then leads to the diamond property.

Corollary 2.1. Q ()<~ P — R can be completed to Q —u—1) T (—1)«< R when 0 < r
and 0 <k.

We define the notion of head positions as follows: if X is an F-term of type n, M,k
and X := F(n)[ E(k1)X;...1E(k;)X;, then X has for its head positions the head positions
of the X; together with the subterm occurrence F(n)l above.

Lemma 2.1. (Matching Lemma) Suppose that Y is a G-term of type n, M, k. If Y is of
the form (a) then all its G-subterms of type n, M, r have the form (a) and are among the
Yi(... (Yi(Ax. Yir1(xx) Ax. Y;12xX)))...) except in the case M = I, when they can have the
form (b), the shape F(n)l, and occur at the head positions of the Y;.

Proof. First let X be an F-term of type n, M, k. We will show that X has no G-subterms
of type n, M,r except when M = I and these are at the head positions of X. This is
proved by induction on the definition and toward this end we let Y be a G-term of type
n, M,r of the form (a) or (b) above. Then

(i) The last component of Y; is either Ax. xxI E(n)(xx) or has no normal form; therefore
it=/=1 or E(r) for any r.

(it) If Y := YL, then L has no normal form, so it = / =1 or E(r) for any r.

(iii)If Y is of the form (a), then Ax. Y;1;(xx) has no normal form, so it = / =1 or E(r)
for any r when j =1,2.

(iv)If Y is of the form (a), then Ax. Y,y ;(xx) has order 1 (Barendregt 1984, page 446), so
it is not an F-term or a G-term of type n, M,s when j = 1,2.

Now suppose that Y is a subterm of X. First suppose that Y has the form (a). If t =0,
then by (iii) and (iv), Y is a subterm of X; for some i. If 0 < ¢, then by (i) and (ii), Y is
a subterm of some X;. Next suppose that Y has the form (b). If t = 1, then by (i), Y is
a subterm of X; for some i unless Y := F(n)l and Y occupies the leftmost head position
of X. But in this case we have N :=1 = M. If 1 < t, then by (i) and (ii), Y is a subterm
of some X;. Our claim then follows by induction.

To prove the lemma, simply apply the above claim to the Y; after using (iv), and the
unsolvability of G-terms of type n, M,s. This completes the proof of the lemma. ]

Lemma 2.2. (Replacement Lemma) Let X be a G-term of type n, M, k. Then the replace-
ment of any proper G-subterm of type n, M,r by M results in a G-term of type n, M,k
except in the case M = I when if 0 < k it results in a term that —> to a G-term of type
n, M,k —1.

Proof. Suppose first that M = / = I. Let Y be a G-term of type n, M,k with a
proper G-subterm Z of type n, M,r. By the Matching Lemma, if Y has the form (a), the
replacement of Z by M is a G-term of type n, M,k and of the form (b). If Y is of the
form (b), the result of replacing Z by M remains of the form (b) since Z is unsolvable
and its replacement in M yields a term whose Bohm tree still ] the Bohm tree of M. Now,
if M =1, then Z can occur at the head positions of the Y; if Z := F(n)l. These Y; are
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F-terms of type n, M,k and of the form
F(MIE(k)U, ... 1E(k)U,

and the replacement of Z yields

IE(k)U, ... 1E(k)U, —
E(k)U, ... 1E(k)U, >
UE(ki)U; ... IE(k)U,

since 0 < k and k < k;1, which is an F-term of type n, M,k — 1. This proves the lemma. []

We can now proceed with the proof of the proposition. We remark here that in the
case M =1, k— 1 and r — 1 can be replaced in the corollary by k and r. In this case
) is Church-Rosser. However, this already follows from the Replacement Lemma by
the theorem of Mitchke.

Proof of Proposition. First suppose that X = X[Zy,...,Z,] where the Z; are G-term
occurrences of type n, M, k that are pairwise disjoint. We can follow each Z; in a reduction
X — Y. It can be copied, projected (deleted), and beta reduced internally. Thus, we can
write

Y =Y [le, cen ,le(l), . ,Z,l, e er(r)]
where Z; —» Z;; for —1 < j < s(i) + 1, so that

XXt X ] = Y [X0,000, X1y Xy oo oy X
Thus we have
YIM,....M,. M,.. M«Y «X—X[M,. M|—-Y[M,.. M..M,... M]

Next suppose X'[Uy,...,Uy] = X = X"[Vi,...,V;] where the U; are G-subterm
occurrences of type n, M,k and pairwise disjoint, and the V/; are G-subterm occurrences
of type n,M,r and also pairwise disjoint. Each U; can contain one or more V;, say
U; .= Ui[Vi1,..., V)], and by the Replacement Lemma U;[M,..., M] is a G-term of type
n, M,k unless M = I, in which case U;[I,...,I] —> to a G-term of type n, M,k — 1. Similar
remarks hold for the V;. Let Zy,...,Z, be the maximal occurrences in the union of the
two sets {Uy,...,U,} and {Vy,..., V;}. Then we have X := X"'[Z,,...,Z,] and

X"[M,....M] g—1y—= X'[M,...,M] <1 X 1> X"[M,....M] —x_1) X"'[M,...,M].
This completes the proof of the proposition. ]

Corollary 2.2. (Strip Lemma) The diagram Zy) «—~ X ;) Y can be completed to
Z —(k—1,t) U (k—t)= Y provided O<t<k+1.

3. Reduction Lemma

Lemma 3.1. (Reduction Lemma) Suppose that P and Q are connected in G(G(n),I) by a
path of length k < n 4 1. Then, there exists an R such that P ~,_ix+1) R (n—kk+1)y¢— Q
where M :=1.
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Proof. The proof is by induction on k. When k = 0 the lemma follows from the
Church—Rosser theorem. Suppose now that we have a path P := P(0), P(1),...,P(k) :=Q
where k < n+ 1. We have by our induction hypothesis that there exists an R such that
P > (n——1)k) R (n—k=1)y<— P(k — 1). We distinguish two cases.

Case 1: Pk —1) =TI and Q = TG(n). We are assuming that k > 0, so we have
TG(n) m—wx—1y TI. By the Proposition, there exists an R* such that P »—(_x—1)
R* (—(k—1)jp«— TI. Again by the Proposition, there exists an R** such that

P = —)k+1) R =tk ye—= Q.
This suffices to complete the proof for this case.
Case 2: P(k—1)= TG(n) and Q = TI. By the Proposition there exists an R* such that

P —>(_—1)k) R* (i—k—1)0p«— T G(n).
By the Strip Lemma corollary to the Proposition, there exists an R** for the following
diagram

TG(n) =@ TI = uihy) R oy~ R (k=) oy P.

Finally, by the Proposition, there exists R*** such that

Q —(m—tj+1) R (imkg+1)«— P.
and this completes the proof of the lemma. L]

Corollary 3.1. Suppose that k < n+ 1. Then there is no path in G(G(n),I) connecting the
combinators K and K* of length < k + 1.

Proof. K and K* are »—,_y) normal. UJ
We can now prove the following theorem.
Theorem 3.1. G(n) is n-easy but not 2n + 5 easy.

Proof. Suppose that K and K* are connected in G(G(n), M) by a path. If M = / =1,
then by the Replacement Lemma and the theorem of Mitchke, ~—»(,) is Church—Rosser,
so this is impossible. Thus M = I. But by the Corollary to the Reduction Lemma such a
path must be longer than n. Thus G(n) is n-easy. Clearly there is such a path of length
2n+ 5, so G(n) is not 2n + 5 easy. ]
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