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Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely,
we prove that d-dimensional a-log canonical singularities with standard coefficients, which admit an ε-plt
blow-up, have minimal log discrepancies belonging to a finite set which only depends on d, a and ε. This
result gives a natural geometric stratification of the possible mld’s in a fixed dimension by finite sets.
As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional
singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár
components.
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1. Introduction

The development of projective birational geometry has been deeply connected with the
understanding of singularities [38]. In particular, global theories shed light on the singu-
larities of the minimal model program [22]. However, singularities of dimension greater
than three seem too complicated to have an explicit characterization [23]. Therefore, a
more qualitative and intrinsic description of these singularities is desirable.

A common technique to study singularities using birational geometry is to apply certain
monoidal transformation to the singularity to extract an exceptional projective divisor
over it and then try to deduce some local information of the singularity from the global
information of the exceptional divisor. This approach has been successful in many cases:
the study of dual complexes of singularities [10, 26], the finiteness of the algebraic fun-
damental group of a klt singularity [37], the ascending chain condition for log canonical
thresholds [9, 16], the study of the normalized volume function on klt singularities [27–29],
and the theory of log canonical complements [7, 31, 32], among others.

In this article, we use this approach to study the minimal log discrepancies of klt sin-
gularities [3, 36]. We aim to explain how a bound on the singularities of a plt blow-up
implies finiteness of the possible minimal log discrepancies. More precisely, we say that
a plt blow-up π : Y → X at a point x of a klt pair (X, Δ) is ε-plt if the log discrep-
ancies of the corresponding plt pair (Y, ΔY + E) are either zero or greater than ε (see
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Definition 2.5). Here, E is the exceptional divisor and ΔY the strict transform of Δ on Y .
We say that the point x of the klt pair (X, Δ) admits an ε-plt blow-up if there exists π as
above. For ε a positive real number, adjunction [13, Theorem 0.1] and the boundedness
of Fano varieties [6, Theorem 1.1], allows us to conclude that the normal projective vari-
eties E belong to a bounded family. By [37, Lemma 1], we know that every klt singularity
admits a plt blow-up and a simple argument using the resolution of singularities proves
that every klt singularity admits an ε-plt blow-up for some positive real number ε (see
Proposition 2.7).

Using the above notation, we can introduce the set of minimal log discrepancies of
a-log canonical pairs admitting an ε-plt blow-up:

M(d,R)a,ε :=
{

mldx(X,Δ)
∣∣∣∣dim(X) = d, coeff(Δ) ∈ R, and (X,Δ) is an a − lc pair

which admits an ε − plt blow-up at x

}
.

We recall the conjecture known as the ascending chain condition for minimal log
discrepancies:

Conjecture 1 ((cf. [36, ACC])). Let d be a positive integer and R be a set of real
numbers satisfying the descending chain condition. Then the set M(d, R)0,0 satisfies the
ascending chain condition.

The above conjecture is equivalent to Shokurov’s ACC for mld’s conjecture by means
of Proposition 2.7. The importance of the ACC conjecture is that, together with the semi-
continuity conjecture for minimal log discrepancies [36, LSC], they imply the termination
of flips. This last problem is one of the main obstacles to complete the Minimal Model
Program.

The ascending chain condition for minimal log discrepancies is known for surface sin-
gularities [1], for certain terminal threefold singularities [34, Lemma 4.4.1], and for toric
singularities [4, 8]. However, in higher dimensions, there is not much that we can say about
the possible mld’s in a fixed dimension. In this paper, we give a first step towards the
understanding of higher dimensional minimal log discrepancies. The following theorem
can be understood as a natural geometric stratification of the possible mld’s of a fixed
dimension by finite sets:

Theorem 1. Let d be a positive integer and let a and ε be positive real numbers,
and S the set of standard rational numbers, i.e., S := {1 − 1

n | n ∈ Z>0}. Then the set
M(d, S)a,ε is finite.

The theorem implies the following corollary towards the ascending chain condition.

Corollary 1. Let d be a positive integer, ε a positive real number, and S the set of
standard rational numbers. The set M(d, S)0,ε satisfies the ascending chain condition.

In the above setting, 0-log canonical means just log canonical. In § 2.5, we give two
examples that show that the theorem does not hold if a and ε are not positive. We
also prove that a-log canonical singularities which admit an ε-plt blow-up have bounded
Cartier index.
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Theorem 2. Let d be a positive integer, and let a and ε be positive real numbers.
There exists p only depending on d, a and ε satisfying the following. Let (X, Δ) be a
d-dimensional a-log canonical pair with standard coefficients which admits an ε-plt blow-
up at x ∈ X. Then p(KX + Δ) is a Cartier divisor on a neighbourhood of x ∈ X.

Exceptional singularities are those klt singularities for which any log canonical thresh-
old is computed at a unique divisorial valuation [35, Definition 1.5]. The exceptional Du
Val surface singularities are the E6, E7 and E8 singularities. Hypersurfaces exceptional
singularities were studied by Ishii and Prokhorov [19]. In dimension 3, Prokhorov and
Markusevich proved that there are only finitely many ε-log canonical exceptional quotient
singularities [30]. However, a classification of exceptional singularities in higher dimen-
sions seems unfeasable. In this direction, we prove the following application of our main
theorem:

Corollary 2. The ascending chain condition for minimal log discrepancies of excep-
tional singularities with standard coefficients holds.

It is worth mentioning that Corollary 2 follows almost directly from the proof of [31,
Theorem 4.4] and [6, Theorem 1.1]. These two results together with [18] and [12] are the
main motivation of Theorem 1. The proof of [31, Theorem 4.4] already contains some of
the ideas used in this article.

After completing this project, the author was informed that J. Han, J. Liu and V.
Shokurov have obtained the results of this paper with more general coefficients [17]. The
proof of this manuscript goes along that of [35] in dimension 3. In the following remark,
we give a detailed account of this generalization.

Remark 1.1. Corollary 1 (respectively Corollary 2) is generalized by [17, Theorem
1.3] (respectively [17, Theorem 1.2]), where the authors prove the statement with general
coefficients. Theorem 1 and Theorem 2 are implied by Theorem [17, Theorem 1.6], where
the authors prove a uniform bound for the regional fundamental group.

2. Preliminaries

All varieties in this paper are quasi-projective over a fixed algebraically closed field of
characteristic zero unless stated otherwise. In this section, we collect some definitions and
preliminary results which will be used in the proof of the main theorem.

2.1. Singularities

In this subsection, we recall the singularities of the minimal model program, the set of
standard coefficients and exceptional singularities. We also prove some basic properties
about singularities.

Definition 2.1. In this paper, a sub-pair (X, Δ) consists of a normal quasi-projective
variety X and a Q-divisor Δ so that KX + Δ is a Q-Cartier Q-divisor. If the coefficients
of Δ are non-negative then we say that (X, Δ) is a log pair, or simply a pair.

Let π : W → X be a log resolution of the pair (X, Δ) and denote by KW + ΔW + FW

the log pull-back of KX + Δ, where ΔW is the strict transform of Δ on W and FW is an
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exceptional divisor. The discrepancy of a prime divisor E on W with respect to the pair
(X, Δ) is

aE(X,Δ) := −coeffE(ΔW + FW ).

The log discrepancy of a prime divisor E on W with respect to the pair (X, Δ) is the
value

aE(X,Δ) + 1.

The center of E on X is its image on X via the morphism π. We denote by cX(E) the
centre of the prime divisor E on the variety X. A prime divisor over X is a prime effective
divisor E on a normal quasi-projective variety W which admits a projective birational
morphism W → X.

We say that the sub-pair (X, Δ) is sub-ε-log canonical if

aE(X,Δ) ≥ −1 + ε,

for every prime divisor E on W . If (X, Δ) is a pair then we say that is ε-log canonical in
the above situation. If ε > 0 is arbitrary, we may also say that (X, Δ) is Kawamata log
terminal (or klt) and if ε = 0 we just say that the pair is log canonical, equivalently, the
centre of a log canonical place. The total discrepancy a(X, Δ) of the pair (X, Δ) is the
infimum among all discrepancies aE(X, Δ) with E a prime divisor over X. Thus, (X, Δ)
is a-log canonical if and only if a(X, Δ) + 1 ≥ a.

Let (X, Δ) be a log canonical pair. A log canonical place of (X, Δ) is a prime divisor
E on a birational model of X so that aE(X, Δ) = −1. A log canonical center of (X, Δ)
is the image on X of a log canonical place.

Definition 2.2. Let (X, Δ) be a log pair and x ∈ X. The minimal log discrepancy of
(X, Δ) at x is

mldx(X,Δ) := inf {aE(X,Δ) + 1 | E is a prime divisor over X so that cX(E) = x} .

If (X, Δ) is a log canonical pair, taking a log resolution and using [25, Lemma 2.29], we
can see that the above infimum is indeed a minimum. Observe that mldx(X, Δ) ≥ 0 if
and only if the pair (X, Δ) is log canonical at x ∈ X. Moreover, mldx(X, Δ) > 0 if and
only if the pair (X, Δ) is klt at x ∈ X. On the other hand, if (X, Δ) is not log canonical
at x ∈ X, then mldx(X, Δ) = −∞ (see, e.g. [25, Corollary 2.32]).

Definition 2.3. We say that the pair (X, Δ) is divisorial log terminal (or dlt) if the
following conditions hold:

(1) there exists a closed subset Z ⊂ X so that X \ Z is smooth,

(2) Δ|X\Z has simple normal crossing support, and

(3) every divisor E over X with centre in Z has positive log discrepancy with respect
to (X, Δ).

A pair (X, Δ) is called purely log terminal (or plt) if the log discrepancy of every excep-
tional prime divisor over X is strictly positive. In this case, �Δ� is a disjoint union of
normal prime divisors.
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Definition 2.4. Given a finite set R of rational numbers, we denote by

H(R) := {1} ∪
{

1 − r

m

∣∣∣ r ∈ R and m ∈ Z>0

}
,

and call H(R) the set of hyperstandard coefficients associated with R. We denote S :=
H({1}) and call this the set of standard coefficients.

Definition 2.5. A plt blow-up of a log pair (X, Δ) at a point x ∈ X is a projective
birational morphism π : Y → X with the following properties:

(1) Y is a quasi-projective normal variety,

(2) the exceptional locus of π is an irreducible divisor E whose image on X is x,

(3) the pair (Y, ΔY + E) is purely log terminal, where ΔY is the strict transform of Δ
on Y , and

(4) −E is ample over X.

We say that the pair (X, Δ) admits a plt blow-up at x ∈ X if there exists π with the
above conditions. Moreover, we say that the plt blow-up is an ε-plt blow-up if any log
discrepancy of (Y, ΔY + E) is either zero or greater than ε. Analogously, we say that the
pair (X, Δ) admits an ε-plt blow-up at x ∈ X if there exists π with the above conditions.

Definition 2.6. The exceptional divisor of a plt blow-up is often called a Kollár
component of the singularity [28, Definition 1.1]. We may use both acceptions on this
paper. We may also call the log Fano pair (E, ΔE), where

KE + ΔE := (KY + ΔY + E)|E
is obtained by adjunction to E, a Kollár component over the klt pair (X, Δ). Observe
that −(KE + ΔE) is ample and (E, ΔE) is klt. Hence, (E, ΔE) is a log Fano pair
[7, 2.10].

Proposition 2.7. Let (X, Δ) be a klt pair and x ∈ X. There exists an ε-plt blow-up
of (X, Δ) at x for some positive ε.

Proof. By [37, Lemma 1], we can construct a plt blow-up π : Y → X of (X, Δ) over
x. Let πY : W → Y be a log resolution of (Y, ΔY + E), so we can write

KW + ΔW + FW = π∗
Y (KY + ΔY + E),

where ΔW is the strict transform of ΔY on W , and FW is an exceptional divisor. We can
take ε small enough so that

coeffD(ΔW + FW − EW ) < 1 − ε

for all exceptional prime divisors D, where EW is the strict transform of E on W . By
[25, Lemma 2.29], we conclude that every exceptional divisor over W has log discrepancy
either zero or greater than ε with respect to the purely log terminal pair (Y, ΔY + E). �
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Theorem 1 motivates the following natural invariant of klt singularities.

Definition 2.8. Let (X, Δ) be a klt pair and x ∈ X. We define the mildest component,
or MC for simplicity, of (X, Δ) at the point x ∈ X to be:

MCx(X,Δ) := sup{a(E,ΔE) + 1 | (E,ΔE) is a Kollár component of

(X,Δ) over x ∈ X}.
In Proposition 2.25, we will prove that the MC is indeed attained by some Kollár com-
ponent over x ∈ X. In this setting, the conditions of Theorem 1 and Theorem 2 can be
abbreviated as (X, Δ) is a d-dimensional pair which is a-log canonical at x ∈ X and
MCx(X, Δ) ≥ ε.

Remark 2.9. In general, one could define the mildest component of (X, Δ) at x ∈ X
for every Grothendieck point of the variety X. However, by cutting down with general
hyperplanes, the study of minimal log discrepancies on a variety X of dimension d at a
point x ∈ X of codimension k is equivalent to the study of minimal log discrepancies on
a variety X of dimension d − k at a closed point.

Definition 2.10. A dlt modification of a log canonical pair (X, Δ) is a projective
birational morphism π : Y → X so that π∗(KX + Δ) = KY + ΔY + EY , where ΔY is
the strict transform of Δ on X and EY is an exceptional divisor over X so that the
sub-pair (Y, ΔY + EY ) is a dlt pair. It is known that every log canonical pair admits a
dlt modification [24, Theorem 3.1].

Definition 2.11. We say that a klt pair (X, Δ) is exceptional at x ∈ X if for every
boundary Γ ≥ 0 on X so that (X, Δ + Γ) is a log canonical pair, any dlt modification of
(X, Δ + Γ) is indeed plt.

Remark 2.12. It is known that if (X, Δ) is exceptional at x and X is Q-factorial, then
there exists a unique prime divisor over X which determines all log canonical thresholds
over x ∈ X [30, Proposition 2.7].

Definition 2.13. Let (X, Δ) be a log canonical pair and X → Z be a contraction of
normal quasi-projective varieties. We say that Γ ≥ 0 is a strong (δ, n)-complement over
z ∈ Z of (X, Δ) if the following conditions hold:

• (X, Δ + Γ) is an δ-log canonical pair, and

• n(KX + Δ + Γ) ∼ 0 over a neighbourhood of z.

In the case that X → Z is the identity, then we say that Γ is a local strong (δ, n)-
complement around x ∈ X for (X, Δ). On the other hand, if Z = Spec(k) for some field
k, then we say that Γ is a global strong (δ, n)-complement for the pair (X, Δ). A strong
n-complement is a strong (0, n)-complement.

Lemma 2.14. Let (X, Δ) be a klt pair which is exceptional at x ∈ X. Assume that
the coefficients of Δ are standard. There exists an εd-blow-up of (X, Δ) at x, for some
positive real number εd which only depends on the dimension d of X.
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Proof. By Lemma 2.7, we can extract an ε-plt blow-up over x ∈ X for some real
number ε. By [7, Theorem 1.8] there exists a strong n-complement KY + ΔY + ΓY + E
for KY + ΔY + E over x, for n only depending on d and S. Since S is a fixed set then
n only depends on d. Since KY + ΔY + ΓY + E is Q-linearly trivial over x ∈ X then we
can write

KY + ΔY + ΓY + E = π∗(KX + Δ + Γ)

for some boundary Γ on X so that (X, Δ + Γ) is a log canonical pair. By the excep-
tionality of (X, Δ) at x we deduce that (X, Δ + Γ) has a unique log canonical place
and hence (Y, ΔY + ΓY + E) has a unique log canonical place E. Moreover, since
n(KY + ΔY + ΓY + E) is Cartier over x, we conclude that

aF (Y,ΔY + E) + 1 ≥ aF (Y,ΔY + ΓY + E) + 1 ≥ 1
n

for every divisor F over Y which is not equal to E. Thus, it suffices to take εd = 1
n . �

2.2. Bounded families

In this subsection, we recall the definition of a log bounded family and prove some
properties of such families.

Definition 2.15. We say that a set of pairs P is log bounded if there exists a projective
morphism X → T of possibly reducible varieties and a divisor B on X so that for every
pair (X, Δ) ∈ P there exists a closed point t ∈ T and an isomorphism φ : Xt → X so
that (Xt, Bt) is a pair and φ−1

∗ Δ ≤ Bt. If, moreover, φ induces an isomorphism of pairs
between (X, Δ) and (Xt, Bt), meaning that for any prime divisor D on X, we have that

coeffD(Δ) = coeffφ−1
∗ D(Bt),

we will say that the set of pairs P is strictly log bounded. We say that X → T is a
bounding family for the varieties X and that B is a bounding divisor for the set of divisors
{Δ | (X, Δ) ∈ P}.

The following lemma follows from the definition of strictly log bounded family.

Lemma 2.16. Let P be a log bounded family of pairs so that the set {coeff(Δ) |
(X, Δ) ∈ P} is finite. Then the family P is strictly log bounded.

Lemma 2.17. Let P be a bounded family of d-dimensional projective varieties so that
−KX is pseudo-effective for every X ∈ P. Then, there exists a positive constant C, only
depending on P, satisfying the following: for every X ∈ P, we can find a very ample
Cartier divisor A with Ad ≤ C and Ad−1(−KX) ≤ C.

Proof. Let X → T be the bounding family. By Notherian induction, we can stratify the
base T into finitely many locally closed subvarieties Ti ⊂ T , satisfying the following: For
each fibre over t ∈ Ti of Xi → Ti we have that KXi

|Xt
= KXt

. We may assume that the Ti’s
are disjoint by successively replacing Ti, Tj with Ti \ supp(Ti ∩ Tj), Tj \ supp(Ti ∩ Tj)
and Ti ∩ Tj . For each i, we can consider a very ample effective Cartier divisor Ai on Xi.
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For each fibre, we define AXt
:= Ai|Xt

. Then, we have that Ad
Xt

(−KXt
) = Ad−1(−KX )|Xt

for each t ∈ Ti. Thus, the intersection Ad
Xt

(−KXt
) only takes finitely many values over

Ti. Analogously, Ad
Xt

only takes finitely many values over Ti. We define C to be the
maximum of all these intersection numbers among all the Ti’s. Then, for each X ∈ P it
suffices to consider A to be the pull-back of AXt

to X via the isomorphism X → Xt. �

Lemma 2.18. Let P be a bounded family of d-dimensional projective varieties and Q
a set of pairs {(X, Δ) | X ∈ P}, so that coeff(Δ) satisfies the descending chain condition
and for every (X, Δ) ∈ Q we have that −(KX + Δ) is pseudo-effective. Then Q is a log
bounded set of pairs.

Proof. By Lemma 2.17, we can find a positive constant C so that for each X ∈ P
there is a very ample Cartier divisor A with Ad ≤ C and Ad−1(−KX) ≤ C. The set
coeff(Δ) satisfies the descending chain condition, so there exists δ > 0 small enough so
that δ < coeff(Δ) for every boundary Δ of a pair (X, Δ) on Q. Since −(KX + Δ) is
pseudo-effective we have that Ad−1 · (−KX − Δ) ≥ 0, hence we conclude that

Ad−1 · (δΔred) ≤ Ad−1 · Δ ≤ Ad−1 · (−KX) ≤ C,

where Δred is Δ with the reduced structure. Thus, we get that Ad−1 · Δred ≤ δ−1C, so
by [2, Lemma 3.7.(2)], we conclude that the set of pairs Q is log bounded. �

Lemma 2.19. Let P be a strictly log bounded family of log Fano pairs. Then, there
exists m only depending on P, so that | − m(KX + Δ)| is base point free for (X, Δ) ∈ P.

Proof. Note that the dimension of the varieties of P is bounded. Let (X , B) → T
be a log bounding family for P. We can stratify the base T into finitely many locally
closed subvarieties Ti ⊂ T , satisfying the following: For each fibre over t ∈ Ti of Xi → Ti,
we have that (KXi

+ Bi)|Xt
= KXt

+ Bt. In particular, we conclude that there exists a
constant c, only depending on P, so that c(KX + Δ) is Cartier for every (X, Δ) ∈ P.
Then, applying Kollár’s effective base point freeness [21, Theorem 1.1] with a = 1 and
L = −c(KX + Δ), we conclude that there exists a constant m, only depending on P, so
that | − m(KX + Δ)| is base point free. �

Definition 2.20. Let X be an irreducible projective variety of dimension d and let D
be a Q-Cartier divisor on X. The volume of D is

vol(D) := lim sup
m→∞

d!h0(X,OX(mD))
md

.

In particular, a big divisor has positive volume.

Lemma 2.21. Let P be a strictly log bounded family of d-dimensional klt pairs. Then
there exist positive real numbers v1 and v2, only depending on P, so that for every
(X, Δ) ∈ P with −(KX + Δ) ample we have that

v1 < vol(−(KX + Δ)) < v2.
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Proof. Since ampleness is open in families, we may restrict to an open set U ⊂ T so
that −(KXt

+ Bt) is ample for every t ∈ U . Furthermore, by Noetherian induction, we
may assume that the induced morphism XU → U is a projective smooth morphism of
relative dimension d with normal fibres. In this case, we have that

vol(−(KXt
+ Bt)) = (−(KXt

+ Bt))d

is an upper-semicontinuous function on t ∈ U . Hence, it takes finitely many values on U .
�

Lemma 2.22. Let P be a strictly log bounded family of log Fano pairs. We can find a
positive real number M, only depending on P, so that for every (X, Δ) ∈ P there exists
an ample curve C on X so that

−(KX + Δ) · C ≤ M.

Proof. By Lemma 2.19, we can find a positive natural number m, only depending on
P, so that | − m(KX + Δ)| is a base point free linear system for any (X, Δ) ∈ P. Hence,
a general curve C on the rational equivalence class of (−m(KX + Δ))d−1 will be an ample
curve. Moreover, by Lemma 2.21, we have that

−(KX + Δ) · C = md−1(−(KX + Δ))d = md−1 vol(−(KX + Δ)) < md−1v2.

Thus, it suffices to take M = md−1v2. �

Lemma 2.23. Let d be a positive integer and ε a positive real number. There exists a
constant l only depending on d and ε satisfying the following. Let X be a d-dimensional
klt variety so that KX is Cartier at x ∈ X. Assume that X admits an ε-plt blow-up at
x ∈ X extracting a divisor E. Then we have that

aE(X, 0) ≤ l.

In particular, there are finitely many possible values for aE(X, 0).

Proof. Let π : Y → X be the ε-plt blow-up at x ∈ X and write

KY − aE(X, 0)E = π∗KX .

By assumption of X being klt and KX being Cartier at x we know that aE(X, 0) is a
non-negative integer. We write

KE + ΔE = (KY + E)|E .

Thus, the pair (E, ΔE) is ε-lc and −(KE + ΔE) is ample. By boundedness of Fano
varieties [6, Theorem 1.1], we conclude that the projective varieties E belong to a bounded
family. By [15, Theorem 3.34], we know that the coefficients of ΔE are standard, therefore
the pairs (E, ΔE) are log bounded by Lemma 2.18. Moreover, since (E, ΔE) is ε-log
canonical then the coefficients of ΔE are at most 1 − ε, hence belong to a finite set of
rational numbers. By Lemma 2.16, conclude that the pairs (E, ΔE) belong to a strictly
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log bounded family P, which only depends on the dimension d and the positive real
number ε.

By [33, Proposition 3.9], we know that at codimension 2 points of Y , every Weil divisor
has Cartier index bounded by p, for some constant p which only depends on ε. Hence,
there exists a closed subset Z on Y of codimension at least 3, so that the Cartier index
of E is a divisor of p outside Z. By Lemma 2.22, we may find an ample curve C so that

−(KE + ΔE) · C ≤ M,

for some constant M which only depends on P. Thus, up to replacing C with a rationally
equivalent curve, we may assume that C does not intersect Z, so we have pE · C is a
negative integer, or equivalently,

−E · C ∈ Z>0

[
1
p

]
.

Moreover, since (E, ΔE) belongs to a strictly log bounded family, we conclude that the
Cartier index of −(KE + ΔE) is bounded by a constant which only depends on P [7,
Lemma 2.25]. In particular,

−(KY + E) · C = −(KE + ΔE) · C
belongs to a finite set F of positive rational numbers, which only depends on P. Finally,
observe that from the relation

(KY + E − (aE(X, 0) + 1)E) · C = π∗(KX) · C = 0,

we conclude that

(aE(X, 0) + 1)
p

≤ (aE(X, 0) + 1)(−E · C) ∈ F ,

so

aE(X, 0) ≤ p max{F} − 1,

where the right-hand side only depends on ε and F . Since F only depends on P, and
P only depends on d and ε, we deduce that l = p max{F} − 1 only depends on d and
ε. This proves the first statement. Since aE(X, 0) is a non-negative integer, we conclude
that there are finitely many possible values for it, proving the second statement. �

Lemma 2.24. Let P be a strictly log bounded family of log Fano pairs. Then, the
total discrepancies of pairs (X, Δ) ∈ P take only finitely many values.

Proof. Let X → T be a bounding family. Let B ⊂ X be an effective divisor so that
(X , B) strictly log bound the family P. By Noetherian induction, we can stratify the
base T into finitely many locally closed subvarieties Ti ⊂ T , satisfying the following: For
each induced family Xi → Ti, we can find a log resolution of (Xi, Bi) so that admits a log
resolution over Ti and each blow-up is horizontal over Ti. By [25, Corollary 2.32.(2)], we
conclude that the total discrepancy of each fibre of (Xi, Bi) → Ti belongs to a finite set.
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Hence, the total discrepancy of each fibre of (X , B) → T belongs to a finite set. Then,
the same holds for pairs (X, Δ) ∈ P. �

To conclude this subsection, we will prove that the mildest component of a klt singular-
ity is indeed attained by a Kollár component, or equivalently, the infimum in Definition 2.8
is a minimum.

Proposition 2.25. Let (X, Δ) be a pair which is klt at x. Assume that the coefficients
of Δ are rational numbers. There exists a Kollár component π : Y → X extracting a
divisor E ⊂ Y so that

MCx(X,Δ) = a(Y,ΔY + E).

Proof. We proceed by contradiction. Recall that

MCx(X,Δ) := sup{a(E,ΔE) + 1 | (E,ΔE) is a Kollár component of

(X,Δ) over x ∈ X}.
We want to prove that the supremum on the right is actually a maximum. Assume it
is not. Then, we can find a sequence of Kollár components πi : Yi → X over x ∈ X for
the pair (X, Δ) so that the total discrepancies of the pairs (Ei, ΔEi

) are in an infinite
increasing sequence. Since each (Ei, ΔEi

) is klt, its total log discrepancy is positive. We
are assuming that the total discrepancy of the sequence (Ei, ΔEi

) is infinite and strictly
increasing. Hence, there exists ε > 0 so that each (Ei, ΔEi

) is ε-log canonical. Thus, by
[7, Theorem 1.1], we conclude that the varieties Ei belong to a bounded family.

Since the coefficients of ΔYi
are fixed by coeff(Δ), we conclude that the coefficients

of ΔEi
belong to a finite set of rational numbers which only depend on coeff(Δ) [11,

Lemma 5.3]. By Lemma 2.18, we conclude that the pairs (Ei, ΔEi
) are log bounded. By

Lemma 2.16, we conclude that the pairs (Ei, ΔEi
) are strictly log bounded. Since the

pairs (Ei, ΔEi
) belong to a strictly log bounded family, then their total discrepancies

can take only finitely many values (see Lemma 2.24). This leads to a contradiction. We
conclude that there is no such infinite sequence, hence the supremum is a maximum. �

2.3. Finite morphisms

In this subsection, we recall the index one cover of a log canonical singularity and the
behaviour of log discrepancies under finite dominant morphisms.

Definition 2.26. Let (X, Δ) be a pair and write Δ =
∑

i diΔi where the Δi’s are
pairwise different prime divisors on X. Given a quasi-finite morphism φ : X ′ → X between
normal varieties, we can write

φ∗(KX + Δ) = KX′ + Δ′,

where
Δ′ :=

∑
i

∑
f(Ej)=Δi

(di(rj + 1) − rj)Ej

and rj is the ramification index at the generic point of Ej [33, 2.1]. The above formula is
called the pull-back formula for quasi-finite morphisms.
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The following lemma follows from the pull-back formula for quasi-finite morphisms.

Lemma 2.27. Let (X, Δ) be a pair with standard coefficients and φ : X ′ → X be a
finite morphism of normal varieties. Assume that for every prime divisor E on X ′, we
have that rE + 1 divides (1 − di)−1, where rE is the ramification index of φ at E and
di is the coefficient of φ(E) at Δ. Then Δ′ is an effective divisor whose coefficients are
standard.

The following is a theorem of Zariski that is often used instead of resolution of
singularities [39].

Theorem 2.28. Let Y ′ and X be two integral schemes of finite type over a field over
Z, and f : Y ′ → X a dominant morphism. Let D ⊂ Y ′ be a prime divisor and η ∈ D the
generic point. Assume that Y ′ is normal at η. We can define a sequence of schemes and
rational maps as follows:

(1) X0 = X and f0 = f,

(2) If fi : Y ′ ��� Xi is defined, then let Zi ⊂ Xi the closure of fi(η). We define Xi+1 to
be the blow-up of Xi at Zi and fi+1 : Y ′ ��� Xi+1 the induced rational map.

For j large enough dim(Zj) ≥ dim(X) − 1 and Xj is regular at the generic point of Zj .

Lemma 2.29. With the assumptions of Lemma 2.27, the following conditions hold:

(1) For ε a non-negative real number, the pair (X ′, Δ′) is ε-log canonical if and only if
(X, Δ) is ε-log canonical, and

(2) if (X, Δ) is a log canonical pair with a unique log canonical centre x ∈ X, (X, Δ)
has a unique log canonical place, and x′ = φ−1(x) is a point, then (X ′, Δ′) has a
unique log canonical place.

Proof. Let π : Y → X be a projective birational morphism and Y ′ → Y ×X X ′ the
normalization of the main component of the fibre product, then we have a commutative
diagram

Y ′
φY ��

π′

��

Y

π

��
X ′

φ
�� X

(2.1)

and we can write

π′∗(KX′ + Δ′) = KY ′ + Δ′
Y ′ + E′ and π∗(KX + Δ) = KY + ΔY + E.

Here Δ′
Y ′ is the strict transform of Δ′ on Y ′. By Lemma 2.27, we know that (X ′, Δ′) is

a log pair. Thus, we have the relation

φ∗
Y (KY + ΔY + E) = KY ′ + Δ′

Y ′ + E′.
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Therefore, by the pull-back formula for quasi-finite morphisms we have that

aE(X ′,Δ′) + 1 = rE(aE(X,Δ) + 1),

where rE is the ramification index of φY at the generic point of E. By Theorem 2.28, we
know that for every divisorial valuation on X ′ we can find π : Y → X so that the centre
of this valuation on Y ′ is a divisor, where Y ′ is as in the commutative diagram (2.1).
This proves the first statement.

Now we turn to prove the second statement by contradiction. By the proof of the first
statement, we know that the log canonical pair (X ′, Δ′) has at least one log canonical
place, and all its log canonical places map onto x′ ∈ X ′. Assume that (X ′, Δ′) has more
than one log canonical place. Let π : Y ′ → X ′ be a dlt modification of (X ′, Δ′) and write

π′∗(KX′ + Δ′) = KY ′ + Δ′
Y ′ .

Applying [25, Theorem 5.48] to a log resolution of (Y ′, Δ′
Y ), we deduce that �Δ′

Y ′� is
connected. Moreover, since (X ′, Δ′) has more than one log canonical place, the divisor
�Δ′

Y ′� is connected and has at least two irreducible components. Since the intersection of
two log canonical centres is a union of log canonical centres [5, Theorem 1.1], we deduce
that (Y ′, Δ′

Y ′) has infinitely many log canonical places. Thus, (X ′, Δ′) has infinitely
many log canonical places. By Theorem 2.28, we conclude that each of those log canonical
places appears in a commutative diagram as in (2.1). Moreover, at least one log canonical
place of (X ′, Δ′) is exceptional over the dlt model (Y, ΔY ) of (X, Δ). Therefore, (X, Δ)
has at least two log canonical places. This provides the needed contradiction and the
claim follows. �

Definition 2.30. Let (X, Δ) be a klt pair with standard coefficients and x ∈ X a
point. Consider a the smallest positive integer so that a(KX + Δ) ∼ 0 on a neighborhood
of x ∈ X, or equivalently, a is the Cartier index of KX + Δ at x ∈ X. Therefore, we have
an isomorphism OX(a(KX + Δ))  OX , we can choose a nowhere zero section

s ∈ H0(X,OX(a(KX + Δ))),

and consider φ : X ′ → X the corresponding cyclic cover. The ramification index of φ at a
prime divisor E which maps onto Δi is exactly di − 1, where di = coeffΔi

(Δ). Moreover, φ
is ramified only at the support of Δ. Therefore, from the pull-back formula for quasi-finite
morphisms, we know that

KX′ = φ∗(KX + Δ).

We call φ the index one cover of the klt pair (X, Δ) locally at x ∈ X [12, Notation 4.1].

2.4. Complements

In this subsection, we prove that klt singularities with plt blow-ups admit local
complements with a unique log canonical place.

Remark 2.31. In this notation, a pair (X, Δ) is exceptional at x ∈ X if and only if
every local complement at x ∈ X has a unique log canonical place.

https://doi.org/10.1017/S0013091521000729 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000729


On minimal log discrepancies and Kollár components 995

Lemma 2.32. Let (X, Δ) be a d-dimensional klt pair with standard coefficients.
Assume that (X, Δ) admits an ε-plt blow-up at x ∈ X extracting the exceptional divisor
E. There exists a natural number n, only depending on d and ε, and a boundary Γ on X
so that the following conditions hold:

• n(KX + Δ + Γ) ∼ 0 on a neighbourhood of x ∈ X, and

• KY + ΔY + ΓY + E = π∗(KX + Δ + Γ) is an ε-plt pair on a neighbourhood of
x ∈ X.

Moreover, we may assume that the boundary divisors Γ and Δ do not share prime
components.

Proof. We will construct a strong (0, n)-complement for the divisor −(KY + ΔY + E)
with respect to the morphism π : Y → X around x ∈ X. This complement will push-
forward to a (0, n)-complement for (X, Δ) locally around x ∈ X. In order to do so, we
will do adjunction to E, produce a global complement on E and then pull-back to a
neighbourhood of E.

By adjunction, we can write

(KY + ΔY + E)|E = KE + ΔE ,

where (E, ΔE) is an ε-log canonical pair and the coefficients of ΔE belong to a set of
rational numbers satisfying the descending chain condition with rational accumulation
points (see, e.g. [11, Lemma 5.3]). Hence, by [11, Theorem 1.3.2], we can find n only
depending on d and ε, and a global strong (ε, n)-complement ΓE for the pair (E, ΔE).
From the proof of [11, Theorem 1.3], we may assume that ΓE does not share prime
components with ΔE . Without loss of generality, we may assume that nΔY is a Weil
divisor. Indeed, since (Y, ΔY + E) is ε-plt and the coefficients of ΔY are standard, then
they belong to a finite set.

Let πY : W → Y be a log resolution of (Y, ΔY + E), and write

−NW := π∗
Y (KY + ΔY + E) = KW + ΔW + EW ,

where EW is the strict transform of E on W . We define

LW := −nKW − nEW − �(n + 1)ΔW �.

Let PW be the unique integral effective divisor on W so that

ΛW := EW + (n + 1)ΔW − �(n + 1)ΔW � + PW

is a boundary on W so that (W, ΛW ) is plt and �ΛW � = EW . We claim that PW is an
exceptional divisor over Y . Assume it is not. Indeed, if D is a prime divisor on W which
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is not contracted on Y then, we have that

coeffD(�(n + 1)ΔW �) = coeffD(nΔW ),

because nΔY is integral. Therefore

coeffD((n + 1)ΔW − �(n + 1)ΔW �) = coeffD(ΔW ) = coeffπY (D)(ΔY ) ∈ (0, 1).

Hence, if coeffD(PW ) > 0, then coeffP (PW ) ≥ 1, so coeffP (ΛW ) > 1. In particular,
(W, ΛW ) is not plt. This leads to a contradiction. We conclude that PW is exceptional
over Y .

By definition, we have that

LW + PW − EW = KW + ΛW + (n + 1)NW ,

is the sum of the klt pair (W, ΛW − EW ) and the nef and big divisor (n + 1)NW over a
neighbourhood of x ∈ X. Note that (W, ΛW − EW ) is klt given that (W, ΛW ) is plt with
�ΛW � = EW . Shrinking around x ∈ X we may assume that X is affine, then (n + 1)NW is
nef and big over X. By the relative version of Kawamata–Viehweg theorem [20, Theorem
1-2-5], we have a surjection

H0(LW + PW ) → H0((LW + PW )|EW
). (2.2)

We denote by ΓEW
the pull-back of ΓE to EW . Observe that we have

(LW + PW )|EW
∼ GEW

:= nΓEW
+ nΔEW

− �(n + 1)ΔEW
� + PEW

,

where PEW
:= PW |EW

and ΔEW
:= ΔW |EW

. The divisor GEW
is integral and its coeffi-

cients are strictly greater than −1, therefore it is indeed effective. By the surjectivity of
(2.2), there exists 0 ≤ GW ∼ LW + PW which restricts to GEW

. We denote by GY the
push-forward of GW to Y . By pushing-forward the linear equivalence LW + PW ∼ GW

to Y , and using the fact that PW is Y -exceptional, we get that

0 ≤ GY ∼ −n(KY + ΔY + E).

We define ΓY := GY

n . Observe that by construction, we have

n(KY + ΔY + ΓY + E) ∼ 0

on a neighbourhood of x ∈ X. We claim that ΓY |E = ΓE . Indeed, observe that we can
define

nΓW := GW − PW + �(n + 1)ΔW � − nΔW ∼ nNW ∼Q,Y 0,

and nΓW pushes-forward to GY on Y , hence ΓW = π∗
Y (ΓY ). On the other hand, we

have nΓEW
= nΓW |EW

, which means that ΓEW
= ΓW |EW

. Thus, we have ΓY |E = ΓE as
claimed.
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Finally, observe that

(KY + ΔY + ΓY + E)|E = KW + ΔE + ΓE ,

so by inversion of adjunction, we conclude that (Y, ΔY + ΓY + E) is ε-plt. Moreover,
since ΓE and ΔE prime components, then ΔY and ΓY do not share prime components
as well. Define Γ = π∗(ΓY ), and observe that

π∗(KX + Δ + Γ) = KY + ΔY + ΓY + E.

Thus, (X, Δ + Γ) is a log canonical pair with a unique log canonical place so that
n(KX + Δ + Γ) ∼ 0 on a neighbourhood of x ∈ X. Moreover, Δ and Γ do not share
prime components. �

2.5. Examples

In this subsection, we give two examples to show that the a-log canonical and ε-plt
blow-up conditions of Theorem 1 and Theorem 2 are indeed necessary.

Example 2.33. Let Xn be the cone over a rational curve of degree n. Blowing-up the
vertex πn : Yn → Xn gives a log resolution so that the pair (Yn, En) is log smooth. Hence,
πn is a 1-plt blow-up. However, aEn

(Xn, 0) = −1 + 2
n , and the Cartier index of Xn at the

vertex depends on n. In this case, the condition of Theorem 1 that is violated, is the fact
that the minimal log discrepancy is bounded away from zero. Indeed, the discrepancies
aEn

(Xn, 0) are converging to −1.

Example 2.34. By [14, Proposition 5.1], we can construct terminal threefold singu-
larities Xm of index m and extract two different divisors with discrepancies 1/m and
2/m, respectively. Hence, if there is any plt blow-up of Xm it is an ε-plt blow-up for some
ε ≤ 2/m. In this case, the condition of Theorem 1 that is violated, is the existence of a
plt blow-up with total discrepancy bounded away from zero.

3. Proof of the main Theorem

Proof of Theorem 1. Let (X, Δ) be a log pair which admits an ε-plt blow-up
π : Y → X at x ∈ X. By assumption (X, Δ) is a-lc at x ∈ X. In particular, the minimal
log discrepancy mldx(X, Δ) is strictly positive.

Let φ : X ′ → X be the index one cover of the klt pair (X, Δ) locally at x so that
φ∗(KX + Δ) = KX′ (see [12, Notation 4.1] or Definition 2.30). We denote by Y ′ the
normalization of the main component of X ′ ×X Y . Hence, we have a commutative
diagram

Y ′
φY ��

π′

��

Y

π

��
X ′

φ
�� X
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where π′ is birational and φY is finite with the same degree as φ. We can write

φ∗(KX + Δ) = KX′ and φ∗
Y (KY + ΔY + E) = KY ′ + E′,

where E′ is the reduced exceptional divisor contracted by π′. We claim that the pair
(Y ′, E′) is ε-plt. Indeed, by Lemma 2.32, we may find an effective divisor Γ on X so that

π∗(KX + Δ + Γ) = KY + ΔY + ΓY + E (3.1)

is an ε-plt pair, where ΓY is the strict transform of Γ on Y . By the equality (3.1), we know
that log canonical places of (X, Δ + Γ) are the same as log canonical places of (Y, ΔY +
ΓY + E), i.e., the morphism is crepant for these pairs. The pair (Y, ΔY + ΓY + E) has a
unique log canonical place which corresponds to E. Hence, (X, Δ + Γ) has a unique log
canonical place which corresponds to E. By construction, the divisors Δ and Γ do not
share prime components. Therefore, by Lemma 2.27 and Lemma 2.29, we conclude that

KX′ + ΓX′ = φ∗(KX + Δ + Γ)

is indeed a pair which has a unique log canonical place and its log discrepancies are either
zero or greater than ε. By the commutativy of the diagram, we have that

π′∗(KX′ + ΓX′) = KY ′ + ΓY ′ + E′

is an ε-plt pair. Hence (Y ′, E′) is ε-plt as well. In particular, π′ : Y ′ → X ′ is an ε-plt
blow-up at x′ ∈ X ′.

Observe that by construction the Q-divisors KY + ΔY + E and KY ′ + E′ are both ε-plt
and anti-ample over X and X ′, respectively. We define the following pairs by adjunction:

KE′ + ΔE′ = (KY ′ + E′)|E′ and KE + ΔE = (KY + ΔY + E)|E .

By the above considerations, we know that both pairs (E′, ΔE′) and (E, ΔE) are log
Fano and ε-lc. By [6, Theorem 1.1], we know that the algebraic varieties E and E′ belong
to a bounded family which only depends on d − 1 and ε. Moreover, the boundary divisors
ΔE and ΔE′ have coefficients that belong to a set with the descending chain condition.
By Lemma 2.18, we conclude that the log pairs (E, ΔE) and (E′, ΔE′) belong to a
log bounded family which only depends on d − 1, ε, and the derived set of standard
coefficients. Furthermore, by [7, Lemma 3.3], we know that the coefficients of ΔE and
ΔE′ belong to a set of hyperstandard coefficients H(R) corresponding to a finite set of
rational numbers R, which only depends on S. By the ε-log canonical condition of the
pairs (E, ΔE) and (E′, ΔE′) and the fact that the only accumulation point of H(R) is 1,
we conclude that ΔE and ΔE′ have coefficients in the finite set H(R) ∩ [0, 1 − ε) which
only depends on ε. By Lemma 2.16, we deduce that the pairs (E, ΔE) and (E′, ΔE′)
belong to a strictly log bounded family. Denote by φE the restriction of φY to E′ and
observe that

deg(φ) = deg(φY ) = deg(φE)rE ,

where rE denotes the ramification index of φY at the generic point of E′.
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Now we turn to prove that deg(φ) has an upper bound which only depends on d, a and
ε. In order to do so, we just need to provide that there is an upper bound for φE and rE .
Observe that we have

deg(φE) =
vol (−(KE′ + ΔE′))
vol (−(KE + ΔE))

.

Therefore, by Lemma 2.21, there is an upper bound C(d, ε) for deg(φE), which only
depends on d − 1 and ε. On the other hand, we have the relation

aE′(X ′, 0) + 1 = rE(aE(X,Δ) + 1) ≥ rEa.

By Lemma 2.23, we know that aE′(X ′, 0) + 1 has an upper bound C ′(d, ε) which only
depends on d and ε. We conclude that deg(φ) has an upper bound which only depends
on d, a and ε. Indeed, we have that

deg(φ) = deg(φE)rE ≤ C(d, ε)
aE′(X ′, 0) + 1

a
≤ C(d, ε)C ′(d, ε)a−1. (3.2)

This proves the claim that deg(φ) is bounded above by a constant which only depends on
d, a and ε. Hence, the index of KX + Δ around x is bounded by a constant which only
depends on d, a and ε (see, e.g. [22, 2.49]).

Thus, mldx(X, Δ) belongs to a discrete set which only depends on d, a and ε. Finally,
by Lemma 2.29, we have that

deg(φ)mldx(X,Δ) ≤ mldx′(X ′, 0) ≤ aE′(X ′, 0) + 1,

therefore mldx(X, Δ) belongs to a finite set which only depends on d, a and ε. �

Proof of Theorem 2. It follows from the bound on deg(φ) given in the proof of
Theorem 1. See equation (3.2). �

Proof of Corollary 1. If there exists a sequence in M(d, S)0,ε which contradicts
the ascending chain condition, passing to a subsequence we may assume the sequence
is strictly increasing. Therefore, such infinite sequence belongs to M(d, S)a,ε for some
positive real number a. This contradicts Theorem 1. �

Proof of Corollary 2. The proof follows from Theorem 1 and Lemma 2.14. �
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