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SUMMARY
The paper introduces a family of three-DOFs translational-
rotational Parallel-Kinematics Mechanisms (PKMs) as well
as the mobility analysis of such family using Lie-group
theory. Each member of this family has two-rotational one-
translational DOFs. A novel mechanism is presented and
analyzed as a representative of that family. The use and the
practical value of that modular mechanism are emphasized.
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1. Introduction
Parallel-Kinematics Mechanisms (PKMs) have many
advantages.24,28 Six-DOFs PKMs might be thought of as
PKMs in the extreme where the drawbacks of such PKMs are
extremely pronounced. These drawbacks are mainly limited
to workspace and poor manipulability. To utilize the benefits
of the concept of parallel kinematics while avoiding its
drawbacks, there is a trend of relying on PKMs with less
than six DOFs.

Three-DOFs PKMs attract decent amount of interest for
this reason. A large number of these three-DOFs PKMs
have been proposed. See refs.24,28 for an early survey. After
that, synthesis and enumeration of possible three-DOFs
PKMs that can provide either translational or rotational
DOFs have not only been extensively studied1,2 but also
been analyzed based on screw theory18,19 and Lie-group
theory.4,13,14,15,16, 17

PKMs with three DOFs that are a combination of rotational
and translational DOFs have also been studied. These were
symmetrical nonoverconstrained, i.e., each limb has five-
DOFs. A PKM that utilizes three R-P-S (i.e., Revolute-
Prismatic-Spherical) limbs and provides one-translational
and two-rotational DOFs has been proposed.11,20 A similar
PKM that utilizes three P-R-S limbs has also been reported.23

Replacing the prismatic joints by revolute ones would
maintain the mechanism’s three-DOFs.12 The R-S-R PKMs
have been implemented as well.3,7 An overconstrained
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asymmetrical PKM with one-rotational and two-translational
DOFs has been proposed as well.22

Apart from these mechanism-specific efforts, screw theory
was presented as a tool for synthesis of lower-mobility
PKMs.8,9,25 There was no specific focus on three-DOFs
rotational-translational PKMs though.

In particular, three-DOFs PKMs that can provide two-
rotational and one-translational DOFs have special import-
ance in machine tools as these PKMs can potentially replace
the problematic two rotational DOFs that always reduce the
speed of response and rigidity of five-axis machine tools. Two
asymmetrical overconstrained families of these PKMs have
been proposed and are on their way for implementation.26

Symmetrical PKMs are those that have limbs of
identical architectures. Symmetry represents one of the
main advantages of PKMs that allows their modularity and
reduces their cost. However, overconstrained PKMs are those
with limbs that provide similar constraint(s).10 That is, the
motion constraint provided by one limb is also provided
by the other limb. These overconstrained mechanisms do
move despite the fact that Grübler/Kutzbach criterion in its
original form10,24,28 concludes that they should not, and they
(overconstrained mechanisms) are mobile only when certain
geometrical condition is satisfied. The main advantage of
these overconstrained mechanisms is the fact that they use
less joints and links, resulting in a simpler mechanism. The
price is the need for strict manufacturing tolerance and the
excessive loads on some links and/or joints.

2. Lie-Group Theory
Screw theory is increasingly utilized to synthesize PKMs.
Many reviews of the basics of screw theory can be found in
the literature.28 However, screw theory natively deals with the
instantaneous (or local) mobility of a mechanism. Lie-group,
however, is a useful tool for full-cycle or finite mobility. In
other words, screw-theory represents the differential aspect
of Lie-group theory. Background about Lie-group theory can
be found in the literature.5

It may be worth recalling that a Lie group is a set endowed
with the algebraic structure of a group together with the
algebraic structure of an analytic manifold. In the special case
of the displacement Lie group, the product of displacements,
which can be represented by a matrix product in any frame
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of reference, is the closed binary operation of the group. As
a matter of fact, the product of two displacements is still
a displacement; the identical transformation is the neutral
displacement E; and any displacement D has an inverse
denoted D−1; D D −1= D−1 D = E. Moreover, differential
calculation is allowed with displacements. An infinitesimal
displacement is a transformation, which can be represented
by the addition of the identity E and a twist. This can be
further explained using matrix operators. Point O being any
origin, the point M transformation, M −→ M′ = D M, can be
represented by the position vector transformation (OM) −→
(OM′) such as

(
OM′

1

)
=

(
exp(Rx) T

0 1

)(
OM

1

)

where R× is the skew-symmetric linear operator of the vector
product by R. The vector R = θ R/‖R‖ characterizes the
rotation of angle θ around an axis parallel to the unit vector
r = R/‖R‖. The vector T is the translation of the point that
coincides with O before the displacement. The formula

(OM′) = exp(θ r×) (OM)

= (OM) + sin θ r × (OM) + (1 − cos θ)r

×[r × (OM)]

is known as the Rodrigues formula for rotation. If θ has the
infinitesimal value dθ , then exp(θ r×) = 1 + dθ r×.

An infinitesimal displacement results from an infinitesimal
rotation dR = dθ r together with an infinitesimal translation
dT, which yields

(
OM + dM

1

)
=

(
exp(R×) dT

0 1

) (
OM

1

)

=
[(

1 0
0 1

)
+

(
dR× dT

0 0

)](
OM

1

)
.

The linear operator $ = (dR× dT
0 0 ) is a twist expressed in a

frame-free (or intrinsic) geometric manner. Using symbolical
notations, the set D∗ of infinitesimal displacements is the
sum E + d, d denoting the set of all twists, which is a six-
dimensional (6-d.) Lie algebra.

The following are the notations of Lie subgroups of
displacements;

G (x): Planar gliding perpendicular to unit vector x.
R (N, x): Set of rotations around the axis having a frame of

reference (N, x).
T: Set of 3-dof translations.

T2 (⊥ x): Set of 2-dof translations perpendicular to x.
T (x): Linear translations parallel to x.
S (O): Spherical motion about the point O.
X (x): Set of Schoenflies (Schönflies) motions of

direction x , (it is a 4-d. Lie subgroup).

Vectors are bold-faced characters, unit vectors are bold lower-
case characters, points are capital letters, and calligraphic
letters indicate subgroups and subsets.

From Mozzi–Chasles theorem, any finite or infinitesimal
displacement is a screw motion. Hence, the subgroups H (N,
u, p) of helical motions of given axes (N, u) and pitches
p cannot be ignored. So is the 3-d subgroup Y (u, p).6

However, mechanisms implementing screw pairs are out of
the scope of this article. The improper subgroups of D are the
zero-dimensional group E, which contains only the identity
E, and D, which is the six-dimensional group of displace-
ments.

Arthur Schoenflies (also spelt Schönflies) is a
mathematician who wrote a full book chapter about a special
4-dof motion type. A Schoenflies motion can be defined
as the commutative product T R(N, x), the point N being
any one. The X (x) subgroup contains an infinity of 1-
d. subgroups R (N, x) of rotations, which have the same
direction of axis. Hence, without loss of information, a X-
motion can be called a 3-translational 1-rotational motion
that constrains two rotational DOFs. However, the constraint
space is not endowed directly with an algebraic structure;
moreover, the constraints are actually wrenches that are only
locally defined through the expression of the power. The
power is the invariant Klein form of general Lie’s theory.
Any serial array of H, R, P pairs producing 4-dof motion
between the distal bodies of the chain, is a generator of X-
motion, provided that the H or R pairs have parallel axes.
The set of Schoenflies motion is endowed with the algebraic
structure of a Lie group. Hence, the product of Schoenflies
motion subsets is a Schoenflies motion subset because of the
product closure in any subgroup. For instance, the serial array
of two H pairs with parallel axes produces a 2-d manifold of
displacements included in a X-subgroup. This 4-dof motion
type generalizes the 3-dof planar motion. As a matter of fact,
it can be obtained also as the commutative product of planar
motion subgroup by a linear translation subgroup, namely X
(x) = G (x) T(x) = T (x) G (x).

The set of twists of a displacement Lie subgroup is
endowed with the algebraic structure of a Lie algebra and
is called a Lie subalgebra. Algebra in its general meaning
is an aspect of mathematics. In our context, algebra is
the name of a particular algebraic structure. An algebra
is a vector space endowed with a closed product. The Lie
bracket defines a closed product in the twist space. Hunt who
ignored Lie’s theory of continuous groups of transformations
found the Lie subalgebras of twists as “screw systems that
guarantee full-cycle mobility.” Moreover, in Lie’s theory,
the exponential map of a Lie subalgebra provides the
corresponding Lie subgroup.27 Hence, there is a one-to-
one mapping between Lie subalgebras of twists and Lie
subgroups of finite displacements. The Lie subalgebras of
twists are denoted with small letters: g (x) is the Lie algebra
of the Lie group G(x), and so on.

For instance, if the canonical parameters of G(x) have only
infinitesimal values, then the set G∗(x) of the corresponding
infinitesimal planar motions is G∗(x) = E + g (x).

The main useful algebraic property is the closure of
the product in any displacement subgroups. From a long
time, everybody knows that the products of translations are
translations, the products of planar displacements are planar
displacements along the same plane, and the products of
spherical displacements are spherical displacements around
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Fig. 1. Members of the two-rotational and one-translational DOFs two-mode symmetrical PKM family.

the same point. Group theory formalizes and generalizes that
intuitive approach.

3. Symmetrical Overconstrained 3-DOFs Family
of PKMs
Here, a family of rotational-translational DOFs PKMs is
presented. Each of the mechanisms provides its platform
with one-translational-two-rotational DOFs. All the PKMs
presented here have three limbs to allow the actuators to be
placed on the machine base. The members of the family are
shown in Fig. 1. An orthonormal vector base (x, y, z) is used
for referencing the Euclidean space.

Figure 2 shows two of the limbs of the mechanism of
Fig. 1(a). Using Lie-Group theory as discussed earlier, one
can see that a serial array of four revolute R pairs in each of
these limbs generates:

R (A, x) R (B, x) R (C, x) R (N, y). The axes (A, x), (B,
x), and (C, x) must not be in a plane; else the three twists in
the joints are linearly dependent and, consequently, the RRR
array is singular.

Further, when the singularity is avoided, R (A, x) R (B, x)
R (C, x) is a three-dimensional manifold of displacements.
The identity E belongs to all displacement manifolds and,

Fig. 2. Two limbs of the mechanism of Fig. 1(a) that generate the
same motion type.

therefore, this manifold is a 3-d neighborhood of the identity.
R (A, x), R (B, x), and R (C, x) are contained in G(x) where
G(x) stands for subgroup of planar gliding displacements,
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Fig. 3. Two limbs of the mechanism of Fig. 1(a) that generate
different motions.

the plane being perpendicular to x. Because of the product
closure in the subgroup G(x), the 3-d product R (A, x) R (B,
x) R (C, x) is contained in the 3-d group G(x): R (A, x) R (B,
x) R (C, x) ⊆ G(x). When dealing with motion types, one
can ignore the boundary of the foregoing neighborhood and,
therefore, can state the equality

R(A, x)R (B, x)R(C, x) = G(x).

Hence, each of the two limbs shown in Fig. 2 generates G(x)
R (N, y). The dimension of this product is

dim G(x) R(N, y) = dim G(x) + dim R(N, y)

− dim G(x) ∩ R (N, y) = 3 + 1 − 0 = 4.

G(x) R (N, y) is a 4-d manifold of displacements.
Notice that the motion of the platform depicted in Fig. 1

can be produced using only the two limbs shown in Fig. 3.
One limb generates G(x) R (N, y) and the other limb
generates G(y) R(N, x). Consequently, the platform motion
is expressed by G(x) R (N, y) ∩ G(y) R (N, x). The foregoing
set intersection is not a smooth manifold of displacements as
will be explained in what follows.

First, we remark that if the R pairs generating R (N, y)
and R (N, x) are locked, then we can write R (N, y) = R
(N, x) = E; E = identity displacement. G(x) E ∩ G(y) E =
G(x) ∩ G(y). By the general study of the displacement group,
the intersection is G(x) ∩ G(y) = T (z). The set T (z) is
the 1-d subgroup of linear translations parallel to z, z being
perpendicular to x and y. That is, the platform can undergo
1-DOF linear translation.

Furthermore, if the R pair generating R (N, y) is the
only one locked, then the allowed motion of the platform
is expressed by G(x) E ∩ G(y) R (N, x) = G(x) ∩ G(y) R
(N, x).

One can write: G(x) ∩ G(y) R(N,x) ⊇ G(x) ∩ G(y) E =
G(x) ∩ G(y) = T (z) because Ebelongs to all displacement
manifolds, R (N, x), for instance, and, therefore, the platform

can undergo 1-DOF linear translation T (z). But G(x) ∩ G(y)
R (N, x) ⊇ G(x) ∩ E R (N, x) = G(x) ∩ R (N, x) = R (N, x)
because R (N, x) ⊂ G(x). Hence, the platform can also rotate
around the axis (N, x). Conversely, using general theorems
of group theory one can write;

T(z) R(N, x) = [G(x) ∩ G(y)] R(N, x) ⊆ [G(x) R(N, x)]

∩ [G(y) R(N, x)] = G(x) ∩ [G(y) R(N, x)].

Moreover, by a more lengthy reasoning, one can prove the
set equality

T(z) R(N, x) = G(x) ∩ [G(y) R(N, x)]

T (z) R (N, x) is a 2-d manifold of displacements.
By the same token, one can establish

T(z) R(N, y) = [G(x) R(N, y)] ∩ G(y).

Consequently, the set G(x) R (N, y) ∩ G(y) R (N, x) contains
both T (z) R (N, x) and T (z) R (N, y).

Therefore, the mechanism has two working modes.
Locking the pair generating R (N, y) at the given posture
of the mechanism, the platform can undergo 2-DOF motion
expressed by T(z) R (N, x). This corresponds to a first
working mode of the mechanism. The same way, one can
show that locking the pair generating R (N, x), the platform
can undergo 2-DOF motion expressed by T (z) R (N, y). This
corresponds to a second working mode of the mechanism.

Further, the second working mode is prohibited after any
operation in the first mode and vice versa. As a matter of fact,
by operating in the first mode, the generator of G (y) remains
a generator of G (y) but the axis (N, y) becomes (N’, y’) with
y’ 
= y, and thus R (N, y) ⊂ G (y) is no longer available,
which conditions the second working mode.

As a conclusion, the platform motion is either T (z) R (N,
x) or T (z) R (N, x). Using set theory notations, the platform
motion is expressed by

T(z) R(N, x) ∪ T(z) R(N, x) = T(z)[R(N, x) ∪ R(N, x)]

which is not a smooth manifold.
Employing G(x) = T2(⊥x) R (N, x) and G(y) = T2(⊥y)

R (N, y), which also express the two planar motions, one can
notice that the set of feasible displacements G(x) R (N, y) ∩
G(y) R (N, x) can be equated to T2(⊥x) R (N, x) R (N, y) ∩
T2(⊥y) R (N, y) R (N, x).

The product of finite rotations generally does not commute:
R (N, x) R (N, y) 
= R (N, y) R (N, x). However, R∗(N, x) and
R∗(N, y) representing rotations with infinitesimal angles, the
factor commutation is valid, namely R∗(N, x) R∗(N, y) =
R∗(N, y) R∗(N, x). As a matter of fact, R∗(N, x) R∗(N, y) =
[E + r(N, x)] [E + r(N, y)] ≈ E + r(N, x) + r(N, y).

Hence, T2(⊥x)R∗(N,x)R∗(N,y) ∩ T2(⊥y)R∗(N,y)R∗(N,x)

= [T2(⊥x) ∩ T2(⊥y)][R ∗ (N, x)R ∗ (N, y)]

= T(z)[R ∗ (N, x)R ∗ (N, y)].

https://doi.org/10.1017/S0263574706003286 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706003286


Two-mode overconstrained three-DOFs 465

Fig. 4. Link-length against operating range.

From the previous expression, locally in the singular pose,
the platform motion has 3 DOFs, namely one translation
with finite amplitude and two rotations with infinitesimal
amplitude. After any translation, a bifurcation toward two
working modes can still be achieved.

It is worth remarking that for mechanisms belonging to
the family disclosed in this paper, the usual acceptance of the
concept of degree of freedom is questionable.

The authors do not believe that the corresponding
nonoverconstrained mechanism or family of mechanisms
exists.

Kinematics, singularities, dynamics, experimental control
results of one member of the proposed family and application
of such mechanism are the subject of other work.29 We here
state the important result that singularities of that mechanism
do not limit the workspace making the mechanism practically
useful. Figure 4 shows how the working space can usefully
be increased by simply increasing the length of the limbs

Figure 5 demonstrates the small servo positioning error of
one of the joints even when this joint is loaded.

4. Conclusions
Using the equivalencies that are proven by the closure of the
product in any algebraic subgroup, a family of PKMs has
been conceived.

Each of the limbs of the family discussed simply provides
a planar motion (two-translations and one rotation about an
axis normal to the translation plane) as well as one rotation
about an axis that lies within that plane. By each proper
arrangement of two of these limbs, the mechanism can
utilize two limbs to realize a two-mode motion. The first
working mode is translation in the one direction (say the
z direction) and rotation about one of the other Cartesian
directions (say the x direction), while the second working
mode is translation in the same z direction and rotation about
the third Cartesian direction (in this case, it would be the y
direction). Further, if two limbs that generate the same motion
are placed opposite to each other, as shown in Fig. 4, this will
enlarge the singularity-free workspace. This is because if one
limb is in its singular position, its supporting limb will not
be. In fact, this is kinematics redundancy that has been used
previously to avoid singularity.

A mechanism that provides two rotational DOFs and one
translational DOF has very large number of applications in
manufacturing. Every single expensive five-axis machine-
tool does utilize a two-rotational-one-translational DOF
mechanism as a subsystem. The importance and application
of the proposed mechanism was the subject of a separate
work.29,30

An industrial-scale version of the family member of
Fig. 1(b) has been built and is shown in Fig. 6 The
translational stroke is 500 mm, the rotation angle is 80◦ when
a supporting (i.e., redundant) limb is used and 50◦ when the

Fig. 5. Joint servo error.
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Fig. 6. Industrial-scale model of one member of the family.

limb generating the second rotational mode is not supported
by a redundant limb.
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6. J. M. Hervé, “Parallel Mechanisms with Pseudo-Planar
Motion Generators,” In: On Advances in Robot Kinematics
(J. Lenarcic and C. Galletti, eds.) (Kluwer, Dordrecht, The
Netherlands, 2004) pp. 431–440.

7. R. Hui, “Mechanisms for Haptic Feedback,” Proceedings
of the IEEE International Conference on Robotics and
Automation, Nagoya, Japan (1995) pp. 2138–2143.

8. Z. Huang and Q. C. Li, “General methodology for type
synthesis of symmetrical lower-mobility parallel manipulators
and several novel manipulators,” Int. J. Robot. Res. 21(2),
131–146 (2002).

9. Z. Huang and Q. C. Li, “Type synthesis of symmetrical lower
mobility parallel mechanisms using the constraint-synthesis
method,” Int. J. Robot. Res. 22(1), 59–82 (2003).

10. K. H. Hunt, Kinematic Geometry of Mechanisms (Oxford
University Press, Oxford, 1978).

11. K. H. Hunt, “Structural kinematics of in-parallel-actuated
robot arms,” ASME J. Mech., Transm. Autom. Des. 105, 705–
712 (1983).
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