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Quantum walks and elliptic integrals
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Pólya showed in his 1921 paper that the generating function of the return probability for a

two-dimensional random walk can be written in terms of an elliptic integral. In this paper

we present a similar expression for a one-dimensional quantum walk.

1. Introduction

The classical random walk (RW) is one of the most popular models for analysing many

problems in various fields. The quantum walk (QW) is viewed as a counterpart of the

RW in quantum systems. The intensive study of QWs has only a short history, about ten

years, but the attention paid to it is increasing within the scientific community, including

physicists, mathematicians and computer scientists. Recently, a book and lecture notes

on the QW have been published (Venegas-Andraca 2008; Konno 2008). For excellent

reviews, see Kempe (2003) and Kendon (2007). There are two types of QWs, namely,

discrete- and continuous-time walks. The relation between them has been investigated

in Strauch (2006) and Childs (2010). Ambainis et al. (2001) studied the one-dimensional

discrete-time case intensively using Fourier analysis and a path counting method. Recently,

Cantero et al. (2010) showed how the theory of CMV matrices provides a natural tool

for studying one-dimensional discrete-time QW – see, for instance, Cantero et al. (2003)

and Simon (2007) for more on the CMV matrix. In this paper we consider the one-

dimensional discrete-time QW, which is determined by a 2 × 2 unitary matrix. We prove

that the generating function of the return probability for the one-dimensional QW can be

written in terms of an elliptic integral by a path counting method. A similar expression for

a two-dimensional RW was presented in Pólya (1921). The return probability of a three-

dimensional RW is also given by an elliptic integral and was evaluated in Watson (1939).

It is known that elliptic integrals and their inverses, that is, elliptic functions, arise in

many branches of mathematics and physics. Our result for the generating function in

terms of the elliptic integral may just be the tip of an iceberg. Pursuing the study along

these line would provide interesting future problems on the QW.

The rest of this paper is organised as follows. Section 2 describes the definition of

the QW. In Section 3, we present our main result (Theorem 3.1), and in Section 4 we
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prove Proposition 3.1, on which the main result relies. Several methods may be used

for the analysis of the QW: specifically, Fourier analysis, path counting and the CMV

matrix-based method. In our proof, we use a path counting method, as in the classical

two-dimensional RW case described in Section 3. Finally, we give conclusions in Section 5.

2. Model

In this section we define the discrete-time QW on � that we will consider here, where �
is the set of integers. In general, the time evolution of the QW is determined by a 2 × 2

unitary matrix:

U =

[
a b

c d

]
,

where a, b, c, d ∈ � and � is the set of complex numbers. The QW defined by the

Hadamard gate U = H with a = b = c = −d = 1/
√

2 is often called the Hadamard walk,

and has been extensively investigated in the study of the QW:

H =
1√
2

[
1 1

1 −1

]
.

In the present paper, we will focus on the Hadamard walk. The discrete-time QW is

a quantum version of the random walk with an additional degree of freedom called

chirality. The chirality takes values left and right, and represents the direction of motion

of the walker. At each time step, if the walker has left chirality, it moves one step to the

left, and if it has right chirality, it moves one step to the right. We define

|L〉 =

[
1

0

]

|R〉 =

[
0

1

]

where L and R refer to the left and right chirality states, respectively. To define the

dynamics of our model, we divide U into two matrices:

P =

[
a b

0 0

]

Q =

[
0 0

c d

]

with U = P + Q. The important point in the following is that P and Q represent the

fact that the walker moves to the left or right, respectively, at position x at each time

step. We let Ξn(l, m) denote the sum of all paths starting from the origin in the trajectory

consisting of l steps left and m steps right at time n with l +m = n. For example, we have

Ξ2(1, 1) = QP + PQ and

Ξ4(2, 2) = Q2P 2 + P 2Q2 + QPQP + PQPQ + PQ2P + QP 2Q. (2.1)

In this paper, we take ϕ∗ = T [1/
√

2, i/
√

2] as the initial qubit state, where T is the

transposed operator. Then the probability distribution of the walk starting from ϕ∗ at the
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origin is symmetric. The probability that our quantum walker is in position x at time n

starting from the origin with ϕ∗ is defined by

P (Xn = x) = ||Ξn(l, m)ϕ∗||2,

where n = l + m and x = −l + m. Then the return probability at the origin at time n is

given by

pn(0) = P (Xn = 0).

By definition, p2n+1(0) = 0 for n � 0, so we only need to consider even times 2n.

3. Result

In this section we present our results. By the definition of the Hadamard walk, we can

directly compute

p0(0) = 1

p2(0) =
1

2
= 0.5

p4(0) = p6(0) =
1

8
= 0.125

p8(0) = p10(0) =
9

128
= 0.07031 . . .

p12(0) = p14(0) =
25

512
= 0.04882 . . .

p16(0) = p18(0) =
1225

32768
= 0.03738 . . . . (3.2)

In general, p2n(0) can be written in terms of Legendre polynomials, Pn(x), as follows – see

Andrews et al. (1999) for special functions.

Proposition 3.1. p0(0) = 1 and

p2n(0) =
1

2

[
{Pn−1(0)}2 + {Pn(0)}2

]
(n � 1).

The proof appears in the next section. By Proposition 3.1, P2n+1(0) = 0 and

P2n(0) =
1

22n

(
2n

n

)
. (3.3)

We get

p4m(0) = p4m+2(0) =
1

2
{P2m(0)}2 =

1

24m+1

(
2m

m

)2

(m � 1). (3.4)

So (3.2) can also be obtained using (3.4). We will now derive our main result (Theorem 3.1)

from Proposition 3.1. We begin with

∞∑
n=0

pn(0)zn =

∞∑
n=0

p2n(0)z2n =
1

2

[
(1 + z2)

∞∑
n=0

{Pn(0)}2
z2n + 1

]
.
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Therefore, by (3.3),

∞∑
n=0

{Pn(0)}2
z2n =

∞∑
n=0

{P2n(0)}2
z4n

=

∞∑
n=0

(
2n

n

)2 (
z2

4

)2n

=
2

π
K(z2),

where K(k) is the complete elliptic integral (see Andrews et al. (1999)), that is, for

0 � k < 1

K(k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

=

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

.

So the generating function of the return probability for the one-dimensional Hadamard

walk can be expressed by K(k), as follows.

Theorem 3.1.

∞∑
n=0

pn(0)zn =
1 + z2

π
K(z2) +

1

2
.

We now consider the generating function for the classical case: the d-dimensional classical

(simple) RW whose transition probability from the origin to x is given by 1/2d for any

x = (x1, . . . , xd) ∈ �d with
∑d

k=1 |xk| = 1. Let p(c,d)
n (0) denote the return probability for the

RW starting from the origin at time n. In the one-dimensional RW case, it is well known

that for n � 0

p
(c,1)
2n (0) =

1

22n

(
2n

n

)
p

(c,1)
2n+1(0) = 0.

So we get

∞∑
n=0

p(c,1)
n (0)zn =

1√
1 − z2

.

For the two-dimensional RW, we find that for n � 0

p
(c,2)
2n (0) =

{
p

(c,1)
2n (0)

}2

=
1

42n

(
2n

n

)2

p
(c,2)
2n+1(0) = 0.
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(See, for instance, Durrett (2004) for the derivation.) Therefore, we have

∞∑
n=0

p(c,2)
n (0)zn =

2

π
K(z).

This result was given in Pólya (1921, page 160). In addition, the above expression is very

similar to that for the one-dimensional Hadamard walk (see Theorem 3.1). The probability

that the three-dimensional RW returns to its starting point, F = 1 − G−1 = 0.34053 . . ., is

given by K(k) in the following (Spitzer 1976, page 103):

G =
1

π2

∫ π

−π

K

(
2

3 − cos θ

)
dθ.

Note that the definition of the complete elliptic integral given in Spitzer (1976) is (2/π) ×
K(k) in our notation. This integral was first evaluated in Watson (1939):

G = 3(18 + 12
√

2 − 10
√

3 − 7
√

6) {K(2
√

3 +
√

6 − 2
√

2 − 3)}2 × (2/π)2

= 1.51638 . . . .

4. Proof of Proposition 3.1

In this section we will prove Proposition 3.1 by a path counting method. First we introduce

some useful matrices for computing Ξn(l, m):

R =

[
c d

0 0

]

S =

[
0 0

a b

]

where a = b = c = −d = 1/
√

2. In general, products of the matrices P , Q, R and S are

given in Table 1. From this table and (2.1), we obtain

Ξ4(2, 2) = bcdP + abcQ + b(ad + bc)R + c(ad + bc)S.

Note that P ,Q, R and S form an orthonormal basis of the vector space of complex 2 × 2

matrices with respect to the trace inner product 〈A|B〉 = tr(A∗B), where ∗ means the

adjoint operator. So Ξn(l, m) has the following form:

Ξn(l, m) = pn(l, m)P + qn(l, m)Q + rn(l, m)R + sn(l, m)S.

The explicit forms of pn(l, m), qn(l, m), rn(l, m) and sn(l, m) can be computed as follows (see,

for instance, Konno (2002; 2005)).

P Q R S

P aP bR aR bP

Q cS dQ cQ dS

R cP dR cR dP

S aS bQ aQ bS

Table 1. Products of P ,Q, R, S . For example, PQ = bR.
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Lemma 4.1. When l ∧ m(:= min{l, m}) � 1, we obtain

pn(l, m) =

(
1√
2

)n−1 (l−1)∧m∑
γ=1

(−1)m−γ

(
l − 1

γ

)(
m − 1

γ − 1

)

qn(l, m) =

(
1√
2

)n−1 l∧(m−1)∑
γ=1

(−1)m−γ−1

(
l − 1

γ − 1

)(
m − 1

γ

)

rn(l, m) = sn(l, m) =

(
1√
2

)n−1 l∧m∑
γ=1

(−1)m−γ

(
l − 1

γ − 1

)(
m − 1

γ − 1

)
.

Using Lemma 4.1, we have

Ξ2n(n, n)ϕ∗ =

(
1√
2

)2n

(−1)n
n∑

γ=1

(−1)γ
(
n − 1

γ − 1

)2
[

n
γ

n
γ

− 2

− n
γ

+ 2 n
γ

]
1√
2

[
1

i

]

=

(
1√
2

)2n+1

(−1)n
n∑

γ=1

(−1)γ

γ

(
n − 1

γ − 1

)2 [
n + (n − 2γ)i

−(n − 2γ) + ni

]
.

Since p2n(0) = ||Ξ2n(n, n)ϕ∗||2, we get

p2n(0) =

(
1

2

)2n

⎡
⎢⎣

⎧⎨
⎩

n∑
γ=1

(−1)γ

γ

(
n − 1

γ − 1

)2

n

⎫⎬
⎭

2

+

⎧⎨
⎩

n∑
γ=1

(−1)γ

γ

(
n − 1

γ − 1

)2

(n − 2γ)

⎫⎬
⎭

2
⎤
⎥⎦

=

(
1

2

)2n

⎡
⎢⎣2n2

⎧⎨
⎩

n∑
γ=1

(−1)γ

γ

(
n − 1

γ − 1

)2

⎫⎬
⎭

2

− 4n

n∑
γ=1

n∑
δ=1

(−1)γ+δ

γ

(
n − 1

γ − 1

)2(
n − 1

δ − 1

)2

+ 4

n∑
γ=1

n∑
δ=1

(−1)γ+δ

(
n − 1

γ − 1

)2(
n − 1

δ − 1

)2

⎤
⎥⎦ .

Furthermore, we will rewrite p2n(0) using the Jacobi polynomial P ν,μ
n (x), which is ortho-

gonal on [−1, 1] with respect to (1 − x)ν(1 + x)μ with ν, μ > −1. The following relation

then holds:

P ν,μ
n (x) =

Γ(n + ν + 1)

Γ(n + 1)Γ(ν + 1)
2F1(−n, n + ν + μ + 1; ν + 1; (1 − x)/2), (4.5)

where Γ(z) is the gamma function. Therefore,

n∑
γ=1

(−1)γ−1

γ

(
n − 1

γ − 1

)2

= 2F1(−(n − 1),−(n − 1); 2; −1)

= 2n−1
2F1(−(n − 1), n + 1; 2; 1/2)

=
2n−1

n
P

(1,0)
n−1 (0). (4.6)
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The first equality is given by the definition of the hypergeometric series, the second

equality comes from the relation

2F1(a, b; c; z) = (1 − z)−a
2F1(a, c − b; c; z/(z − 1))

and the final equality follows from (4.5). In a similar way,

n∑
γ=1

(−1)γ−1

(
n − 1

γ − 1

)2

= 2n−1P
(0,0)
n−1 (0). (4.7)

Using (4.6) and (4.7), we get

p2n(0) =

(
1

2

)2n [
2n2 × 22(n−1)

n2

{
P

(1,0)
n−1 (0)

}2

− 4n × 22(n−1)

n
P

(1,0)
n−1 (0) P (0,0)

n−1 (0) + 4 × 22(n−1)
{
P

(0,0)
n−1 (0)

}2
]

=

{
P

(1,0)
n−1 (0)

}2

2
− P

(1,0)
n−1 (0) P (0,0)

n−1 (0) +
{
P

(0,0)
n−1 (0)

}2

=
1

2

[{
P

(1,0)
n−1 (0) − P

(0,0)
n−1 (0)

}2

+
{
P

(0,0)
n−1 (0)

}2
]
. (4.8)

From Andrews et al. (1999, 6.4.20),

(n + α + 1)P (α,β)
n (x) − (n + 1)P (α,β)

n+1 (x) =
(2n + α + β + 2)(1 − x)

2
P (α+1,β)
n (x),

and we have

P (0,0)
n (0) − P

(0,0)
n+1 (0) = P (1,0)

n (0). (4.9)

Combining (4.8) with (4.9) yields

p2n(0) =
{
P (0,0)
n (0)

}2
+

{
P

(0,0)
n−1 (0)

}2

.

Since Pn(0) = P (0,0)
n (0), this completes the proof of Proposition 3.1.

5. Conclusion

In the present paper, we have shown that the generating function of the return probability

for the one-dimensional Hadamard walk can be written in terms of an elliptic integral.

Our expression corresponds to the result for the classical two-dimensional RW given

by Pólya in 1921. Indeed, his expression is also written in terms of an elliptic integral.

An interesting problem for future work is to find similar expressions for general one-

dimensional and higher dimensional QWs. Recent study on the relation between discrete-

and continuous-time QWs, such as Strauch (2006) and Childs (2010), may provide us with

new perspectives on the relationship between our result and the corresponding one for

the continuous-time case.
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