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We consider the problem of estimation of the standard deviations and the process
capability indicesCp andCpm for a normally distributed process+ The problem is
addressed with the objective of obtaining optimal estimators under the classic cri-
terion of minimum variance unbiased estimation, as well as under the Pitman mea-
sure of closeness+

1. INTRODUCTION

When setting up a control chart for any process, it is customary also to monitor the
variability of the process using anR-chart or ans-chart+With today’s computational
ease and routine automation of such processes, s-charts are often preferred over
R-charts, as the former uses the information available in the form of samples more
effectively and to a much greater extent+ If m is independent random samples of
equal sizen are assumed to have come from a normal process with meanm and
variances2, then ans-chart plots the values of the sample standard deviationsf for

the future samples+ SinceE~sf ! 5 c4,ns, wherec4,n 5 ! 2

n21

G@n02#

G@~n21!02#
~Montgomery

@18# !, the center line for thes-chart will bec4,ns if s was known+ Sinces is usually
unknown, it is often replaced by one of its unbiased estimates+

A related problem in quality control is the assessment of the capability of an
industrial process+ Given the upper and lower specification limitsU andL, respec-
tively, a measure of the process capability is defined as

Cp 5
U 2 L

6s
5

U 2 L

6

1

s
,
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which is essentially a scaler multiple ofs21+ Whens is unknown, it is often re-
placed in the above expression by either one of its unbiased estimators or the square
root of that ofs2, the process variance+However, in either scenario, the correspond-
ing estimator ofCp does not preserve the property of unbiasedness, and, in fact,may
not be optimal in any other meaningful sense+ The objective of this article is to
consider the problems of the estimation ofs ands21 ~hence ofCp or Cpm—defined
in Section 6! so as to provide certain optimal, thus superior, estimators+

The problems will be addressed in the classic framework as well as in the frame-
work of the probabilistic criterion of Pitman measure of closeness+ In the classic
framework, although a weak optimality, the unbiasedness of the estimator is usually
required to reduce the class of potential estimators to a smaller class of intuitive
ones, out of which the one satisfying some other stronger optimality criterion, such
as the minimum variance, is selected+An alternative approach may be to consider the
estimators with minimum mean squared error~or more generally, minimum risk
corresponding to a given loss function!+ However, finding such an estimator in the
class of all possible estimators is usually impossible in most problems+ This is often
circumvented by first obtaining a suitable and intuitive unbiased estimator or a max-
imum likelihood estimator and shrinking it to obtain an appropriate minimum mean
squared error~or minimum risk! estimator+ It may, however, be noted that in certain
cases this approach may fail in that the resulting expression for the estimator may
involve the parameter itself+

The probabilistic criterion of the Pitman measure of closeness does not require
unbiasedness+ The criterion, however, is closely related to the concept of median
unbiasedness~Ghosh and Sen@6# and Nayak@19# !+

2. KKKDR AND ANGUS ESTIMATORS OF s

The problem of estimatings, as in the present framework, was recently considered
by Kirmani,Kocherlakota, and Kocherlakota@17# ,Derman and Ross@5# , andAngus
@1# +Givenm independent random samples$xi1, + + + , xin% , of sizen each, an unbiased
estimator ofs can be given by [s 5 Ss0c4,n, where Ss 5 m21 (i51

m si is the mean of
the m independently distributed sample standard deviationssi 5 @~n 2 1!21 3
(j51

n ~xij 2 Sxi !
2#102, i 5 1, + + + ,m corresponding tom independent samples+

Note that Ss above is obtained as the simple average ofm independent sample
standard deviations, which are square roots of corresponding variances+An alterna-
tive to this estimate, namely, [s 5 Ss0c4,n, may be another estimate, say [ [s, obtained
~after appropriate scaling adjustment! by interchanging the steps of averaging and
square rooting@5,17# , that is, by taking the square root of the average ofm indepen-
dent sample variances+ This is meaningful because, in the process of computation as
well as in a statistical sense, the variances are more basic quantities than the standard
deviations+ Also, the probability distribution of the weighted sum of the sample
variances is more tractable due to the additivity property of independent chi-squared
random variables+ This property is especially convenient, as we shall see in Section
3, when ourm independent samples were of different sizes, sayn1,n2, + + + ,nm, in
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which case the coefficientsc4,n1
,c4,n2

, + + + ,c4,nm
will all be different, hence the simple

averaging ofs1,s2, + + + ,sm as done for the usuals-chart will not be significantly
meaningful+

Specifically, as stated above, for the equal sample size case, an unbiased esti-
mate ofs proposed in@5,17# is

[ [s 5 b4,n,m
21 !(

i51

m

si
2

m
,

where

b4,n,m 5 ! 2

m~n 2 1!

G@~mn2 m1 1!02#

G@~mn2 m!02#
+

In fact, it is evident from the above expression thatb4,n,m5c4,mn2m11+Thus, for
thes-chart the center line will be set atc4,n [ [s+

Why should one prefer[ [s over [s as an estimate of process standard deviation in
ans-chart? It is because, while [s and [ [s are both unbiased fors, [ [s is the uniform
minimum variance unbaised estimator~UMVUE ! of s @1# , hence has the smaller
variance among all unbiased estimates+ It thus provides an improvement over[s+
Specifically,

var~ [s! 5
12 c4,n

2

c4,n
2

s2

m

and

var~ [ [s! 5
12 b4,n,m

2

b4,n,m
2 s2+

The relative efficiency of [ [s over [s may be judged by,

E 5
var~ [s!

var~ [ [s!
5

12 c4,n
2

mc4,n
2

b4,n,m
2

12 b4,n,m
2 +

Numerical calculations~not presented here! show that, for various values ofm
andn, this relative efficiency is uniformly larger than 1 unlessm51, in which case
the two estimates are identical+What is more important is that whenn is small, the
efficiency values become considerably larger asm increases+ In fact, in certain cases,
a gain of over 13% can be realized when[ [s instead of [s is used as the estimate ofs+
The above situation of smalln and moderate to largem is especially of interest when
the sampling resources are limited+ In such situations, it is often advisable to sample
from the process at a number of time points, even though these samples may be small
in size as opposed to sampling large samples at only a few time points+

Why should one be so particular about having an estimate ofs with smaller
variance at the first place? The estimated value ofs not only determines the center
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line but also the upper and lower control limits of ans-chart asB4,nc4,n [s andB3,nc4,n [s
~or B4,nc4,n [ [s andB3,nc4,n [ [s, respectively!, where the constantsB3,n andB4,n have
been tabulated in Appendix VI of@18# + In addition, this estimate is also used to
determine the limits of PX-charts+ Thus, a lot depends on the estimate ofs, and one
will naturally prefer as precise an estimate as possible ofs+An estimator with higher
variance will also have a higher probability of being observed as too large or too
small, thereby resulting in a higher probability of the center line and control limits of
thes-chart being mislocated+Additionally, the effect of this excessively high or low
estimate ofs will also affect the control limits of the correspondingPX-chart as being
too wide or too narrow+ The estimator [ [s provides a definite and uniform advantage
over [s in both of these respects+

3. UNBALANCED DATA

If the m independent samples were of sizesn1,n2, + + + ,nm, respectively, then both [s
and [ [s need to be redefined+ Specifically, [s can be generalized in two ways, namely,

[s~1! 5
(
i51

m

si

(
i51

m

c4,ni

or

[s~2! 5 m21 (
i51

m

si 0c4,ni
,

and [ [s will now be defined as

[ [s 5 c4,(i51
m ni2m11

21 !(
i51

m

~ni 2 1!si
2

(
i51

m

ni 2 m
+

It readily follows from the argument given in@1# that, even in this case, [ [s is
UMVUE hence has smaller variance than[s~1! as well as [s~2! + However, no univer-
sal preference can be established between[s~1! and [s~2!+Specifically, [s~1! has smaller
variance than [s~2! if and only if

S(
i51

m

c4,niD22

(
i51

m

~12 c4,ni

2 ! , m22 (
i51

m 12 c4,ni

2

c4,ni

2 +

However, for most datasets, [s~1! and [s~2! are likely to be close to each other+
Returning back to the discussion of[ [s, in general, each coefficientc4,ni

involves
the computation of two gamma functions+ In that sense, in addition to its superiority
with respect to smaller variance, the computation of[ [s can be done more efficiently
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because only one such coefficient, namely, c4,(i51
m ni2m11, is involved+ Further, if n 5

c4,(i51
m ni2m11 is moderately large~say, greater than 25!, thenc4,n can be approxi-

mated byc4,n 5 4~4n 2 3!21~n 2 1! @18# +

4. ESTIMATION OF PROCESS CAPABILITY

As indicated earlier, to estimate the process capability indexCp 5
U2L

6

1

s
, the com-

mon practice has been to either substitute fors, the square root of the pooled sample
variance, namelysp or the unbiased estimate[s ~or [s~1! or [s~2! ! defined earlier+One
may also consider using[ [s in the above expression+However, none of these resulting
estimators ofCp are unbiased forCp+ Our interest in this section will be to provide
certain unbiased estimator ofCp+ One of these estimators will be shown to have the
minimum possible variance among all unbiased estimators+ Trivially, the problem is
equivalent to that of the unbiased estimation ofh 5 s21, hence for the purpose of
our discussion from now on our parameter of interest will beh rather thanCp+

For the unbalanced data, the following three estimators are unbiased forh,

[h1 5 H(
i51

m

!ni 2 1

2
{

G@~ni 2 2!02#

G@~ni 2 1!02# J21

(
i51

m

si
21 5S(

i51

m

giD21

(
i51

m

si
21

[h2 5 m21 (
i51

m H !ni 2 1

2
{

G@~ni 2 2!02#

G@~ni 2 1!02# J21

si
21 5 m21 (

i51

m

gi
21si

21

[h3 5 #2

GF(
i51

m

~ni 2 1!02G
GF(

i51

m

~ni 2 2!02G{H(
i51

m

~ni 2 1!si
2J2102

5 #2

GF(
i51

m

~ni 2 1!02G
GF(

i51

m

~ni 2 2!02G{
1

!(
i51

n

ni 2 m

{sp
21 5 h21sp

21,

wheresp
2 is the pooled variance given bysp

25 ~(i51
m ni 2 m!21 (i51

m ~ni 2 1!si
2+ Since

the unbiased estimator[h3 given above depends onsp
2, which is complete-sufficient,

it follows from the Rao–Blackwell Theorem that[h3 is also the uniformly minimum
variance unbiased estimator ofh+

When data are balanced, that is,whenni 5 n, i 51, + + + ,m, [h1 and [h2 are identical
and, in this case,

[h1 5 [h2 5 ! 2

n 2 1
{

G@~n 2 1!02#

G@~n 2 2!02#
{ SsH

21 5 g21 SsH
21,
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where SsH is the harmonic mean ofs1,s2 + + +sm and

g 5 F ! 2

n 2 1
{

G@~n 2 1!02#

G@~n 2 2!02#
G21

+

Further, [h3 simplifies to

[h3 5 ! 2

nm2 m
{

G@~nm2 m!02#

G@~nm2 m2 1!02#

1

sp

5 h21sp
21,

whereh simplifies to

h 5 F ! 2

nm2 m
{

G@~nm2 m!02#

G@~nm2 m2 1!02#
G21

+

The variance–covariance expressions for these estimators can be obtained from Chou
and Owen@4# and Kirmani, Kocherlakota, and Kocherlakota@17# +

5. ESTIMATION UNDER THE PITMAN MEASURE OF CLOSENESS

Given two estimatorsT1 andT2 of a real valued parameteru, T1 is said to be better
thanT2 in the sense of the Pitman closeness under loss functionL~T,u! if

Pu @L~T1,u! , L~T2,u!# $ 1
2
_ for all u+ (5.1)

An informal interpretation of the above criterion can be given as: in a pair of two
competing estimators, prefer the one which is closer to the parameter~in terms of
loss functionL~{,{!! more than 50% of the time+

For a general review of this criterion, see Keating,Mason, and Sen@11# +Various
estimation of variances and covariances related problems under this criterion have
been dealt with by Rao@21,22# , Keating and Gupta@10# , Keating @9#, Khattree
@12,13# , Ghosh and Sen@6# , Nayak @19,20# , Sen, Nayak, and Khattree@24# , and
Gupta and Khattree@7,8# +

Rao@21,22# in his two seminal works pointed out that Pitman closeness is an
intrinsic measure to compare estimators and illustrated in many different estimation
problems that the shrinking of an unbiased estimator to obtain a minimum mean
square error~MMSE! estimator does not necessarily yield an estimator, which is
superior in the sense of Eq+ ~5+1!, when the loss functionL~T,u! 5 6T 2 u6 is the
absolute error loss function+ In our specific context, this implies that the shrinking of
the UMVUE ofs or s21 to obtain an MMSE estimator may not necessarily result in
an estimator which is better in the sense of Eq+ ~5+1!+ Intuitively, it is because the
MMSE criterion places too much emphasis on large values which may be observed
with very small probabilities+
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Given pooled sample variancesp
2 from m independent subsamples of sizes

n1, + + + ,nm, respectively, it may thus be desirable to obtain estimators ofs andh 5
s21 within the respective classes

C 5 $csp : c . 0%

and

D 5 $d{sp
21 : d . 0%,

which are closer tos andh than any other estimator withinC andD, respectively, in
the sense of Eq+ ~5+1!+ Fortunately, this can be done for a fairly general class of loss
functions as shown by Nayak@20# + Specifically, the loss functionL~T,u! is assumed
to satisfy the following conditions:

i+ L~t,u! 5 0 whenevert 5 u+

ii + For any fixedt, L~t,u! is strictly increasing inu for all u , t and strictly
decreasing inu for all u . t+

iii + For any fixedu, L~t,u! is strictly decreasing int for all t , u and strictly
increasing int for all t . u+

These conditions are considerably mild in that they are satisfied by many com-
monly used loss functions such as the absolute lossL0~T,u! 5 6T 2 u6 and the
entropy lossL1~T,u! 5 ln~T0u! 2 T0u 2 1~T0u . 0!+

Some of the other loss functions that satisfy the above requirements are

L2~T,u! 5 ST

u
2 1D2

L3~T,u! 5
u

T
2 ln

u

T
2 1

L4~T,u! 5 S u

T
2 1D2

L5~T,u! 5 eb6T2u6 2 b6T 2 u62 1, b . 0 is a known constant+

See Khattree@12# ,Khattree and Gill@14# ,Sen,Nayak, and Khattree@24# ,Gupta and
Khattree@7,8# , and Sen and Khattree@23# ,where such loss functions have been used
in the context of Pitman measure of closeness+ The following theorem provides the
closest estimators ofs andh 5 s21 in the respective classesC andD+
Theorem 5.1: Let the loss function L~T,u! satisfy the requirements i–iii stated
above+ Further, assume that L~t,u! is a function of t0u . 0+ Then, the best esti-
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mators in the sense of Eq+ ~5+1! of s andh 5 s21 in the respective classesC and
D are given by,

[spc 5 ~Q0M !102

and

[hpc 5 ~M0Q!102,

where Q5 (i51
m (j51

ni ~xij 2 Sxi !
2 5 ~(i51

m ni 2 m!sp
2, and M is the median of a chi-

squaredvariable with degrees of freedom~(i51
m ni 2 m!+

Proof of the above theorem is straightforward and essentially uses the same
argument as in Nayak@20# +We thus skip the proof+

It may be pointed out that them independent subsamples can be viewed as the
data in a one-way classification when there is no treatment effect+ That being the
case, in order to estimates andh 5 s21, the~more! appropriate estimators may be
obtained as certain suitable scalar multiples of%Q* and%10Q*, respectively,where
Q*5(i51

m (j51
ni ~xij 2 S Sx!2,where S Sx5 ~(i51

m ni !21 (i51
m (j51

ni xij + In particular,we may
consider the classes

C* 5 $c%Q* : c . 0%

and

D* 5 $d%10Q* : d . 0%,

and seek the corresponding optimal estimators in the sense of Eq+ ~5+1!+ The answer
is immediate and the best estimators are now analogously given by

[spc
* 5 %Q*0M *

and

[hpc
* 5 %M *0Q*,

whereM * is the median of a chi-squared random variable with degrees of freedom
(i51

m ni 2 1+
Is [spc

* better than [spc in the sense of Eq+ ~5+1!? The answer to this question is
affirmative, and a similar statement can be made about the comparison between[hpc

*

and [hpc+ In fact, both of these assertions follow from a result about the estimation of
s2 in the similar context+ These are all stated as the following theorem+

Theorem 5.2: Under the criterion in Eq+ ~5+1!, and under the assumptions of Theo-
rem5+1,

i+ for estimation ofs2, Q*0M * is better than Q0M,

ii + for estimation ofs, %Q*0M * is better than%Q0M,

iii + for estimation ofs21, %M *0Q* is better than%M0Q+
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The proof of i ~essentially due to@20# ! is outlined here+ The other two parts
trivially follow from that+

Proof: It suffices to show thatQ*0M * is better thanbQ for anyb . 0+As Q*5 Q1
(i51

m ni ~ Sxi 2 S Sx!2, and random variables

Q

s2 ; x(i51
m ni2m

2 and
(
i51

m

ni ~ Sxi 2 S Sx!2

s2 ; xm21
2

are independently distributed, it follows that the random variablesW5Q0Q*;Beta
~(i51

m ni 2 m,m 2 1! andQ*0s2 ; x(i51
m ni21

2 are independently distributed+ Now
consider

Ps2 @L~Q*0M *,s2 ! , L~bQ,s2 !# 5 Ps2FhSQ*0M *

s2 D , hSbQ

s2DG
and observe that the distributions ofQ0s2 andQ*0s2 are free from the parameter
s2+ Because the events

H bQ

s2 ,
Q*0M *

s2 , 1J and H1 ,
Q*0M *

s2 ,
bQ

s2 J
are mutually exclusive and each of these implies the event

HhSQ*0M *

s2 D , hSbQ

s2DJ ,
we must have

PFhSQ*0M *

s2 D , hSbQ

s2DG $ PF bQ

s2 ,
Q*0M *

s2 , 1G1 PF1 ,
Q*0M *

s2 ,
bQ

s2 G
5 PFH Q

Q*
,

1

bM*
J ù HQ*

s2 , M *JG
1 PFHQ*

s2 . M *J ù H Q

Q*
.

1

bM*
JG+

Due to the independence ofW 5 Q0Q* andQ*0s2, it follows that the above
expression can be written as

PFW ,
1

bM*
GPFQ*

s2 , M *G1 PFW .
1

bM*
GPFQ*

s2 . M *G ,
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and, sinceM * is the median ofQ*0s2, this is also equal to

1

2
PFW ,

1

bM* G1
1

2
PFW .

1

bM* G5
1

2
,

which proves i+Now to prove ii and iii, observe that any loss function for estimating
s or h 5 s21 can be written as some loss function fors2+ Thus ii and iii can be
reformulated in terms of i+ Specifically, for illustration let us consider iii, which
concerns the estimation ofs21+With L~t,h! 5 h~t0h!, defineH~u! 5 h~10!u! and
note thatH~u! also satisfies the conditions stated in the theorem+ Thus,

Ph @L~T1,h! , L~T2,h!#

5 Ph @h~T10h! , h~T20h!#

5 Ph @H~h20T1
2! , H~h20T2

2!#

5 Ps2FHS10T1
2

s2 D , HS10T2
2

s2 DG
5 Ps2FL*S 1

T1
2 ,s

2D , L*S 1

T2
2 ,s

2DG
for some appropriate loss functionL*~{,{! also satisfying the stated conditions+Since
10T 2 5 Q*0M * is the best estimator ofs2 in the sense of Eq+ ~5+1!, it follows that the
optimum estimator ofh 5 s21 is given byT 5 %M *0Q*+

6. CLASSIC ESTIMATION OF Cpm

Chan, Cheng, and Spring@3# defined the indexCpm as

Cpm 5
U 2 L

6

1

%E~X 2 t!2
, (6.1)

wheret is a known target value of the process+ They indicated thatCpm may be a
better measure of capability of the process when the target value isknown+ To esti-
mate Cpm from a normal random samplex1, + + + , xn, they propose to estimate
%E~X2 t!2 by %(i51

n ~xi 2 t!20~n21! and use it in Eq+ ~6+1!+ Let the correspond-
ing estimate be ZCpm+ It may be pointed out that a more appropriate estimate of
%E~X 2 t!2 to use in Eq+ ~6+1! may have been%(i51

n ~xi 2 t!20n+ It is because,
even though none of the estimate between~%(i51

n ~xi 2 t!20~n 2 1!!21 and
~%(i51

n ~xi 2t!20n!21 is unbiased for~%E~X2t!2!21, the latter at least accounts for
the appropriate degree of freedom and is also the maximum likelihood estimator+
However, use of the former estimator cannot be justified on any optimality ground+
The choice made by Chan et al+ @3# was perhaps more for want of mathematical
convenience, since their proposed estimator was more easily comparable~with re-
spect to bias and mean squared error! with their corresponding estimate ofCp,when
t 5 µ, the true process mean+
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We will consider the problem of estimation ofCpm in a more formal context+As
in @3# , we will also make the assumption thatt 5 µ+

Whent 5 µ, the indicesCp andCpm are identical+ However, with m known, the
estimators ofCp as proposed earlier in Section 5 will not be necessarily optimum,
since none of the corresponding estimation techniques accounts for the extra infor-
mation available in the form of knownm+ It is worth pointing out that there exist
situations~for example, for the estimation ofs2! when, contrary to our intuition, it
is better~in the sense of MSE! to ignore the information available in the form of
knownm and estimate it bySx ~Birch and Robertson@2# , Khattree@13# , Gupta and
Khattree@7,8# , and Nayak@20# !+

For simplicity,we will initially consider the situation where a single random sam-
plex1, + + + , xn of sizen from a normally distributed process is available, and the pro-
cess meanm is known to be equal tot, the target value+Whent 5 µ, E~X 2 t!2 5
E~X 2 µ!2 5 s2, and, to estimate~E~X 2 µ!2!2102, a reasonable starting point
is to consider a scalar multiple of~ n

12(i51
n ~xi 2 µ!2!2102 or of ~(i51

n ~xi 2 µ!2!2102+
Since (i51

n ~xi 2 µ!2 is complete-sufficient fors2, it follows from the Rao–
Blackwell Theorem that an unbiased estimator ofs21 5 ~E~X2 t!2!2102 based on
~(i51

n ~xi 2 µ!2!102 will also be the minimum variance unbiased estimator+ Now, be-
cause(i51

n ~xi 2 µ!20s2 ; xn
2, we haveE~(i51

n ~xi 2 µ!2!2102 5 A21s21, whereA5

#2 G@n02#

G@~n21!02#
5 c4,n%~n21!+ Thus, A~(i51

n ~xi 2 µ!2 !2102 is UMVUE of s21+Conse-

quently, UMVUE of Cpm whent 5 µ is given by

ZCpm
* 5 ASU 2 L

6 D 1

!(
i51

n

~xi 2 t!2

+

When the process is not centered at the targett but the process meanm is
known, then 1

s2 (i51
n ~xi 2 t!2 ; xn

2~l!, the noncentral chi-squared distribution with
degrees of freedomn and the noncentrality parameterl 5

n~t 2 µ!2

s2
+ An argument

similar to that given above will result in the UMVUE ofCpm as

ZCpm,tÞµ
* 5

A*~U 2 L!

6

1

!(
i51

n

~xi 2 t!2

where

A* 5 #2elF(
j50

` l j

j!

G@~n 2 1 1 2j !02#

G@~n 1 2j !02# G21

,

and

l 5 n~µ2 t!20s2+

Unfortunately, ZCpm,tÞµ
* is not a valid estimator, as it involves the unknown parameter

s2 throughl+ One may substituten21 (i51
n ~xi 2 µ!2 as an estimate ofs2 to obtain
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an approximate value ofl and use it in the expressionZCpm,tÞµ
* to obtain an estimator

in this case+ From the quality control point of view, this may not, however, be a
correct approach+ Instead, one should perhaps reset the process to bring the process
meanm at the intended targett+ In view of this, the caset Þ µwill not be considered
in the next section+

7. PITMAN CLOSEST ESTIMATOR OF Cpm WHEN t = m

As earlier, it may be of interest to find the estimator ofCpm which is closest in the
sense of the Pitman measure of closeness+ Alternatively, we can concentrate on the
Pitman closest estimator of~E~X 2 t!2!2102+ The specific classes of estimators
which are of interest are

A 5 Ha{F(
i51

n

~xi 2 Sx!2G2102

, a . 0J
and

B 5 Hb{F(
i51

n

~xi 2 t!2G2102

, b . 0J +
Note that the estimator proposed in@3# belongs to classA+ The following theo-

rem, proof of which follows from@13# , provides the answer+

Theorem 7.1: The best estimators ofh 5 ~E~X 2 t!2!2102 in classesA andB, in
the sense of Eq+ ~5+1! and under the same assumptions on L~T,u!, as stated in Theo-
rem5+1, are respectively given by

[hpm
** 5 FM **Y(

i51

n

~xi 2 Sx!2G102

[hpm
## 5 FM ##Y(

i51

n

~xi 2 t!2G102

,

where M** and M## are the medians ofxn21
2 andxn

2, respectively+ The correspond-
ing estimates of Cpm are given by ZCpm

**5 ~U 2 L06! [hpm
** and ZCpm

## 5 ~U 2 L06! [hpm
## +

While [hpm
** and [hpm

## are optimal in the respective classesA andB, one may still
ask, of the two, which is preferred? The following theorem provides the answer to
this inquiry+

Theorem 7.2: Under the same assumptions on L~T,u! as in Theorem5+1, [hpm
## is

closer toh than [hpm
** is to h+ Thus, ZCpm

## is closer to Cpm than ZCpm
** is to Cpm+

Proof of the above theorem is along the same lines as that for Theorem 5+2,
hence it is not repeated here+

The case where there arem random subsamples of sizesn1, + + + ,nm does not
require any special treatment because, with known meanµ 5 t, these subsamples
can be collectively treated as a random sample of sizeN 5 Sni + A class of esti-
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mators analogous toA, say Apooled of h which consists of scalar multiples of
@(i51

m (j51
ni ~xij 2 Sx!2#2102, can still be defined+ However, it follows from Theo-

rem 7+2 that the optimal~and in fact, any! estimator in that class will be domi-
nated in the sense of Eq+ ~5+1!, by [hpm

## 5 @MN
##0(i51

m (j51
ni ~xij 2 t!2#102, whereMN

##

is the median of axN
2+ Thus, no special treatment of this scenario is needed+

We have not explicitly made any mention of maximum likelihood estimation in
our discussion+ Since the maximum likelihood estimators~MLE ! of s2 under the
situations discussed here are well known, the MLE of Cp andCpm are trivially ob-
tained by the appropriate substitutions+ It may further be observed that the classesC,
D, C*, D*, andB do indeed contain the maximum likelihood estimators~under the
appropriate context! which in each case are dominated by the corresponding optimal
estimator within that class, in the sense of the Pitman measure of closeness+ Thus, a
detailed comparison with maximum likelihood estimators is really not necessary+
Similarly, the MMSE estimators~and in general, the minimum risk estimators under
the loss functionsL1–L5! of Cp andCpm within these classes can be obtained by
applying the routine calculus steps+However, as in the case of MLE, the domination
of these estimators under the criterion of Pitman measure of closeness trivially follows+
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