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On the existence of n but not n+ 1 easy combinators
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Recall that M is easy if it is consistent with every combinator. We say that M is m-easy if

there is no proof with < m+ 1 steps that M is inconsistent with any combinator. Obviously,

if M is easy, it is m-easy for each m. Here we shall show that for infinitely many m there are

m but not m+ 1 easy terms.

1. m-easy combinators

Given two combinators M and N, we define the graph G(M,N) as follows: the points

of G(M,N) are the combinators modulo beta conversion, and we make P adjacent to Q

if there exists an R such that P = RM and Q = RN, or, P = RN and Q = RM where

= denotes β conversion. Now the proof theoretic properties of the equation M = N are

reflected by the properties of G(M,N). For example, M = N is inconsistent ⇔ G(M,N) is

connected ⇔ K and K∗ lie in the same G(M,N) component. In particular, if we wish to

count steps in proofs it is convenient to count edges in G(M,N).

Recall that M is easy if it is consistent with every combinator. We say that M is m-easy

if there is no proof with < m + 1 steps that M is inconsistent with any combinator i.e.,

if for each N the diameter of G(M,N) is at least m. Obviously, if M is easy, it is m-easy

for each m. Here we shall show that for infinitely many m there are m but not m+ 1 easy

terms.

Defining terms E(n), F(n), G(n) as follows:

E(0) := λx. K

E(n+ 1) := λx. xIE(n)x

F(n) := λx. xxIE(n)(xx) λx. xx IE(n)(xx)

G(n) := λx. F(n)(xx) λx. F(n)(xx),

we shall show that G(n) is n-easy but not 2n+ 5 easy.
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2. Lower bounds on the failure of Church–Rosser

Let M be given. A term X is said to be an F-term of type n,M, k if it has the form

F(n)IE(k1)X1 . . . IE(kt)Xt

where −1 < t, k − 1 < ki, and each Xi is an F-term of type n,M, k. A term Y is said to

be a G-term of type n,M, k if it has the form

(a) Y1(. . . (Yt(λx. Yt+1(xx) λx. Yt+2(xx))) . . .)

where −1 < t, and each Yi is an F-term of type n,M, k or

(b) Y1(. . . (YtN) . . .)

where 0 < t, each Yi is an F-term of type n,M, k, and

BT (M) [ BT (N)

Observe that the notion of an F-term of type n,M, k does not depend on M but that

of a G-term of type n,M, k does.

We define relations 7→(k), q→(k), �(k) as follows:

— X 7→(k) Y ⇔ X is a G-term of type n,M, k and Y := M.

— X q→(k) Y ⇔ X := X[Z1, . . . , Zr], where each Zi is a G-term of type n,M, k and

Y := X[M, . . . ,M].

— X �(k) Y ⇔ there exists a Z such that X →→ Z q→(k) Y .

— For 0 < t we define the relation �→(k,t) by

— X �→(k,t) Y ⇔ there exists Z1, . . . , Zt−1 X �(k) Z1 �(k) . . .�(k) Zt−1 �(k) Y .

We shall prove the following proposition.

Proposition 2.1. The diagrams

Q←← P q→(k) R

and

Q (r)←q P q→(k) R

can be completed to

Q q→(k) T ←← R,

and

Q→→ Q∗ q→(k−1) T (r−1)←q R∗ ←← R,

respectively.

Therefore the diagram

T (r)←q Q←← P q→(k) R

can be completed to

R →→ U

|||
Q q→(k) U →→ X q→(r−1) Y (k−1)←←q Z ←← T

when 0 < k and 0 < k.
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This then leads to the diamond property.

Corollary 2.1. Q (r)� P �(k) R can be completed to Q �(k−1) T (r−1)� R when 0 < r

and 0 < k.

We define the notion of head positions as follows: if X is an F-term of type n,M, k

and X := F(n)IE(k1)X1 . . . IE(kt)Xt, then X has for its head positions the head positions

of the Xi together with the subterm occurrence F(n)I above.

Lemma 2.1. (Matching Lemma) Suppose that Y is a G-term of type n,M, k. If Y is of

the form (a) then all its G-subterms of type n,M, r have the form (a) and are among the

Yi(. . . (Yt(λx. Yt+1(xx) λx. Yt+2xx))) . . .) except in the case M = I , when they can have the

form (b), the shape F(n)I , and occur at the head positions of the Yi.

Proof. First let X be an F-term of type n,M, k. We will show that X has no G-subterms

of type n,M, r except when M = I and these are at the head positions of X. This is

proved by induction on the definition and toward this end we let Y be a G-term of type

n,M, r of the form (a) or (b) above. Then

(i) The last component of Y1 is either λx. xxIE(n)(xx) or has no normal form; therefore

it = / = I or E(r) for any r.

(ii) If Y := Y1L, then L has no normal form, so it = / = I or E(r) for any r.

(iii)If Y is of the form (a), then λx. Yt+j(xx) has no normal form, so it = / = I or E(r)

for any r when j = 1, 2.

(iv)If Y is of the form (a), then λx. Yt+j(xx) has order 1 (Barendregt 1984, page 446), so

it is not an F-term or a G-term of type n,M, s when j = 1, 2.

Now suppose that Y is a subterm of X. First suppose that Y has the form (a). If t = 0,

then by (iii) and (iv), Y is a subterm of Xi for some i. If 0 < t, then by (i) and (ii), Y is

a subterm of some Xi. Next suppose that Y has the form (b). If t = 1, then by (i), Y is

a subterm of Xi for some i unless Y := F(n)I and Y occupies the leftmost head position

of X. But in this case we have N := I = M. If 1 < t, then by (i) and (ii), Y is a subterm

of some Xi. Our claim then follows by induction.

To prove the lemma, simply apply the above claim to the Yi after using (iv), and the

unsolvability of G-terms of type n,M, s. This completes the proof of the lemma.

Lemma 2.2. (Replacement Lemma) Let X be a G-term of type n,M, k. Then the replace-

ment of any proper G-subterm of type n,M, r by M results in a G-term of type n,M, k

except in the case M = I when if 0 < k it results in a term that →→ to a G-term of type

n,M, k − 1.

Proof. Suppose first that M = / = I . Let Y be a G-term of type n,M, k with a

proper G-subterm Z of type n,M, r. By the Matching Lemma, if Y has the form (a), the

replacement of Z by M is a G-term of type n,M, k and of the form (b). If Y is of the

form (b), the result of replacing Z by M remains of the form (b) since Z is unsolvable

and its replacement in M yields a term whose Bohm tree still ] the Bohm tree of M. Now,

if M = I , then Z can occur at the head positions of the Yi if Z := F(n)I . These Yi are
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F-terms of type n,M, k and of the form

F(n)IE(k1)U1 . . . IE(kt)Ut

and the replacement of Z yields

IE(k1)U1 . . . IE(kt)Ut →
E(k1)U1 . . . IE(kt)Ut →

U1IE(ki−1)U1 . . . IE(kt)Ut

since 0 < k and k < ki+1, which is an F-term of type n,M, k− 1. This proves the lemma.

We can now proceed with the proof of the proposition. We remark here that in the

case M = I, k − 1 and r − 1 can be replaced in the corollary by k and r. In this case

�→(k) is Church–Rosser. However, this already follows from the Replacement Lemma by

the theorem of Mitchke.

Proof of Proposition. First suppose that X := X[Z1, . . . , Zr] where the Zi are G-term

occurrences of type n,M, k that are pairwise disjoint. We can follow each Zi in a reduction

X →→ Y . It can be copied, projected (deleted), and beta reduced internally. Thus, we can

write

Y := Y [Z11, . . . , Z1s(1), . . . , Zr1, . . . Zrs(r)]

where Zi →→ Zij for −1 < j < s(i) + 1, so that

X[x1, . . . , xr]→→ Y [x1, . . . , x1, . . . , xr, . . . , xr].

Thus we have

Y[M, . . . ,M,. . .,M,. . .,M]←qY ←←X q→X[M,. . .,M]→→Y[M,. . .,M,. . . ,M,. . . ,M]

Next suppose X ′[U1, . . . , Up] := X := X ′′[V1, . . . , Vs] where the Ui are G-subterm

occurrences of type n,M, k and pairwise disjoint, and the Vj are G-subterm occurrences

of type n,M, r and also pairwise disjoint. Each Ui can contain one or more Vj , say

Ui := Ui[Vi1, . . . , Vit(i)], and by the Replacement Lemma Ui[M, . . . ,M] is a G-term of type

n,M, k unless M = I , in which case Ui[I, . . . , I]→→ to a G-term of type n,M, k− 1. Similar

remarks hold for the Vj . Let Z1, . . . , Zq be the maximal occurrences in the union of the

two sets {U1, . . . , Up} and {V1, . . . , Vs}. Then we have X := X ′′′[Z1, . . . , Zq] and

X ′′′[M, . . . ,M] (r−1)� X ′[M, . . . ,M]←q X q→ X ′′[M, . . . ,M]�(k−1) X
′′′[M, . . . ,M].

This completes the proof of the proposition.

Corollary 2.2. (Strip Lemma) The diagram Z(k) � X �→(k,t) Y can be completed to

Z �→(k−1,t) U (k−t)� Y provided 0 < t < k + 1.

3. Reduction Lemma

Lemma 3.1. (Reduction Lemma) Suppose that P and Q are connected in G(G(n), I) by a

path of length k < n+ 1. Then, there exists an R such that P �→(n−k,k+1) R (n−k,k+1)←� Q

where M := I .
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Proof. The proof is by induction on k. When k = 0 the lemma follows from the

Church–Rosser theorem. Suppose now that we have a path P := P (0), P (1), . . . , P (k) := Q

where k < n + 1. We have by our induction hypothesis that there exists an R such that

P �→(n−(k−1),k) R (n−(k−1),k)←� P (k − 1). We distinguish two cases.

Case 1: P (k − 1) = TI and Q = TG(n). We are assuming that k > 0, so we have

TG(n) �(n−(k−1)) TI . By the Proposition, there exists an R∗ such that P �→(n−(k−1),k)

R∗ (n−(k−1),k)←� TI. Again by the Proposition, there exists an R∗∗ such that

P �→(n−(k−1),k+1) R
∗∗

(n−(k−1),k+1)←� Q.

This suffices to complete the proof for this case.

Case 2: P (k− 1) = TG(n) and Q = TI . By the Proposition there exists an R∗ such that

P �→(n−(k−1),k) R
∗

(n−(k−1),k)←� TG(n).

By the Strip Lemma corollary to the Proposition, there exists an R∗∗ for the following

diagram

TG(n)�(n) TI �→(n−k,k) R∗∗ (n−k)� R∗ (n−(k−1),k)←� P .

Finally, by the Proposition, there exists R∗∗∗ such that

Q�→(n−k,k+1) R
∗∗∗

(n−k,k+1)←� P .

and this completes the proof of the lemma.

Corollary 3.1. Suppose that k < n+ 1. Then there is no path in G(G(n), I) connecting the

combinators K and K∗ of length < k + 1.

Proof. K and K∗ are �(n−k) normal.

We can now prove the following theorem.

Theorem 3.1. G(n) is n-easy but not 2n+ 5 easy.

Proof. Suppose that K and K∗ are connected in G(G(n),M) by a path. If M = / = I ,

then by the Replacement Lemma and the theorem of Mitchke, �→(n) is Church–Rosser,

so this is impossible. Thus M = I . But by the Corollary to the Reduction Lemma such a

path must be longer than n. Thus G(n) is n-easy. Clearly there is such a path of length

2n+ 5, so G(n) is not 2n+ 5 easy.
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