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Abstract. This paper presents sufficient conditions for a substitution tiling dynamical
system of R2, generated by a generalized substitution on three letters, to be topologically
mixing. These conditions are shown to hold on a large class of tiling substitutions originally
presented by Kenyon in 1996. This problem was suggested by Boris Solomyak, and
many of the techniques that are used in this paper are based on the work by Kenyon,
Sadun, and Solomyak [Topological mixing for substitutions on two letters. Ergod. Th. &
Dynam. Sys. 25(6) (2005), 1919–1934]. They studied one-dimensional tiling dynamical
systems generated by substitutions on two letters and provided similar conditions sufficient
to ensure that one-dimensional substitution tiling dynamical systems are topologically mix-
ing. If a tiling dynamical system of R2 satisfies our conditions (and thus is topologically
mixing), we can construct additional topologically mixing tiling dynamical systems of R2.
By considering the stepped surface constructed from a tiling Tσ , we can get a new tiling
of R2 by projecting the surface orthogonally onto an irrational plane through the origin.

Key words: symbolic dynamics, tilings, topological dynamics
2020 Mathematics subject classification: 37B52 (Primary)

1. Introduction
In 2005 Kenyon, Sadun, and Solomyak [6] provided sufficient conditions for weakly
mixing, two-letter, discrete substitution shifts, and the one-dimensional tiling flows over
them, to be topologically mixing. In this paper, we show that a weakly mixing tiling
substitution flow on R2, in particular, from a class of examples first presented in [5], is
topologically mixing. The following theorem is the main result.

THEOREM 1.1. Let Tσ be the tiling of R2 corresponding to the generalized substitution

σ : {a, b, c} → F({a, b, c}) \ {ε}
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a �→ b

b �→ c

c �→ a−qb−r (1.1)

where F({a, b, c}) is the free group on {a, b, c} with identity ε. Assume q, r ∈ N with
q − 2 ≥ r . Let XTσ be the collection of tiling defined as the orbit closure of Tσ acted on
by R2 by translation. Then the corresponding dynamical system (XTσ , R2) is topologically
mixing.

To prove this theorem, we will construct a three-dimensional encoding of all shifts of
the tiling from vertex to vertex, which we denote by �. We show that if � is unbounded,
and the areas of the tiles are irrationally related, then the tiling is topologically mixing.
Finally, we prove that if the substitution is ‘complex non-Pisot’, then � is unbounded.

The structure of the paper is as follows. Section 2 introduces terminology for tiling
dynamical systems and defines topological mixing in our setting. Section 3 provides an
introduction to the algebraic structures we will be using in the later sections. Section 4
explains how to generate tilings from generalized substitutions. Section 5 proves that if �

is unbounded, then we have topological mixing. Finally, §6 gives conditions for � to be
unbounded.

2. Tiling dynamical systems and mixing
A connected set D ⊆ R2 is called a tile if it is compact and equal to the closure of its
interior. A tiling of R2 is a collection of tiles in which any two tiles have pairwise disjoint
interiors and their union is R2. The prototiles P of a tiling space are the collection of
unique (up to translation) tiles. We assume P is finite. A patch P is a collection of tiles
in which each pair of tiles have non-intersecting interiors and their union is connected.
We always assume the ‘finite local complexity’ condition: that the set of two-tile patches
P(2) (up to translation) is finite. In our case, the tiles will be (translations of) a finite set of
parallelograms, and we will always assume they meet ‘edge to edge’. The collection of all
finite patches is denoted by P∗.

A full tiling space XP is the set of all tilings of R2 by translations of prototiles P such
that each two-tile patch is a translation of a patch in P(2). With the usual tiling metric
(see, for example, [7]), XP is a compact metric space. In this metric two tilings are close
if they agree, up to a small translation, on a large disk around the origin. For T ∈ XP , let
P ∈ P∗ be a patch with P ⊆ T , and let ε > 0. We define the cylinder set CP ,ε as CP ,ε =
{S ∈ XT : there exists y ∈ Bε(0), with P − y ⊆ S}. The collection of all cylinder sets,
CP = {Cp,ε : P ∈ P∗, ε > 0}, is a basis for the topology on XP [7].

Given P (and implicitly P(2)), we define the full tiling dynamical system to be the
pair (XP , R2), where R2 acts on XP by translation: (T , y) �→ T − y : XP × R2 → XP .
More generally, a tiling dynamical system is any pair (X, R2), where X ⊆ XP is closed
and T-invariant. Given a tiling T ∈ XP , let XT = OrbR2(T ) := {T − y : y ∈ R2} be its
orbit closure. Then (XT , R2) is a tiling dynamical system.

A tiling dynamical system (X, R2) is topologically mixing if for any open sets
U , V ⊆ X there exists K ⊆ R2 compact so that U ∩ (V − y) 	= ∅, for all y ∈ R2 \ K . It
suffices to check this for U and V cylinder sets.
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For Y ⊆ Z ⊆ R2, we say Y is ε-dense in Z (for some ε > 0) if
⋃

y∈Y Bε(y) ⊇ Z. We
say Y ⊆ R2 is eventually dense if for any ε > 0, there is a compact set K so that Y is
ε-dense in R2 \ K . Given a patch P in T, T ∈ XP , we define its locator set LP (T ) = {v ∈
R2 : there exists a patch P0 in T such that P = P0 − v}. Similarly, for two patches P1 and
P2 in T, we define the displacement set �(P1, P2) = (LP1(T ) − LP2(T )) ∪ (LP2(T ) −
LP1(T )). It is easy to prove the following characterization of topological mixing.

PROPOSITION 2.1. A tiling dynamical system (X, R2) is topologically mixing if and only
if for any two patches P1 and P2, the displacement set �(P1, P2) is eventually dense in R2.

3. Generalized substitutions, linear algebra, number theory and geometry
For a finite set A, let F(A) be the free group generated by A. A map σ : A → F(A) \
{ε} is called a generalized substitution. Let � : F(A) → Z|A| be the population vector
mapping, and �a(w) is the sum of all the exponents of the occurrences of a in w. Note
that �(w) is essentially the canonical abelianization map of F(A). The transition matrix
Mσ of σ is the |A| × |A| matrix whose columns are �(σ (i)), for each i ∈ A. We have
�(σ k(w)) = Mk

σ (�(w)).
Recall that λ ∈ R is a real Pisot number if it is an algebraic integer with λ > 1, such that

all of its Galois conjugates are have magnitude strictly less than 1. An algebraic integer λ ∈
C \ R is complex Pisot if |λ| > 1, and all of its Galois conjugates except d have magnitude
strictly less than 1. Thus, an algebraic integer λ ∈ C \ R is complex non-Pisot if |λ| < 1,
or if one of its algebraic conjugates θ satisfies |θ | ≥ 1. Note that for the real part of a
complex number λ we write Re(λ), and for the imaginary part we write Im(λ). We extend
this notation to complex vectors where v = Re(v) + iIm(v).

We say an n × n integer matrix A is a complex Pisot (non-Pisot) matrix if the
characteristic polynomial of A is irreducible over Q, and the root with the largest magnitude
is complex Pisot (non-Pisot). Further, a generalized substitution σ is said to be a complex
non-Pisot generalized substitution if its transition matrix Mσ is a complex non-Pisot
matrix.

The following may be generalized to any size of matrix (see [1]), but our interest in
this paper is only in the 3 × 3 and 3 × 2 cases. For a 3 × 3 integer matrix A, define
its 2-compound C2(A) to be the 3 × 3 integer matrix whose entry (C2(A))ij is the
determinant of the 2 × 2 minor obtained by removing row i and column j. For v1, v2 ∈ Z3

we define v1 ∧ v2 = C2([v1 v2]) ∈ Z3, where (C2[v1 v2])i is the determinant of the
2 × 2 matrix obtained by removing row i. This is essentially the cross-product without
the alternating sign pattern. Note Binet’s theorem says that C2(AB) = C2(A)C2(B)

and C2(A)(v1 ∧ v2) = Av1 ∧ Av2 (see [1]). We write C2(A) ≥ 0 if all entries are
non-negative.

LEMMA 3.1. Let A be a 3 × 3 complex non-Pisot matrix with complex eigenvalue λ

and corresponding eigenvector v ∈ R3. Assume C2(A) ≥ 0. Then Re(v) ∧ Im(v) is an
eigenvector of C2(A) corresponding to the eigenvector λλ.

For a proof, see [4]. Let sgn(x) ∈ {−1, 0, 1} be the sign function, x ∈ R, and extend to
x ∈ Rd . The following lemma will play an important role in the proof of our main theorem.
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LEMMA 3.2. Suppose σ : {a, b, c} → F({a, b, c}) \ {ε} is a complex non-Pisot general-
ized substitution with transition matrix Mσ . Assume C2(Mσ ) is non-negative and primitive.
If λ, λ and θ are the eigenvalues of Mσ , then the eigenvector n corresponding to the real
eigenvalue θ of MT

σ satisfies sgn(n) = [1 −1 1]T .

Proof. By a standard result in linear algebra, n is orthogonal to the expanding real
eigenplane corresponding to the eigenvalue λ in Mσ with complex eigenvector v.
Let n = Re(v) × Im(v). By the Perron–Frobenius theorem there is an eigenvector u
for the Perron–Frobenius eigenvalue ω of C2(Mσ ). Since Mσ is complex non-Pisot,
Lemma 3.1 implies ω = λλ. We know u = Re(v) ∧ Im(v) = [P1 P2 P3]T , where Pi =
det([Re(v) Im(v)][i]). However, we know that n = Re(v) × Im(v) = [P1 −P2 P3]T .
Since u > 0, it follows that n must have the asserted sign pattern.

Given a plane P through the origin, and an orthonormal set of vectors {v1, v2} spanning
P, we define the mapping πP : R3 → R2 as πP (x) = [a1 a2]T , where x = a1v1 + a2v2 +
a3(v1 × v2). Note that the orthogonal projection of x onto P is a1v1 + a2v2. Similarly,
the mapping π⊥

P : R3 → R satisfies π⊥
P (x) = a3, where a3 is defined as above. Again, it is

worth noting that a3(v1 × v2) is the orthogonal projection onto the orthogonal complement
of P. The mapping πP will be used to construct tilings from the stepped surfaces we will
construct in the sequel. While the mapping πP depends on the choice of orthonormal basis,
the choice of basis does not affect the mixing properties of the tiling. This is because
a different orthonormal basis will simply create a rotation of the original tiling while
preserving all the angles between the sides of the tiling. Lastly, we define π

R2 : R3 → R2

as πR2([a b c]T ) = [a b]T .
A plane P ⊆ R3 with 0 ∈ P is an irrational plane if P ∩ Z3 = {0}. A lattice L is a

discrete subset of R3 which is closed under vector addition and is co-compact (in other
words, R3/L is compact). A lattice L is said to be an irrational lattice if the projection
map πR2 on L is injective and πR2(L) is dense in R2. The following lemmas are simple
geometric results, but they will be important in the sequel.

LEMMA 3.3. Suppose n is a normal vector to a plane P in R3. Then the P plane is
irrational in R3 if and only if n has linearly independent entries over Q.

LEMMA 3.4. Let v1 = [a1 a2]T , v2 = [b1 b2]T , v3 = [c1 c2]T in R2. If the entries
in the vector u = [a1 b1 c1]T × [a2 b2 c2]T are linearly independent over Q, then
SpanZ{v1, v2, v3} is dense in R2.

Proof. Since u = [u1 u2 u3]T has linearly independent entries over Q, it follows that
u3 	= 0, and thus the matrix [v1 v2] is invertible. Define A = [v1 v2]−1 and w3 = Av3.
It is easy to show that the entries of w3 have ratio u1/u2, which must be irrational as u1

and u2 are rationally independent. Since A is a change of basis matrix on R2, it is enough
to show that SpanZ{e1, e2, w3} is dense in R2. Define T : T2 → T2 by T (x) = (x + w3)

mod 1, and note that T is strictly ergodic and thus minimal. Now choose any (x, y) ∈ R2

and fix any ε > 0. Since OrbT (0) is dense in T2, there is an n ∈ N such that T n(0) = (nw3)

mod 1 ∈ Bε((x, y)mod 1). Take [k l]T = [�x� �y�]T − �nw3�. Then [k l]T + nw3 =
ke1 + le2 + nw3 ∈ Bε(x, y), which gives us that SpanZ{e1, e2, w3} is dense in R2.
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LEMMA 3.5. Let Pn be a plane with normal vector n. If sgn(n) = [1 −1 1]T ,
then 0 < 	 πPn(e1)πPn(e2) ≤ (π/2), 0 < 	 πPn(e2)πPn(e3) ≤ (π/2) and (π/2) ≤
	 πPn(e1)πPn(e3) < π , where 	 vw denotes the angle between the vectors v and w.

The following lemmas about lattices are important in the sequel.

LEMMA 3.6. Let L be any irrational lattice of R3. Then, for any ε > 0, there exists an
N > 0 such that ([−ε, ε]2 × [−N , N]) + L = R3

Proof. Let K be compact with L + K = R3. Choose a > 0 such that [−a, a]3 ⊇ K .
Fix ε > 0. By compactness, there exist v1, v2, . . . , vn ∈ L such that [−a, a]2 ⊆⋃n

i=1([−ε, ε]2 + (vi )x,y). Choose N so that K ′ = ⋃n
i=1((vi )z + [−a, a]) ⊆ [−N , N].

To see that ([−ε, ε]2 × [−N , N]) + L = R3, choose any w ∈ R3. We know there exists
u ∈ L such that w ∈ K + u. There exists vi such that (w)x,y − (u)x,y ∈ [−ε, ε]2 + (vi )x,y .
Now we note that (vi )z − (u)z − wz ∈ [−a, a] ⊆ [−N , N]. Thus, w ∈ K + u.

LEMMA 3.7. Let ([−a, a] × [−b, b] × [−c, c]) + L = R3. Then (v + ([−a, a] ×
[−b, b] × [−c, c])) ∩ L 	= ∅, for all v ∈ R3.

Proof. Let K = [−a, a] × [−b, b] × [−c, c] and choose any v ∈ R3. Since K + L = R3,
we know there is an l ∈ L such that v ∈ l + K . Since 0 ∈ K , we know that l ∈ l + K . Now
we consider v + K . As before, we see that v ∈ v + K . Thus (l + K) ∩ (v + K) 	= ∅ and
l − v = k ∈ K . So, l = v + k ∈ v + K .

LEMMA 3.8. Let L be an irrational lattice in R3. For ε > 0, there exists an N > 0
such that for all (x, y) ∈ R2, there exists (s, t) ∈ π

R2((R2 × [−N , N]) ∩ L) such that
‖(x, y) − (s, t)‖ < ε.

Proof. Fix ε > 0. By Lemma 3.6, if 0 < δ < ε/
√

2 then there is an N > 0 such that
K + L = R3, satisfying K = ([−δ, δ]2 × [−N , N]). Choose any x, y ∈ R. By Lemma
3.7, we know that ([x y 0]T + K) ∩ L 	= ∅. Let v be in that intersection. Thus
(s, t) = π

R2(v) ∈ π
R2((R × [−N , N]) ∩ L) and (s, t) ∈ ([−δ, δ]2 + [x y]T ). Since

0 < δ < ε/
√

2, it follows that [−δ, δ]2 ⊆ Bε(0). This gives us that (s, t) ∈ Bε([x y]T ).
Therefore, we see that ‖(x, y) − (s, t)‖ < ε.

LEMMA 3.9. Suppose n is a normal vector to a plane P with basis {v1, v2} and let A be
the matrix such that Av1 = e1, Av2 = e2 and An = e3. If P is an irrational plane, then
the lattice L = AZ3 = {Av : v ∈ Z3} is an irrational lattice.

Proof. Assume {v1, v2, n} are orthonormal. Then A = [v1 v2 n]T . So, if v1 =
[a1 a2 a3]T , v2 = [b1 b2 b3]T and n = [n1 n2 n3]T , then w1 = πR2(Ae1) = [a1 b1]T ,
w2 = πR2(Ae2) = [a2 b2]T and w3 = πR2(Ae2) = [a3 b3]T . Thus, C2([v1 v2]) = v1 ×
v2 = n. Since by Lemma 3.3 n has linearly independent entries over Q, it follows from
Lemma 3.4 that SpanZ{w1, w2, w3} is dense in R2.
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4. Substitution tiling dynamical systems of R2 from generalized substitutions
Note that in what follows we will often identify R2 with C. Unless otherwise stated, we
will be assuming σ satisfies (1.1). Notice that the adjacency matrix Mσ is the companion
matrix for the monic algebraic polynomial g(x) = x3 + rx + q.

LEMMA 4.1. Let g(x) = x3 + rx + q, where r , q ∈ N. If q − 2 ≥ r , then the root λ of
g with the largest magnitude is complex non-Pisot. It satisfies |λ|3 ≥ r|λ|, |λ|3 ≥ q and
Re(λ) > 0.

We now include the additional assumption that q − 2 ≥ r . We denote the complex roots
of g by λ, λ, and the real root by θ . Notice that the row vector vσ = [1 λ λ2] is a left
eigenvector of Mσ for the complex eigenvalue λ.

Lemma 3.2 implies that the eigenvector nθ of Mσ corresponding to θ has sign pattern
[+ − +]T . Since the vector nθ is normal to the real eigenplane of MT

σ corresponding to λ,
we can write nθ = Re([1 λ λ2]T ) × Im([1 λ λ2]T ). Therefore, the orthogonal projection
onto the real eigenplane of MT

σ corresponding to λ is the projection defined on R3 by

πPnθ
v =

[
1 Re(λ) Re(λ2)

0 Im(λ) Im(λ2)

]
v.

We call this projection the Perron–Frobenius projection and denote it by πEλ . One
important consequence of the construction of the Perron–Frobenius projection is that we
get the angle relation described in Lemma 3.5.

Given a complex vector v = [va vb vc]T , define the position function ηv : {a, b, c} →
C by ηv(w) = vw, and extend it to a function η : F(A) → C, where η(i−1) = −η(i) and
η(w1w2) = η(w1) + η(w2) (see [4, 5, 8]). It will be important to relate words in F(A)

to paths along the edges of our tiling. We will call such paths, which are piecewise linear
but continuous, broken line curves. For any word w = w1w2 · · · wk ∈ F(A), we define
the broken line curve fw : [0, |w|] → C, by fw(x) = η(w1w2 · · · w�x�)(�x� + 1 − x) +
η(w1w2 · · · w�x�+1)(x − �x�). Clearly fw ends at the origin if and only if �(w) = 0. Also,
if w ∈ F(A) then λfw(|w|) = fσ(w)(|σ(w)|).
Definition 4.1. (Prototiles generated by generalized substitutions) Let j , k ∈ A with j <

k, and let [j , k] = jkj−1k−1 ∈ F(A) denote the commutator of j and k. The set of
prototiles generated by σ , which we will denote by Pσ , are the tiles ti whose support
is the region enclosed by the curve f[j ,k], where i, j , k are distinct.

For example, if σ is given by (1.1) with q = 3 and r = 1, then the left eigenvector of
Mσ corresponding to λ is [1 λ λ2] and Pσ is shown in Figure 1.

We call the vertex at the origin the anchor point of the prototile. We use the notation
(0, ti ) to refer a prototile ti as defined in Definition 4.1, where 0 denotes the location of the
anchor point. We denote by (x, ti ) the prototile ti translated by x ∈ C. Let XP be a tiling
space where |P| = d . For any patch P, define �′(P ) ∈ Zd where (�′(P ))i is the number of
prototiles ti in P.

Notice that �′((0, ti )) = ei and ei = ej ∧ ek , where i, j , k ∈ {a, b, c} are distinct and
j < k is in alphabetical order (here we identify {a, b, c} with {1, 2, 3}). In addition to our
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FIGURE 1. The prototiles ta , tb , and tc generated by σ .
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FIGURE 2. The substitution of the tile (0, b ∧ c).

previous notation for prototiles, we will use the notation j ∧ k, defined by j ∧ k := ti ,
where i, j , k are distinct, and j < k. We switch between the two notations whenever it is
convenient. Thus, ei = �′(ti) = �′(j ∧ k) = ej ∧ ek = �(j) ∧ �(k).

This new notation will require us to clarify some possible issues. Suppose i < j ;
since �′(i ∧ j) = �(i) ∧ �(j) = −�(j) ∧ �(j) = �(j−1) ∧ �(i) = �′(j−1 ∧ i), it is clear
that i ∧ j must be equivalent to j−1 ∧ i. However, the tile (x, i ∧ j) is not equal to the
tile (x, j ∧ i−1). They are equivalent, and we define (x, j ∧ i−1) = (x + η(i−1), i ∧ j).
We write (x, i ∧ j) + (y, k ∧ l), i < j , k < l to mean the tiles i ∧ j located at x and k ∧ l

located at y. For substitutions of the form (1.1) (see [5, 8]), we will be able to tile the plane.
This is generally not possible for arbitrary generalized substitutions (see [2, 3]).

Definition 4.2. (Tiling substitution) Let (x, i ∧ j), i < j be an arbitrary tile. We define
the substitution tiling, �, as �(x, i ∧ j) = ∑|σ(j)|

n=1 (λx + η(p
(j)
n ), w

(i)
1 ∧ w

(j)
n ), where

p
(i)
m , w

(i)
m , p

(j)
n and w

(j)
n are derived from σ(i)m and σ(j)n.

Example 4.2. Let σ be the generalized substitution of the form (1.1) with q = 3 and r = 1.
Then the substitution for b ∧ c is

�(0, b ∧ c) =
4∑

n=1

(λ0 + η(p
(j)
n ), w

(i)
1 ∧ w

(j)
n )

= (0, c ∧ a−1) + (−1, c ∧ a−1) + (−2, c ∧ a−1) + (−3, c ∧ b−1)

= (−1, a ∧ c) + (−2, a ∧ c) + (−3, a ∧ c) + (−3 − λ, b ∧ c).

This patch can be seen in Figure 2.
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q

r

b ∧ c

a ∧ c
q

a ∧ b

FIGURE 3. Substitution on the prototiles.

LEMMA 4.3. Suppose σ is a generalized substitution on {a, b, c}. Let C2(Mσ ) be the
2-compound matrix of the transition matrix Mσ . Figure 3 show � acting on the prototiles
for any q, r ≥ 1. Here we have shown how � acts on tiles. As usual � extends to a map
on patches. Then

C2(Mσ ) = [�′(�(0, b ∧ c)) �′(�(0, a ∧ c)) �′(�(0, a ∧ b))] =
⎡
⎣ r 0 1

q 0 0
0 q 0

⎤
⎦ .

Definition 4.3. (P∗
σ ) We define P∗

σ as the equivalence class of patches of Pσ such that
P ∈ P∗

σ if there exist a k ∈ N and an ti ∈ Pσ such that �k(ti) contains P.

A proof of the fact that �k(0, ti ) is a connected patch for each k ∈ N and ti ∈ P∗
σ can

be found in [8]. We choose a representative of each class of patches which has a boundary
vertex at the origin, such that the vertex is an anchor point of a prototile. We refer to the
patch P ∈ P∗

σ as (0, P), and P translated by x would be (x, P).

Definition 4.4. (Vertices of a patch) Let P ∈ P∗
σ . Then by Vert(P ) we denote the set of all

points in C that are vertices of the tiles contained in P.

Definition 4.5. (Front-end cancelation) A tiling substitution � is said to have no front-end
cancelation if for all ti ∈ P , λkx ∈ Vert(�k(x, ti )), for all k ∈ N.

It is easy to see that the tiling substitution � corresponding to σ of the form (1.1) has
no front-end cancelations on any P ∈ P∗

σ . This follows from our choice of representations
of the patches.

Definition 4.6. (Boundary map) Define the boundary map as the function ∂ : P∗
σ →

F(A), where, for any P ∈ P∗
σ , the boundary ∂(P ) is the word in F(A) such that the curve

f∂(P ) traces the boundary of P traversed with positive orientation (counterclockwise).

It is easy to see that if the path fw([0, |w|]) lies on Tσ , for some w ∈ F(A), then
fσ(w)([0, |σ(w)|]) also lies on Tσ . The following lemma provides the patch that will seed
the tiling for our substitution.
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FIGURE 4. A patch fixed by the tiling substitution � as mentioned in Lemma 4.4.
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FIGURE 5. This is �3(Pσ ) for q = 3, r = 1.

LEMMA 4.4. The tiling substitution � generated by σ fixes the patch �k(Pσ ) in the patch
�k+1(Pσ ), where Pσ is the patch shown in Figure 4.

Proof. It is easily shown that �(Pσ ) fixes Pσ if q − 2 ≥ r . For reference, Figure 5 shows
�(Pσ ) for the case q = 3, r = 1. The rest of the proof is just induction.

Now we can use the patch Pσ to generate a tiling of the plane. The argument in [8]
shows that limn→∞ �n(Pσ ) tiles the plane if �n(Pσ ) grows in every direction as n → ∞
The argument in [8] shows that limn→∞ �n(Pσ ) tiles the plane, see Figure 6. Extending
� to be a mapping on tilings, we see that by the construction of Tσ , we have �(Tσ ) = Tσ .
Define XTσ = Orb

R2(Tσ ), then the substitution dynamical system is (XTσ , R2).
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–20

20

FIGURE 6. This figure shows the tiling of R2 generated by a generalized substitution of the form (1.1) with q = 3
and r = 1.

The next lemma is important in §5. It shows that the patches contained in Tσ can always
be found within a power of the substitution of any prototile.

LEMMA 4.5. For every patch P in the tiling Tσ , there exists n ∈ N such that P is contained
in �n(ti), for all ti ∈ Pσ .

Proof. All that is required is to show that Pσ is in some power of ta . This is worked out in
Figure 7.

The following lemmas show some important properties of Tσ in relation to � and λ that
we use later. The proofs are simple computations and are omitted.

LEMMA 4.6. Let � be a tiling substitution generated by a generalized substitution σ .
Suppose that Tσ is a fixed point of �, and suppose � has no front-end cancelations. If
S ∈ XTσ and v ∈ Vert Tσ is such that S = Tσ − v, then �(S) = Tσ − λv.

LEMMA 4.7. Let Tσ be the fixed point of the tiling substitution � generated by σ , where
� has no front-end cancelations. Then λk Vert(Tσ ) ⊆ λk−1 Vert(Tσ ) ⊆ · · · ⊆ Vert(Tσ ).

Although we have not discussed the topological mixing of (Tσ , R2), the following is
already a clear consequence of Lemma 3.4.

THEOREM 4.8. If (XTσ , R2) is topologically mixing, then the areas of the tiles are linearly
independent over Q.

This follows from the fact that the areas are not linearly independent over Q, which
implies the displacement vectors between tiles must be discrete, and therefore not
eventually dense.
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FIGURE 7. Computations from the proof of Lemma 4.5.

5. Three-dimensional analysis of the tiling system
We will break the proof of Theorem 1.1 into two parts. The first part of the proof, covered
in this section, will show that if a certain three-dimensional structure is unbounded,
and the prototiles have rationally independent areas, then the tiling dynamical system is
topologically mixing. We begin by taking the two-dimensional tiling and lifting it to a
surface in R3 of square tiles whose vertices lie on Z3. We will call this surface �̃.

We start by labeling the origin of the tiling Tσ with 0 ∈ R3. Next, starting from 0 ∈ C,
we move from vertex to vertex along edges in Tσ , labeling the vertices with a point in R3.
If we traverse an edge corresponding to i ∈ {a, b, c} in the positive direction we add ei . If
we traverse i in the negative direction, then we add −ei . The labeling on a particular vertex
will depend on the labeling of the previous vertex, and which edge we traversed to reach
the new vertex. The vertices of a tile ti in Tσ lift to the vertices of a 1 × 1 square. This
process leaves us with a stepped surface in R3, which when viewed from an appropriate
angle will appear similar to the tiling it is lifted from. The surface is made up of facet
tiles, which are the 1 × 1 squares. These facet tiles are translations of unit squares in the
xy-, yz-, and xz-planes. We can think of them as the lifts of ta , tb and tc, respectively. We
will denote these facet tiles by t ′a = {0} × [0, 1] × [0, 1], t ′b = [0, 1] × {0} × [0, 1], and
t ′c = [0, 1] × [0, 1] × {0}.

Note that the labeling scheme for the vertices of Tσ is well defined. The equivalence
class of facet tiles, which we will call the facet prototiles, will be denoted by P ′

σ . The
collection of all facet patches that are contained in �̃ will be denoted by (P ′

σ )∗.
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Define the lifting of a tiling as a map ι : C → R3, where ι(C) = �̃. The map ι is
bijective on �̃, and thus invertible on its image. Therefore, ι has an inverse function, ι−1,
which is a type of projection of �̃. It is easy to verify that ι−1 is the Perron–Frobenius
projection πEλ from §4. From this, we can define the facet tiling substitution induced by �

as �′ : P ′
σ → (P ′

σ )∗ such that for every t ′ ∈ P ′
σ , �′(t ′) = ι(�(πEλ(t

′))). The definition
of �′ can be extended to a mapping �′ : �̃ → �̃. As a result, it is clear that �′(�̃) = �̃.

We can now take the definition of the broken line curve fw and extend it in the natural
way to a broken space curve f ′

w : [0, |w|] → R3 on the stepped surface. Note that if the
path f ′

w([0, |w|]) is contained in �̃, then the path f ′
σ(w)([0, |σ(w)]) is also contained in �̃.

Now we construct a subset of Z3 that can be thought of as encoding information
about the substitution tiling dynamical system. Let � = �̃ ∩ Z3. Take any v ∈ � and
consider � − v = {w ∈ Z3 : w + v ∈ �}. Then the projection πEλ(� − v) is the tiling
Tσ translated by πEλ(v), which is a point in R2 corresponding to a vertex in the tiling Tσ .
Thus, � = � − � = {u − v : u, v ∈ �} is the lifting of all the shifts of the tiling Tσ by the
vectors corresponding to the vertices in Tσ . Next, we will consider words that correspond
to paths along our tiling. In particular, we are interested in paths that do not contain
backtracking. We call the corresponding words good words.

Definition 5.1. A word w is a good word if |�a(w)| + |�b(w)| + |�c(w)| = |w|.

A word is good because all powers of a particular letter have the same sign. For example,
w = ab−1acb−3c4 is good since |w| = 11 and |�a(w)| + |�b(w)| + |�c(w)| = 2 + 4 + 5.
However, w′ = ab−3acb−3c4b2 is not good. Let v ∈ �. A word w is a good word for v if
w is a good word and �(w) = v. The following will be important in the sequel.

LEMMA 5.1. Let v ∈ �. Then there is a good word corresponding to v.

Proof. Let v ∈ � and w ∈ F({a, b, c}), where �(w) = v, and assume w is not a good
word. Then we can find a smallest subword of w of the form iw′i−1, where w′ is a
good word. We will prove that we can always replace iw′i−1 with a word w1iw2i

−1 (or
iw2i

−1w1) in w to get a new word u where |w2| < w′ and �(u) = �(w). This tells us that
we can eventually cancel any i and i−1 pairs from w and still have �(w) = v. In this proof
we will consider one of several cases, as each case works out similarly. Assume that i = a.
If w′ contained a or a−1, then there would be a smaller subword of the given form, which
is a contradiction. If w only contains one type of letter, say b, then abb . . . ba−1 would
define a sequence of a ∧ b tiles in which the path goes from the lower left of the first tile
to the upper left of the last tile. Then we could replace abb . . . ba−1 in w with bb . . . b

which eliminates the bad subword, and we still have �(w) = v. Now assume w′ contains
the letters b and c and that w′ starts with the letter b. Then w′ will have some sequence of
bs eventually followed by a c. Notice that the edges corresponding to a and b can be tiled
in two ways, either with one a ∧ b tile or with an a ∧ c and b ∧ c tile. If it is tiled in the
second way, then the tiling of abb . . . bc is fixed, since we now have a consecutive c−1

and b edge. This forces all remaining tiles to be b ∧ c tiles. If we start with a ∧ b, then
we continue to see a ∧ b tiles until the last tile, which must be a ∧ c. Lastly, it is possible
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FIGURE 8. Possible tilings of edges corresponding to abb . . . bc.

FIGURE 9. The prototiles of a unit tiling Uσ .

to see a sequence of a ∧ b followed by a ∧ c. Again, as in the first case, all remaining
tiles are fixed and must be b ∧ c. See Figure 8. If we have the first case, we can substitute
cabb . . . b for abb . . . bc. If we have the second case, we can substitute bb . . . bca. In the
third case, we can substitute bb . . . bcabb . . . b. In all three cases, a and a−1 are closer
together than before and the result follows. If v ∈ �, then v ∈ � − u for some u ∈ �. We
would follow the same proof in this case as before, except replacing paths along � − u for
paths along �.

Now we want prove that there are no holes in �. In other words, if (x, y, z), (x, y, z′) ∈
�, then we have (x, y, z′′) ∈ �, for all (x, y, z′′) ∈ Z3 with z < z′′ < z′. To do this, we
introduce the idea of a unit tiling.

Definition 5.2. (Unit prototiles) The set of unit prototiles, denoted PU , is the collection
of tiles ua , ub, and uc in C of parallelograms where Vert(ua) = {0, i, −1 + 2i, −1 + i},
Vert(ub) = {0, 1, i, −1 + i} and Vert(uc) = {0, 1, 1 + i, i}. See Figure 9.

Define the tiling dynamical system (XPU , R2) as in §2. Due to the shape of the
unit prototiles, for any tiling T ∈ XPU

which has a tile with a vertex at the origin,
Vert(T ) = Z2. This gives us the following definition.
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FIGURE 10. Paths in Tσ corresponding to permutations of the word ab−1c.
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FIGURE 11. The process of obtaining a path corresponding to the word ab−1c as in Lemma 5.2.

Definition 5.3. (Unit tiling) A tiling T ∈ XPU
is a unit tiling if there exists a vector v ∈ R2

such that Vert(T − v) = Z2.

If YPU ⊆ XPU is the set of all unit tilings, then T − v ∈ YU if T ∈ YU and v ∈ Z2. This
defines a Z2 on YPU . Thus, (YPU , Z2) defines a dynamical system.

We will define the unit projection πU by πU (v) =
[

1 0 −1
0 1 1

]
v. Notice that nU =

[1 −1 1]T spans the kernel of πU , and for any ti ∈ Pσ , πU (ι(ti)) = ui . The following
lemma is important for establishing the relationship between our tiling Tσ and a unit tiling.

LEMMA 5.2. Let �̃ be the lifting of a tiling Tσ . Then πU (�̃) is a unit tiling.

Proof. First, notice that πU (�) ⊆ Z2. Since the angle between the planes Pnθ and PnU is
less than π/2, and πEλ maps � onto Pnθ , it follows that πU (�) = Z2. All that remains
is to show that πU is one-to-one on �. Suppose not. Then there exist v, w ∈ � such that
v − w = knU . If k = 1, then there is a good word w corresponding to knU which is a
permutation of the word ab−1c. However, it is easy to verify using the angle relations (see
Figure 10) that w cannot lead to a tiling Tσ , so w is not allowed. In the case k > 1, again
we have a good word w where �(w) = knU . But such a word must have a subword αβ−lγ ,
where α, β, γ are distinct characters. Assume the subword has the form ab−lc. In this case,
since b−1 follows a, the angle between the edges must be acute, which implies that ab−1

must be on the top side of the tile a ∧ b. Therefore, we have a tiling similar to Figure 11,
which implies again we have a path ab−1c, giving a contradiction.

We will denote the unit tiling of σ by Uσ . In other words Uσ = πU (ι(Tσ )). Figure 12
shows a unit tiling generated from the generalized substitution of the form (1.1), where
r = 1 and q = 3.
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FIGURE 12. The unit tiling of R2 constructed from the tiling generated by a generalized substitution of the form
(1.1) where q = 3 and r = 1.
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FIGURE 13. All possible edge configurations, called SWONT graphs, labeled with their height values.

Instead of thinking of a unit tiling Uσ as a tiling of the plane, we will visualize it as
an infinite graph whose edges are the boundaries of the tiles and whose vertices are all
in Z2. If we look at any 1 × 1 square in R2 with vertices on Z2, there are only five possible
arrangements of edges and vertices in Uσ . See Figure 13. We refer to these graphs as
SWONT graphs, in reference to their appearance (the letters S, W, O, N, and T).

Definition 5.4. (Height function) Assume A = {a, b, c}. Let (x, y) ∈ Z2 and suppose w =
w1c

n1w2c
n2 . . . wkc

nkwk+1 ∈ F(A), where wi ∈ F(A \ {c}), such that πU (f ′
w([0, |w|]))

is a sequence of tile edges in Uσ starting at (0, 0) and ending at (x, y). Define the height
function h : Z2 → Z by h(x, y) = n1 + n2 + · · · + nk .

It is not hard to see that h(x, y) = π⊥
R2((πU )−1(x, y)), x, y ∈ Z, where (πU )−1 :

R2 → �̃. Thus, the map h is well defined by Lemma 5.2, and it follows that the height
of a vertex in Uσ is independent of the path chosen to reach that point. Since (πU )−1 is
defined on R2, this allows us to extend h to a function h̃ : R2 → R. Therefore, we can view
�̃ as surface defined as the graph of a function of two variables on R2.

We can further extend the definition of the height function to any translations of �̃ by
a vector v ∈ Z2. Define hv(x, y) as the height function where Uσ is replaced by Uσ − v.
Finally, we define hmax(x, y) = maxv∈Z2{hv(x, y)} and hmin = minv∈Z2{hv(x, y)}.

Consider each SWONT graph on Z2 with the origin at the lower right-hand side of the
graph. Then, using h, we will label the height numbers on the lower left and upper right
vertices. See Figure 13. For each (x, y) ∈ R2, the number of edges in the shortest path
from (0, 0) is bounded by 3(|x| + |y|). Thus, there always exists a finite path to (x, y) in
Uσ − v, for all v ∈ R2, and since the height function is independent of path, it is clear that
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FIGURE 14. To help clarify the proof of Lemma 5.3. The difference in height in this case is zero.

hmax(x, y) and hmin(x, y) are always finite. The following two lemmas prove that � has
no holes.

LEMMA 5.3. Let (x, y) ∈ Z2 and v ∈ Z2. Then |hv − hv±ei
(x, y)| ≤ 1.

Proof. We will only prove this for e1 and −e2. The proof of all other cases follows
similarly with Figure 13 changed. When a path from (0, 0) to (x, y) is shifted (in this
case by either −e1 or e2, then two SWONT graphs are added to the end of any new path
(with (0, 0) being appropriately translated). See Figure 14. Therefore, Figure 13 tells us
that the difference in height is not more than ±1.

LEMMA 5.4. Let (x, y) ∈ Z2. For any n ∈ Z such that hmin(x, y) ≤ n ≤ hmax(x, y) there
is a vector v ∈ Z2 such that hv(x, y) = n.

This basically follows from Lemma 5.3 since the height can only change by ±1 as we
move from vertex to vertex.

Suppose (x, y) is a vertex in Uσ − w, and w′ ∈ � satisfies πU (w′) = w. Let (x′, y′, z)

be the unique vector in � − w′ such that πU (x′, y′, z) = (x, y), and thus hw(x, y) = z.
Since πU has a null space spanned by the vector nU , it follows that for the line L in the
direction of nU through the point (x, y, z), that (x′, y′, z′) ∈ Z3 ∩ L is contained in � if
hmin(πU (x, y, z)) ≤ z′ ≤ hmax(πU (x, y, z)). This implies that � contains no jumps. As
with h, we can extend hv, hmax, hmin to maps from R2 → R. Define �̃ = {(x, y, z) ∈ R3 :
h̃min(πU (x, y)) ≤ z ≤ h̃max(πU (x, y))}.
THEOREM 5.5. Let f , g : R2 → R such that f (x) ≥ 0 and g(x) ≤ 0. If for any
R > 0 there exists a compact set K ⊆ R2 such that f (x) > R and g(x) < −R for all
x ∈ R2 \ K , then πR2(� ∩ L) is eventually dense in R2 where � = {(x, y, z) ∈ R3 :
g(x, y) ≤ z ≤ f (x, y)} and L is an irrational lattice.

Proof. Fix any ε > 0. By Lemma 3.8, we know that there is an R > 0 such that
π
R2((R2 × [−R, R]) ∩ L) is ε-dense. From the properties of f and g, we know there exists
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an N > 0 such that for all ‖x‖ > N , f (x) > R and g(x) < −R. Therefore, πR2((R2 \
BN(0) × [−R, R]) ∩ L) is ε-dense in R2 \ BN(0), and thus πR2(� ∩ L) is eventually
dense.

We will show that if � ‘grows without bound’ in the direction nU as we
move in the xy-plane away from the origin and if the entries of n are linearly
independent over Q, then (XTσ ,n , R2) is topologically mixing, where Tσ ,n = πPn(ι(Tσ )).
Given a facet patch P in �̃, we define the locator set by LP (�̃) = {v ∈ R3 :
there exists facet patch P ′ in �̃ such that P = P ′ − v}.
LEMMA 5.6. The stepped surface �̃ corresponding to Tσ with facet tiles t ′a , t ′b and t ′c
satisfies � ⊆ ⋃

i,j∈{t ′a ,t ′b ,t ′c}(Li (�̃) − Lj (�̃)).

Proof. For any u ∈ � there are two vectors v, w ∈ � such that v − w = u. Since v, w ∈
�, there are facet tiles t ′v and t ′w satisfying t ′v − v, t ′w − w ∈ {t ′a , t ′b, t ′c}. Thus, v ∈ Lt ′v(�̃)

and w ∈ Lt ′w(�̃), which implies that u ∈ Ltv(�̃) − Ltw(�̃) ⊆ ⋃
i,j∈{t ′a ,t ′b ,t ′c}(Li (�̃) −

Lj (�̃)).

LEMMA 5.7. For any k ∈ N, we have Mk
σ � = {Mk

σ v : v ∈ �} ⊆ �.

Proof. For any Mkv ∈ Mk�, there is a u ∈ � such that v − u ∈ �. Choose w ∈ F(A)

such that �(w) = v − u. Since Tσ is fixed by �, it follows that fσ(w) is also a path in Tσ

and thus f ′
σ(w) is a path in �. Since Mk(�(w)) = Mkv − Mku, it follows that Mkv − Mku

is also in �. The same argument proves that Mku ∈ �, so Mkv ∈ �.

Define �(P ′
1, P ′

2) = (LP ′
1
(�̃) − LP ′

2
(�̃)), where P ′

1, P ′
2 are two facet patches. The set

� is said to be unbounded if for any R > 0 there exists a compact set K ⊆ R2 such that
for all v ∈ R2 \ K , we have h̃max(v) − h̃min(v) ≥ R.

THEOREM 5.8. If n has linearly independent entries over Q and � is unbounded, then
(XTσ ,n , R2) is topologically mixing, where Tσ ,n = πPn(�̃).

Proof. Choose patches P1, P2 ∈ P∗
σ . By primitivity, there exists k ∈ N such that

P1, P2 ⊂ �k(ti), for all ti ∈ {ta , tb, tc}. It suffices to show that the displacement
vectors between �k(ti) and �k(tj ), for all ti , tj ∈ {ta , tb, tc}, are eventually dense.
Equivalently, it is enough to prove πEλ(ϒ) is eventually dense in R2, where ϒ =⋃

t ′i ,t ′j ∈{t ′a ,t ′b ,t ′c} �((�′)k(t ′i ), (�′)k(t ′j )).
To show Mk� ⊆ ϒ , choose any z ∈ � and let z = u − v, where u, v ∈ �. We can

find u, v ∈ � such that u − v = z and there exist facet tiles t ′1 and t ′2 such that (u, t ′1) and
(v, t ′2) are contained in �̃. Thus, there is a path which starts at u and ends at v. In other
words, there is a word w ∈ F(A) such that f ′

w([0, |w|]) is a path on �̃ − u. Notice that
�(w) = z, so �(σ k(w)) = Mkz. Since fw is contained in Tσ − πEλ(u), and by Lemma 4.6
�k(Tσ − πEλ(u)) = Tσ − λkπEλ(u), it follows that f ′

σk(w)
([0, |σk(w)|]) is a path from

(�′)k(t ′1) to (�′)k(t ′2). Since f ′
σk(w)

(|σk(w)|) = λkz and πEλ is one-to-one, it follows that

Mkz ∈ ϒ .
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Finally, we prove that πEλ(M
k�) is eventually dense. Assume {v1, v2} is a basis for Pn.

Let A be the matrix which takes v1 to e1, v2 to e2, and n to e3. It follows from Lemma
3.4 that AMkZ3 is an irrational lattice, with AMk� as a subset. Since �̃ is unbounded,
it follows that AMk� is unbounded. By Theorem 5.5, πR2(AMk�) is eventually dense.
Since πPn(M

k�) = πR2(AMk�), it follows that (XTσ ,n , R2) is topologically mixing.

6. Non-Pisot implies � is unbounded
In this section we will show that if σ is a generalized complex non-Pisot substitution,
then � is unbounded. The main idea of the proof is that the stepped surface �̃ will
follow the two-dimensional eigenplane, as it is the dominant subspace. However, since the
one-dimensional eigenspace is also expanding it will pull the stepped surface arbitrarily
far away from the two-dimensional eigenspace, but nevertheless it must always eventually
return (and actually intersect the two-dimensional eigenspace).

We note that if σ satisfies equation (1.1) with complex eigenvalue λ, then Eλ is not
perpendicular to the xy-plane in R3. Fix v an eigenvector of Mσ corresponding to λ, and
let n′

θ be an eigenvector of MT
σ corresponding to the real eigenvalue θ . Define πE′

λ
= πPn′

θ

and π⊥
E′

λ

= π⊥
Pn′

θ

. Notice that for any u ∈ Eλ, π⊥
E′

λ

(u) = 0. Also, since Lemma 3.2 implies

that nθ and n′
θ have the same sign pattern, it follows that π⊥

E′
λ

(nθ ) = 〈n′
θ , nθ 〉 > 0.

LEMMA 6.1. For all k ≥ 3, ‖�(σ k(a))x,y‖ > 0.

This is a simple induction proof, and is omitted. It will be useful to replace σ with σN ,
where N is even and ‖�(σ ′k(i))x,y‖ > 0 for all k ≥ N . Additionally, we will assume that
σ satisfies all properties given in §5.

LEMMA 6.2. Let α = log(|θ |)/ log(|λ|). There exist positive constants L1, L′
1, L2, L′

2
such that for all k ≥ 1,

L1|λ|k ≤ ‖(�(σ k(j)))x,y‖ ≤ L′
1|λ|k , j ∈ {a, b, c, a−1, b−1, c−1} (6.1)

and

L2|θ |k ≤ |π⊥
E′

λ
(�(σ k(i)))| ≤ L′

2|θ |k = L′
2|λ|kα . (6.2)

Also, π⊥
E′

λ

(�(σ k(b))) < 0 for all k ≥ 1.

Proof. First we prove equation (6.1). Fix any j ∈ {a, b, c, a−1, b−1, c−1} and write
�(j) = a

(j)

1 λvλ + a
(j)

2 λvλ + a
(j)

3 θnθ , where a
(j)

1 , a
(j)

2 ∈ C and a
(j)

3 ∈ R. For any k ≥ 1,

�(σ k(j)) = (Mσ )k(�(j)) = a
(j)

1 λkv + a
(j)

1 λ
kv + a

(j)

3 θknθ . It follows that (�(σ k(j)))x,y =
a

(j)

1 λk(vλ)x,y + a
(j)

1 λ
k
(vλ)x,y + a

(j)

3 θk(nθ )x,y . Therefore,

‖(�(σ k(j)))x,y‖
|λ|k =

∣∣∣∣
∣∣∣∣a(j)

1
λk

|λ|k (vλ)x,y + a
(j)

1
λ

k

|λ|k (vλ)x,y + a
(j)

3

(
θ

|λ|
)k

(nθ )x,y

∣∣∣∣
∣∣∣∣.
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Let us consider ||a(j)

1 (λk/|λ|k)(vλ)x,y + a
(j)

1 (λ
k
/|λ|k)(vλ)x,y ||. Assume that (vλ)x,y =

f1 + f2i, arg(λ) = eiϕ , and a
(j)

1 = reiγ . Applying Euler’s formula and simplifying, we
obtain∣∣∣∣

∣∣∣∣a(j)

1
λk

|λ|k (vλ)x,y + a
(j)

1
λ

k

|λ|k (vλ)x,y

∣∣∣∣
∣∣∣∣ = 2r ‖f1 cos(kϕ + γ ) − f2 sin(kϕ + γ )‖
≤ 2r(‖f1‖ + ‖f2‖).

A simple calculation show that if ‖f1 cos(kϕ + γ ) − f2 sin(kϕ + γ )‖ is not bounded
away from zero, then f1 and f2 are linearly dependent. But this is impossible since
Eλ is not perpendicular to the xy-plane. Thus, there must exist ε > 0 such that
2r ‖f1 cos(kϕ + γ ) − f2 sin(kϕ + γ )‖ > ε for all k.

For each k ∈ N, define

γk =
∣∣∣∣
∣∣∣∣a(j)

1
λk

|λ|k (vλ)x,y + a
(j)

1
λ

k

|λ|k (vλ)x,y

∣∣∣∣
∣∣∣∣

and

βk =
∣∣∣∣
∣∣∣∣a(j)

1
λk

|λ|k (vλ)x,y + a
(j)

1
λ

k

|λ|k (vλ)x,y + a
(j)

3

(
θ

|λ|
)k

(nθ )x,y

∣∣∣∣
∣∣∣∣.

Since (θ/|λ|)k goes to zero as k → ∞, it follows that limk→∞(γk − βk) = 0. Thus, there
exists N ∈ N such that for all k ≥ N we have |γk − βk| < ε/2, which is to say 0 < ε/2 ≤
γk − ε/2 < βk < γk + ε/2. By assumption βk > 0, for all k ∈ N, and since there are just
finitely many k ≤ N , we can choose an L > 0 such that L ≤ βk for all k.

Also, since γk ≤ 2r(‖f1‖ + ‖f2‖) for all k ∈ N, and there are at most finitely
many k ≤ N , we can choose L′ > 0 such that βk ≤ L′, for all k ∈ N. Since βk =
‖(�(σ k(j)))x,y‖/|λ|k , we obtain equation (6.1).

To prove equation (6.2), we note that π⊥
E′

λ

(a
(j)

1 λkvλ + a
(j)

1 λ
kvλ) = 0. So,

|π⊥
E′

λ

(�(σ k(i)))| = |a(j)

3 ||θ |k|π⊥
E′

λ

(nθ )|, which gives us the desired result.

To prove the final statement, note that e2 = a
(b)
1 vλ + a

(b)
1 vλ + a

(b)
3 nθ , and π⊥

E′
λ

(vλ) =
π⊥

E′
λ

(vλ) = 0. Thus, π⊥
E′

λ

(e2) = (n′
θ )y < 0, by Lemma 3.2. Therefore, π⊥

E′
λ

(�(σ k(b))) =
π⊥

E′
λ

(Mk(e2)) = a
(3)
3 θk〈n′

θ , nθ 〉 < 0, since we are assuming θ > 0.

LEMMA 6.3. Choose any two vertices v, v′ ∈ Uσ and let wv, wv′ be the corresponding
good words. If (v)x < (v′)x , then �a(wv) ≤ �a(wv′), and if (v)y < (v′)y , then �b(wv) ≤
�b(wv′).

Proof. Without loss of generality, assume v = 0. Suppose �a(wv′) < 0. Since wv′ is a
good word, this implies wv′ contains at least one a−1 but no occurrences of a. By its
relative position in the tiling, wv′ contains at least one b and at least one c−1 but no
occurrences of b−1 or c. Therefore, by a similar argument to the proof of Lemma 5.2
there is a path which cannot be tiled. This is a contradiction. A similar argument shows
(v)y < (v)y′ .
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LEMMA 6.4. Choose δ ∈ N. If K = (0, δ) × (0, δ) contains a uc tile in Uσ , and w is a
good word for the vector (δ, 0) (similarly, w is a good word for (0, δ)), then �a(w) ≥ 1
(similarly, �b(w) ≥ 1).

Proof. Since uc is contained entirely in K, then choose two vertices vl (left vertex) and
vr (right vertex) on the bottom side of uc with corresponding good words wl and wr . By
path independence, it follows that 0 ≤ �a(wl) < �a(wr). Since (vr )x < δ, it follows from
Lemma 6.3 that 1 ≤ �a(wr) ≤ �a(w).

By the repetitivity of Tσ (see [8]) (and thus Uσ ), we can find a δ ∈ N large enough
that any shift of the square K = (0, δ) × (0, δ) contains a tile of type uc. If we tile Z2 by
translates of K on top of Uσ , then it is clear that at the point (xk, yk) ∈ Z2, any good word
w corresponding to (xk, yk) will have |�a(w)| ≥ |x| and |�b(w)| ≥ |y|. As we move from
vertex to vertex in Uσ , the number of letters a and b in w can change by at most one. Thus,
if we want to find a vertex in Uσ that has a good word w with �a(w) = x and �b(w) = y,
it suffices to look in the box K ′ = [−|x|δ, |x|δ] × [−|y|δ, |y|δ].

LEMMA 6.5. Suppose that, for any k ∈ N, there exist a patch P contained in Tσ , and a path
with at least k consecutive edges corresponding to the character c in P. Then � = Z3.

Proof. Choose (d, e) ∈ Z2, and fix k ∈ N. Want to prove there exists a (d , e, z) ∈ � such
that z ≥ k. Choose δ > 0, and define K and K ′ as in the paragraph above. It follows from
Lemma 6.4 that there must be a vertex v ∈ Z2 ∩ K ′ with good word w such that �a(w) = d

and �b(w) = e. Since K ′ is bounded, it is clear that there exists γ > 0 where h(x, y) < γ

for all (x, y) ∈ K ′ ∩ Z2. Let v1 ∈ Uσ be a vertex that has at least z + γ consecutive c
edges. Notice that our choice of δ is independent of the shift of Uσ . Thus, in Uσ − v1, we
can find a vertex v2 ∈ K ′ ∩ Z2 such that there is a good word w in which �a(w) = −d and
�b(w) = −e. Thus, the vertex −v2 in Uσ − v1 − v2 will have at least γ + z consecutive
c edges. Notice that v1 − v2 ∈ Z2, and thus the lift of −v2 must be contained in �.
Therefore, the vertex −v2 + (γ + z)[−1 1]T will have a corresponding good word w′ in
which �(w′) = [d e z′]T , where z′ > γ + z − γ = z. This proves no upper bound for any
(d, e) ∈ Z2, and a similar argument shows no lower bound.

If there are an unbounded number of c edges in a row, then � is unbounded. Now we
deal with the case that there is a maximum number of consecutive c edges.

LEMMA 6.6. Choose any (i, j) ∈ Z2 with
√

i2 + j2 > 0. For any v ∈ � such that
(v)x,y = (i, j), there exists a number n ∈ N (independent of v) such that |λ|n‖(v)x,y‖≥‖
πEλ(v)‖.

Proof. Let w be a good word for v. Assume that the maximum number of consecutive
c edges is k. It follows that we can place at most k occurrences of c (or c−1) between the
letters a or a−1, and b or b−1. Since there are |i| + |j | + 1 locations to place the k occur-
rences of c, it follows that |(v)z| ≤ |i|k + |j |k + k. Therefore, ‖πEλ(v)‖≤ |i| + |λ||j | +
|i|k|λ|2 + |j |k|λ|2 + k|λ|2 ≤ |λ2|((|i| + |j |)(1 + k) + k) ≤ 2|λ|2(|i| + |j |)(1 + k). Since
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‖(v)x,y‖ > 0, the relative growth rate of |i| + |j | and
√

i2 + j2 is equal, and k only
depends on σ , the result follows.

For the next lemma consider the tiling λkTσ , for different k ≥ 0 superimposed on top of
each other. To get from one vertex to another vertex in Tσ , we can travel along the edges of
any tiles of the λjTσ , 0 ≤ j ≤ k. We think of the edges in the large scalings as highways,
and we want to travel as far as we can on the straightest highways. We formalize this idea
in the proof of the following lemma. This idea is due to [9].

LEMMA 6.7. (Accordion form for paths in patches) For any v ∈ �, there exists t ∈ F(A)

where f ′
t (|t |) = v, and t can be expressed as

t = s0σ(s1) · · · σk−1(sk−1)σ
k(ck)σ

k−1(pk−1) . . . σ (p1)p0, (6.3)

where si , pj and ck are in F(A), and ‖�(σ k(a))x,y‖ ≤ ‖(v)x,y‖ .

Proof. Assume that ‖(v)x,y‖ > 0. Let πEλ(v) = w ∈ C. There exists a u ∈ C such that
w ∈ Vert(Tσ ) − u. Define Sk = λk Vert(Tσ ) − u, for all k ≥ 0. Lemma 4.7 implies that
S0 ⊇ S1 ⊇ S2 ⊇ · · · . Choose the largest k ∈ N such that ‖�(σ k(i))x,y‖ ≤ ‖(v)x,y‖, for all
i ∈ A. Choose the smallest l such that |λ|l ‖(v)x,y‖ ≥ |w|. Note that Lemma 6.6 implies
that l ≤ n, where n depends only on the substitution and not on v. Lemma 6.2 implies that
L′

1|λ|k+l+1| ≥ ‖�(σ k+1+1(i))x,y‖ ≥ |λ|l ‖(v)x,y‖ ≥ |w|, for some i ∈ A. Recall that
L′

1 only depends on σ . Notice that λTσ − u is a blown-up version of the tiling of Tσ − u.
Consider the tiling λl+k+1Tσ − u. Suppose (xk , λktk) contains 0 and (yk , λkt ′k) contains
w. Select the vertex ak ∈ (xk , λktk) closest to w and the vertex bk in (yk , λkt ′k) closest to
0. Now choose the shortest edge path γk on λkTσ − u between ak and bk . Since there is
a one-to-one correspondence between finite paths on a tiling and finite words, there is a
word wk ∈ F(A) such that λkfwk

([0, |wk|]) + ak = γk . We will set ck = wk . Our careful
choice of k ensures that there exists an i ∈ A such that ‖�(σ k(i))x,y‖ ≤ ‖(v)x,y‖. Note
that the number of choices for ck is finite by the local finite condition on Tσ .

Now consider λk−1Tσ − u. In a similar fashion as earlier, we can find tiles
(xk−1, λk−1tk−1) and (yk−1, λk−1tk−1) that contain 0 and w. Choose ak−1 and bk−1 such
that ak−1 is the closest vertex to w and bk−1 is the vertex closes to 0. Since ak , bk ∈ Sk ,
and Sk ⊆ Sk−1, there must be an edge path in λk−1Tσ − u connecting ak to ak−1, and
bk to bk−1. Again, choose the shortest path. We refer to the word corresponding to the
path from ak−1 to ak−2 as sk−2, and the path from bk−1 to bk−2 as pk−2. We continue
in this manner until we have words s0, . . . , sk−1, ck , pk−1, . . . , p0 ∈ F(A). Let t =
s0σ(s1) · · · σk−1(sk−1)σ

k(ck)σ
k−1(pk−1) · · · p0 ∈ F(A); it follows that ft (|t |) = w,

and the lemma follows.

LEMMA 6.8. For any w ∈ �, there exists a constant C depending on σ such that
|π⊥

E′
λ

(w)| ≤ C ‖(w)x,y‖α , where α = log(θ)/ log(|λ|).

Proof. Choose any w ∈ �. By Lemma 6.7, there is a word w of the form w =
s0σ(s1) · · · σk−1(sk−1)σ

k(ck)σ
k−1(pk−1) · · · σ(p1)p0, for which f ′

w(|w|) = w. For
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any σ i(si), where 0 ≤ i ≤ k − 1 (this holds similarly for all σ i(pi)s and σk(ck)),
it follows that �(σ i(si)) = b1λ

ivλ + b2λ
ivλ + b3θ

inθ . Since π⊥
E′

λ

(vλ) = 0, it follows

that |π⊥
E′

λ

(�(σ i(si)))| = |b3||θ |n|π⊥
E′

λ

(nθ )|. Notice that b3 only depends on si and not
on the power of σ . Since the possible choices of the words ck , pi , si are finite, we
can choose a number C such that |π⊥

E′
λ

(�(σ i(si)))| ≤ C|θi | |π⊥
E′

λ

(nθ )|, for all words

ck−1, pi and si . Define C′ = C|π⊥
E′

λ

(nθ )|. Applying the triangle inequality, we get

|π⊥
E′

λ

(�(w))| ≤ 2C′ ∑k
i=0 |θ |i ≤ 2C′|θ |k/(|θ | − 1).

Notice that C′ depends on the generalized substitution but not on the path. Lemma
6.7 also tells us that ‖(w)x,y‖ = ‖�(w)x,y‖ ≥ ‖�(σ k(a))x,y‖. By Lemma 6.2, there
exits a constant C′′ such that C′′‖(w)x,y‖ ≥ (2C′/|θ | − 1)1/α|λ|k . Hence, |π⊥

E′
λ

(w)| ≤
2C′/(|θ | − 1)|λ|αk ≤ C′′‖(w)x,y‖α .

It is important to note that the surface �̃ divides R3 into two disconnected regions.
We will arbitrarily label one side of �̃ as being ‘above’ �̃, thus labeling the other region
‘below’ �̃. So, we cannot go from being ‘below’ �̃ to being ‘above’ �̃ in a continuous
way without passing through �̃.

LEMMA 6.9. Let v, w ∈ � and suppose there is u such that u + v is ‘above’ �̃ and u + w
is ‘below’ �̃. Then u ∈ � − �.

Proof. Let γ be a path on � that takes v to w. Then along the path from u + v to u + w
the path γ must intersect � at a point z. Let γ ′ be the subpath of γ from u + v to u + w
that intersects �. Then following the path γ ′ from v gives us v′ which is necessarily still
in � and also v′ + u is also in �. Thus, u = u + v′ − v′ ∈ � − �.

PROPOSITION 6.10. Let v ∈ Z3. If there exists a constant C′ > 0 such that 0 < |π⊥
E′

λ

(v)| <

C′‖(v)x,y‖α where α = log(|θ |)/ log(|λ|), then v ∈ � − �.

Proof. Suppose that π⊥
E′

λ

(v) < 0 and there is no w ∈ � such that v + w is on or below

� (it works similarly if π⊥
E′

λ

(v) > 0). Since 0 ∈ �, we know that v is above �. There
exists t1 ∈ � such that (t1)x,y = (v)x,y , and (t1)z < (v)z. Since t1 + v is above �, there
must a vector t2 ∈ � such that (t2)x,y = (t1)x,y + (v)x,y = 2(v)x,y and (t2)z < (t1)z +
(v)z < 2(v)z. Iterating this provides us with a sequence of vectors tm ∈ � such that
(tm)x,y = m(v)x,y and (tm)z < m(v)z. Since we know that π⊥

Eλ
(u) = 〈u, n〉 for any vec-

tor u, and (n)z > 0, it follows that π⊥
E′

λ

(tm) < mπ⊥
E′

λ

(v) = mπ⊥
E′

λ

(v)‖(v)x,y‖/‖(v)x,y‖ =
‖(tm)x,y‖−|π⊥

E′
λ

(v)|/‖(v)x,y‖. Lemma 6.8 implies that there is a constant C such that

π⊥
E′

λ

(tm) ≥ −C‖(tm)x,y‖α . This gives us −C‖(tm)x,y‖α ≤ π⊥
E′

λ

(tm) ≤ −C′′‖(tm)x,y‖. Or
simply we see that

C‖(tm)x,y‖α ≥ C′′‖(tm)x,y‖, (6.4)
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where C′′ = |π⊥
E′

λ

(v)|/‖(v)x,y‖ is a constant that depends only on v. However, for any

m > N , where N = (C/C′′)1/(1−α)‖vx,y‖−1, we see that

C‖(tm)x,y‖α = Cmα‖(v)x,y‖α = C
m

m1−α
‖(v)x,y‖α

< Cm

((
C

C′′

)1/(1−α)

‖(v)x,y‖−1
)α−1

‖(v)x,y‖α ,

since 0 < α < 1. Continuing, we see that

Cm

((
C

C′′

)1/(1−α)

‖(v)x,y‖−1
)α−1

‖(v)x,y‖α = mC′′‖(v)x,y‖ = C′′‖(tm)x,y‖.

Hence, C‖(tm)x,y‖α < C′′‖(tm)x,y‖ whenever m > N , which contradicts equation (6.4).
Therefore, we can find a w such that v + w is below �.

We now need to show that there is a w′ ∈ � such that v + w′ is above �. Suppose
there is no such w′ ∈ �. Again, since 0 ∈ �, we know that v is below �. Thus, there
is a vector t1 ∈ � such that (t1)x,y = (v)x,y and (t1)z > (v)z. Iterating as previously, we
get a sequence of vectors tm ∈ � such that (tm)x,y = m(v)x,y and (tm)z > m(v)z. Let us
define a sequence ζan = �(σn(b)), for all n ≥ 1. It is clear that each ζan belongs to �. By
Lemma 6.2, there are constants L1, L′

1, L2 such that

L1|λ|k ≤ ‖(ζak)x,y‖ ≤ L′
1|λ|k (6.5)

and

π⊥
E′

λ
(ζk) ≤ −L2|θ |k = −L2|λ|kα . (6.6)

Since the projections are linear, we can see that π⊥
E′

λ

(ζak) = π⊥
E′

λ

(ζak − tm) + π⊥
E′

λ

(tm).
Lemma 6.8 implies there is a C > 0 such that

|π⊥
E′

λ
(ζak − tm)| ≤ C‖(ζak − tm)x,y‖α = C‖(ζak − mv)x,y‖α . (6.7)

Let us define L3 = (L2/2C|λ|α)1/α and C′ = CL3/L
′
1. We define k to be the integer

satisfying

L3|λ|k ≤ ‖(v)x,y‖ < L3|λ|k+1. (6.8)

Choose the largest m satisfying m‖(v)x,y‖ ≤ ‖(ζk)x,y‖, and so that

‖(ζk − mv)x,y‖ < ‖(v)x,y‖. (6.9)

Applying (6.8) and (6.9) to (6.7) gives us

C‖(ζak − mv)x,y‖α < C‖(v)x,y‖α < C(L3|λ|k+1)α = CLα
3 |λ|(k+1)α . (6.10)

Since 0 < |π⊥
Eλ

| < C′‖(v)x,y‖α , it follows that π⊥
E′

λ

(v) > −C′‖(v)x,y‖α . Thus

π⊥
E′

λ
(tm) > −C′‖(v)x,y‖α > −C′m(L3|λ|k+1)α ≥ −C′ ‖(ζak)x,y‖

‖(v)x,y‖ Lα
3 |λ|(k+1)α ,

where the last inequality comes from our assumption on m. Continuing, equation (6.5) tells
us that −‖(ζk)x,y‖ ≥ −L′

1|λ|k and equation (6.8) tells us that ‖(v)x,y‖ ≥ L3|λ|k , which
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gives us that

−C′ ‖(tm)x,y‖
‖(v)x,y‖ Lα

3 |λ|(k+1)α ≥ −C′ L′
1|λ|k

L3|λ|k Lα
3 |λ|(k+1)α = −CLα

3 |λ|(k+1)α . (6.11)

Now we can use the inequalities (6.10) and (6.11) to give us

π⊥
E′

λ
(ζak) = π⊥

E′
λ
(ζak − tm) + π⊥

E′
λ
(tm) > −2CLα

3 |λ|(k+1)α = −L2|λ|kα . (6.12)

Hence, equation (6.12) contradicts equation (6.6). So, v ∈ � − � by Lemma 6.9.

Notice that, for every r ∈ R, there are an infinite number of vectors v ∈ R3 such that
π⊥

E′
λ

(v) = r . Explicitly, these are all the vectors v satisfying 〈n′
θ , v〉 = r , or the plane Pr

with normal vector n′
θ through the point (0, 0, r/(n′

θ )z). Recall that (n′
θ )z > 0. If r ≥ 0,

Proposition 6.10 implies that all the vectors w ∈ Pr in which ‖(w)x,y‖ > α
√

r/C′, are
contained in �̃. If r < 0, then if w ∈ Pr with α

√−r/C′ < ‖(w)x,y‖, Proposition 6.10
implies w ∈ �̃. Fix r > 0 and define F = {x : |〈x, nθ 〉| ≤ r/(nθ )z}, which is the set of all
points lying between the planes Pr and P−r , and D = {(x, y, z) : x2 + y2 < α

√
r/C′} ∩ F

(the cylinder x2 + y2 ≤ α
√

r/C′ lying between the planes Pr and P−r ). Therefore, if
x ∈ F \ D, then x ∈ �̃. Since D is compact, we can find a larger cylinder D′ with sides
that are parallel to the vector n′

θ and that also lies between the planes Pr and P−r . Clearly
F \ D′ ⊆ F \ D ⊆ �̃. Thus, for all x ∈ (F \ D′) ∩ Pr , there is a corresponding vector
x′ ∈ (F ∩ D′) ∩ P−r such that x − x′ = kn′

θ , and ‖x − x′‖ = 2r . Since this is possible
for any r, this shows that �̃ is unbounded in the direction of n′

θ as we move away from
the origin in the xy-plane. What remains to be shown to prove Theorem 1.1 is that if
�̃ increases without bound in the direction of n′

θ , it also increases without bound in the
direction nU . We end with the proof of the main result.

Proof of Theorem 1.1. If the number of edges corresponding to c is unbounded, then � =
Z3 and Theorem 5.8 immediately implies the desired result. Otherwise, we need to use
Lemma 6.10. Notice that nU is not parallel to the real eigenplane E′

λ. Therefore, any line
in the direction of nU must intersect both Pr and P−r , for any r > 0. Fix r and construct
D′ and F as in the previous paragraph. Since D′ is compact, we can construct a cylinder
D′′ lying between Pr and P−r whose sides are parallel to nU , and which contains D′.
Choose any point x ∈ (F \ D′′) ∩ Pr ; by the construction of D′′ there must be a point
x′ ∈ (F \ D′′) ∩ P−r such that x − x′ = knU . Thus, ‖x − x′‖ ≥ 2r , which means that, by
Lemma 6.10, if σ satisfies (1.1), then � is unbounded. Recall that n is a vector with entries
that are linearly independent over Q. Therefore, by Theorem 5.8, the substitution tiling
dynamical system (XTσ ,n , R2), where Tσ ,n = πPn(ι(Tσ )) is topologically mixing.

Acknowledgements. This is work from my dissertation, and I am very grateful for the
help of my dissertation adviser E. Arthur Robinson, Jr. I would also like to thank Boris
Solomyak for suggesting this problem.

https://doi.org/10.1017/etds.2021.100 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.100


3550 T. White

REFERENCES

[1] A. C. Aitken. Determinants and Matrices. Oliver and Boyd, Edinburgh, 1939.
[2] P. Arnoux, M. Furukado, E. Harriss and S. Ito. Algebraic numbers, free group automorphisms and

substitutions on the plane. Trans. Amer. Math. Soc. 363(9) (2011), 4651–4699.
[3] P. Arnoux and S. Ito. Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2) (2001),

181–207.
[4] M. Furukado, S. Ito and E.A. Robinson Jr. Tilings associated with non-Pisot matrices. Ann. Inst. Fourier

(Grenoble) 56(7) (2006), 2391–2435. Numération, pavages, substitutions.
[5] R. Kenyon. The construction of self-similar tilings. Geom. Funct. Anal. 6(3) (1996), 471–488.
[6] R. Kenyon, L. Sadun and B. Solomyak. Topological mixing for substitutions on two letters. Ergod. Th. &

Dynam. Sys. 25(6) (2005), 1919–1934.
[7] E. A. Robinson Jr. Symbolic dynamics and tilings of Rd . Symbolic Dynamics and Its Applications

(Proceedings of Symposia in Applied Mathematics, 60). American Mathematical Society, Providence, RI,
2004, pp. 81–119.

[8] B. Solomyak. Dynamics of self-similar tilings. Ergod. Th. & Dynam. Sys. 17(3) (1997), 695–738.
[9] W. Thurston. Groups, Tilings, and Finite State Automata: AMS Colloquium Lecture Notes (Research Report

GCG 1). Geometry Computing Group, Minneapolis, MN, 1989.

https://doi.org/10.1017/etds.2021.100 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.100

	1 Introduction
	2 Tiling dynamical systems and mixing
	3 Generalized substitutions, linear algebra, number theory and geometry
	4 Substitution tiling dynamical systems of R2 from generalized substitutions
	5 Three-dimensional analysis of the tiling system
	6 Non-Pisot implies Λ is unbounded
	Acknowledgements
	References

