
THE JOURNAL OF NAVIGATION (2019), 72, 193–206. c© The Royal Institute of Navigation 2018
doi:10.1017/S0373463318000590

A Passive Acoustic Positioning
Algorithm Based on Virtual Long

Baseline Matrix Window
Tao Zhang, Ziqiang Wang, Yao Li and Jinwu Tong

(Southeast University, Nanjing, School of Instrument Science and Engineering, Key
Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of

Ministry of Education, Nanjing 210096, China)
(E-mail: 101011356@seu.edu.cn)

A new acoustic positioning method for Autonomous Underwater Vehicles (AUV) that uses a
single underwater hydrophone is proposed in this paper to solve problems of Long Baseline
(LBL) array laying and communication synchronisation problems among all hydrophones in
the traditional method. The proposed system comprises a Strapdown Inertial Navigation System
(SINS), a single hydrophone installed at the bottom of the AUV and a single underwater sound
source that emits signals periodically. A matrix of several virtual hydrophones is formed with
the movement of the AUV. In every virtual LBL window, the time difference from the trans-
mitted sound source to each virtual hydrophone is obtained by means of a Smooth Coherent
Transformation (SCOT) weighting cross-correlation in the frequency domain. Then, the recent
location of the AUV can be calculated. Simulation results indicate that the proposed method can
effectively compensate for the position error of SINS. Thus, the positioning accuracy can be con-
fined to 2 m, and the method achieves good applicability. Compared with traditional underwater
acoustic positioning systems, the proposed method can provide great convenience in engineering
implementation and can reduce costs.
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1. INTRODUCTION. Autonomous Underwater Vehicles (AUVs) play important roles
in ocean pollution monitoring and seabed, marine mineral and oil resources investigation
due to their advantages, which include unmanned operation, the capability to enter narrow
underwater environments and relatively low cost (Choi et al., 2015; Ji et al., 2014; Yu and
Wu, 2015; Zhong et al., 2015).

Highly accurate underwater navigation and positioning technologies are required for
AUVs to accomplish these missions (Zhang et al., 2013). In terms of current navigation
technologies, integrated navigation systems of underwater acoustic and Inertial Navigation
Systems (INSs) are widely used for AUVs (Zhang et al., 2016b). Although INSs have
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autonomous characteristics and are useful when concealment is required, their errors
increase with time and limit their continuity (Morgado et al., 2010). To achieve a high posi-
tioning precision over longer periods, INSs are required to use other external information
to periodically correct the position errors during navigation (Paull et al., 2014; Deng et al.,
2009; Mahdinejad and Seghaleh, 2013). Global Navigation Satellite Systems (GNSS) and
other radio signals cannot be used underwater due to their rapid attenuation that requires
AUVs to float toward the water surface to receive satellite signals for positioning (Jiao
et al., 2013; An et al., 2013; Barisic et al., 2012). These conditions seriously reduce system
efficiency, expose the current position of AUVs and influence the real-time characteristics
of information interaction. Therefore, accurate navigation technologies are key factors in
AUV development (Ferreira et al., 2010).

Compared with electromagnetic waves, the attenuation rate of sound waves in the ocean
is low so that they can spread over long distances (Ngatini et al., 2016). Long baseline posi-
tioning methods are used worldwide. Paull et al. (2014) summarised the recent advances of
underwater vehicle navigation and positioning and introduced several traditional methods
(Ji et al., 2016). Donovan (2012) adopted integrated tests and a real-time terrain particle
filter framework to complete the positioning and navigation of AUVs. Lee et al. (2005)
optimised the number of transponders that simplified the matrix model. Maki et al. (2013)
proposed a method that estimates the position and direction of underwater vehicles by using
a single bottom station without expensive INSs or time-consuming calibration. Miller et al.
(2010) established a type of positioning system using a tight LBL/Doppler Velocity Log
(DVL)/INS integration method, which is suitable for AUV positioning in a complicated
deep sea environment. These studies proposed several valuable solutions that were based
on long baseline systems and promoted the application of underwater acoustic positioning
worldwide.

However, several limitations of Long Baselines (LBL) were reported in the literature.
Zhang (2016a) indicated a series of engineering implementation problems, such as the num-
ber of transponders being so large that they complicated the matrix system and made the
laying, calibrating and recalling processes tedious. Casalino et al. (2014) used buoys rather
than traditional seabed transponders. However, several instability errors were introduced in
this method because the positions of the buoys were unfixed and the buoys thus floated in
the sea; in addition, their positions were frequently calibrated, leading to increased work-
load. In Zhang et al. (2015), acoustic signals were received from different transponders
at different periods, and a synchronising technology was required before processing all
the signals from different transponders. In addition, the method mentioned in Zhang et al.
(2015) allowed AUVs to be easily monitored by others and reduced their concealment.

To solve these problems, we have designed a passive acoustic positioning method
based on a virtual LBL matrix window algorithm that uses a single sound source. This
method does not require AUVs to float toward the surface to update their location and
offers high concealment and safety. This method also reduces the difficulty in releasing
transponders because only one sound source is placed at the bottom of the sea and one
hydrophone is installed at the bottom of the AUV. In addition, all received signals can be
directly processed by the computer embedded in the AUV without time synchronisation
and then returned to the AUV for processing. Thus, the complexity and cost are signifi-
cantly reduced. Moreover, the virtual LBL matrix window method can be used to estimate
AUV position through a few time windows. This method does not require a large number of
data points and guarantees a good real-time performance. The accuracy increases with the
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Figure 1. Formation of virtual LBL matrix.

number of iterations of the matrix window. Therefore, this method provides a new concept
for AUV positioning.

2. SYSTEM PRINCIPLE AND STRUCTURE.
2.1. Formation of virtual LBL matrix window. The proposed method in this study is

based on a virtual LBL matrix window. In this system, a single sound source is placed at
the bottom of the sea and sends periodic signals and a single hydrophone is installed on
the AUV. In the AUV navigation trajectory, four selected recent positions of the AUV are
regarded as four virtual hydrophones of the LBL matrix, which constitute a virtual LBL
matrix window, as shown in Figure 1.

2.2. Positioning algorithm based on a moving virtual LBL matrix window. In this
method, the single sound source is fixed on the seabed in which its absolute position is
measured as (x, y, z) in advance in Earth-centred Earth-fixed coordinates. This sound source
sends periodic pulse signals at regular intervals, with the time period defined as Ts. A
virtual LBL matrix window is created when the AUV enters the area where the source
signal can be received. The current position of the AUV is set as the initial position P0,
where the period of receiving acoustic signals is denoted as x0. Then, the AUV continues
to move forward, and its position is denoted as P1 at the beginning of the eleventh period.
A period of receiving acoustic signals is denoted as x1. In this way, the AUV position is
denoted as Pi(i = 2, 3, · · · ), and the receiving acoustic signal is denoted as xi(i = 2, 3, · · · )
for every ten periods. Each of the four consecutive positions of the AUV forms a virtual
LBL matrix window. For example, the first virtual LBL matrix window is composed of the
initial four positions (P0, P1, P2, P3), which are marked by the blue rectangle in Figure 2.
The second virtual LBL window is formed by removing position P0 and adding position P4
when the AUV arrives at position P4; this window is shown as the red rectangle in Figure 2.
In this way, the moving virtual LBL windows are established by removing the previous
position and adding the more recent position to iteratively calculate the current position
of the AUV.
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Figure 2. Time window model based on periodic movement.

3. ALGORITHM IMPLEMENTATION.
3.1. Iterative updating of position based on moving virtual LBL windows. Consid-

ering that the same algorithm is used to calculate the position of the AUV based on each
window, we describe the calculation method for the AUV by taking the first window as an
example.

The initial position of the AUV is denoted as P0 (x0, y0, z0) in the inertial coordinate
system. From the above description, each new position of the AUV is obtained every 10Ts,
for example, P1 (x1, y1, z1), P2 (x2, y2, z2) and P3 (x3, y3, z3). The four positions form the
first virtual LBL matrix window. The distances between position Pi (i = 0, 1, 2) and P3 in
the three-axis direction (x, y, z) are defined as �x3i, �y3i and �z3i respectively; their values
can be measured by dead reckoning using INS. Pi can be described by recent position P3
as follows; its position is considered unknown and should be calculated:

⎧⎪⎪⎨
⎪⎪⎩

(
x0, y0, z0

)
=
(
(x3−�x30) ,

(
y3−�y30

)
, (z3−�z30)

)
(
x1, y1, z1

)
=
(
(x3−�x31) ,

(
y3−�y31

)
, (z3−�z31)

)
(
x2, y2, z2

)
=
(
(x3−�x32) ,

(
y3−�y32

)
, (z3−�z32)

) (1)

Time difference τ3i of the received signal at positions P3 and Pi can be obtained through
a cross-correlation operation. Two factors lead to the time difference. The first factor is the
difference in geographic location (�t3i), and the second factor is the time interval of the
sent signal, as indicated in Equation (2):

�t3i = τ3i − (30 − 10i) t, (i = 0, 1, 2) (2)
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The sound propagation velocity underwater is assumed to be a constant value denoted
as c, and three equations are established as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t30c =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

−
√

(x0 − x)2 + (y0 − y)2 + (z0 − z)2

�t31c =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

−
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

�t32c =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

−
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2

(3)

(x0, y0, z0) , (x1, y1, z1) and (x2, y2, z2) can be expressed as expressions that contain
(x3, y3, z3) through Equation (1), and recent position P3 (x3, y3, z3) can be calculated by
Equation (3). Subsequently, the recent geodetic coordinates can be obtained through the
coordinate transformation of latitude and longitude.

The AUV coordinates in the geodetic coordinate and Earth rectangular coordinate sys-
tems are set as (λ, L, H) and (x, y, z), respectively. The formula for converting the geodetic
coordinates into the Earth frame’s rectangular coordinates is expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
x = (N + H) cosLcosλ

y = (N + H )cosLsinλ

z = [N
(
1−e2

)
+ H ]sinL

where e is the first eccentricity and N is the radius of the unitary circle at latitude L.

N = a/

√(
1−e2sin2L

)
where a is the long semi-axis of the Earth.

Therefore, the formula for converting the Earth’s rectangular coordinates to geodetic
coordinates is: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ = arctan (y/x)

L= arctan

(
z + be2

2sin3U√
x2 + y2 − ae2cos3U

)

H =
√

x2 + y2/cosL − N

Among the coordinates, b is the short semi-axis of the Earth and e2 is the second
eccentricity, where U = arctan

(
z/
√

x2 + y2
√

1−e2
)

.
The first and second virtual LBL windows are used as examples to explain the iterative

updating of the AUV position. The AUV continues to move and obtains the current position
P4 (x4, y4, z4) after 10Ts when the recent position P3 (x3, y3, z3) is obtained. P0 (x0, y0, z0) is
removed from the window and P4 is added in the new window with positions P1, P2 and
P3. The AUV updates the current position by using this method, which corrects the errors
of the SINS.
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3.2. Calculation of Time Difference of Arrival (TDOA). A TDOA positioning method
provides the sound source position by measuring the TDOA at different targets from the
sound source. Given the difficulty of synchronising underwater signals, the time difference
is easy to obtain through the cross-correlation processing of the received signals.

Assuming that the received signals at positions Pi and Pj are:

xi = aix (t − τi) + ni(t)

xj = aj x
(
t − τj

)
+ nj (t)

(4)

where ai and aj are the attenuation coefficients of the acoustic signals that propagate under-
water, ni (t) and nj (t) are the uncorrelated noise signals and τi, τj are the propagation
times.

The cross-correlation function of xi(t) and xj (t) is:

Rxixj (τ ) = E
[
xi (t) x∗

j (t − τ)
]

=
1

T − τ

∫ T

τ

xi (t) xj (t − τ) dt (5)

where τ = τj − τi indicates the TDOA signals and T denotes the observation time. In theory,
the peak of Rxixj corresponds to the time difference of xi(t) and xj (t), which is τ .

3.3. Smooth Coherent Transformation (SCOT)-weighted generalised cross-correlation.
As a result of complicated underwater environments, refractions and reflections are com-
mon, and they are called multipath effects. Figure 3 shows a simplified multipath channel
model of underwater acoustic propagation, in which only the direct propagation path
(PiD,(i = 1, 2, . . . )), reflection propagation path of the sea surface (PiS,(i = 1, 2, . . .)) and
reflection propagation path of the seabed (PiB,(i = 1, 2, . . .)) are considered. In addition,
noise exists in the underwater environment, and includes the radiated noise of the AUV,
oceanic reverberation and other factors that interfere with acoustic signals. This condition
results in a number of similar peaks that correspond to different time differences. However,
the positioning error is amplified after the time differences are multiplied by the speed of
the acoustic propagation (Deng et al., 2009).

Mahdinejad and Seghaleh (2013) used a different weighted generalised cross-correlation
method to calculate time delays and compared the experimental results in a reverberation
room under an acoustic environment. They determined that the SCOT-weighted gener-
alised cross-correlation algorithm obtains good results in acoustic signal processing and
time delay estimation, and this method has better accuracy and precision than other meth-
ods. In this study, the SCOT-weighted generalised cross-correlation is used to make the
relevant peaks prominent to effectively enhance the spectral component of the source
signal in the received signal. Therefore, the signal-to-noise ratio is improved, and the
cross-correlation function is enhanced. These improvements increase the accuracy of the
estimation of the time difference.

The received signals of the hydrophone at positions Pi and Pj are transformed from the
time domain into the frequency domain by using Fourier transformation:

Fxi (ω) =
∫ +∞

−∞
xi (t)e−j ωtdt

Fxj (ω) =
∫ +∞

−∞
xj (t)e−j ωtdt

(6)
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Figure 3. Simplified channel mode for underwater acoustic multipath propagation.

Figure 4. Flow chart of the SCOT frequency domain-weighted generalised cross-correlation algorithm.

The function of cross-power spectral density is obtained by the following equation:

Gxixj (ω) = Fxi (ω) F∗
xj

(ω) (7)

where F∗
xj

(ω) is the conjugate of Fxj (ω).
According to the theorem of Wiener-Khinchin (Cohen, 1998), the relationship between

the function of cross-power spectral density and cross correlation is:

Rxixj (τ ) =
∫ π

0
Gxixj (ω)e−j ωτ dω (8)

To reduce the multipath interference and noise in the selection of correct correlation
peaks, the received signals are processed by the above mentioned SCOT-weighted method.
Signals xi and xj are passed through a pre-filter, and the SCOT-weighted general cross-
correlation operation is performed on the pre-filtered signals. The cross-correlation function
based on weighted function ϕxixj (ω) in the frequency domain is:

Rxixj (τ ) =
∫ π

0
ϕxixj (ω) Gxixj (ω)e−j ωτ dω (9)

The flow chart of the SCOT-weighted generalised cross correlation is shown in
Figure 4.

The SCOT-weighted generalised cross-correlation function improves the proportion
of effective spectra in the received signal, which suppresses the noise interference and
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Figure 5. Basic cross-correlation function in simulation.

improves the accuracy of the estimated time difference. The abscissa value that corresponds
to the maximum peak in the SCOT-weighted generalised cross-correlation function is the
time difference τ .

4. SYSTEM SIMULATION AND SEMI-PHYSICAL EXPERIMENT.
4.1. Simulation to verifying the validity of the SCOT weighted function. The Bell-

hop model (Michael, 2011) is widely used in underwater acoustic channel simulation. This
model is equally effective in channel analysis and modelling. It simulates underwater envi-
ronment noise, multipath effects, and Doppler frequency shifts by introducing sound field
data. It thus forms a real channel model and obtains various practical data, such as eigen
line, impulse response, propagation loss and arrival time sequence of sound.

To verify the validity of the SCOT-weighted cross-correlation function in the fre-
quency domain, we performed simulations and compare the method with traditional
cross-correlation methods by establishing a propagation model of underwater acoustic
signals using the Bellhop software. The sound source signal was selected as a type of ampli-
tude modulation signal with a bandwidth of 40 kHz and a centre frequency of 22 kHz. The
sound source was placed at a depth of 50 m, and two hydrophones were placed at a depth of
25 m underwater at different locations. The results of the two methods of cross-correlation
functions are shown in Figures 5 and 6. The simulations were conducted three times, and
the results are subsequently compared (Table 1).

Figures 5 and 6 and Table 1 show that the SCOT-weighted cross-correlation function
in the frequency domain reduces the amplitude of pseudo-peaks near the ideal peak that
corresponds to the time difference by eliminating the inference of multiple correlation
peaks caused by the multipath propagation effect. The result reveals that the time difference
estimated by this method is more accurate than that obtained by the traditional method.
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Figure 6. SCOT-weighted cross-correlation function in simulation.

Table 1. Comparisons of time difference errors in
simulations.

Basic SCOT-weighted
cross-correlation/s cross-correlation/s

0·0044 0·0006
0·0068 0·0009
0·0105 0·0011

4.2. Semi-physical experiment to verify the validity of the SCOT-weighted function.
To evaluate the performance of the above method, we conducted a semi-physical exper-
iment involving an ultrasonic sound source and five receivers in an open space with low
noise. The four receivers formed a square shape with a side length of 5 m, and the remaining
receiver was placed in the centre of the square. The equipment layout is shown in Figure 7,
and the experimental environment is shown in Figure 8.

The sound source signal is a type of pulse signal with a frequency of 40 kHz and a pulse
width of 20 ms. The traditional cross-correlation and SCOT-weighted cross-correlation
methods in the frequency domain were applied for the signals received by two receivers.
The results are shown in Figures 9 and 10 and Table 2.

The result of the traditional cross-correlation method reveals several pseudo-peaks with
similar peaks. By contrast, the SCOT-weighted cross-correlation method in the frequency
domain effectively reduces all the amplitudes of the pseudo-peaks and attains the maximum
peak. The results of the semi-physical experiment show that the SCOT-weighted cross-
correlation method significantly enhances the real correlation peak and effectively estimates
the time difference.

4.3. Simulation of dynamic positioning. A simulation was conducted to verify the
dynamic positioning effect of the time window model based on periodic movement. A
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Figure 7. Equipment layout.

Figure 8. Experimental environment.

Table 2. Comparison of time difference errors in the
semi-physical experiment.

Basic SCOT-weighted
cross-correlation delay/s cross correlation/s

0·0027 0·0011
0·0019 0·0008
0·0011 0·0004

Table 3. Rocking parameters of the AUV.

Course Pitch Roll

Swing amplitude (◦) 9 12 10
Rolling period (s) 8 10 6
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Figure 9. Semi-physical basic cross-correlation function graph.

Figure 10. Semi-physical SCOT-weighted cross-correlation function graph.

single sound source was placed at a longitude of 120·01◦, latitude of 40◦ and depth of 50
m. The sound source transmitted the pulse signal with a frequency of 0·025 Hz and a pulse
width of 100 ms. The AUV moved along the northeast direction from its initial position
of 119·995◦ longitude and 32·995◦ latitude at the speed of 1 m/s and depth of 25 m. The
AUV swung in accordance with the three-axis sine model. The random and constant drifts
of the gyroscopes were 0·05◦ h, and the random and constant biases of the accelerometers
were 50 µg. The initial misalignment angles at the three axes were 1·5◦ and the period
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Figure 11. Comparison of two tracks with the ideal track.

Table 4. Comparison of pure inertia and acoustic cycle time window distance error.

Error of time Error of time Error of time Error of time Error of time Error of Time
Algorithm window 1/m window 2/m window 3/m window 4/m window 5/m window 6/m

SINS 12·8299 13·6234 14·4311 14·9525 14·3763 15·0846
virtual LBL matrix

window based on
traditional cross
correlation

2·2300 2·1788 2·5796 1·8128 1·9522 2·4984

virtual LBL matrix
window based on
SCOT-weighted
cross-correlation
function

1·9402 1·8872 1·6240 1·5874 1·7982 2·2245

of the time window was set as 400 s. The simulation time was 3,600 s. In the simulation,
the AUV position was estimated only on the basis of the SINS for the first 1,200 s. The
algorithm based on a virtual LBL matrix window was introduced to calculate the position
for the remaining 2,400 s.

Three algorithms, namely the algorithms based on SINS with no LBL aiding, virtual
LBL matrix window using traditional cross-correlation function and SCOT-weighted cross-
correlation function in the frequency domain, are compared in Figure 11. Table 4 shows the
positioning errors of the three algorithms. As shown in Figure 11 and Table 4, the position
obtained by SINS significantly deviates from the real trajectory. This result indicates that
the accumulated errors of inertial sensors have a considerable influence on the positioning
accuracy of the AUV. In the initial stage of the algorithm based on the virtual LBL matrix
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window, the accuracy of the position is rapidly obtained to within 3 m. The positioning
accuracy was improved as the number of iterations increased for the virtual LBL matrix
window algorithm. The positioning result became accurate and reliable when the number of
iterations reached four and five. Then, the positioning error gradually increases because the
distance from the AUV to the sound source becomes large. Compared with the traditional
cross-correlation function, the SCOT-weighted cross-correlation function in the frequency
domain performs better and meets the high accuracy requirements of underwater vehicle
navigation positioning.

5. CONCLUSION. Underwater acoustic positioning technologies have been investi-
gated, and a virtual LBL matrix window method based on a SCOT-weighted cross-
correlation function in the frequency domain proposed. A single hydrophone was installed
at the bottom of the AUV, and a sound source was placed on the seabed. This set-up
avoids the placement of a long and complex baseline array and reduces the cost. The pro-
posed method also solves the problem of data communication and signal synchronisation
underwater and enhances the concealment of AUVs. The experimental results show that
the SCOT-weighted cross-correlation function calculates the time difference more accu-
rately than the traditional cross-correlation function. Therefore, the algorithm based on
a virtual LBL matrix window can provide precise underwater position at an accuracy of
approximately 2 m.
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