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Abstract

Let p = 3n + 1 be a prime with n ∈ N = {0, 1, 2, . . .} and let g ∈ Z be a primitive root modulo p. Let 0 <
a1 < · · · < an < p be all the cubic residues modulo p in the interval (0, p). Then clearly the sequence
a1 mod p, a2 mod p, . . . , an mod p is a permutation of the sequence g3 mod p, g6 mod p, . . . , g3n mod p.
We determine the sign of this permutation.
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1. Introduction

Investigating permutations over finite fields is an active topic in both number theory
and finite fields. The Lagrange interpolation formula shows that each permutation
over a finite field is in fact induced by a permutation polynomial. For example, let
p be an odd prime and let a be an integer with p � a. Then x mod p �→ ax mod p
(for x = 0, 1, . . . , p − 1) is a permutation over the finite field Fp = Z/pZ. Zolotarev
[12] showed that the sign of this permutation is precisely the Legendre symbol (a/p).
Later, Lerch [6] extended this result to the ring of residue classes modulo an arbitrary
positive integer. In 2015, Brunyate and Clark [3] made a further extension to higher
dimensional vector spaces over finite fields.

Recently, Sun [8, 9] studied permutations involving squares in finite fields. In fact,
let p = 2m + 1 be an odd prime. Let 0 < b1 < · · · < bm < p be all the quadratic residues
modulo p in the interval (0, p). Then clearly the sequence

12 mod p, 22 mod p, . . . , m2 mod p

is a permutation σp of the sequence

b1 mod p, b2 mod p, . . . , bm mod p.
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Let sign(σp) denote the sign of σp. Sun [8, Theorem 1.4] obtained

sign(σp) =

⎧⎪⎪⎨⎪⎪⎩
1 if p ≡ 3 mod 8,
(−1)(h(−p)+1)/2 if p ≡ 7 mod 8,

where h(−p) denotes the class number of Q(
√−p). Later, Petrov and Sun [7]

determined the sign of σp in the case p ≡ 1 (mod 4).
With this motivation, we consider permutations involving cubes in Fp = Z/pZ

(where p is an odd prime). The case p ≡ 2 mod 3 is trivial. Clearly in this case

{x3 mod p : x = 0, 1, . . . , p − 1} = Z/pZ

and hence x mod p �→ x3 mod p (x = 0, 1, . . . , p − 1) is a permutation τp over Z/pZ.
The sign of τp is a direct consequence of Lerch’s result [6] and we have sign(τp) =
(−1)(p+1)/2 (see [10, Theorem 1.2] for details).

Now we consider the nontrivial case p ≡ 1 mod 3. Let p = 3n + 1 be a prime with
n ∈ N and let g ∈ Z be a primitive root modulo p. Let 0 < a1 < · · · < an < p be all the
cubic residues modulo p in the interval (0, p). Then clearly the sequence

a1 mod p, a2 mod p, . . . , an mod p

is a permutation sp(g) of the sequence

g3 mod p, g6 mod p, . . . , g3n mod p.

In order to state our result, we first introduce some notation. Let

P := {0 < x < p : x is a primitive root modulo p}.

It is known (see [4]) that 4p can be uniquely written as

4p = r2 + 3s2 (r, s ∈ Z) (1.1)

with r ≡ 1 mod 3, s ≡ 0 mod 3 and 3s ≡ (2gn + 1)r mod p. Let ω = e2πi/3 be a primi-
tive cubic root of unity. As p splits in Z[ω] and Z[ω] is a principal ideal domain, we
can write p = ππ̄ for some primary prime π ∈ Z[ω] with (g/π)3 = ω, where π̄ denotes
the conjugate of π and the symbol (·/π)3 is the cubic residue symbol modulo π. For
convenience, we briefly recall the definition of the cubic residue symbol (see [5, Ch.
9] for details). For any x ∈ Z[ω] with π � x, there is a unique i ∈ {0, 1, 2} such that
xn ≡ ωi mod πZ[ω]. Hence, for any x ∈ Z[ω] with π � x, we define the cubic residue
symbol (x/π)3 by

( x
π

)
3
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if xn ≡ ω0 mod πZ[ω],
ω if xn ≡ ω1 mod πZ[ω],
ω2 if xn ≡ ω2 mod πZ[ω].
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We also define

δp := |{0 < x < p/4 : x is a cubic residue modulo p}|, (1.2)

αp := |{0 < x < p/2 : x is a sixth power residue modulo p}|, (1.3)

γp :=
∣∣∣∣∣
{
0 < x < p/2 :

( x
p

)
= 1 and

( x
π

)
3
= ω2

}∣∣∣∣∣, (1.4)

where |S| denotes the cardinality of a set S.
With this notation, we now state our main result.

THEOREM 1.1. Let p = 3n + 1 be a prime with n ∈ N.

(i) If p ≡ 1 mod 12, then

|{g ∈ P : sign(sp(g)) = 1}| = |{g ∈ P : sign(sp(g)) = −1}|.
(ii) If p ≡ 7 (mod 12), then sign(sp(g)) is independent of the choice of g and

sign(sp(g)) = (−1)δp+(1+αp)(1+r)+(h(−p)+1−2αp)(2−r+3s)/4+s(1+γp)+(n−2)/4,

where h(−p) is the class number of Q(
√−p).

REMARK 1.2. For any primitive roots g, g′ modulo p, the product of sign(sp(g)) and
sign(sp(g′)) is indeed equal to the sign of the permutation which sends the sequence

g3 mod p, g6 mod p, . . . , g3n mod p

to the sequence
g′3 mod p, g′6 mod p, . . . , g′3n mod p.

The signs of the permutations of this type are direct consequences of Lerch’s theorem
[6] and were investigated by Wang and the first author in [10, Theorem 3.2].

We will prove Theorem 1.1 in the next section.

2. Proof of Theorem 1.1

We first introduce some notation. Let p = 3n + 1 be a prime with n ∈ N and let
g ∈ Z be a primitive root modulo p. Let ω = e2πi/3 be a primitive cubic root of unity.

As p splits in Z[ω] and Z[ω] is a principal ideal domain, we can write p = ππ̄ for
some primary prime element π ∈ Z[ω] with (g/π)3 = ω, where π̄ denotes the conjugate
of π and the symbol (·/π)3 is the cubic residue symbol modulo π. For convenience, we
use the symbol p to denote the prime ideal πZ[ω]. Recall that from (1.1), 4p can be
uniquely written as

4p = r2 + 3s2 (r, s ∈ Z)

with r ≡ 1 mod 3, s ≡ 0 mod 3 and 3s ≡ (2gn + 1)r mod p.

LEMMA 2.1 [1, Corollary 10.6.2(c)]. For any k with 0 < k < p, let

N(k) := |{(x, y) : 0 < x, y < p, y3 − x3 ≡ k mod p}|.
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Then, with the above notation,

N(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + r − 8 if
( k
π

)
3
= 1,

(2p − r + 3s − 4)/2 if
( k
π

)
3
= ω,

(2p − r − 3s − 4)/2 if
( k
π

)
3
= ω2.

For any k with 0 < k < p, define

rk :=
∣∣∣∣∣
{
(x, y) : 0 < x < y < p, y − x ≡ k mod p,

( x
π

)
3
=

( y
π

)
3
= 1
}∣∣∣∣∣. (2.1)

We need the following result.

LEMMA 2.2. We have
∑

0<k<p/2

rp−k ≡
∣∣∣∣∣
{
0 < x < p/4 :

( x
π

)
3
= 1
}∣∣∣∣∣ mod 2.

PROOF. From the definition,
∑

0<k<p/2

rp−k =

∣∣∣∣∣
{
(x, y) : 0 < x < y < p, y − x > p/2,

( x
π

)
3
=

( y
π

)
3
= 1
}∣∣∣∣∣. (2.2)

Replacing y by p − y in the right-hand side of (2.2),
∑

0<k<p/2

rp−k =

∣∣∣∣∣
{
(x, y) : 0 < x, y < p, x + y < p/2,

( x
π

)
3
=

( y
π

)
3
= 1
}∣∣∣∣∣.

By symmetry,
∑

0<k<p/2

rp−k ≡
∣∣∣∣∣
{
0 < x < p/4 :

( x
π

)
3
= 1
}∣∣∣∣∣ mod 2.

This completes the proof. �

Now we define the following sets:

A1 : =
{
0 < x < p/2 :

( x
π

)
3
= 1
}
,

Aω : =
{
0 < x < p/2 :

( x
π

)
3
= ω
}
,

Aω2 : =
{
0 < x < p/2 :

( x
π

)
3
= ω2

}
.

For the following result, recall that p = πZ[ω]) and αp and γp were defined in (1.3) and
(1.4).

https://doi.org/10.1017/S000497272100054X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272100054X


192 H.-L. Wu and Y.-F. She [5]

LEMMA 2.3. Let p ≡ 7 mod 12 be a prime.

(i) We have
∏
x∈A1

x ≡ (−1)1+αp mod p.

(ii) If

βp :=
∣∣∣∣∣
{
0 < x < p/2 :

( x
p

)
= 1 and

( x
π

)
3
= ω
}∣∣∣∣∣,

then ∏
x∈Aω

x ≡ (−1)1+βpω2 mod p.

(iii) We have
∏

x∈Aω2

x ≡ (−1)1+γpω mod p.

PROOF. (i) One can verify the following polynomial congruence:
∏

0<x<p, (x/π)3=1

(T − x) ≡ Tn − 1 mod p.

Hence,

(−1)n/2
(∏

x∈A1

x
)2
≡ −1 mod p.

Since p ≡ 3 mod 4,
(∏

x∈A1

x
)2
≡ 1 mod p.

Thus, ∏
x∈A1

x ≡ (−1)n/2−αp ≡ (−1)1+αp mod p.

(ii) As in (i),
∏

0<x<p, (x/π)3=ω

(T − x) ≡ Tn − ω mod p.

Hence,
(∏

x∈Aω

x
)2
≡ ω mod p.
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Noting that ω = (ω2)2 is a quadratic residue modulo p, by the definition of βp,∏
x∈Aω

x ≡ (−1)1+βpω2 mod p.

(iii) With essentially the same method as in (ii), one can verify (iii). �

Let Φp−1(T) be the (p − 1)th cyclotomic polynomial and let

P(T) :=
∏

1≤i<j≤n

(T3j − T3i).

LEMMA 2.4 [11, Lemma 2.5]. Let G(T) be an integral polynomial defined by

G(T) =

⎧⎪⎪⎨⎪⎪⎩
(−1)(n−2)/4 · nn/2 if p ≡ 3 mod 4,
(−1)(n−4)/4 · nn/2 · T (p−1)/4 if p ≡ 1 mod 4.

Then Φp−1(T) | (P(T) − G(T)).

Now we are in a position to prove our main result.

PROOF OF THEOREM 1.1. From the definition,

sign(sp) ≡
∏

1≤i<j≤n

g3j − g3i

aj − ai
mod p.

We first consider the numerator. Since p splits completely in the cyclotomic field
Q(e2πi/(p−1)), it follows that Φp−1(T) mod pZ[T] splits completely in Z/pZ[T]. Also,
the set of all primitive (p − 1)th roots of unity maps bijectively onto the set of all
primitive (p − 1)th roots of unity in the finite field Fp = Z/pZ. Hence,

Φp−1(T) ≡
∏
x∈P

(T − x) mod p, (2.3)

where

P := {0 < x < p : x is a primitive root modulo p}.
By Lemma 2.4 and (2.3),∏

1≤i<j≤n

(g3j − g3i) = P(g) ≡ G(g) mod p,

that is,
∏

1≤i<j≤n

(g3j − g3i) ≡
⎧⎪⎪⎨⎪⎪⎩

(−1)(n−2)/4 · nn/2 mod p if 4 | p − 3,
(−1)(n−4)/4 · nn/2 · g(p−1)/4 mod p if 4 | p − 1.

(2.4)

By (2.4), for any g′ ∈ P,

∏
1≤i<j≤n

g3j − g3i

(g′)3j − (g′)3i ≡
⎧⎪⎪⎨⎪⎪⎩

(g/g′)(p−1)/4 mod p if 4 | p − 1,
1 mod p if 4 | p − 3.
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If p ≡ 1 mod 4, this implies that sign(sp(g)) · sign(sp(g−1)) = −1 and so

|{g ∈ P : sign(sp(g)) = 1}| = |{g ∈ P : sign(sp(g)) = −1}|.

If p ≡ 3 mod 4, it is clear that sign(sp(g)) is independent of the choice of g.
We now consider the denominator and assume that p ≡ 3 mod 4. From the

definition of rk in (2.1), it is clear that∏
1≤i<j≤n

(aj − ai) ≡
∏

0<k<p

krk ≡ (−1)
∑

0<k<p/2 rp−k ·
∏

0<k<p/2

krk+rp−k

≡ (−1)δp

∏
0<k<p/2

krk+rp−k mod p,

where δp is defined in (1.2) and the last congruence follows from Lemma 2.2. From
the definition of rk, one can verify that for 0 < k < p,

rk + rp−k = N(k)/9,

where N(k) is defined in Lemma 2.1. Consequently,∏
1≤i<j≤n

(aj − ai) ≡ (−1)δp

∏
x∈A1

xp+r−8/9
∏
y∈Aω

y2p−r+3s−4/18
∏

z∈Aω2

z2p−r−3s−4/18 mod p.

By Lemma 2.3, ∏
x∈A1

xp+r−8/9 ≡ (−1)(1+αp)(1+r) mod p,

∏
y∈Aω

y2p−r+3s−4/18
∏

z∈Aω2

z2p−r−3s−4/18 ≡ (−1)(βp+γp)(−r+3s)/2+(1+γp)sω2s/3 mod p.

Note that

αp + βp + γp = |{0 < x < p/2 : x is a quadratic residue modulo p}|.

By the class number formula of Q(
√−p) (see [2, Theorem 4, page 346]),

|{0 < x < p/2 : x is a quadratic residue modulo p}| ≡ h(−p) + 1
2

mod 2,

where h(−p) is the class number of Q(
√−p). Thus,∏

1≤i<j≤n

(aj − ai) ≡ (−1)δp+(1+αp)(1+r)+(h(−p)+1−2αp)(2−r+3s)/4+s(1+γp)ω2s/3 mod p. (2.5)

By (2.4), ∏
1≤i<j≤n

(g3j − g3i) ≡ (−1)(n−2)/4 · nn/2 mod p. (2.6)

By the result in [4, Exercise 4.15]), 3 is a cubic residue modulo p if and only if the
equation 4p = X2 + 243Y2 has integral solutions. With our notation in (1.1), this is
equivalent to s ≡ 0 mod 9. We now divide the remaining proof into two cases.
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Case I: 3 is not a cubic residue modulo p. Since

sign(sp) ≡
∏

1≤i<j≤n

g3j − g3i

aj − ai
≡ ±1 mod p,

we must have nn/2 ≡ εω2s/3 for some ε ∈ {±1}. Hence,

ε ≡ n3n/2 ≡
(−3

p

)
≡ 1 mod p.

Combining this with (2.5) and (2.6),

sign(sp(g)) = (−1)δp+(1+αp)(1+r)+(h(−p)+1−2αp)(2−r+3s)/4+s(1+γp)+(n−2)/4.

Case II: 3 is a cubic residue modulo p. In this case, nn/2 = ±1 and hence

nn/2 = n3n/2 ≡
(−3

p

)
= 1 mod p.

Combining this with (2.5) and (2.6),

sign(sp(g)) = (−1)δp+(1+αp)(1+r)+(h(−p)+1−2αp)(2−r+3s)/4+s(1+γp)+(n−2)/4.

This completes the proof. �
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