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Surface nanodrops and nanobubbles: a classical
density functional theory study
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We present a fully microscopic study of the interfacial thermodynamics of nanodrops
and nanobubbles, adsorbed on flat substrates with first-order wetting. We show that both
nanodrops and nanobubbles are thermodynamically accessible in regions, demarcated by
the spinodals of planar wetting films, with nanobubbles occupying a relatively bigger
portion of the phase space. While nanodrops can be described as near-spherical caps
of Laplace radius, the radius of nanobubbles is very different from the Laplace value.
Additionally, nanobubbles are accompanied by a thin gas film adsorbed on the substrate.
By computing the interface binding potential, we relate the sphericity of nanodrops to the
thin–thick liquid film coexistence (prewetting transition), whereas nanobubble shapes are
determined only by the decay of the fluid–substrate forces.

Key words: general fluid mechanics, non-continuum effects

1. Introduction

Sessile drops and bubbles with characteristic dimensions on the nanometre scale
play a central role in a wide spectrum of applications, from inkjet printing and
vapour–liquid–solid growth processes to micro-/nanofluidics and the design and operation
of lab-on-a chip devices. But their theoretical understanding remains incomplete and
several fundamental aspects still elude us. This is largely due to the challenging
physics of such small objects, often revealing sensitive dependence on the nature of
the intermolecular forces, surface wetting properties (Bonn & Ross 2001) and interface
fluctuations (Rascón & Parry 2000). In particular, using a model disjoining pressure,
Svetovoy et al. (2016) recently showed that surface–interface interactions significantly
affect the shapes and contact angles of nanobubbles. Recent reviews by Theodorakis &
Che (2019), Qian, Arends & Zhang (2019) and Lohse & Zhang (2015) discuss the latest
experimental approaches, simulation studies and capillary models of surface nanodrops
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and nanobubbles. Interesting and promising fully microscopic approaches for computing
the disjoining pressure of adsorbed liquid films were recently developed by MacDowell
(2011), MacDowell et al. (2014) and Nold et al. (2014). Using classical density functional
theory (DFT), Hughes, Thiele & Archer (2017) and Yin, Sibley & Archer (2019) proposed
a method for computing the binding potential which captures the near-wall behaviour of
the fluid density. The latter is obtained from a constrained minimisation of the DFT grand
free energy functional, subject to an additional requirement that the density profile must
have a given thickness of the liquid film.

In the present paper we use DFT to consistently incorporate the existence of the
surface phase transitions, particularly the prewetting transition, and uncover their effects
on the formation and stability of nanodrops and nanobubbles. This allows us to identify
thermodynamic accessibility regions of nanodrops and nanobubbles adsorbed on flat
walls. Using DFT we propose a method for computing the interface binding potential,
which is based on computing the work of adsorbate formation from the free energy
functional. Full unconstrained minimisation of DFT allows us to capture the correct
long-ranged asymptotes of the density profiles, which are known to affect the binding
potential. It also allows us to treat liquid and gas adsorption consistently within the
same framework and uncover a very intriguing relationship between film adsorption and
drop/bubble formation.

The intermolecular fluid–fluid and fluid–substrate interactions are considered to be of
Lennard–Jones (LJ) type, with potential ϕ6−12

ε,σ (r), potential well depth ε and range σ

ϕ6−12
ε,σ (r) = 4ε

[
−
(σ

r

)6 +
(σ

r

)12
]
, (1.1)

where r is the interparticle distance. Such long-range forces typically lead to first-order
wetting transitions and planar liquid film coexistence. In the present work we uncover the
relations between the intriguing equilibrium properties of nanodrops and nanobubbles and
the physics and stability of planar adsorbed wetting films. We stay within the mean-field
description of wetting, which remains valid for most practical purposes. The role of
interface fluctuations and system dimensionality is discussed, e.g. in excellent reviews
by Dietrich (1988) and Saam (2009).

In § 2 we employ a non-local microscopic approach based on DFT. It naturally
accounts for the bulk liquid–gas coexistence, planar wetting and the Young contact
angle of macroscopic three-phase contact lines, thus fully capturing the physics of
nanodrops and nanobubbles. We proceed to discussing the intriguing differences in the
microscopic shapes of nanodrops and nanobubbles. We find that adsorbed nanodrops
have near-spherical caps of Laplace radius. At the same time, nanobubbles found in the
region of the phase diagram which is symmetric with respect to the liquid–gas coexistence
line have radii very different from the Laplace value. Additionally, nanobubbles are
accompanied by a thin film of gas adsorbed on the substrate. This leads us to relate
classical DFT with Derjaguin’s approach to wetting in § 3, where we propose a systematic
and transferable method for computing the interface binding potential (antiderivative of
disjoining pressure) using DFT adsorption isotherms. The binding potential gives us
access to the energy landscape of the contact line and reveals that the near sphericity of
nanodrops is caused by the remnant of thin–thick liquid film coexistence, the so-called
planar prewetting transition. At the same time, the flatter shape of nanobubbles is
determined by the absence of such film coexistence during gas adsorption. We summarise
our findings in § 4 and provide an outlook of potential broader applications of the fully
microscopic route to computing the disjoining pressure.
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2. Classical DFT applied to wetting

At any given temperature T and chemical potential μ the equilibrium fluid density ρ(r)
minimises a grand free energy functional Ω[ρ; T, μ], which includes terms describing
short-range hard-sphere-like molecular repulsions Fhs[ρ; T], long-range attractions
Fattr[ρ] and the contribution from an external potential Vext(r)

Ω[ρ (r) ; T, μ] = Fhs[ρ; T] + Fattr[ρ] +
∫

Vext(r)ρ(r) dr − μ

∫
ρ(r) dr, (2.1)

where the integration is carried out over the volume V of the fluid. At equilibrium, (2.1)
gives the thermodynamic grand potential Ω(T, μ). For a uniform fluid, Ω(T, μ) = −PV ,
where P is pressure. Over the years, sophisticated approximations have been developed for
each respective contribution in (2.1), see, e.g. the reviews by Evans (1990), Wu & Li (2007)
and Lutsko (2010). In the present work we use a simple free energy functional which,
despite being minimalistic, still captures the essential physics of the liquid–gas interface
near attractive substrates in the LJ model of attractions (Sullivan & Telo da Gama 1986).
The intermolecular repulsions are treated within the so-called local density approximation
(Pereira & Kalliadasis 2012)

Fhs [ρ (r)] =
∫

kBTρ(r)
(

ln
(
λ3ρ(r)

)
− 1

)
dr +

∫
ψ(ρ(r))ρ(r) dr, (2.2)

where kB is the Boltzmann constant, λ is the de Broglie thermal wavelength and ψ(ρ) is
the configurational part of the Carnahan–Starling hard-sphere fluid free energy (Lutsko
2010)

ψ(ρ) = kBT
η(4 − 3η)
(1 − η)2

, η = πσ 3ρ/6, (2.3a,b)

where σ is the hard-sphere diameter, which here we consider to be fixed and equal to the
range of the LJ potential in (1.1). This treatment neglects the weak temperature dependence
of the hard-sphere diameter in thermodynamic perturbation theories (Lutsko 2010). The
model of Fattr[ρ] is the most important DFT ingredient in the present analysis. We use the
random phase approximation for the direct correlation function of the uniform LJ fluid

Fattr [ρ (r)] = 1
2

∫
dr
∫
ρ (r) ρ

(
r′)ϕattr

(∣∣r − r′∣∣) dr′, (2.4)

where ϕattr(r) is a mean-field potential

ϕattr (r) =
{

0, r � σ

ϕ6–12
ε,σ (r), r > σ.

(2.5)

We are interested in planar adsorption, where the LJ substrate occupies a half-space

Vext (x) = 4πρ0ε0σ
3
0

(
−1

6

(
σ0

H0 + x

)3

+ 1
45

(
σ0

H0 + x

)9
)
, (2.6)

where ρ0 is the effective substrate density, and ε0 and σ0 are the substrate-specific LJ
parameters and x is the distance to the wall. We have introduced a low-x cutoff parameter
H0 in (2.6) to eliminate the non-physical divergence of V(x) at fluid–substrate contact.
This is a purely mathematical device and does not affect the physics of adsorption as was
shown in our earlier work (Yatsyshin & Kalliadasis 2016).
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In the present work we investigate the liquid–gas interface and its behaviour near an
attractive substrate wall. It is very well known that the physics of the liquid–gas interface
is determined by the attractive part of the intermolecular potential (Sullivan & Telo da
Gama 1986). This is captured by the mean-field term in (2.4). Although the present
DFT model describes the intermolecular attractions in a non-local mean-field fashion,
which allows us to consider droplets and bubbles as narrow as several tens of molecular
diameters, the intermolecular repulsions are treated by a purely local approximation,
as can be seen in the repulsive term in (2.2). This term neglects the excluded volume
correlations. As a result, the density profiles we compute do not exhibit the characteristic
near-wall oscillations and layering, which can be captured with more refined non-local
approximations, such as weighted density or fundamental measure theories (FMT) (Roth
2010), replacing (2.2). However, our DFT given by (2.2) and (2.4) provides a minimalistic
valid approximation, which captures all the important physics of the liquid–gas interface
and its interplay with the wall in the range of temperatures above the bulk triple point,
which we study here. Moreover, we do not expect the molecular packing effects to be
important for the qualitative aspects of wetting by liquid above the fluid bulk triple point,
for the simple reason that layering transitions do not interfere with prewetting. Similarly,
the mean-field nature of our model energy functional implies that our results do not capture
effects associated with capillary wave fluctuations. With these shortcomings, our model
functional (2.1)–(2.5) provides a suitable microscopic starting point to study the formation
of microscopic drops and bubbles. Further discussion of the physical approximations
underlying (2.1)–(2.5) and possible approaches to their numerical solution can be found
elsewhere (e.g. in Yatsyshin, Savva & Kalliadasis 2015; Yatsyshin, Parry & Kalliadasis
2016; Yatsyshin et al. 2017).

The equilibrium density profile ρ(r) satisfies the Euler–Lagrange (EL) equation

kBT ln ρ (r)+ ψ (ρ (r))+ ρ (r) ψ ′
ρ (ρ (r))

+
∫
ρ
(
r′)ϕattr

(∣∣r − r′∣∣) dr′ + Vext (r)− μ = 0, (2.7)

where ψ ′
ρ(ρ) is the derivative of (2.3a,b) with respect to ρ. In the bulk, Vext(r) → 0

and ρ(r) → ρb (bulk density), and (2.1) and (2.7) give us the pressure and chemical
potential

P(T, ρb) = ρbkBT
1 + η + η2 − η3

(1 − η)3
− 16π

9
ρ2

bσ
3ε, (2.8)

μ(T, ρb) = kBT ln ρb + ψ (ρb)+ ρbψ
′
ρ (ρb)− 32π

9
ρbσ

3ε. (2.9)

At bulk liquid–gas coexistence (saturation), P(T, ρl) = P(T, ρg) = Psat(T) andμ(T, ρl) =
μ(T, ρg) = μsat(T), where Psat and μsat are the saturation pressure and chemical
potential, respectively. The boundaries of phase metastability are given by the spinodals
∂P/∂ρ|ρg,ρl = 0; and the critical point at Tc and ρc satisfies ∂P/∂ρc = ∂2P/∂ρ2

c = 0.
In what follows, we adopt a system of units where the hard-sphere diameter σ and

the well depth ε in (2.5) are set as units of length and energy, respectively. This leads,
e.g. to the bulk critical temperature Tc = 1.006ε/kB. We also fix the parameters of
Vext as ε0 = 0.4, σ0 = 2 and H0 = 5, which gives a first-order wetting wall with a
well-defined prewetting line and a relatively high wetting temperature Textw ≈ 0.915.
In bulk metastability regions it is convenient to use the ‘disjoining’ chemical potential
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μ(T) = μ− μsat(T). Also, given T and μ, we shall refer to 
ρ(T, μ) = ρb − ρ̃b as the
difference between the densities of phases, stable and metastable in the bulk, respectively.
When 
μ /= 0, both ρb and ρ̃b solve (2.9) at the same T , but P(T, ρb) � P(T, ρ̃b).

2.1. Adsorption of film, drops and bubbles
Near a planar wall, the fluid density depends on the distance x to the wall. For LJ forces,
ρ(x)− ρb = O(x−3), as x → ∞. Due to the combination of wall–fluid and solvation
forces, the wall can adsorb a layer of thickness l of a new phase. For liquid and gas
adsorption, the respective l = lliq and l = lgas are given by the same expression, see
figure 1(c)

l(T, μ) =

∫ ∞

0
(ρ(x)− ρb) dx


ρ(T, μ)
, (2.10)

where Γ (T, μ) = ∫∞
0 (ρ(x)− ρb) dx is adsorption. The grand free energy density ω(x)

can be found for ρ(x), at T and μ by rearranging (2.1) (Rowlinson & Widom 1982)

Ω [ρ(x); T, μ] = A
∫ ∞

0
ω(x; ρ(x), T, μ) dx, (2.11)

where A is the fluid–wall interface area. The surface tension is given by the integral
γ (T) = ∫∞

0 ωex(x) dx, where the excess-over-bulk grand free energy density ωex(x) =
ω(x)+ P(ρb, T), and decays as O(x−3) when x → ∞. We can thus compute the surface
tensions of the saturated liquid and gas with the wall, γwl and γwg, and the surface tension
of the free liquid–gas interface γlg. Off of saturation the Laplace radius of a drop or bubble
is RL = γlg/
μ
ρ (Rowlinson & Widom 1982; Hauge 1992). At saturation, the Young
contact angle ΘY(T) = cos−1 ((γwl − γwg)/γlg) is non-zero below Tw, and vanishes at Tw
as O(

√
Tw − T).

Figure 1 represents the mean-field picture of gas and liquid adsorption. The adsorption
isotherms lliq(μ) and lgas(μ) at T = 0.88 < Tw, plotted in figure 1(a), represent the
bifurcations of two sets of solutions to the EL equation (2.7), {ρ(x)}gas

T and {ρ(x)}liq
T

respectively, with bulk gas and liquid densities. These can be obtained using arc-length
continuation, as discussed by Yatsyshin et al. (2015). Coloured branches denote
(meta)stable surface phases, meaning that the fluid density profiles computed at respective
μ are local minima of Ω[ρ]. Grey branches are unstable (respective fluid configurations
extremise Ω[ρ], but are not its minima). Both isotherms diverge at saturation as
O(
μ−1/3), when 
μ → 0 from below, where bulk gas is stable and bulk liquid is
metastable. In the case of gas adsorption, this is a heterogeneous nucleation of gas, stable
in the bulk, on the wall. The unstable branch of the isotherm, where the gas films are thick,
corresponds to ‘critical’ nucleation clusters, and the turning point (spinodal) signals an
upward shift of the bulk liquid spinodal, induced by the wall. Below the isotherm spinodal,
supersaturated liquid simply cannot coexist with the wall. The liquid adsorption isotherm,
on the other hand, represents partial wetting, where the adsorbed liquid is metastable in the
bulk. Below Tw, ΘY > 0 and thick liquid films are metastable, meaning that their grand
potential is higher than that of the thin films at the same μ. Thin–thick film coexistence
is a first-order prewetting transition, happening at T > Tw and μ = μpw(T) < μsat. The
unstable branch of the liquid film isotherms, therefore, corresponds to ‘critical’ prewetting
clusters. The isotherm spinodals bound the metastability of thin (green) and thick (red)
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Figure 1. (a) Isotherms of liquid and gas adsorption, lliq(μ) (green-grey-red curve) and lgas(μ) (blue-grey
curve), at T = 0.88 (ΘY = 50.6◦). Grey parts correspond to unstable adsorbed films. Thin liquid films (green)
are stable and thick liquid films (red) are metastable. Thin gas films (blue) are stable. Spinodals are designated
by filled circles; their T-dependence is shown in (b) by respectively coloured lines. Dashed vertical lines at

μ = 0 and 
μ = −0.035 are explained in figure 3. (b) Bulk coexistence line μsat(T) (dashed grey) and its
spinodals (solid grey), ending at the critical point (grey circle), Tc = 1.006. Metastability is impossible in the
grey-shaded region. Prewetting line μpw(T) (solid black) starts at Tw = 0.915 and ends at Tc

pw = 0.98 (both
are designated by black circles). Surface drops/bubbles occur in the cross-/single-hatched regions, respectively
(also designated by ‘d’ and ‘b’). (c,d) Representative profiles of density (with l = 6 and l = 26, marked in (c))
and grand free energy density. Red/blue curves correspond to liquid/gas adsorption.

adsorbed liquid film. The thin film spinodal is a downward shift of the bulk gas spinodal:
metastable gas cannot coexist with the wall above it. Notice also that the lower branch of
the gas film isotherm is a few molecular diameters higher than its liquid film counterpart.
This is a packing effect associated with the solvation force locally repelling the liquid from
the wall.

The phase diagram is depicted in figure 1(b). At different T , the spinodals of the
surface phases (coloured circles in 1a) form respectively coloured spinodal lines in 1(b).
As we shall see, these bound the regions (hatched), where surface drops and bubbles
are nucleated on the wall. The bulk liquid–gas coexistence line μsat(T) (dashed grey)
terminates at the critical point Tc, and bulk spinodals (solid grey) extend tangentially
from it, demarcating the metastability regions of bulk liquid (below μsat) and gas
(above μsat). We reflect the fact that the wall curtails bulk metastability by shading
with grey the forbidden region below gas film spinodal and above thick liquid film
spinodal, where metastability is impossible. The first-order wetting transition at (Tw, μsat)
marks the coexistence between microscopically thin and macroscopically thick liquid
wetting films, and serves as the starting point of the prewetting line μpw(T) (black),
which approaches saturation tangentially as μsat(T)− μpw(T) = O((T − Tw)

3/2), when
T → Tw, and terminates at Tc

pw, at the prewetting critical point, lying on the bulk gas
spinodal. Figures 1(c) and 1(d) show sample density profiles of adsorbed liquid (red,
l = 8) and gas (blue, l = 26), and the corresponding profiles of excess-over-bulk grand
free energy density. Inside adsorbed and bulk phases ωex(x) ≈ 0, and the fluid–wall and
liquid–gas interfaces are each associated with an oscillation of ωex(x) (blue curves).
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Figure 2. Density profiles of surface nanodrops (a) and nanobubbles (b) at T = 0.6 (ΘY = 105◦), and (left
to right) 
μ = ±0.13 (RL ≈ 8), 
μ = ±0.07 (RL ≈ 15), 
μ = ±0.04 (RL ≈ 25), where positive/negative

μ corresponds to drops/bubbles, respectively. Dotted curves show the arc of a circle, fitted to the liquid–gas
interface (density level set at (ρl + ρg)/2) to compute the apparent radii of the drops, R∗

d ≈ 8, 15, 25 and
bubbles, R∗

b ≈ 30, 25, 32. The apparent contact angles, Θ∗
d = 121◦, 114◦, 110◦ and 180◦ −Θ∗

b = 154◦, 129◦,
118◦, are computed by drawing a tangent (dashed lines) to the circular fit at a distance 1σ from the wall. The
values ofΘ∗

d/b of sufficiently small drops/bubbles are highly sensitive to the technical details of the circle fitting
procedure. These values are provided here to illustrate the convergence to ΘY as the drop/bubble grows.

Moreover, DFT captures the complicated interplay between these two interfaces at small l
(red curves).

On a planar wall, the DFT EL equation (2.7) can only have film-like solutions. To obtain
surface drops/bubbles, we insert a nucleation seed by locally increasing/decreasing the
potential well of Vext by 5% of its value in 1σ -vicinity of x = 0. This perturbation is a
purely mathematical device we use to break the symmetry of the EL equation. It does
not affect the structure of the adsorbate. A few representative surface drops and bubbles at
T = 0.6 < Tw and |
μ| → 0 are shown in figure 2. Here these configurations are unstable
extrema of Ω[ρ], and thus correspond to critical nucleation clusters of liquid and gas
during heterogeneous nucleation on the wall, which acts as the nucleation centre. Indeed,
we find that the average inner density inside each drop/bubble is ρb(μ).

The shapes of surface drops and bubbles in figure 2 are affected by several factors. The
curvature of the liquid–gas interface leads to the γlg/RL pressure increment inside the
adsorbed phase. Therefore, the Laplace radius should provide a good overall estimate of
the characteristic dimensions of the drops and bubbles. At the same time, the interface
shape, especially near the wall, is the result of a complicated interplay between the
liquid–gas and wall–fluid interfaces, such as shown in figure 1(d) for flat films. Indeed,
near the substrate, the drop interfaces visibly bend in, whilst the bubble interfaces flatten
out, connecting with the thin layer of gas, which covers the outside wall and is induced by
the solvation force. This is in agreement with the film adsorption isotherms represented
in figure 1(a). Moreover, at small and intermediate sizes, bubbles are significantly flatter
than the drops. This happens because the ambient phase interacts very strongly with the
substrate in the case of bubbles, ‘squashing’ them.

To test the classical size estimate, given by the Laplace radius, we fit a circle to the
liquid–gas interface of surface drops/bubbles and find their ‘apparent’ radii R∗

d/b and
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contact angles Θ∗
d/b. For figure 2 these are reported in the caption, together with the

Laplace radii RL. We introduced a small near-wall cutoff for fitting the circle to avoid
the contribution of the ‘flattening’ region near the bubble edges.

Let us note that the values of RL are very close for drops and bubbles at the same
|
μ|. This means that a description in terms of RL, which ignores the microscopic details
of fluid–substrate interaction, views drop and bubble adsorption in a completely identical
way. Interestingly, for small drops this description seems to hold up, as we see a remarkable
agreement between R∗

d and RL across the drop sizes considered. But the story changes in
the case of bubbles where there is hardly any agreement between RL and the fitted radius
of the two smaller bubbles. Clearly, the fluid–substrate interactions neglected by RL are
very important for bubbles. Of course, for larger bubbles R∗

b must start catching up with
RL (and we can see the beginning of this trend between the bubbles with R∗

b = 25 and 32),
because at saturation the Young contact angle must be recovered. Intuitively, it is clear that
the denser liquid above the bubble is attracted to the wall, squashing the bubble. Indeed,
this is the intuition behind the binding potential, which we introduce in the next section.
This squashing does not happen for drops, because the gas above the drop is too dilute to
squash them. We further note that the approach of apparent contact angles to Young values
with growing R∗

d/b is also clear and is testament to the accuracy of the DFT computation.
Finally, notice that DFT also elegantly reveals the thermodynamics of drop and bubble

nucleation, summarised in figure 1(b). The wall must be dry to act as a nucleation centre for
liquid. Accordingly, we find surface drops forming at (T < Tw, μ) in the red cross-hatched
region of figure 1(b). The drop radii are minimal on the liquid film spinodal, and diverge
at saturation as O((P(T, ρb)− Psat)

−1), according to the Laplace law. Above Tw, ΘY = 0
and the wall impurity would nucleate a planar wetting film, see, e.g. Yatsyshin et al. (2016,
2017). Surface bubbles can be found in a broader blue-hatched region of figure 1(b), above
the gas film spinodal, where their radii are minimal. We can still find surface nanobubbles
at T > Tw and μ < μsat, but as the wall is completely wet at saturation, such bubbles must
detach from the surface at sufficiently small |
μ|.

3. Interface binding potential

In this section we introduce a macroscopic description which corrects the spectacular
failure of a description in terms of RL for small bubbles, discussed in the previous section
and demonstrated in figure 2. We further relate this revised macroscopic description with
DFT and show how the two can be used in tandem to describe small systems with diffuse
interfaces, high degree of non-uniformity and highly non-local interactions in terms of the
intuitive macroscopic concepts of sharp interfaces and biding potentials.

It is noteworthy that with DFT we did not need to stipulate the existence of interfaces,
instead the film-, drop- and bubble-like density configurations with diffuse fluid–fluid and
fluid–wall interfaces were obtained by solving the non-local DFT equation (2.7). In fact,
the formation of these interfaces is the result of local phase separation, occurring because
of the correctly chosen bulk thermodynamic point (T, μ), near bulk coexistence and wall
wetting transition. An alternative mean-field approach to wetting can be developed by
assuming the existence of a sharp liquid–gas interface, with a shape l(x) minimising the
excess free energy functional Ωl[l; T, μ] of the adsorbate at the given T and μ. Here, l(x)
is the distance of the liquid–gas interface from the wall. Such a local approach can be
traced back to the early works of Frumkin and Derjaguin (FD; see, e.g. Henderson (2011)
and references therein). Thus, for a system, translationally invariant along the z-axis, the
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Surface nanodrops and nanobubbles

interface free energy per unit length can be written in the following general form (see, e.g.
Dietrich 1988; Saam 2009)

Ωl [l; T, μ] =
∫ +∞

−∞

⎡
⎣γlg(T)

√
1 +

(
dl
dx

)2

+ W (l (x) ; T,
μ)

⎤
⎦ dx, (3.1)

where the first term of the integrand is the free energy per unit area of the liquid–gas
interface, and the second term is the thermodynamic work of adsorbate formation.
Depending on whether the adsorbate is formed of liquid or gas, W ≡ Wliq or W ≡ Wgas,
respectively, with the corresponding volume and surface contributions

Wliq/gas (l (x) ; T, μ) = 
μ
ρ(T, μ)l (x)+ γwl/g(T)+ γlg(T)+ gliq/gas (l (x) ; T) ,
(3.2)

where gliq/gas(l; T) is the interface binding potential of liquid/gas film, adsorbed at
saturation. It accounts for the interatomic interactions between the liquid–gas interface
and the substrate. For LJ forces, gliq/gas(l; T) = O(l−2), as l → ∞. The EL equation (3.1)
becomes

d2l

dx2 = 1
γlg

(
1 +

(
dl
dx

)2
)3/2

Ẇ (l; T, μ) , (3.3)

where Ẇ(l; T, μ) denotes the derivative of W(l; T, μ) with respect to l. Equation (3.3) has
been referred to as the augmented Young–Laplace equation by Wu & Wong (2004), i.e.
the standard Young–Laplace equation modified to include the disjoining pressure. Here,
we shall refer to (3.3) as the FD equation because we establish the connection between the
microscopic free energy in (2.1) and the macroscopic DF free energy in (3.1), which in turn
leads to (3.3). Without consideration of the free energies, this link cannot be established
as disjoining pressure is typically associated with the formation of thin films.

If W(l; T, μ) is known, the FD equation (3.3) can be integrated from the absolute
minimum of W(l; T, μ), until dl/dx becomes constant. Notice that, when Ẇ ≡ 1, (3.3)
defines a circle of curvature γ−1

lg , and when Ẇ ≡ 0, it defines a straight line. Therefore,
at μsat the solution must tend to a flat liquid–gas interface, and below/above μsat, it must
trace a circular-like shape of a drop/bubble. From (3.3), it follows that the curvature of
the sharp interface l(x) is given by Ẇ/γlg, where according to (3.2) and the definition of
RL, Ẇ ≈ γlg/RL + ġ. Thus, ġ/γlg has a nice interpretation as the curvature correction to
the circular shape of the drop/bubble of Laplace radius, induced by the presence of the
substrate.

We can compute the work of film formation Wliq(l; T, μ) and Wgas(l; T, μ) from DFT,
using the same density profiles in {ρ(x)}gas

T and {ρ(x)}liq
T that give rise to the liquid- and

gas-adsorption isotherms, such as shown in figure 1(a). This requires us to make an ansatz
about the density and free energy density profiles of a liquid (or gas) film, of a given
height l, adsorbed on the wall at the given T and μ. All we know is that such film must be
thermodynamically unstable, unless all three, l, μ and T , belong to a (meta)stable branch
of an adsorption isotherm. If we ignore the fact that each profile in the isotherm sets
is associated with a particular chemical potential and treat μ as fixed, the sets {ρ(x)}gas

T
and {ρ(x)}liq

T turn out to contain the density profiles of (now unstable) adsorbed films of
different widths. Moreover, these density profiles retain the key features of the LJ model of
adsorption: a nearly flat plateau at the density of the adsorbed phase, followed by a diffuse
liquid–gas interface, consistent with T , and an inverse cubic rate of decay to bulk density.
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Also, the near-wall fluid structure and the interaction of the fluid–wall and liquid–gas
interfaces at small l are keeping in touch with the underlying DFT functional. Note that
since μ is fixed, the large-x limit of the density profiles so chosen do not coincide with
the bulk density at μ. This is not a problem, because W(l; T, μ) is the free energy of the
adsorbed film, so the bulk contribution has to be removed anyway. At the same time, the
rate of decay of the density profile to its asymptote is important.

Thus, given T , μ and a profile ρ0(x) from {ρ(x)}gas
T or {ρ(x)}liq

T , which solves the
EL equation (2.7) at the required T and some μ0, we need to compute the height
l of the adsorbed film, and its free energy W(l; T, μ). Associated with ρ0(x) are its
limit ρ0

b = limx→∞ ρ0(x), adsorption Γ0 = ∫∞
0 (ρ0(x)− ρ0

b) dx, and the grand free energy
density ω(x; ρ0(x), T, μ0), defined in (2.11). It is reasonable to set l = Γ0/
ρ(T, μ),
because then l is related to the physical bulk density (given by T and μ) and correctly
recovers l0(T, μsat) and l0(T, μ0), see (2.10). Additionally, this ensures that l cannot be
‘computed’ in the region outside the bulk spinodals, where metastable phases (and thus

ρ) do not exit. The free energy of the adsorbed film can be obtained fromΩ[ρ0(x); T, μ]
in (2.1) by removing the contribution of gas on the outside of the liquid–gas interface.
Because the liquid–gas interface is diffuse, simply limiting the integration interval to
[0, l] will be incorrect. The solution is to work instead with the grand free energy
density, ω(x; ρ0(x), T, μ0), defined in (2.11). Notice that for large x, ω(x; ρ0(x), T, μ) =
−P(ρ0

b , T)+ (μ0 − μ)ρ0
b + O(1/x3) as x → ∞. Removing this bulk contribution, we get

W(l; T, μ) by integration

W(l; T, μ) =
∫ ∞

0

[
ω(x; ρ0, T, μ)−

(
−P(ρ0

b , T)+ (μ0 − μ)ρ0
b

)]
dx,

l =
∫ (

ρ0(x)− ρ0
b

)
/
ρ(T, μ).

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

Repeating this computation for every profile in {ρ(x)}gas
T and {ρ(x)}liq

T , we tabulate the
respective work of gas and liquid film formation, Wgas(l; T, μ) and Wliq(l; T, μ).

In figure 3 we represent the work of film formation at T = 0.85, and 
μ = 0 and

μ = −0.035, together with solutions of the FD equation (3.3). The curves Wliq(l; T, μ)
(green-grey-red) and Wgas(l; T, μ) (blue-grey), and the FD interfaces lliq(x) and lgas(x),
obtained using them, are coloured as the isotherms lliq(μ) and lgas(μ) in figure 1(a) at
respective l. For illustration purposes, we have shifted the curves lgas(x) along the x-axis
to facilitate visual comparison with lliq(x). Notice that the unstable parts of W(l; T, μ)
curves (grey) are concave, and separated from the convex stable parts (coloured) by the
inflection points (filled circles), which correspond to the spinodals of l(μ). Local extrema
of W(l; T, μ) (open circles) correspond to the intersections of l(μ) with lines
μ = 0 and

μ = −0.035. In fact, the qualitative behaviour of W(l; T, μ) and l(x) is apparent from
figure 1(a): intersections of isotherms with vertical lines μ = const. must correspond to
alternating minima and maxima of W(l; T, μ).

At saturation (figure 3a) the volume contribution to W(l; T, μ) vanishes, and
Wliq(l; T, μsat) and Wgas(l; T, μsat) tend to the respective sums of the liquid–gas
and fluid–wall surface tensions, as l → ∞. The inverse quadratic rate of decay of
Wliq(l; T, μsat) can be verified numerically, as shown in the inset of figure 3(a).
Subtracting these asymptotes from Wliq(l; T, μsat) and Wgas(l; T, μsat), would yield the
interface binding potential, which turns out to have two branches, associated with liquid
and gas adsorption, respectively. The local minima of Wliq(l; T, μsat) at Wliq = γwg and
that of Wgas(l; T, μsat) at Wgas = γwl reflect the fact that when saturation is approached
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Figure 3. The curve colours and open/filled circles here correspond to those in figure 1(a) at the same l.
(a,c) Work of formation of liquid film, Wliq(l; T, μ) (green-grey-red curves), and gas film, Wgas(l; T, μ)
(blue-grey curves) at T = 0.88 (ΘY = 50.6◦). (b,d) Liquid–gas interfaces, obtained from (3.3) with W = Wliq
and W = Wgas, and coloured accordingly. In (a,b) 
μ = 0, and in (c,d) 
μ = −0.035. The spinodals of l(μ)
in figure 1(a) correspond to the inflection points of W (filled circles), and the intersections of l(μ) with lines

μ = 0 and 
μ = −0.035 correspond to the extrema of W (open circles). The asymptotes of W are indicated
by dashed lines. In (a), the limits and minima of W(l; T, μsat) are indicated by text; the inset shows the decay
of W(l; T, μsat) on a log–log plot, where the black dashed line is a guide to eye at the expected asymptotic
decay W ∝ 1/l2.

from the gas/liquid phase, the wall is covered by a stable layer of liquid/gas, respectively
(see green/blue branch in figure 1a). Since the attractive wall favours liquid, this minimum
of Wgas(l; T, μsat) must always be global. On the other hand, the first-order wetting
transition brings about a competing minimum of Wliq(l; T, μsat) at l → ∞, which
becomes global at T � Tw.

The stability of liquid and gas films, expressed by the work of film formation and,
equivalently, by the adsorption isotherms, directly translates into the near-substrate shapes
of the liquid–gas interfaces l(x), depicted in figure 3(b). At saturation, lliq(x) must have an
inflection point at the same l, where Wliq(l; T, μsat) has a local maximum. The existence of
such local maximum directly follows from the fact that the binding potential must have two
minima to allow for first-order wetting transition. On the other hand, lgas(x) cannot have
an inflection point at saturation, because Wliq(l; T, μsat) must monotonically approach
γwg + γlg after reaching its local minimum (there is no coexistence between adsorbed
gas films). As mentioned above, the starting point on each l(x) is at the minimum of
the respective W (marked by open circle), and the numerical solution is stopped when
the change of dl/dx is below machine tolerance. Since at saturation, Ẇ(l) → 0 with l
as O(1/l3), l(x) must tend to a straight line with an inclination angle ΘY to the x-axis.
Numerically we find that ΘY , predicted by DFT is reached by l(x) with a remarkable
accuracy.

Off of saturation W(l; T, μ) can be computed by applying (3.4), or from W(l; T, μsat),
by subtracting the volume term 
μ
ρl and rescaling l appropriately. In figure 3(c) we
applied (3.4) and verified numerically that W(l; T, μ) has the linear asymptotes 
μ
ρl
(dashed lines). Notice that here the volume term creates a local maximum for Wgas(l; T, μ)
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Figure 4. Comparison between DFT (coloured contour plots) and DF model (black curves). In each plot,
dashed and dotted black curves to the left and right of the white vertical line at x = 0 correspond to lliq(x)
and lgas(x), respectively. In (a–d) T < Tw; the drops and bubbles have the same average height 30σ . In (e, f )
T > Tw, and we see a nucleation cluster of the flat prewetting film, and a detaching bubble. Thermodynamic
points: (a,b) T = 0.65 (ΘY = 101◦), 
μ = −2.4 × 10−2 and 3.8 × 10−2; (c,d) T = 0.85 (ΘY = 65◦), 
μ =
−1.8 × 10−2 and 0.9 × 10−2; (d, f ) T = 0.93 (ΘY = 0◦, 
μpw = −1.4 × 10−3), 
μ = −8.5 × 10−4 and
−1.0 × 10−2.

and eliminates it for Wliq(l; T, μ). As a result, the interface line lgas(x) has an inflection
point but lliq(x) does not (figure 3d). The interface lines must have ‘near-circular’ shapes
when the volume term is non-zero, because if Ẇ(l; T, μ) is a constant, (3.3) defines a
circle.

The interfaces lliq(x) and lgas(x) differ substantially near the wall, reflecting the fact
that the wetting transition and thin–thick film coexistence affects Wliq(l; T, μ), but not
Wliq(l; T, μ). Notice also that the effect of the solvation force, locally repelling the liquid
from the wall, leads to a higher near-wall part of lgas(x), than lliq(x) in figures 3(b) and
3(c). The DF model captures this effect via the properly computed work of film formation,
where the local minimum of Wgas(l; T, μ) is reached at a slightly higher l, than that of
Wliq(l; T, μ). It is noteworthy that the part of lliq(x) between the near-wall region (green)
and the outer liquid–gas region (red) is determined by the density profiles ρ(x) from the
saddle manifold of Ω[ρ(x)]. Thus, the mean-field DFT functional allows us to connect
these metastable states in a non-ambiguous way. In the case of lgas(x), the density profiles
from the saddle manifold of Ω[ρ(x)] determine most of the liquid–gas interface.

In figure 4 we represent a direct comparison between the DFT density profiles and
DF interface lines lliq(x) (dashed) and lgas(x) (dotted), obtained at the same T and μ.
To superimpose the DF interfaces over ρ(x, y), we aligned the tops of lliq(x) and lgas(x)
(where dl/dx vanish) with x = 0. We also reflected some l(x) with respect to the y-axis,
so that lliq(x) and lgas(x) appear in x � 0 and x � 0 half-planes of each plot, respectively.
In figures 4(a)–4(c) we show nanodrops and nanobubbles of the same height 30σ at two
different temperatures below Tw. Overall, the local DF model captures well the heights
of the drops and bubbles, and the changes of the interface curvature at small scales.
As can be seen, ρ(x, y) possesses level sets which closely resemble both ρliq and ρgas.
Interestingly, no part of lliq(x) can be found between the wall and liquid, just as no part of
lgas(x) is found between the wall and gas. This is a limitation of the local functional Ωl[l],
which does not allow l(x) to bifurcate. Another limitation of the DF model, not apparent
from figure 4, was already mentioned above: our treatment of repulsions in (2.2) cannot
capture the near-wall layering of the fluid density associated with the excluded volume
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intermolecular correlations. This is because our DFT functional was chosen specifically
to capture the liquid–gas interface, without the unnecessary complications of the
finer near-wall details, which are irrelevant for the present study. Investigating the
low-temperature regime, where the near-wall layering is important certainly presents
interesting questions for further study, beyond the scope of the present work.

It is very important to understand that a local model, such as DF cannot in principle be
expected to replace a statistical-mechanical method, such as DFT. An excellent example
illustrating the tight limits of applicability of local models is provided by the continuous
prewetting transition (Yatsyshin et al. 2016). Since we have a microscopic drop on a
substrate, it must nucleate a thin liquid film at μpw and T > Tw (see figure 1a,b). While
DFT captures the onset of such prewetting without any problem, the DF model breaks
down, because it does not include the interactions between different points on the interface.
In figure 4(e) we depict a nucleation cluster of the flat prewetting film above Tw. The round
edges of the adsorbed liquid structure are deceptive. Fitting a circle to the liquid–gas
interface as in figure 2, we get R∗ = 49σ . At the same time, the Laplace radius is
RL = 225σ , testifying to the fact that what we see is indeed a forming flat film. The work
Wgas(l; T, μ) does not include the bi-stability of wetting liquid films, and as a result lgas(x)
fails to capture the lateral extent of the film. This failure of lgas(x) near the prewetting
transition is systematic in our study and manifests the highest disagreement between the
DF and DFT models.

Rather surprisingly, we find a remarkable agreement between the local DF and non-local
DFT in the case of a nearly detached nanobubble, shown in figure 4(e) (since ΘY = 0,
the surface bubbles will detach as 
μ → 0). The DF interface lines here are S-shaped
(although still single valued if treated as functions of y), as are the level sets of ρ(x, y).
This is curious, because the local free energy Ωl does not account for the self-interaction
in the liquid–gas interface, and the agreement between DF model and DFT should have
broken down. It follows that such S-shaped profiles are the consequence of the change of
sign of Ẇ in (3.3), and do not necessarily require including curvature and self-interaction
effects into the interfacial free energy Ωl.

4. Conclusions

We have presented a statistical-mechanical study of the thermodynamics and interface
shapes of surface nanodrops and nanobubbles. The starting point is a DFT framework
based on modelling the fluid–fluid and fluid–substrate interactions at the atomic level.
For this purpose we adopted the LJ potential (1.1). At the same time, DFT accounts for
the non-locality of interatomic interactions, as manifested by the integral EL equation
(2.7) for the fluid density profiles. Because the thermodynamics of liquid–gas coexistence
is fully incorporated in DFT, we did not need to assume the existence of fluid–fluid or
fluid–wall interfaces as is often the case with macroscopic models of wetting. Given the
right thermodynamic point (T, μ) near both bulk coexistence and wall wetting transition,
diffuse interfaces appear naturally, as a result of local phase separation. We found that
the regions in the thermodynamic space of temperature and chemical potential where
nanodrops and nanobubbles exist are demarcated by the spinodals of planar wetting films.
Remarkably, this implies that surface nanobubbles may be more amenable to experimental
study than nanodrops, precisely because they occupy a bigger portion of the phase plane.
Additionally the thin film spinodals can be used to compute the minimal radii of surface
drops and bubbles.

Although valuable insight into the contact line region can be gained from microscopic
DFT computations, large drops and bubbles are computationally expensive with DFT.
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On the other hand, DFT computations clearly show that small bubbles are not spherical
caps, and descriptions relying on macroscopic concepts, such as sharp interfaces, contact
angles and binding potential, need to appreciate this fact. We provided an example in
terms of a simple DF model, which manages to capture the intricate and subtle aspects of
non-sphericity of the nanodrop/bubble shapes by accounting for the binding potential.
Furthermore, we demonstrated how the binding potential can be related to the much
more consistent statistical-mechanical treatment of nanodrops/bubbles with DFT. The
method of computing the interface binding potential by renormalising the DFT isotherms
is certainly promising in a broader context, e.g. as parameter passing between microscopic
statistical-mechanical approaches and continuum mechanical treatments, such as long
wavelength approximation to the Navier–Stokes equations. Our results for the binding
potential further highlight the important role played by planar wetting in the physics of
surface drops and bubbles. For example, from figure 1(a) it follows that above the thin
film spinodal, Wliq(l; T, μ) will not have a local minimum. Thus, although the Laplace
radii are non-zero above the thin film spinodal, the wall wetting mechanism does not allow
the drops to form.

Very interestingly, applying the binding potential to compute the contact line of
macroscopic drops we find two possible behaviours, depending on whether liquid–gas
coexistence is reached from the liquid or gas sides of the phase diagram. Usually, g(l; T)
is associated with a liquid film. However, from figure 3(a) if follows that g(l; T) must be
multivalued, consisting of two (disconnected) branches, corresponding to adsorption of
liquid and gas. Of course, in a purely equilibrium setting only one of the configurations
lliq(x) is to be observed, because lgas(x) will have a higher free energy, due to the wall
favouring liquid. Nevertheless, in a dynamic setting, such as droplet spreading (Kirkinis &
Davis 2013; Engelnkemper & Thiele 2019), the metastable states lgas(x)may be manifested
as contact line hysteresis. Additionally, introducing a sizable impurity into the substrate,
may make lgas(x) the global minimiser of the interfacial free energy.

In our computations, the bulk phase is metastable. This should be viewed as a necessary
restriction of the model and may be revisited by investigating pinned drops and bubbles,
which will be thermodynamically stable. Another restriction of the present approach is
inherent in its mean-field nature, in that interface fluctuations are not accounted for.
Nevertheless, far from criticality, mean field is known to provide reliable predictions for
most practically interesting cases.

There is much experimental and theoretical interest in understanding the behaviour
of apparent contact angles of small drops/bubbles (Qian et al. 2019). Our computations
demonstrate that the apparent contact angles, such as those shown in figure 2, are
highly sensitive to the details of the definition of a sharp interface, as well as the
fitting procedure. One needs to be very careful when analysing contact angles using
simulation or experimental data for small drops/bubbles, and performing relevant
statistical sensitivity analysis (Theodorakis & Che 2017). The agreement we get between
DFT and the sharp interface model in (3.3) suggests that rather than fitting spherical caps
to nanodrops/bubbles, one should probably attempt to fit a model accounting for disjoining
pressure effects, such as (3.3). This can be done using modern data analysis techniques.

We note that DFT models for repulsions of higher sophistication than the local
density approximation in (2.2) will reveal the same effects we describe in the present
work, because these effects are caused by the molecular attractions and are captured by
the random phase approximation for the attractive free energy in (2.4). Nevertheless,
more sophisticated repulsive DFT functionals, such as FMT, will facilitate the study
of additional effects, associated with excluded volume molecular interactions and
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correlations, and the resulting short-ranged near-wall layering of the density profiles at
distances of 1–5 molecular diameters from the wall. One of our key findings is that
the prewetting transition enables stabilisation of drops of liquid on vanishingly small
impurities on the substrate. Certainly, this prompts the existence of a similar relation for
low-temperature layering transitions. Investigating these effects is certainly of interest in
future work and requires using a repulsive functional with a fully non-local treatment
of repulsions. In addition to the effects shown here for molecular attractions, there may
appear new minima of the binding potential at low temperatures, associated with the
layering transitions and the higher role of molecular repulsions. This will certainly enrich
the picture of adsorption presented and could potentially form a very promising direction
for future work.
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