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ON THE ESTIMATION OF o
AND THE PROCESS CAPABILITY
INDICES C, AND C,,,

RAVINDRA KHATTREE

Department of Mathematics and Statistics
Oakland University
Rochester, Michigan 48309-4485

We consider the problem of estimation of the standard deviatiand the process
capability indicesC, and C,, for a normally distributed proces$he problem is
addressed with the objective of obtaining optimal estimators under the classic cri-
terion of minimum variance unbiased estimatiaa well as under the Pitman mea-
sure of closeness

1. INTRODUCTION

When setting up a control chart for any procésis customary also to monitor the
variability of the process using d@ichart or ars-chart With today’s computational
ease and routine automation of such processebarts are often preferred over
R-charts as the former uses the information available in the form of samples more
effectively and to a much greater extelitm is independent random samples of
equal sizen are assumed to have come from a normal process with mesamd
variances 2, then ans-chart plots the values of the sample standard deviaitor

the future samplesSinceE(s;) = ¢4 no, Wherecy , = |/ é % (Montgomery

[18]), the center line for the-chart will bec, o if o was known Sinceo is usually
unknown it is often replaced by one of its unbiased estimates
A related problem in quality control is the assessment of the capability of an
industrial processGiven the upper and lower specification limitisandL, respec-
tively, a measure of the process capability is defined as
c - U-L U-L1
" 60 6 o
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which is essentially a scaler multiple of *. Wheno is unknown it is often re-
placed in the above expression by either one of its unbiased estimators or the square
root of that ofo 2, the process variancelowever in either scenarighe correspond-
ing estimator ofC, does not preserve the property of unbiasedrass in fact, may
not be optimal in any other meaningful sen$&e objective of this article is to
consider the problems of the estimatiorvoéindo ~* (hence ofC, or C,,—defined
in Section 6 so as to provide certain optimahus superigrestimators

The problems will be addressed in the classic framework as well as in the frame-
work of the probabilistic criterion of Pitman measure of closenbsshe classic
framework although a weak optimalifyhe unbiasedness of the estimator is usually
required to reduce the class of potential estimators to a smaller class of intuitive
ones out of which the one satisfying some other stronger optimality critesanh
as the minimum varianges selectedAn alternative approach may be to consider the
estimators with minimum mean squared ertor more generallyminimum risk
corresponding to a given loss functjorowever finding such an estimator in the
class of all possible estimators is usually impossible in most problEmisis often
circumvented by first obtaining a suitable and intuitive unbiased estimator or a max-
imum likelihood estimator and shrinking it to obtain an appropriate minimum mean
squared errofor minimum risk estimatorlt may, howeverbe noted that in certain
cases this approach may fail in that the resulting expression for the estimator may
involve the parameter itself

The probabilistic criterion of the Pitman measure of closeness does not require
unbiasednesd he criterionp however is closely related to the concept of median
unbiasednes@Ghosh and Sef6] and NayaK 19]).

2. KKKDR AND ANGUS ESTIMATORS OF o

The problem of estimating, as in the present framewaqgnkas recently considered
by Kirmani, Kocherlakotaand Kocherlakotfl7], Derman and Rog4%], and Angus
[1]. Givenmindependent random samples,.. ., X}, of sizen each an unbiased
estimator ofo can be given by = 5/c, ., wheres=m 131, 5 is the mean of
the m independently distributed sample standard deviatigns [(n — 1) X
Shi(x; — %)?]Y3 i =1,...,mcorresponding tonindependent samples

Note thatS above is obtained as the simple averagenohdependent sample
standard deviationsvhich are square roots of corresponding variandeslterna-
tive to this estimatenamely & = 5/c, », may be another estimatsay &, obtained
(after appropriate scaling adjustmghby interchanging the steps of averaging and
square rootingj5,17], that is by taking the square root of the averagerahdepen-
dent sample variancegbhis is meaningful becausia the process of computation as
well as in a statistical senge variances are more basic quantities than the standard
deviations Also, the probability distribution of the weighted sum of the sample
variances is more tractable due to the additivity property of independent chi-squared
random variablesThis property is especially convenieat we shall see in Section
3, when ourm independent samples were of different sjz&syn,, ny,..., Ny, in
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which case the coefficients , ,C4 ... .,Cs n,, Will all be different hence the simple
averaging ofs,, s, ...,S, as done for the usuachart will not be significantly
meaningful

Specifically as stated abovéor the equal sample size cass unbiased esti-
mate ofo proposed irf5,17] is

where

b _ 2 r[(mn—m+1)/2]
AT Nm(n—1) Tr[(mn—m)/2]

In fact, itis evident from the above expression thaf, = C4 mn—m+1. Thus for
thes-chart the center line will be set at 7.

Why should one prefe# overé as an estimate of process standard deviation in
ans-chart? It is becausevhile & andd are both unbiased far, & is the uniform
minimum variance unbaised estimatttMVUE) of o [1], hence has the smaller
variance among all unbiased estimatiégthus provides an improvement ovét

Specifically
~ 1- Cz%,n o?
var(g) = >
Cin M
and
A 1-DF
var(o) = z—nm o2
b4,n,m

The relative efficiency ofr overé may be judged hy

~var(d) 1-c¢in binm
var(d) me, 1-DbZ,.

Numerical calculationgnot presented heyshow thaffor various values ofn
andn, this relative efficiency is uniformly larger than 1 unless= 1, in which case
the two estimates are identic&V/hat is more important is that wheris small the
efficiency values become considerably largemascreasedn fact in certain cases
a gain of over 13% can be realized wheimstead of5 is used as the estimate of
The above situation of smailand moderate to largais especially of interest when
the sampling resources are limitéd such situationgt is often advisable to sample
from the process at a number of time pojrtgen though these samples may be small
in size as opposed to sampling large samples at only a few time points

Why should one be so particular about having an estimate wfth smaller
variance at the first place? The estimated value abt only determines the center
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line butalso the upper and lower control limits ofachart a$, ,C, nd andB; ,C4 n &

(or By nCy, .0 and Bz nCs, a0, respectively, where the constan®; , andB, , have
been tabulated in Appendix VI dfL8]. In addition this estimate is also used to
determine the limits oK-charts Thus a lot depends on the estimateafand one
will naturally prefer as precise an estimate as possibde &h estimator with higher
variance will also have a higher probability of being observed as too large or too
small thereby resulting in a higher probability of the center line and control limits of
thes-chart being mislocateddditionally, the effect of this excessively high or low
estimate ofr will also affect the control limits of the correspondiXechart as being
too wide or too narrowT he estimato# provides a definite and uniform advantage
overg in both of these respects

3. UNBALANCED DATA

If the mindependent samples were of sizgsn,, ..., ., respectivelythen bothos
andd need to be redefine@pecifically 6 can be generalized in two waysamely

or

andd will now be defined as

A _ -1
o= C4,Zir21nifm+l

It readily follows from the argument given {i] that even in this caser is
UMVUE hence has smaller variance thaft as well ass?. However no univer-
sal preference can be established betwieérands . Specifically & ® has smaller
variance tha @ if and only if

m -2 m m 11— Cf n
<2 C4,n,> Z(l_cz%,n,)<m7222—”‘
i=1 i=1 i=1 Cqn
However for most datasetsr ¥ andg @ are likely to be close to each other
Returning back to the discussion®fin generaleach coefficient, , involves
the computation of two gamma functiaris that sensgn addition to its superiority
with respect to smaller variange computation of can be done more efficiently
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because only one such coefficienamelyc, sm 1, isinvolved Furtherif v =
Caxm,n-m+1 IS moderately larggsay greater than 25 thenc, , can be approxi-
mated byc, , = 4(4v — 3) X(v — 1) [18].

4. ESTIMATION OF PROCESS CAPABILITY
As indicated earligrto estimate the process capability indéx= Yt 1 the com-
mon practice has been to either substitutesfahe square root of the pooled sample
variance namelys, or the unbiased estimage(or & or 5 ?) defined earlierOne
may also consider usingin the above expressioHowever none of these resulting
estimators ofC, are unbiased fo€,. Our interest in this section will be to provide
certain unbiased estimator Gf. One of these estimators will be shown to have the
minimum possible variance among all unbiased estimatorgally, the problem is
equivalent to that of the unbiased estimatiomof o ~1, hence for the purpose of
our discussion from now on our parameter of interest wilhbather tharC,,.

For the unbalanced datthe following three estimators are unbiasedifor

) mon-1r(n-2/20"a 0 (o e
"1‘{21 2 'r[(ni—l)/Z]} le‘ _<i_zlg‘> i:zls

. o m-1rn-2/200 0 &m
2 = m Z{V r[(n.—1>/2]} temt 20

> (n—1)/2 - s
fls =2 —E— :-{E(ni—nsf}
|3 mn-2/2
T > —1)/2 L
=2 S s1=hlg1,
NEm-2/20 [Sn-m

wheres? is the pooled variance given Is§ = (S, n, —m) * =™, (n, — 1)s2 Since
the unbiased estimatdg given above depends &g, which is complete-sufficient
it follows from the Rao—Blackwell Theorem théj is also the uniformly minimum
variance unbiased estimatorpf

When data are balancgtiat is whenn; = n,i =1,...,m, ), ands, are identical
and in this case

2 Tlh-v/2 |
L N e TR A
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where§, is the harmonic mean &, s;...s, and

_[ [ 2 r[(n—l)/z]}l
| Vn-1T[n-2/2]] -
Further 75 simplifies to

. 2 I[(hm-m)/2] 1 o1t
s nm-m C[(nm—m—1)/2] s, %5
whereh simplifies to
. { [ 2 T[(hm—m)/2] |
[ Voam=m T[(hm-m-1),/2]] °

The variance—covariance expressions for these estimators can be obtained from Chou
and Ower[4] and Kirmanj Kocherlakotaand Kocherlakot@l17].

5. ESTIMATION UNDER THE PITMAN MEASURE OF CLOSENESS

Given two estimator3; andT, of a real valued parametéy T, is said to be better
thanT, in the sense of the Pitman closeness under loss functiom) if

P,[L(T,0) < L(T,,0)]= % forallé. (5.1)

An informal interpretation of the above criterion can be giveriraa pair of two
competing estimatorprefer the one which is closer to the paraméierterms of
loss functionL (-,-)) more than 50% of the time

For a general review of this criteripspee KeatingMason and Ser11]. Various
estimation of variances and covariances related problems under this criterion have
been dealt with by Raf21,22], Keating and Gupt410], Keating[9], Khattree
[12,13], Ghosh and Sef6], Nayak[19,20], Sen Nayak and Khattred24], and
Gupta and KhattreE?7,8].

Rao[21,22] in his two seminal works pointed out that Pitman closeness is an
intrinsic measure to compare estimators and illustrated in many different estimation
problems that the shrinking of an unbiased estimator to obtain a minimum mean
square erroMMSE) estimator does not necessarily yield an estimatdnich is
superior in the sense of E¢b.1), when the loss functioh(T,0) = |T — 6] is the
absolute error loss functiom our specific contexthis implies that the shrinking of
the UMVUE of g or o ~* to obtain an MMSE estimator may not necessarily resultin
an estimator which is better in the sense of Exjl). Intuitively, it is because the
MMSE criterion places too much emphasis on large values which may be observed
with very small probabilities
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Given pooled sample variancg from m independent subsamples of sizes
ny,..., Ny, respectivelyit may thus be desirable to obtain estimatorgraindn =
o1 within the respective classes

C=1{cs:c>0}
and
D ={d-s;':d >0},

which are closer to- andn than any other estimator withthandD, respectivelyin

the sense of Ed5.1). Fortunatelythis can be done for a fairly general class of loss
functions as shown by Nay4RO0]. Specifically the loss functior.(T,6) is assumed

to satisfy the following conditions

i. L(t,§) = 0 whenevet = 6.
ii. For any fixedt, L(t,0) is strictly increasing irg for all # < t and strictly
decreasing i for all 6 > t.

iii. For any fixedd, L(t,0) is strictly decreasing it for all t < 6 and strictly
increasing irt for all t > 6.

These conditions are considerably mild in that they are satisfied by many com-
monly used loss functions such as the absolute 1g$%,0) = |T — 6| and the
entropy losd ((T,6) = In(T/0) — T/6 — 1(T/6 > 0).

Some of the other loss functions that satisfy the above requirements are

T 2
L,(T,0) = <5 - 1)

6 (7
L;(T,0) = ? —In? -1

0 2
L,(T,0) = (; - l)

Ls(T,0) = €70 —p|T—0| — 1, b > 0is a known constant

See Khattregl2], Khattree and Gil[14], Sen Nayak and Khattre¢24], Gupta and
Khattreg7,8], and Sen and Khattr¢23], where such loss functions have been used
in the context of Pitman measure of closend@s$e following theorem provides the
closest estimators @f andn = o ! in the respective class€sandD.

THEOREM 5.1: Let the loss function (T,0) satisfy the requirementsHiii stated
abave. Further, assume that (t,0) is a function of 9 > 0. Then the best esti
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mators in the sense of E¢.1) of o andn = o1 in the respectie classe€ and
D are gven by

Gpe = (Q/M)Y2

and

ﬁpc = (M/Q)l/z,

where Q= 3", 3, (x; — %)% = (S, n, — m)s?, and M is the median of a chi
squaredvariable with degrees of freedo®i", n, — m).

Proof of the above theorem is straightforward and essentially uses the same
argument as in Nayak0]. We thus skip the proof

It may be pointed out that thm independent subsamples can be viewed as the
data in a one-way classification when there is no treatment efféett being the
casein order to estimater andn = o ~1, the(more appropriate estimators may be
obtained as certain suitable scalar multiple@ andy 1/Q*, respectivelywhere
Q =31, 3% (x; — %)%, whereX= (S, n,) =M, 3, x; . In particulay we may
consider the classes

C* ={cyQ*:c >0}

and

D = {d/1/Q":d > 0},

and seek the corresponding optimal estimators in the sense @.Eq The answer
is immediate and the best estimators are now analogously given by

G5 = QM
and
e = IM7Q",
whereM* is the median of a chi-squared random variable with degrees of freedom
Eim:l ni - 1.
Is &7 better thang, in the sense of E¢(5.1)? The answer to this question is
affirmative, and a similar statement can be made about the comparison befyjeen

andp.. In fact, both of these assertions follow from a result about the estimation of
o2 in the similar contextThese are all stated as the following theorem

THEOREM 5.2: Under the criterion in Eq(5.1), and under the assumptions of Theo
rem5.1,

i. for estimation ofo2 Q*/M* is better than @M,
ii. for estimation ofo, v Q*/M* is better thary Q/M,
iii. for estimation ofo—%, Y M*/Q* is better thany M/Q.
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The proof of i(essentially due t¢20]) is outlined hereThe other two parts
trivially follow from that.

Proor: It suffices to show tha®*/M* is better thamQfor anyb > 0.AsQ*=Q +
St (% — X)?, and random variables

Ms

(% — X)?
Q , T ,
; XIS n-m and o2 ~ Xm-1

are independently distributgitifollows that the random variablé¥ = Q/Q* ~ Beta
(Ei“ll n—mm-— 1) andQ*/o? ~ /\éi";lnrl are independently distributetlow
consider

P,2[L(Q/M%0?) <L(bQo?)] = P(,z[h<QZZA*> < h(?)]

and observe that the distributions@fo 2 andQ*/c 2 are free from the parameter
o ?. Because the events

2 <3

2 2 o o

g ag

<1} and {1<Q*/M* bQ}

are mutually exclusive and each of these implies the event

Q/M" bQ
{“< o2 )<“<?>}’
we must have

P[h(QZM*> < h<b_Q>] zp[b_Q< QM _ 1] +P[1< oM _ b—?}

2 0_2 0_2 0_2 2

Ag-aolov]
+PHS: > M*} N {% > bl\l/l*}]

Due to the independence ¥ = Q/Q* andQ*/c 2, it follows that the above
expression can be written as

Q" _ - 1 Q" _ -
[p[Z <]+ plws i o[ L o we .

https://doi.org/10.1017/50269964899132108 Published online by Cambridge University Press

PIW<
<


https://doi.org/10.1017/S0269964899132108

246 R. Khattree

and sinceM* is the median 0Q*/o°2, this is also equal to
! PlW< ! + ! PlW > 1
2 bM* | 2 bm* | 2’

which proves.iNow to prove ii and iij observe that any loss function for estimating
o orn = g~ ! can be written as some loss function tef. Thus ii and iii can be
reformulated in terms of. iSpecifically for illustration let us consider ijiwhich
concerns the estimation of % With L(t,n) = h(t/n), defineH(u) = h(1/vu) and
note thatH (u) also satisfies the conditions stated in the theofEnus
P‘r][L(Tl’n) < L(T2777):|
= P,[h(Ty/n) <h(Tz/n)]

=P,[H(n%T?) < H(n¥T#)]
2 2
“eo(2F) <n(%F)
1 1
} P”Z{L*(T—f’“z) - L*(T—f’“zﬂ

for some appropriate loss functiafy( -, -) also satisfying the stated conditioisnce
1/T2=Q*M* is the best estimator of? in the sense of Ed5.1), it follows that the
optimum estimator ofy = o~ is given byT = Y M*/Q*.

6. CLASSIC ESTIMATION OF C,,,
Chan Cheng and Sprind 3] defined the indexC,, as
U-L 1

6 JVEX-n?
wherer is a known target value of the proce3$ey indicated thaC,,, may be a
better measure of capability of the process when the target vakm®ign To esti-
mate C,,, from a normal random sample,,...,X,, they propose to estimate
VE(X—=7)2by 3 ,(x — 7)%/(n — 1) and use it in Eq(6.1). Let the correspond-
ing estimate beCpm. It may be pointed out that a more appropriate estimate of
VE(X — 7)? to use in Eq(6.1) may have beer = ,(x; — 7)%/n. It is becausg
even though none of the estimate betwdei=";(x, — 7)%(n — 1))~ and
(V=M1 (% — 7)%/n) " tis unbiased fofy E(X — 7)2) %, the latter at least accounts for
the appropriate degree of freedom and is also the maximum likelihood estimator
However use of the former estimator cannot be justified on any optimality ground
The choice made by Chan et &8] was perhaps more for want of mathematical
conveniencgsince their proposed estimator was more easily compafalitle re-
spect to bias and mean squared erwith their corresponding estimate Gf, when
T = W, the true process mean

Com = (6.1)
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We will consider the problem of estimation Gf,in a more formal contexfs
in 3], we will also make the assumption that= L

Whenr = |, the indice<C, andC,,, are identicalHowever with u known the
estimators ofC, as proposed earlier in Section 5 will not be necessarily optimum
since none of the corresponding estimation techniques accounts for the extra infor-
mation available in the form of knowpa. It is worth pointing out that there exist
situationg(for examplefor the estimation ofr2) when contrary to our intuitionit
is better(in the sense of MSEto ignore the information available in the form of
known u and estimate it by (Birch and Robertsof2], Khattree[13], Gupta and
Khattree[7,8], and Nayal 20]).

For simplicity, we will initially consider the situation where a single random sam-
plex,..., X, of sizenfrom a normally distributed process is availaldad the pro-
cess meay is known to be equal te, the target valueWhenr = i, E(X — 7)2 =
E(X — w2 = o2, and to estimate(E(X — w?)"Y?, a reasonable starting point
is to consider a scalar multiple =/, (x, — W)2)~¥2 or of (Z{L,(x, — W?)~Y2.
Since XL, (x; — W? is complete-sufficient foro?, it follows from the Rao—
Blackwell Theorem that an unbiased estimatooof = (E(X — 7)2)~¥2 based on
(=1 (% — w?)¥2 will also be the minimum variance unbiased estimamw, be-
causeS|_,(x; — W02~ x2, we haveE(S[; (x, — W?) Y2 = A"t¢ 1, whereA =
V22— ¢, J(n—1). Thus A(S1 (% — W?) ¥?is UMVUE of o . Conse-

r[(n-1)/2] e
quently UMVUE of C,,whenr = pis given by

U—L) 1

6 [n ’
2 (X —7)?

When the process is not centered at the targbtit the process mean is
known then %Z{Ll(xi —7)2~ x2(A), the noncentral chi-squared distribution with

degrees of freedom and the noncentrality parameter= ”(T—_Z”)Z An argument
similar to that given above will result in the UMVUE @, as

.. _ AWU-L) 1

Cbmr¢u - 6 \/niz
Xi— T
i:1( )

Cim= A<

where
= AN T[(n—1+2))/2]|*
A*zﬁeA{ d [( .J)/]] ,
= jt Tln+2))/2]
and
A=n(p—n?%c?
UnfortunatelyC;,..is not a valid estimatoas it involves the unknown parameter

o2 throughA. One may substituta™* 3, (x; — 1)? as an estimate af? to obtain
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an approximate value ofand use itin the expressiﬁg‘m#pto obtain an estimator

in this caseFrom the quality control point of viemthis may not howevey be a
correct approachnstead one should perhaps reset the process to bring the process
meanu at the intended target In view of this the case # pwill not be considered

in the next section

7. PITMAN CLOSEST ESTIMATOR OF C,,, WHEN 7= u

As earlier it may be of interest to find the estimator Gf, which is closest in the
sense of the Pitman measure of closengKksrnatively we can concentrate on the
Pitman closest estimator ¢E(X — 7)2) %2, The specific classes of estimators
which are of interest are

A= {a[Z (% — x)zr/z, a> o}

and

—-1/2

Bz{b.[é(xi—T)Z] , b>0}.

Note that the estimator proposed 8] belongs to classl. The following theo-
rem, proof of which follows from[13], provides the answer

TuEOREM 7.1: The best estimators of = (E(X — 7)2) Y2 in classes4 and B, in
the sense of E@5.1) and under the same assumptions @i, k), as stated in Theo
remb5.1, are respectiely gven by

n 1/2
i = [M > (% - 2)2]
i=1
1/2

n
i = {M## > (% —ﬂ ,

where M* and M* are the mediaps of2_,andy2, respectz'gely. The correspond
ing estimates of g, are gven byC;n= (U — L/6) nimand Ciin= (U — L/6) nj.

While 7, and?j are optimal in the respective classésind3, one may still
ask of the twq which is preferred? The following theorem provides the answer to
this inquiry.

THEOREM 7.2: Under the same assumptions ofillf) as in Theorenb.1, 75} is
closer ton than,mis ton. Thus Ciiis closer to G thanCpyis to Gy,

Proof of the above theorem is along the same lines as that for TheaBm 5
hence it is not repeated here

The case where there ane random subsamples of sizes...,n,, does not
require any special treatment becgusih known mearu = 7, these subsamples
can be collectively treated as a random sample of Bize >n;. A class of esti-
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mators analogous tol, say A,qqeq Of 7 Which consists of scalar multiples of
[Ei“ll Sha(x; — )‘()2]’1/2, can still be definedHowever it follows from Theo-
rem 7.2 that the optimaland in fact any) estimator in that class will be domi-
nated in the sense of E¢(5.1), by 7 = [M{#/=0, S, (x; — 7)2]¥2, whereM{
is the median of a¢3. Thus no special treatment of this scenario is needed

We have not explicitly made any mention of maximum likelihood estimation in
our discussionSince the maximum likelihood estimatoiBILE) of o2 under the
situations discussed here are well knowre MLE of C, andC,, are trivially ob-
tained by the appropriate substitutioftsnay further be observed that the clas€gs
D, C*, D*, andB do indeed contain the maximum likelihood estimatansder the
appropriate contextvhich in each case are dominated by the corresponding optimal
estimator within that clasé the sense of the Pitman measure of closerndsss a
detailed comparison with maximum likelihood estimators is really not necessary
Similarly, the MMSE estimatoré&and in generathe minimum risk estimators under
the loss functiond .—Ls) of C, and C,, within these classes can be obtained by
applying the routine calculus stepsowever as in the case of MLEhe domination
of these estimators under the criterion of Pitman measure of closeness trivially follows
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