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Abstract
A C∗-algebra is determined to a great extent by the partial order of its commutative C∗-subalgebras.
We study order-theoretic properties of this directed-complete partially ordered (dcpo). Many properties
coincide: the dcpo is, equivalently, algebraic, continuous, meet-continuous, atomistic, quasi-algebraic or
quasi-continuous, if and only if the C∗-algebra is scattered. For C∗-algebras with enough projections, these
properties are equivalent to finite-dimensionality. Approximately finite-dimensional elements of the dcpo
correspond to Boolean subalgebras of the projections of the C∗-algebra. Scattered C∗-algebras are finite-
dimensional if and only if their dcpo is Lawson-scattered. General C∗-algebras are finite-dimensional if
and only if their dcpo is order-scattered.
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1. Introduction
One can study a C∗-algebra A through the partially ordered set C(A) of its commutative
C∗-subalgebras. In general, this poset does not determine the C∗-algebra completely, which
follows from Connes’ example of a C∗-algebra A that is not isomorphic to its opposite C∗-
algebra Aop, the algebra with the same underlying vector space as A but multiplication (a, b) �→
ba (Connes 1975), for which clearly C(A)� C(Aop). However, C(A) does determine the structure
of A to a great extent:

— C(A) determines A up to quasi-Jordan isomorphism (Hamhalter 2011);
— C(A) determines A up to a Jordan isomorphism if A is an AW∗-algebra1 (Hamhalter 2015);
— V(A), a variant of C(A) defined below in Definition 10.4, determines A up to Jordan

isomorphism if A is a W∗-algebra (Döring and Harding 2016);
— C(A) determines A up to ∗-isomorphism if A is a type I AW∗-algebra (Lindenhovius 2016,

Corollary 8.6.24);
— C(A), together with extra structure making it a so-called active lattice, determines A up to

∗-isomorphism if A is an AW∗-algebra (Heunen and Reyes 2014).

Thus C(A) can be used as a substitute for the C∗-algebra itself (Heunen 2014a).
The intuition is clearest in the case of quantum theory. There, the C∗-algebra models all obser-

vations one can possibly perform on a quantum system. However, not all observations may be
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performed simultaneously, but only those that live together in a commutative C∗-subalgebra C.
There is an inherent notion of approximation: if C⊆D, then D contains more observations, and
hence provides more information.

This sort of informational approximation is more commonly studied in domain theory
(Abramsky and Jung 1994; Gierz et al. 2003). In domain theory, elements of a poset are some-
times interpreted as incomplete objects which are missing information. The commutative
C∗-subalgebras of a C∗-algebra do not contain information as such in the direct sense. Instead,
the incompleteness resides in the way the information in the quantum system is observed. In this
sense the poset C(A) is more akin to the poset of the domain of definition of partial functions,
ordered by extension. Classically this is not a very interesting poset, but in the quantum setting
it is. As we are speaking of a continuous amount of observables, but in practice only have access
to a discrete number of them, we are most interested in partial orders where every element can be
approximated by empirically accessible ones. The domain theory has a variety of notionsmodeling
this intuition.

This article studies how these domain-theoretic properties of C(A) relate to operator-algebraic
properties of the C∗-algebra A. We show that they all coincide in our setting, as the following are
equivalent:

— the C∗-algebra A is scattered (as defined in Section 2);
— the partial order C(A) is algebraic (Section 3);
— the partial order C(A) is continuous (Section 4);
— the partial order C(A) is meet-continuous (Section 5);
— the right adjoint of C( f ) is Scott-continuous for each injective ∗-homomorphism f : B→A

(Section 5);
— the partial order C(A) is atomistic (Section 6);
— the partial order C(A) is quasi-algebraic (Section 7); and
— the partial order C(A) is quasi-continuous (Section 7).

This makes precise exactly ‘how much approximate finite-dimensionality’ on the analytical side is
required for these desirable notions of approximation on the domain-theoretic side. It is satisfying
that these notions robustly coincide with the established algebraic notion of scatteredness, which
is intimately related to approximate finite-dimensionality.

We also study finite-dimensionality of A in terms of the partial order C(A):

— a C∗-algebra A is finite-dimensional if and only if C(A) is Lawson-scattered (Section 8) and
— a C∗-algebra A is finite-dimensional if and only if C(A) is order-scattered (Section 8);

Finally, we study the links between domain theory and projections, which form an important part
of traditional C∗-algebra theory:

— the partial order CAF(A) of commutative approximately finite-dimensional C∗-subalgebras
of a C∗-algebra A is isomorphic to the domain of Boolean subalgebras of Proj(A), the
projections in A, which allows us to reconstruct Proj(A) from C(A) (Section 9);

— an AW∗-algebraA is finite-dimensional if and only if C(A) is continuous, if and only if C(A)
is algebraic (Section 10); and

— the functors C and CAF do not preserve directed colimits of C∗-algebras, whereas the functor
B that assigns to each orthomodular poset its poset of Boolean subalgebras does preserve
directed colimits of orthomodular posets (Section 11).
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2. C∗-algebras
For the benefit of readers with a background in domain theory, we briefly recall what we need from
the classical theory of C∗-algebras (Conway 1990; Kadison and Ringrose 1983; Takesaki 2000;
Wegge-Olsen 1993).

Definition 2.1. A norm on a complex vector space V is a function ‖ − ‖: V → [0,∞) satisfying

— ‖v‖ = 0 if and only if v= 0;
— ‖λv‖ = |λ|‖v‖ for λ ∈C;
— ‖v+w‖ ≤ ‖v‖ + ‖w‖.

A Banach space is a normed vector space that is complete in the metric d(v,w)= ‖v−w‖.

Definition 2.2. An inner product on a complex vector space V is a map 〈− | −〉: V ×V →C that

— is linear in the second variable;
— is conjugate symmetric: 〈v |w〉 = 〈w | v〉;
— satisfies 〈v | v〉 ≥ 0 with equality only when v= 0.

An inner product space V is a Hilbert space when the norm ‖v‖ =√〈v | v〉 makes it a Banach
space. For example, Cn with its usual inner product 〈v |w〉 =∑n

i=1 v̄iwi for v= (v1, . . . , vn) and
w= (w1, . . . ,wn) is a Hilbert space.

Definition 2.3. A complex vector space A is an algebra when it carries a bilinear associative mul-
tiplication A×A→A. It is called unital when it has a unit 1 ∈A satisfying 1a= a= a1. It is
commutative when ab= ba for all a, b ∈A. A ∗-algebra is an algebra A with an involution, i.e.,
a map A→A, a �→ a∗, satisfying for each a, b ∈A and each λ,μ ∈C:

— (λa+μb)∗ = λ̄a∗ + μ̄b∗;
— (a∗)∗ = a;
— (ab)∗ = b∗a∗.

A C∗-algebra is a ∗-algebra A that is simultaneously a Banach space with for each a, b ∈A:

— ‖ab‖ ≤ ‖a‖‖b‖;
— ‖a∗a‖ = ‖a‖2.

The last identity is called the C∗-identity. One can show that the norm of a C∗-algebra is com-
pletely determined by the algebraic structure of the algebra, for which the C∗-identity is crucial. As
a consequence every C∗-algebra has a unique norm (see for instance (Landsman 2017, Corollary
C.28)). We emphasise that we will always assume our C∗-algebras to be unital. This is due to the
fact that Theorem 2.15 below, which is fundamental for most results in this contribution, is only
known to hold in the unital case. Similarly ∗-homomorphisms, which we will define below, are
always assumed to preserve the unit. An element a of a C∗-algebra is self-adjoint when a= a∗, and
a projection when a∗ = a= a2. We write Proj(A) for the set of all projections in A.

Example 2.4. As mentioned, the set of all n-by-n complex matrices is a C∗-algebra, with the
involution given by the conjugate transpose. More generally, the space B(H) of all bounded oper-
ators on a Hilbert space H, i.e., all continuous linear maps a : H→H, is a C∗-algebra as follows.
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Addition and scalar multiplication are defined by a+ b : v �→ a(v)+ b(v) and λa : v �→ λa(v),
multiplication is composition by ab : v→ a(b(v)), and 1 is the identity map v �→ v. The invo-
lution is defined by taking the adjoint: given a bounded operator a : H→H, we let a∗ be the
unique bounded operator satisfying 〈v | a(w)〉 = 〈a∗(v) |w〉 for each v,w ∈H. The norm is given
by ‖a‖ = sup{‖a(v)‖ | v ∈H, ‖v‖ = 1}. Notice that this C∗-algebra is noncommutative (unlessH is
one-dimensional or zero-dimensional). Moreover, B(H) equals the algebra of all n-by-n complex
matrices if we choose H =Cn.

The previous example is in fact prototypical, as the following theorem shows, for which
we first need to introduce the appropriate morphisms of C∗-algebras. A linear map f : A→ B
between C∗-algebras is a (unital) ∗-homomorphism when f (ab)= f (a)f (b), f (a∗)= f (a)∗. It
is unital when f (1)= 1; in this article all ∗-homomorphisms are assumed to be unital. If f is
bijective we call it a ∗-isomorphism, and write A� B. We denote the category of C∗-algebras and
∗-homomorphisms by CStar, and note that the isomorphisms in this category are precisely the
∗-isomorphisms. Every ∗-homomorphism is automatically continuous, and is even an isometry
when it is injective (Kadison and Ringrose 1983, Theorem 4.1.8). Since any ∗-homomorphism
f : A→ B is linear, continuity of f implies that its operator norm ‖ f ‖ satisfies ‖ f (a)‖ ≤ ‖ f ‖‖a‖
for each a ∈A (Kadison and Ringrose 1983, Theorems 1.5.5 and 1.5.6). A C∗-algebra B is a
C∗-subalgebra of a C∗-algebra A when B⊆A, and the inclusion B→A is a ∗-homomorphism.
As a consequence B must contain the identity element of A. Moreover, since the inclusion must
be an isometry, it follows that every C∗-subalgebra of A is a closed subset of A, and conversely,
every norm-closed ∗-subalgebra of A is a C∗-subalgebra of A. Clearly, the inverse image f−1[B]
of a ∗-homomorphism f : A→ B is a C∗-subalgebra of A. A less trivial fact is that the image f [A]
of f is a C∗-subalgebra of B (Kadison and Ringrose 1983, Theorem 4.1.9).

Theorem 2.5 (Gelfand–Naimark). (Kadison and Ringrose 1983, Theorem 4.5.6 and Remark
4.5.7). Any C∗-algebra is ∗-isomorphic to a C∗-subalgebra of B(H) for a Hilbert space H.

The above C∗-algebra is noncommutative unless H is one-dimensional or zero-dimensional.
Here is an example of a commutative one.

Example 2.6. The vector spaceCn is a commutative C∗-algebra under pointwise operations in the
max norm ‖(x1, . . . , xn)‖ =max{|x1|, . . . , |xn|}. It sits inside the algebra B(Cn) of n-by-nmatrices
as the subalgebra of diagonal ones, illustrating Theorem 2.5.

The infinite version of the previous example is as follows.

Example 2.7. Write C(X) for the set of all continuous functions f : X→C on a compact
Hausdorff space X. It becomes a commutative C∗-algebra as follows: addition and scalar multi-
plication are pointwise, i.e., f + g : x �→ f (x)+ g(x), multiplication is pointwise fg : x �→ f (x)g(x),
the unit is the function x �→ 1, the involution is given by f ∗ : x �→ f (x), and the norm is ‖ f ‖ =
supx∈X |f (x)|.

The above example is prototypical for commutative C∗-algebras.

Theorem 2.8 (Gelfand duality). (Kadison and Ringrose 1983, Theorem 4.4.3). Any commutative
(unital) C∗-algebra is ∗-isomorphic to C(X) for a compact Hausdorff space X called its spectrum.

Proof (sketch). If A is a commutative unital C∗-algebra, define its Gelfand spectrum to be the
set X of all nonzero2 linear maps ϕ : A→C such that ϕ(ab)= ϕ(a)ϕ(b). This is a subset of
the unit ball of the dual A∗ of A, i.e., the space of bounded functionals A→C. The dual A∗
becomes a Hausdorff space when equipped with the weak∗-topology, which is generated by a
subbasis consisting of sets of the form {ψ ∈A∗ | |ϕ(a)−ψ(a)|< ε} where ϕ ∈A∗, a ∈A, and
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ε > 0. Compactness of X follows from the Banach–Alaoglu Theorem. For each a ∈A, there is a
continuous function â : X→C defined by â(ϕ)= ϕ(a). The ∗-isomorphism A→ C(X), called the
Gelfand transform, is defined by a �→ â.

The previous theorem extends to a categorical duality, which was first shown explicitly in
Negrepontis (1971), see also Landsman (2017, TheoremC.23).We only need the following propo-
sition, which guarantees that studying the poset of C∗-subalgebras of a commutative C∗-algebra
reduces to studying compact Hausdorff quotients of its Gelfand spectrum.

Proposition 2.9. Let A be a commutative C∗-algebra with spectrum X. If X→ Y is a continu-
ous surjection onto a compact Hausdorff space Y, then Y is homeomorphic to the spectrum of a
C∗-subalgebra of A. Conversely, if a C∗-subalgebra of A has spectrum Y, there is a continuous
surjection X→ Y.

Proof. If q : X→ Y is a continuous surjection, then B= { f ◦ q | f ∈ C(Y)} is a C∗-subalgebra of A.
Conversely, if B is a C∗-subalgebra of A, define a equivalence relation∼B on X by setting x∼B y if
and only if b(x)= b( y) for each b ∈ B. The quotient Y = X/∼B is a compact Hausdorff space and
it follows that C(Y) is ∗-isomorphic to B. For details, see Weaver (2001, Proposition 5.1.3).

It is easy to see that the intersection of any collection of C∗-subalgebras of a C∗-algebra
A is again a C∗-subalgebra of A. Hence if S is a subset of a C∗-algebra A, there is a smallest
C∗-subalgebra C∗(S) of A that contains A, which we call the C∗-subalgebra of A generated by S.
If S= {a1, . . . , an} is finite, we write C∗(a1, . . . , an) instead of C∗({a1, . . . , an}). If S consists
of mutually commuting elements and is closed under a �→ a∗, then it can be embedded into a
commutative ∗-subalgebra of A, whose closure is a commutative C∗-subalgebra, and so C∗(S) is
commutative. C∗-subalgebras generated by a subset behave well under ∗-homomorphisms.

Lemma 2.10. Let f : A→ B be a ∗-homomorphism between C∗-algebras A and B, and let S⊆A be
a subset. Then f [C∗(S)]= C∗( f [S]).
Proof. Clearly f [S]⊆ f [C∗(S)] and so C∗( f [S])⊆ f [C∗(S)]. For the other inclusion, note

S⊆ f−1[ f [S]]⊆ f−1[C∗( f [S])].

Since the inverse image of a C∗-subalgebra under a ∗-homomorphism is clearly a C∗-subalgebra, it
follows that f−1[C∗( f [S])]⊆A is a C∗-subalgebra. Hence C∗(S)⊆ f−1[C∗( f [S])], and f [C∗(S)]⊆
C∗( f [S]).

2.1 Commutative C∗-subalgebras
We now come to our main object of study, namely commutative C∗-subalgebras. When gener-
ally describing (quantum) systems C∗-algebraically, observables become self-adjoint elements a=
a∗ ∈A. For each self-adjoint element a, there is a unique injective ∗-homomorphisms C(σ (a))→
A sending function x �→ x to a (Kadison and Ringrose 1983, Theorem 4.4.5) linking observables
to commutative C∗-subalgebras. Here σ (a) is the spectrum of a, i.e., the compact Hausdorff space

σ (a)= {λ ∈C | a− λ1 is not invertible}.
The following definition captures the main structure of approximation on the algebraic side.

Definition 2.11. For a C∗-algebra A, define

C(A)= {C⊆A | C is a commutative C∗-subalgebra},
partially ordered by inclusion: C≤D when C⊆D.
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Let us consider some elementary domain-theoretic properties of C(A) now. For detailed infor-
mation about domain theory, we refer to Abramsky and Jung (1994) and Gierz et al. (2003). Let
C be a partially ordered set. We think of its elements as partial computations or observations, and
the partial order C≤D as ‘D provides more information about the eventual outcome than C’.
With this interpretation, it is harmless to consider downsets, or principal ideals, instead of C ∈ C:

↓ C= {D ∈ C |D≤ C}.
Dually, it is also of interest to consider upsets, or principal filters, consisting of all possible
expansions of the information contained in C ∈ C:

↑ C= {D ∈ C |D≥ C}.
This extends to subsets D⊆ C as

↓D=
⋃
D∈D

↓D, ↑D=
⋃
D∈D

↑D.

If D has a least upper bound in C, it is denoted by
∨D. Furthermore, D is called directed if

for each D1,D2 ∈D there is a D3 ∈D such that D1,D2 ≤D3. This can be interpreted as saying
that the partial computations or observations in D can always be compatibly continued without
leaving D. If we want to emphasise that the set D over which we take the supremum if directed,
we write

∨↑ D instead of
∨D. Similarly, we write

∧D for a greatest lower bound, when it exists.
For two-element sets D we just write themeet

∧{D1,D2} as D1 ∧D2.

Definition 2.12. A partially ordered set C is directed-complete partially ordered (dcpo) if each
directed subset of C has a least upper bound.

Proposition 2.13. If A is any C∗-algebra, then C(A) is a dcpo, where the supremum
∨D of a

directed set D⊆ C(A) is given by
⋃D.

Proof. Let D⊆ C(A) be a directed subset. Let S=⋃D. We show that S is a commutative
∗-algebra. Let x, y ∈ S and λ,μ ∈C, there are D1,D2 ∈D such that x ∈D1 and y ∈D2. Since D
is directed, there is some D3 ∈D such that D1,D2 ⊆D3. Hence x, y ∈D3, whence λx+μy, x∗,
xy ∈D3, and since D3 is commutative, it follows that xy= yx. Since D3 ⊆ S, it follows that S is a
commutative ∗-subalgebra of A. Then S is a commutative C∗-subalgebra of A, which is clearly the
least upper bound ofD. See also Spitters (2012).

In order to show that the assignment A �→ C(A) is also functorial, we first have to introduce
the appropriate notion of morphisms of dcpos. A function f : P→Q between partially ordered
sets P and Q is monotone when p≤ q in P implies f ( p)≤ f (q) in Q; it is an order embedding if
it is monotone and f ( p)≤ f (q) implies p≤ q, and it is an order isomorphism if it is a monotone
bijection with a monotone inverse, or equivalently, if it is a surjective order embedding. If P andQ
are dcpos, then we say that a monotone map f : P→Q is Scott-continuous function if it preserves
the suprema of directed subsets. The category of dcpos with Scott-continuous maps is denoted by
DCPO.

The next proposition shows that C is a functor CStar→DCPO.

Proposition 2.14. Let f : A→ B be a ∗-homomorphism between C∗-algebras A and B. Then the
map C( f ) : C(A)→ C(B), C �→ f [C] is Scott-continuous. In particular, if f is injective, then C( f ) is
an order embedding.

Proof. Let f : A→ B be a ∗-homomorphism, and let C⊆A be a commutative C∗-subalgebra.
Since the image of a ∗-homomorphism is a C∗-subalgebra of the codomain, it follows that f [C] is
a C∗-subalgebra of B. Since C is commutative, and f preserves all algebraic operations, it follows
that f [C] is commutative. Hence the assignment C �→ f [C] is a well-defined map C(A)→ C(B),
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which clearly preserves inclusions, hence it is monotone. Let D⊆ C(A) be directed. Since C( f ) is
monotone, C( f )[D] is directed. Now

f
[∨

D
]
= f

[⋃
D
]
⊆ f

[⋃
D
]
⊆ f

[⋃
D
]
= f

[∨
D
]
= f

[∨
D
]
,

where the first inclusion holds because ∗-homomorphisms are continuous, and where the last
equality holds because C∗-subalgebras are closed. Thus

f
[∨

D
]
= f

[⋃
D
]
=
⋃
D∈D

f [D]=
∨
D∈D

f [D],

hence C( f ) is Scott-continuous. Finally, let f be injective and assume that C( f )(C)⊆ C( f )(D),
i.e., f [C]⊆ f [D]. Let x ∈ C. Then f (x) ∈ f [D], so there is some y ∈D such that f (x)= f ( y).
By injectivity of f it follows that x= y, hence x ∈D. We conclude that C( f ) is an order
embedding.

The dcpo C(A) is of interest because it determines the C∗-algebra A itself to a great extent,
as mentioned in the Introduction. The following theorem, which generalises an earlier result
in the setting of compact Hausdorff quotients of compact Hausdorff spaces (Mendivil 1999,
Theorem 11), illustrates this.

Theorem 2.15. (Hamhalter 2011, Theorem 2.4 ). Let A, B be commutative C∗-algebras. Given any
order isomorphism ψ : C(A)→ C(B), there exists a ∗-isomorphism f : A→ B such that C( f )=ψ
that is unique unless A is two-dimensional.

IfA is two-dimensional, the ∗-isomorphismA→ B is not unique becauseC2 has two automor-
phisms, the identity and the flip map (x, y) �→ ( y, x), that both induce the identity automorphism
on C(C2).

It already follows that for arbitrary C∗-algebras A, the partial order on C(A) determines the
C∗-algebra structure of each individual element of C(A). Indeed, if C ∈ C(A), then ↓ C is order
isomorphic to C(C), and since C is a commutative C∗-algebra, it follows that the partially ordered
set ↓ C determines the C∗-algebra structure of C.

2.2 Approximate finite-dimensionality
In practice, within finite time one can only measure or compute up to finite precision, and hence
can only work with (sub)systems described by finite-dimensional C∗-subalgebras. Therefore, one
might think that the natural extension is for the finite-dimensional C∗-subalgebras to be dense
in the whole C∗-algebra. C∗-algebras that can be described in this way are called approximately
finite-dimensional. In the separable case these can be classified in several ways, for instance by
means of Bratteli diagrams (Bratteli 1972) or by K-theory (Wegge-Olsen 1993).

Definition 2.16. We call a C∗-algebra A:

— approximately finite-dimensional, or anAF-algebra, if there is a directed setD of finite-dimen-
sional C∗-subalgebras of A whose union is dense in A with respect to the norm topology;

— locally approximately finite-dimensional, or a locally AF-algebra, when for each ε > 0 and
each a1, . . . , an ∈A there exist a finite-dimensional C∗-subalgebra B⊆A and b1, . . . , bn ∈ B
such that ‖ai − bi‖< ε for any i= 1, . . . , n.
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Before we give some examples, we need to develop some theory, but the reader could already
fast-forward to Example 2.19 for an example of a commutative AF-algebra, and to Example 2.24
for an example of a noncommutative locally AF-algebra. Let us point out that we do not, as most
authors do, restrict approximately finite-dimensional C∗-algebras to be separable (in which case
the directed set D can be replaced by a chain of finite-dimensional C∗-algebras), since all our
results also hold in the nonseparable case. It is easy to see that any AF-algebra is locally approx-
imately finite-dimensional: if a1, . . . , an and ε > 0, then there are b1, . . . , bn ∈⋃D such that
‖ai − bi‖< ε. Each ai is contained in some Di ∈D, and since D is directed, there is some B ∈D
containingD1, . . . ,Dn, hence also {b1, . . . , bn}. In case A is separable, the converse holds (Bratteli
1972, Theorem 2.2), but in general the class of locally AF-algebras is strictly larger than the class
of AF-algebras (Farah and Katsura 2010). However, Proposition 2.18 shows that for commuta-
tive C∗-algebras both notions coincide. Moreover, it turns out that a commutative C∗-algebra is
approximately finite-dimensional if and only if its spectrum is totally disconnected: that is, when
its connected components are exactly the singletons. Separability gives the additional require-
ment that the spectrum be second-countable (Bratteli 1974, Proposition 3.1). The proposition is
well known, and we provide a proof for convenience. We first need a lemma.

Lemma 2.17. Let X be compact Hausdorff, and let p1, . . . , pn be projections in C(X). Then
C∗( p1, . . . , pn) is a finite-dimensional subalgebra of C(X), and is spanned by all finite products
of elements in the set { p1, . . . , pn, 1}.
Proof. Let S be the collection of all finite products of p1, . . . , pn and 1. Since C(X) is commuta-
tive, the pi mutually commute, and moreover, since they are idempotent, it follows that S must
be finite. As a consequence, S is closed under the multiplication. Since all projections are self-
adjoint and commute, their products should be self-adjoint, too, hence S is closed under the
involution a �→ a∗. Now let V be the span of S. Then V is finite-dimensional, and since S is
closed under the multiplication and the involution, it follows that V is a ∗-subalgebra of C(X),
which is finite-dimensional, hence topologically closed. Thus V is a C∗-subalgebra of C(X) con-
taining the projections p1, . . . , pn, hence it must contain C∗( p1, . . . , pn). Since the latter must
contain S, hence also V , we find that V = C∗( p1, . . . , pn). We conclude that C∗( p1, . . . , pn) must
be finite-dimensional.

Proposition 2.18. The following are equivalent for a compact Hausdorff space X:

(1) C(X) is approximately finite-dimensional;
(2) C(X) is locally approximately finite-dimensional;
(3) X is totally disconnected;
(4) C(X) is generated by its projections.

Proof. We already showed that a C∗-algebra is locally approximately finite-dimensional if it is
approximately finite-dimensional, which yields (1)=⇒ (2). For (2)=⇒ (3), assume that C(X) is
locally approximately finite-dimensional, and let x, y ∈ X be distinct points. Urysohn’s lemma
gives f ∈ C(X) with f (x)= 1 �= 0= f ( y). Then there exist a finite-dimensional C∗-subalgebra
B and g ∈ B with ‖ f − g‖< 1

2 . This implies that g(x) �= g( y). Since B is finite-dimensional,
Lemma 4.2 below makes the set {z ∈ X | ∀h ∈ B : h(x)= h(z)} clopen. Hence x and y cannot share
a connected component, and X is totally disconnected.

Next we show (3)=⇒ (4), so let X be totally disconnected. Distinct points x, y ∈ X induce a
clopen subset C⊆ X containing x but not y. Now, the characteristic function of C is continuous,
and is therefore a projection, which clearly attains different values on x and y. Thus the projec-
tions of C(X) separate X. It follows from the Stone–Weierstrass theorem (Kadison and Ringrose
1983, Theorem 3.4.14) that the projections span an algebra B that is dense in C(X), hence C(X) is
generated by its projections.

https://doi.org/10.1017/S0960129518000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000464


980 C Heunen and B Lindenhovius

Finally, we prove (4)=⇒ (1), so assume that C(X) is generated by its projections. Let D be
the collection of all C∗-subalgebras of C(X) generated by a finite number of projections. By
Lemma 2.17, D consists solely of finite-dimensional C∗-subalgebras of C(X). It is also directed:
if D1,D2 ∈D where D1 is generated by projections p1, . . . , pn and D2 is generated by projections
q1, . . . , qm, then the C∗-subalgebraD generated by p1, . . . , pn, q1, . . . , qm is clearly a member ofD
containing both D1 and D2. Since

⋃D contains all projections of C(X), and the latter C∗-algebra
is generated by its projections, it follows that C(X) is the least upper bound of D, hence C(X) is
approximately finite-dimensional.

Example 2.19. Let X be the Cantor set. Then C(X) is a separable commutative AF-algebra.
Since there exists a continuous surjection X→ [0, 1], there is a C∗-subalgebra of C(X) that is
∗-isomorphic to C([0, 1]) by Proposition 2.9. This C∗-subalgebra is not approximately finite-
dimensional because [0, 1] is not totally disconnected. This pathological behaviour demonstrates
why the notion of C∗-subalgebras is sometimes replaced by that of hereditary C∗-subalgebras, i.e.,
C∗-subalgebras B such that for each self-adjoint b ∈ B and each self-adjoint a in the ambient alge-
bra the inequality 0≤ a≤ b implies a ∈ B, where a≤ b if and only if b− a= c∗c for some c in the
ambient algebra.

The following useful lemma explains the terminology ‘approximately’ by linking the topology
of a C∗-algebra to approximating C∗-subalgebras.
Lemma 2.20 (Wegge-Olsen 1993, Proposition L.2.2). Let A be a C∗-algebra and D a directed
family of C∗-subalgebras with A=⋃D. For each a ∈A and ε > 0, there exist D ∈D and x ∈D
satisfying ‖a− x‖< ε. If a is a projection, then x can be chosen to be a projection as well.

As far as we know, approximate finite-dimensionality of A does not correspond to any nice
order-theoretic properties of C(A). We will need the following more subtle notion. In general, we
will rely on the point-set topology of totally disconnected spaces, as covered, e.g., in Gierz et al.
(2003).

Definition 2.21. A topological space is called scattered if every nonempty closed subset has an
isolated point.

Equivalently, a topological space X is scattered if there is no continuous surjection X→ [0, 1]
(Semadeni 1971, Theorem 8.5.4). Scattered topological spaces are always totally disconnected, so
commutative C∗-algebras with scattered spectrum are always approximately finite-dimensional.

Example 2.22. Any discrete topological space is scattered, and any finite discrete space is
additionally compact Hausdorff, but there are more interesting examples.

The one-point compactification of the natural numbers is scattered, as well as compact
Hausdorff. This is homeomorphic to the subspace

{ 1
n |n ∈N

}∪{0} of R under the usual Euclidean
topology.

More generally, any ordinal number α is scattered under the order topology. A basis for this
topology is given by the intervals {δ | β < δ < γ } for ordinals β , γ ≤ α. If α is a limit ordinal, then
α + 1 is furthermore compact Hausdorff (Semadeni 1971, Corollary 8.6.7).

There is also an established notion of scatteredness in general C∗-algebras A, which can be
defined as follows.

Definition 2.23 (Jensen 1977). A positive functional on a C∗-algebra A is a continuous linear
map f : A→C satisfying f (a∗a)≥ 0. Positive functionals of unit norm are called states, and form
a convex set, whose extremal points are called pure. A positive functional is called pure if it is a
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positive multiple of a pure state. A is called a scattered C∗-algebra when each positive functional can
be written as the countable sum of pure positive functionals, where the sum converges pointwise.

Theorem 2.25 characterises scattered C∗-algebras completely. For now, let us mention that
scattered C∗-algebras are locally AF-algebras (cf. (Lin 1989, Lemma 5.1), where the author uses
‘AF-algebra’ to mean ‘locally AF-algebra’); it was only recently that a scattered C∗-algebra that is
not approximately finite-dimensional was found (Bice and Koszmider 2017, Theorem 1.10).

Example 2.24. An operator f ∈ B(H) on a Hilbert space H is compact when it is a limit of
operators of finite rank. If H is infinite-dimensional, the compact operators form a proper ideal
K(H)⊆ B(H), and all self-adjoint elements of K(H) have countable spectrum (Conway 1990,
Theorem VII.7.1). It follows that the C∗-algebra K(H)+C1H is scattered (Huruya 1978).

The following theorem connects the notions of AF-algebras, scattered topological spaces, and
scattered C∗-algebras.

Theorem 2.25. The following are equivalent for C∗-algebras:

(1) A is scattered;
(2) each C ∈ C(A) is approximately finite-dimensional;
(3) each C ∈ C(A) has totally disconnected spectrum;
(4) each maximal C ∈ C(A) has scattered spectrum;
(5) no C ∈ C(A) has spectrum [0, 1].

Proof. It follows fromKusuda (2010, Theorem 2.2) that (1) implies (2). The converse follows from
Kusuda (2012, Theorem 2.3). The equivalence between (2) and (3) is proven in Proposition 2.18.
By the same proposition, (2) implies (5). We show that (5) implies (4) by contraposition. Assume
that some maximal commutative C∗-subalgebra M has nonscattered spectrum X. Then there is
a continuous surjection X→ [0, 1], and it follows that M, and hence A, has a commutative C∗-
subalgebra whose spectrum is (homeomorphic to) [0, 1]. Finally, we show that (4) implies (3).
Assume that all maximal commutative C∗-subalgebras have scattered spectrum. Since by Zorn’s
lemma every commutative C∗-subalgebra is contained in a maximal one, it follows from Fabian
et al. (2001, Lemma 12.24) that all commutative C∗-subalgebras have scattered and hence totally
disconnected spectrum.

3. Algebraicity
In this section we characterise C∗-algebrasA for which C(A) is algebraic. First recall what the latter
notion means. Consider elements B, C of a dcpo C. The element C could contain so much infor-
mation that it is practically unobtainable. What does it mean for B to approximate C empirically?
One answer is, whenever C is the eventual observation of increasingly fine-grained experiments
Di, then all information in B is already contained in a single one of the approximants Di. More
precisely, we say that B is way below C and write B� C if for each directed subset {Di} of C the
inequality C≤∨Di implies that B≤Di for some i. Define:

�

C= {B ∈ C | B� C}, � C= {B ∈ C | C� B}.
With this interpretation, C is empirically accessible precisely when C� C. Such elements are
called compact, and the subset they form is denoted by K(C).

Definition 3.1. A dcpo is algebraic when each element C satisfies C=∨↑ (K(C)∩ ↓ C
)
, i.e., if

every element is the supremum of the compact elements below it.
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We start by identifying the compact elements of C(A). If K is a closed subspace of a compact
Hausdorff space X, define

CK = { f ∈ C(X) | f is constant on K},
which is clearly a C∗-subalgebra ofC(X). The following lemma gives a convenient way to construct
directed subsets of C(A).
Lemma 3.2. Let A be a C∗-algebra, and C⊆A a commutative C∗-subalgebra with spectrum X. If
P⊆ X is finite, then

D=
{⋂

p∈P CUp

∣∣∣Up open neighbourhood of p
}

is a directed family in C(A) with supremum C.

Proof. If Up and Vp are open neighbourhoods of p, then so is Up ∩Vp. Moreover

Up ∩Vp ⊆Up ∩Vp ⊆Up,

and so CUp
⊆ CUp∩Vp

. Similarly CVp
⊆ CUp∩Vp

. Hence
⋂

CUp
and

⋂
CVp

are both contained in⋂
CUp∩Vp

, making D directed.
Since Proposition 2.13 assures that

∨D is a C∗-subalgebra of C= C(X), it is closed under the
operation f �→ f ∗, and it contains the identity of C(X), hence also all constant functions on X.
Hence to show that

∨D= C(X), it suffices to show that
∨D separates all points of X by the

Stone–Weierstrass theorem (Kadison and Ringrose 1983, Theorem 3.4.14). Thus let x and y be
distinct points in X; we will show that f (x) �= f ( y) for some f ∈∨D by distinguishing two cases.
For the first case, suppose x, y ∈ P. Since P is finite, it is closed, as is P \ {x}. Hence {x} and P \ {x}
are disjoint closed subsets in X, and since X is compact Hausdorff, there are open subsetsU andV
containing x and P \ {x}, respectively, with disjoint closures. BecauseU is an open neighbourhood
of x and V is an open neighbourhood of p for each p ∈ P \ {x}, it follows that CU ∩ CV is inD. But
Urysohn’s lemma provides a function f ∈ C(X) satisfying f (U)= {0} and f (V)= {1}. Hence f is
constant on U and on V , so f ∈ CU ∩ CV . Since y ∈ P \ {x} ⊆V , we find f (x)= 0 �= 1= f ( y).

For the second case, suppose x �∈ P, and proceed similarly. Regardless of whether y ∈ P or not,
{x} and P ∪ {y} are disjoint closed subsets, hence there are open sets U and V containing {x} and
P ∪ {y}, respectively, with disjoint closures. Since V is an open neighbourhood of p for each p ∈ P,
we find that CV is in the family. Again Urysohn’s lemma provides a function f ∈ C(X) satisfying
f (U)= {0} and f (V)= {1}, and since f is constant onV , we find f ∈ CV , and again f (x) �= f ( y).

We can now identify the compact elements of C(A) as the finite-dimensional ones.

Proposition 3.3. Let A be a C∗-algebra. Then C ∈ C(A) is compact if and only if it is finite-
dimensional.

Proof. Suppose C is compact, and write X for its spectrum. Let x ∈ X and consider

D= {CU |U is an open neighbourhood of x}.
It follows from Lemma 3.2 that D is directed and C(X)=∨D. Because C is compact, it must
equal some element CU ofD. Since C(X) separates all points of X, so must CU . But as each f ∈ CU
is constant on U, this can only happen when U is a singleton {x}. This implies {x} =U, so {x} is
open. Since x ∈ X was arbitrary, X must be discrete. Being compact, it must therefore be finite.
Hence C is finite-dimensional.

Conversely, assume that C has a finite dimension n. By Theorem 2.8, C is isomorphic to C(X),
where X is a discrete n-point space, which is clearly spanned by the characteristic functions on the
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singleton sets. Hence C is generated by a finite set { p1, . . . , pn} ofmutually orthogonal projections
in the sense that pipj = 0 for i �= j. Let D⊆ C(A) be a directed family satisfying C⊆∨D, and
let X be the Gelfand spectrum of

∨D. Fix i ∈ {1, . . . , n}. Since the projection pi is contained in∨D, using Lemma 2.20 there is some D ∈D and some projection p ∈D such that ‖pi − p‖< 1
2 .

Since projections p : X→C can only take the value 0 or 1, p �= pi implies ‖pi − p‖ = 1, so we must
have p= pi. Hence there are D1, . . . ,Dn ∈D such that pi ∈Di for each i ∈ {1, . . . , n}. Since D is
directed, there must be some D ∈D with D1, . . . ,Dn ⊆D. So p1, . . . , pn ∈D, which implies that
C⊆D. We conclude that C is compact.

This leads to the following characterisation of algebraicity of C(A).

Theorem 3.4. A C∗-algebra A is scattered if and only if C(A) is algebraic.

Proof. By Propositions 2.18 and 3.3, the dcpo C(A) is algebraic if and only if each C ∈ C(A) is
approximately finite-dimensional. By Theorem 2.25, this is equivalent with scatteredness ofA.

4. Continuity
In this section we characterise C∗-algebras A for which C(A) is continuous.

Definition 4.1. A dcpo is continuous when each element satisfies C=∨↑ � C.

We start with two lemmas that govern the equivalence relation ∼B on a compact Hausdorff
space X defined by x∼B y if and only if b(x)= b( y) for each element b of a C∗-subalgebra B⊆
C(X).

Lemma 4.2. For a compact Hausdorff space X and C∗-subalgebra B⊆ C(X):

(1) each equivalence class [x]B is a closed subset of X;
(2) B is finite-dimensional if and only if [x]B ⊆ X is open for each x ∈ X;
(3) if X is connected, B is the (one-dimensional) subalgebra of all constant functions on X if and

only if [x]B is open for some x ∈ X;
(4) if B is infinite-dimensional, there are x ∈ X and p ∈ [x]B such that B� CU on each open

neighbourhood U ⊆ X of p. If X is connected, this holds for all x ∈ X.

Proof. Fix X and B.

(1) The proof of Proposition 2.9 shows that the quotient X/∼B is compact Hausdorff, hence
its points are closed. If q denotes the quotient map, then [x]B as subset of X is equal to the
preimage under the continuous map q of [x]B as point of X/∼B. Thus [x]B is closed.

(2) Let q : X→ X/∼B be the quotient map. By definition of the quotient topology, V ⊆ X/∼B
is open if and only if its preimage q−1[V] is open in X. We can regard [x]B both as a subset
of X and as a point in X/∼B. Since [x]B = q−1[{[x]B}], we find that {[x]B} is open in X/∼B
if and only if [x]B is open in X. Hence X/∼B is discrete if and only if [x]B is open in X for
each x ∈ X. Now X/∼B is compact, being a continuous image of a compact space. It is also
Hausdorff by Proposition 2.9. Hence X/∼B is discrete if and only if it is finite. Thus each
[x]B is open in X if and only if B is finite-dimensional.

(3) An equivalence class [x]B is always closed in X by (1). Assume that it is also open. By
connectedness X= [x]B, f ( y)= f (x) for each f ∈ B and each y ∈ X. Hence B is the algebra
of all constant functions on X, and since this algebra is spanned by the function x �→ 1, it
follows that B is one-dimensional.
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Conversely, if B is the one-dimensional subalgebra of all constant function on X, then for
each f ∈ B there is some λ ∈C such that f (x)= λ for each x ∈ X. Hence f (x)= f ( y) for
each x, y ∈ X, whence for each x ∈ X we have [x]B = X, which is clearly open.

(4) Assume that B is infinite-dimensional. By (2) there must be some x ∈ X such that [x]B is
not open. Hence there must be a point p ∈ [x]B such that U � [x]B for each open neigh-
bourhood U of p. If X is connected, (3) implies that [x]B is not open for any x ∈ X, so p
can be chosen as an element of [x]B for each x ∈ X. In both cases, we have U � [x]B for
any open neighbourhood U of p, hence there is q ∈U such that q /∈ [x]B. We have y ∈ [x]B
if and only if f (x)= f ( y) for each f ∈ B. So p ∈ [x]B, and q /∈ [x]B implies the existence of
some f ∈ B such that f ( p) �= f (q). That is, there is some f ∈ B such that f is not constant
on U, so f is certainly not constant on U. We conclude that for each open neighbour-
hood U of p there is an f ∈ B such that f /∈ CU , so B� CU for each open neighbourhood
U of p.

We can now characterise the way-below relation on C(A) in operator-algebraic terms.

Proposition 4.3. The following are equivalent for a C∗-algebra A and B, C ∈ C(A):

(1) B� C;
(2) B ∈K(C) and B⊆ C;
(3) B is finite-dimensional and B⊆ C.

Proof. By Proposition 3.3, B is finite-dimensional if and only if B is compact, which proves the
equivalence between (2) and (3). It is almost trivial that (2) implies (1) by unfolding definitions.
For (1)⇒ (3), assume B� C, which implies B⊆ C. For a contradiction, assume that B is infinite-
dimensional. Without loss of generality we may assume that C= C(X) for the spectrum X of C.
Lemma 4.2 gives p ∈ X with B� CU for each open neighbourhoodU ⊆ X of p. Consider the family

{CU |U open neighbourhood of p}.
By Lemma 3.2, this is a directed family in C(A) with supremum C(X). However, B is not contained
in any member of the family, and so cannot be way below C= C(X).

This leads to the following characterisation of continuity of C(A).

Theorem 4.4. A C∗-algebra A is scattered if and only if C(A) is continuous.

Proof. Let C ∈ C(A). It follows from Proposition 4.3 that

�

C=K(C)∩ ↓ C, whence C=∨K(C)
∩ ↓ C if and only if C=∨ �

C. Thus continuity and algebraicity coincide. The statement now
follows from Theorem 3.4.

5. Meet-continuity
In this section we characterise C∗-algebras A for which C(A) is meet-continuous.

Definition 5.1. A dcpo C ismeet-continuous when it is a meet-semilattice, and

C ∧
∨

D=
∨
D∈D

C ∧D (1)

for each element C and directed subset D of C.

A closed equivalence relation on a topological space X is a reflexive, symmetric and transitive
relation R on X that is closed as a subset of X× X in the product topology.
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Lemma 5.2. There is a dual equivalence between the poset of closed equivalence relations on a
compact Hausdorff space X and C(C(X)) that sends R to

CR = { f ∈ C(X) | ∀x, y ∈ X : (x, y) ∈ R⇒ f (x)= f ( y)}.
Proof. Themap R �→ CR is essentially bijective because anyC ∈ C(C(X)) corresponds to a quotient
X� Spec (C) of compact Hausdorff spaces, which in turn corresponds to a closed equivalence
relation∼ on X by Spec (C)= X /∼. Clearly R⊆ S if and only if CR ⊇ CS.

Closed equivalence relations on X form a complete lattice under reverse inclusion, which
follows from the observation that the intersection of a family of equivalence relations is an equiv-
alence relation, and the intersection of a family of closed subsets is closed, hence the infimum of a
family of closed equivalence relations is simply given by intersection. The supremum is harder to
describe and can in general only be given as∨

Rn =
⋂{

S⊆ X2 closed equivalence relation
∣∣ ⋃ Rn ⊆ S

}
.

Recall that composition of relations R and S on X is defined by

R ◦ S= {(x, z) ∈ X2 | ∃y ∈ X : (x, y) ∈ S, ( y, z) ∈ R}.
In the special case where R ◦ S= S ◦ Rwe have R∨ S= R ◦ S (Ellis and Ellis 2013, Proposition 6.9).
By Lemma 5.2, meet-continuity of C(C(X)) comes down to the question whether R∨⋂ Sn ⊇⋂

R∨ Sn for closed equivalence relations R and S1 ⊇ S2 ⊇ S3 ⊇ · · · on X. Notice that CK , for a
C∗-algebra C= C(X) and closed subset K ⊆ X, is a special case of CR of Lemma 5.2 for the closed
equivalence relation R= {(x, x) | x ∈ X} ∪K2 ⊆ X2. In general CR =⋂x∈X C[x]R . It will always be
clear from the context which of the two is meant.

Proposition 5.3. There are closed equivalence relations R and S1 ⊇ S2 ⊇ S3 ⊇ · · · on [0, 1] such
that R∨⋂ Sn �=⋂ R∨ Sn.

Proof. Wewill construct R and Sn similar to the Cantor set; R by keeping the closed middle thirds,
and Sn by keeping the closed first and last thirds. The definitions of Sn below can be illustrated as
follows:

S1 = ⊇ S2 = ⊇ S3 = ⊇ S4 = ⊇ · · ·

Similarly, R can be drawn as follows:

R=
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Formally, let ε denote the empty string. Inductively define numbers aσ , bσ , cσ , dσ ∈ [0, 1] indexed
by finite strings σ of zeros and ones:

aε = 0, bε = 1/3, cε = 2/3, dε = 1,
aσ0 = aσ , bσ0 = aσ + 1

3 (bσ − aσ ), cσ0 = bσ − 1
3 (bσ − aσ ), dσ0 = bσ ,

aσ1 = cσ , bσ1 = cσ + 1
3 (dσ − cσ ), cσ1 = dσ − 1

3 (dσ − cσ ), dσ1 = dσ ,

where σ ∈ {0, 1}∗, where the star is the Kleene star. Write�= {(x, x) | x ∈ [0, 1]} for the diagonal,
and define

R=�∪
⋃

σ∈{0,1}∗
[bσ , cσ ]2,

Sn =�∪
⋃

σ∈{0,1}n
[aσ , dσ ]2.

The Sn are certainly closed equivalence relations, and
⋂

Sn =�.
Clearly R is reflexive and symmetric. It is also transitive: if (x, y) and ( y, z) in R have x �= y �= z,

then (x, y) ∈ [bσ , cσ ]2 and ( y, z) ∈ [bτ , cτ ]2 for some σ , τ ∈ {0, 1}∗; but if y ∈ [bσ , cσ ]∩ [bτ , cτ ]
then σ = τ , so (x, z) ∈ R. The set R⊆ [0, 1]2 is also closed, if (xn, yn) ∈ R is a sequence that con-
verges in [0, 1]2, then either it eventually stays in one block [bσ , cσ ]2, or it converges to a point on
the diagonal.

In total we see that R∨⋂ Sn = R∨�= R. But we now prove that R∨ Sn = [0, 1]2 for any n,
so
⋂

R∨ Sn = [0, 1]2, and hence R∨⋂ Sn �=⋂ R∨ Sn. By induction it suffices to show R∨ S1 =
[0, 1]2 and Sn ⊆ R∨ Sn+1. For the latter it suffices to show (aσ , dσ ) ∈ R∨ Sn+1 for σ ∈ {0, 1}n,
which follows from transitivity:

aσ = aσ0 Sn+1 bσ0 R cσ0 Sn+1 dσ0 = bσ R cσ = aσ1 Sn+1 bσ1 R cσ1 Sn+1 dσ1 = dσ .

Similarly R∨ S1 = [0, 1]2.

Theorem 5.4. A C∗-algebra A is scattered if and only if C(A) is meet-continuous.

Proof. If A is not scattered, there is an element of C(A) that is ∗-isomorphic to C([0, 1]) by
Theorem 2.25. Therefore we may assume without loss of generality that A= C([0, 1]). But it now
follows from Lemma 5.2 and Proposition 5.3 that C(A) is not meet-continuous.

If A is scattered, then C(A) is continuous by Theorem 4.4. But C(A) is also a complete
semilattice, because the intersection

⋂
Ci of a family of commutative C∗-subalgebras Ci of A

is again a commutative C∗-subalgebra. And continuous dcpos that are also semilattices are
meet-continuous (Gierz et al. 2003, Proposition I-1.8).

We can give another characterisation of meet-continuity of C(A), namely in order-theoretic
terms of injective ∗-homomorphisms f : B→A. In this case the upper adjoint of C( f ) : C(A)→
C(B), i.e., the monotone map C( f )∗ : C(B)→ C(A) satisfying

C( f )(C)⊆D ⇐⇒ C⊆ C( f )∗(D)
exists, and is given by D �→ f−1[D], which clearly preserves inclusions. To see that this map
is well defined, we have to show that f−1[D] is a commutative C∗-subalgebra of A if D is a
commutative C∗-subalgebra of B. Clearly f−1[D] is a ∗-subalgebra that topologically closed (as
∗-homomorphisms are continuous). To show that it is commutative, let x, y ∈ f−1[D]. Then

f (xy− yx)= f (x) f ( y)− f ( y) f (x)= 0,
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since D is commutative. By injectivity of f it follows that xy− yx= 0, whence f−1[D] is commu-
tative. To see that C( f )∗ is indeed the upper adjoint of C( f ), we recall that the latter is given by
C �→ f [C], and it is well known that

f [C]⊆D ⇐⇒ C⊆ f−1[D].

Theorem 5.5. The dcpo C(A) of a C∗-algebra A is meet-continuous if and only if C( f )∗ is Scott-
continuous for any injective ∗-homomorphism f : B→A.

Proof. Suppose C( f )∗ is Scott-continuous for each injective ∗-homomorphisms f : B→A. Let D
be a directed family in C(A), and let C ∈ C(A). Write i : C→A for the inclusion. Then C(i) has an
upper adjoint C(i)∗ : C(B)→ C(A) given by D �→ i−1[D] so C(i)∗(D)= i−1[D]= C ∩D. Because
C(i)∗ is Scott-continuous,

C ∩
∨

D= C(i)∗
(∨

D
)
=
∨
D∈D

C(i)∗[D]=
∨
D∈D

C ∩D.

Hence C(A) is meet-continuous.
Now assume C(A) is meet-continuous and let f : B→A be an injective ∗-homomorphism.

Write C( f )∗ : C(B)→ C(A) for the upper adjoint, and let D be a directed family in C(B). Then
C(ϕ)∗(D)⊆ C( f )∗

(∨D) for each D ∈D, and hence
∨
D∈D

f−1[D] =
∨
D∈D

C( f )∗(D) ⊆ C( f )∗
(∨

D
)
= f−1

[∨
D
]
.

To show that this inclusion is in fact an equality, let x ∈ f−1[
∨D] be self-adjoint. Then

the smallest C∗-algebra C= C∗(x) containing x is commutative, hence an element of C(B).
It follows from Lemma 2.10 that f [C]= C∗( f (x)). Since f (x) ∈∨D, hence C∗( f (x))⊆∨D,
it follows that f [C]⊆∨D. Meet-continuity of C(A) now shows f [C]=∨D∈D f [C]∩D. Being
a C∗-subalgebra, f [B] is closed in A, so that the injection f restricts to a ∗-isomorphism and hence
a homeomorphism B→ f [B]. Observe that f−1[S]= f−1[S] for S⊆ f [B]. Hence

C= f−1[ f [C]]= f−1
[∨

D∈D f [C]∩D
]
= f−1

[⋃
D∈D f [C]∩D

]

= f−1
[⋃

D∈D f [C]∩D
]
=
⋃

D∈D f−1
[
f [C]∩D

]
⊆
⋃

D∈D f−1[D]=
∨

D∈D f−1[D].

As x ∈ C, it follows that x ∈∨D∈D f−1[D]. Finally, since f−1[
∨D] is a C∗-subalgebra of A, any

of its elements is a linear combination of self-adjoint elements in f−1[
∨D], hence f−1[

∨D]⊆∨
D∈D f−1[D]. We conclude that C( f )∗

(∨D)=∨D∈D C( f )∗(D).

6. Atomicity
In this section we characterise the C∗-algebras A for which C(A) is atomistic.

Definition 6.1. Let C be a partially ordered set with least element 0. An atom in C is a minimal
nonzero element. A partially ordered set is called atomistic if each element is the least upper bound
of some collection of atoms.
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We begin by identifying the atoms in C(A). Recall that C∗(S)⊆A denotes the C∗-subalgebra
of A generated by a subset S of A, i.e., the smallest C∗-subalgebra containing S⊆A. By Lemma
2.17, C∗( p) is just the linear span Span{p, 1− p} for projections p2 = p∗ = p ∈A; this is two-
dimensional unless p is trivial, i.e., 0 or 1, in which case it collapses to the least element C1 of
C(A). The next lemma is simple and known (Hamhalter 2011), but for completeness we include a
proof.

Lemma 6.2. Let A be a C∗-algebra. Then C is an atom in C(A) if and only if it is generated by a
nontrivial projection.

Proof. Clearly two-dimensional C are atoms in C(A). Conversely, assume that C is an atom of
C(A). By Theorem 2.8, C� C(X) for a compact Hausdorff space X. If X contains three distinct
point x, y, z, then C(X) contains a proper subalgebra { f ∈ C(X) | f (x)= f ( y)} with dimension at
least two, which contradicts atomicity of C. Hence X must contain exactly two points x and y.
Using the ∗-isomorphism between C and C(X), let p ∈ C be the element corresponding to the
element of C(X) given by x �→ 1 and y �→ 0 for y �= x. It follows that C= Span{ p, 1− p}.

To characterise atomicity we will need two auxiliary results. The first deals with least upper
bounds of subalgebras in terms of generators.

Lemma 6.3. Let A be a C∗-algebra and C ∈ C(A). If {Si}i∈I is a family of subsets of C, then each
C∗(Si) is in C(A), and C∗ (⋃i∈I Si

)=∨i∈I C∗(Si).
Proof. For any i ∈ I, clearly C∗(Si) is a commutative C∗-subalgebra of A, and hence an element of
C(A).

Writing S=⋃i∈I Si, we have Sj ⊆ C∗(S), and so C∗(Sj)⊆ C∗(C∗(S))= C∗(S). Therefore,∨
i∈I C∗(Si) is contained in C∗(S). For the inclusion in the other direction, notice that clearly

S⊆∨i∈I C∗(Si), whence

C∗(S)⊆ C∗
(∨

i∈I
C∗(Si)

)
=
∨
i∈I

C∗(Si).

This finishes the proof.

The second auxiliary result deals with subalgebras generated by projections. It shows that pro-
jections are the building blocks for C∗-algebras A whose dcpos C(A) are atomistic. This explains
why mere approximate finite-dimensionality is not good enough to characterise algebraicity
and/or continuity. See also Section 10.

Proposition 6.4. For a C∗-algebra A, a C∗-subalgebra C of A is the least upper bound of a collection
of atoms of C(A) if and only if it is generated by projections.
Proof. Let C ∈ C(A). For any collection P of projections in A, of course P=⋃p∈P{ p}, so
Lemma 6.3 guarantees C∗(P)=∨p∈P C∗( p). Hence C is generated by projections if and only if
C= C∗(P) for some collection P of projections in C if and only if C=∨p∈P C∗( p) for some col-
lection of projections in C. It now follows from Lemma 6.2 that C is generated by projections if
and only if it is the least upper bound of atoms in C(A).

This leads to the following characterisation of atomicity of C(A).

Theorem 6.5. A C∗-algebra A is scattered if and only if C(A) is atomistic.

Proof. By Theorem 3.4 it suffices to prove that C(A) is algebraic if and only if it is atomistic.
Assume that C(A) is algebraic and let C ∈ C(A). If C=C1, then C is the least upper bound of the
empty set, which is a subset of the set of atoms. Otherwise, it follows from Proposition 3.3 that C is
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the least upper bound of all its finite-dimensional C∗-subalgebras. Since every finite-dimensional
C∗-algebra is generated by a finite set of projections, it follows from Proposition 6.4 that each
element D ∈K(C(A))∩ ↓ C can be written as the least upper bound of atoms in C(A). Hence C is
a least upper bound of atoms, so C(A) is atomistic.

Conversely, assume C(A) is atomistic and let C ∈ C(A). Because C being finite-dimensional
implies that it is a least upper bound of K(C(A))∩ ↓ C, we may assume that C is infinite-
dimensional. By Lemma 6.2, C=∨p∈P C∗( p) for some collection P of projections in A. As we
must have P⊆ C, all projections in P commute. We may replace P by the set of all projections of
C, which we will denote by P as well; then we still haveC=∨p∈P C∗( p).WriteF for the collection
of all finite subsets of P, and consider the family {C∗( F) ∈ C(A) | F ∈F}. If F ∈F , then C∗( F) is
finite-dimensional, and since finite-dimensional C∗-algebras are generated by a finite number of
projections, it follows that this family equals K(C(A))∩ ↓ C. Now let F1, F2 ∈F . By Lemma 6.3,
C∗( F1)∨ C∗( F2)= C∗( F1 ∪ F2), making the family directed. Then

C=
∨
p∈P

C∗({ p})=
∨
F∈F

∨
p∈F

C∗( p)=
∨
F∈F

C∗( F),

where the third equality used Lemma 6.3. Hence C(A) is algebraic.

7. Quasi-continuity and Quasi-algebraicity
In this section we show that for dcpos C(A) of C∗-algebras A, the notions of quasi-continuity and
quasi-algebraicity, which are generally weaker than continuity and algebraicity, are in fact equally
strong.

To define quasi-continuity and quasi-algebraicity (Gierz et al. 2003, Section III-3) we generalise
the way below relation of a dcpo C to nonempty subsets: write G ≤H when ↑H⊆↑ G. This is a
pre-order, and we can talk about directed families of nonempty subsets. A nonempty subset G
is way below another one H, written G�H, when

∨D ∈ ↑H implies D ∈ ↑ G for some D ∈D.
Observe that {B}� {C} if and only if B� C, so we may abbreviate G�{C} to G� C, and {C}�
H to C�H.

Definition 7.1. For an element C in a dcpo C, define
Fin (C)= {F ⊆ C |F is finite, nonempty and F � C},

KFin (C)= {F ∈ Fin (C) |F �F}.
The dcpo is quasi-continuous if each Fin (C) is directed, and C�D implies D �∈ ↑F for some F ∈
Fin (C). It is quasi-algebraic if each KFin (C) is directed, and C�D implies D �∈ ↑F for some F ∈
KFin (C).

It is asserted without proof in Gierz et al. (2003, Proposition III-3.10) that continuity implies
quasi-continuity. For completeness let us sketch a proof. Let C be continuous and C ∈ C. First one
has to show that Fin (C) is directed, so let F , G ∈ Fin (C). Since

�

C is directed and has supremum
C, it follows from F � C and G� C that there are DF and DG in

�

C such that DF ∈ ↑F and
DG ∈ ↑ G. Since � C is directed, there is some D ∈ �

C such that DF ,DG ≤D. It now follows that
H= {D} is an element in Fin (C) such that F , G ≤H. It follows by contraposition that C�D
implies that D �∈ ↑F for some F ∈ Fin (C). Indeed, if D ∈ ↑F for each F ∈ Fin (C), then D ∈ ↑ E
for each E� C, which translates to E≤D for each E ∈ �

C. Hence C=∨ �

C≤D using the fact
that C is continuous.

In almost the same way (replacing Fin (C) by KFin (C) and replacing

�

C by the directed set of
compact elements below C) one can show that algebraicity implies quasi-algebraicity.
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Intuitively, quasi-continuity and quasi-algebraicity relax continuity and algebraicity to allow
the information in approximants to be spread out over finitely many observations rather than be
concentrated in a single one.

We start by analysing the way-below relation generalised to finite subsets.

Lemma 7.2. Let A be a C∗-algebra, C ∈ C(A) and F ⊆ C(A). Then F ∈ Fin (C) if and only if F
contains finitely many elements and F� C for some F ∈F .

Proof. Let F contain finitely many elements and assume that F� C for some F ∈F . Let D be
a directed subset of C(A) such that C⊆∨D. Since F� C, we have F⊆D for some D ∈D, so
D ∈ ↑F . Thus F ∈ Fin (C).

Conversely, suppose F ∈ Fin (C). Then F � C and F is nonempty and finite. Now {C} is a
directed subset whose supremum contains C, so there is some F= {F1, . . . , Fn} ∈F contained
in C. Assume for a contradiction that each Fi has infinite dimension. Write X for the spectrum
of C, so C� C(X). Lemma 4.2 guarantees the existence of points p1, . . . , pn ∈ X with Fj � CUj

for each open neighbourhood Uj ⊆ X of pj. In particular, Fj �
⋂n

i=1 CUi
for each i= 1, . . . , n and

open neighbourhood Ui of pi. Consider the family{ n⋂
i=1

CUi

∣∣∣∣∣Ui open neighbourhood of pi, i= 1, . . . , n

}
.

It is directed and has supremum C by Lemma 3.2. However, no member of the family contains Fi.
If F ∈F such that F� C, we cannot have F⊆⋂ CUi

for any i or neighbourhood Ui of pi, because
the latter is contained in C by construction, contradicting F � C. We conclude that there must
be a finite-dimensional F ∈F such that F⊆ C. Now F� C follows from Proposition 4.3.

Lemma 7.3. Let A be a C∗-algebra and let C ∈ C(A). If F� C, then {F} ∈KFin (C). If F ∈ Fin (C),
then F ≤F ′ for some F ′ ∈KFin (C).

Proof. Let F� C. By Lemma 7.2, we have {F} ∈ Fin (C). By Lemma 4.3, we have F� F. Therefore
{F}� {F}, and so {F} ∈KFin (C).

Let F ∈ Fin (C). By Lemma 7.2, there is an F ∈F such that F� C. The reasoning in the
previous paragraph shows {F} ∈KFin C. Since F ∈F , we have F ∈ ↑F , and so ↑{F} ⊆ ↑F . We
conclude that F ≤F ′ for F ′ = {F}.

We are now ready to characterise quasi-continuity and quasi-algebraicity of C(A).

Theorem 7.4. A C∗-algebra A is scattered if and only if C(A) is quasi-continuous, if and only if
C(A) is quasi-algebraic.

Proof. If A is scattered, then C(A) is algebraic by Theorem 3.4, and hence quasi-algebraic by the
remarks following Definition 7.1.

Now assume that C(A) is quasi-algebraic and let C ∈ C(A). LetF1,F2 ∈ Fin (C). By Lemma 7.3,
there exist elements F ′

1,F ′
2 ∈KFin (C) such that Fi ≤F ′

i . By quasi-algebraicity, KFin (C) is
directed, so there is an F ∈KFin (C) such that F ′

1,F ′
2 ≤F . Hence F1,F2 ≤F . Since KFin (C)⊆

Fin (C), it then follows that Fin (C) is directed. Let B ∈ C(A) satisfy C �⊆ B. Assume that B ∈ ↑F
forF ∈ Fin (C). Lemma 7.3 providesF ′ ∈KFin (C) withF ≤F ′. But this means that ↑F ⊆↑F ′.
Hence B ∈ ↑F ′, which contradicts quasi-algebraicity. Therefore, we must have B /∈ ↑F for each
F ∈ Fin (C), making C(A) quasi-continuous.

Finally, assume C(A) is quasi-continuous. Let F1, F2 ∈ �

C. By Lemma 7.2, we have {F1}, {F2} ∈
Fin (C), and since Fin (C) is directed, there is anF ∈ Fin (C) such thatF ⊆↑{F1} ∩ ↑{F2}. In other

https://doi.org/10.1017/S0960129518000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000464


Mathematical Structures in Computer Science 991

words, F1, F2 ⊆ F for each F ∈F , and since F ∈ Fin (C), Lemma 7.2 guarantees the existence of
some F such that F� C, making

�

C directed. Let B=∨ �

C. Since F⊆ C for each F ∈ �
C, we

have B⊆ C. If B �= C, then C� B, so by quasi-continuity there must be an F ∈ Fin (C) with B /∈
↑F . Hence F� B for each F ∈F , and in particular, Lemma 7.2 implies the existence of some
F ∈F satisfying F� C, but F� B. By definition of B we have F⊆ B for each F� C, giving a
contradiction. Thus C(A) is continuous, and by Theorem 4.4, A is scattered.

8. Other Notions of Scatteredness
In the previous sections, we have seen that the dcpo C(A) of a C∗-algebra A is nice – in the sense
of being (quasi-)algebraic, (quasi-)continuous, or atomistic, which are all equivalent – precisely
when A is scattered. In this section we study when C(A) itself is scattered, in two different ways:
by putting a topology on C(A) and asking when it is a scattered topological space and by con-
sidering an established (but different) notion of scatteredness for partially ordered sets directly
on C(A). Both will turn out to be very restrictive, in the sense that they coincide with A being
finite-dimensional.

If the C∗-algebra A is scattered, then we can turn the domain C(A) itself into the spectrum
of another C∗-algebra, which this section studies. We will use the Lawson topology that turns
approximation in domains into topological convergence.

Definition 8.1. The Scott topology declares subsets U of a dcpo to be open if ↑ U = U , and
D ∩ U �= ∅ when

∨↑ D ∈ U . The Lawson topology has as basic open subsets U \ ↑F for a Scott
open subset U and a finite subset F .

These topologies capture approximation in the following sense. A monotone function f
between dcpos is continuous with respect to the Scott topology precisely when it is Scott-
continuous, i.e., when

∨
f [D]= f (

∨D) for directed subsets D (Gierz et al. 2003, Proposition
II-2.1). Thus Proposition 2.14 shows that C( f ) is Scott-continuous. Similarly, a meet-semilattice
homomorphism between complete semilattices is continuous with respect to the Lawson topology
precisely when

∧
f [D]= f (

∧D) for nonempty subsets D (Gierz et al. 2003, Theorem III-1.8).

Proposition 8.2. If A is a scattered C∗-algebra, then C(A) is a totally disconnected compact
Hausdorff space in the Lawson topology.

Proof. If A is scattered, then C(A) is both an algebraic domain and a complete semilattice.
Therefore it is compact Hausdorff in the Lawson topology (Gierz et al. 2003, Corollary III-
1.11). Moreover, it follows that C(A) is zero-dimensional (Gierz et al. 2003, Exercise III-1.14),
which for compact Hausdorff spaces is equivalent to being totally disconnected (Willard 1970,
Theorem 29.7).

For example, let A be the algebra of all 2-by-2-matrices as discussed in Example 2.4. In C(A)
there is then one bottom element, and all other elements are incomparable to each other and
are in 1-1 correspondence with bases of C2. As a consequence, the Lawson topology of C(A) is
homeomorphic to the one-point compactification of a discrete space of cardinality 2ℵ0 .

It follows from the previous proposition that any scattered C∗-algebra A gives rise to another,
commutative, C∗-algebra C(X) for X= C(A) with its Lawson topology. Thus we can speak about
the domain of commutative C∗-subalgebras entirely within the language of C∗-algebras. However,
there is a caveat: iterating this construction only makes sense in the finite-dimensional case, as the
following theorem shows.

Theorem 8.3. A scattered C∗-algebra A is finite-dimensional if and only if C(A) is scattered in the
Lawson topology.
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Proof. Let A have finite dimension, so it is certainly scattered, and C(A) is algebraic. It follows
that a basis for the Scott topology is given by ↑ C for C compact (Gierz et al. 2003, Corollary II-
1.15). Thus sets of the form ↑ C \ ↑F with C compact and F finite form a basis for the Lawson
topology. Take a nonempty subset S ⊆ C(A), and let M be a maximal element of S , which exists
by Lindenhovius (2015, Lemma 10). Since M must be finite-dimensional too, it is compact by
Proposition 3.3. Hence ↑M is Scott open and therefore Lawson open. Maximality ofM in S now
gives S ∩ ↑M= {M}, and since ↑M is Lawson open, it follows that M is an isolated point of S .
Hence C(A) is scattered (cf. Definition 2.21).

For the converse, assume A is infinite-dimensional. Then C(A) has a noncompact element C,
and ↓ C contains an isolated point if it intersects some basic Lawson open set in a single point.
Hence ↓ C ∩ ↑K \ ↑F must be a singleton for some finite set F ⊆ C(A) and some compact
K ∈ C(A). In other words, [K, C] \ ↑F is a singleton, where [K, C] is the interval {D ∈ C(A) |K ⊆
D⊆ C}. Since C is infinite-dimensional and scattered (by Theorem 2.25), there are infinitely many
atoms in [K, C]: for C(A) is atomistic by Theorem 6.5 and hence C dominates infinitely many
atoms Ci, but K is finite-dimensional by Proposition 3.3, so that Ci ∨K, excepting the finitely
many Ci ≤K, give infinitely many atoms in [K, C]. Hence there is no finite subset F ⊆ C(A) mak-
ing [K, C] \ ↑F a singleton. We conclude that ↓ C has no isolated points, so C(A) cannot be
scattered.

Just like there is an established notion of scatteredness for topological spaces and C∗-algebras,
there is an established notion of scatteredness for partially ordered sets. In the rest of this section
we show that the two notions diverge and should not be confused.

Definition 8.4. A chain C in a poset P is order-dense if none of its elements covers another one, i.e.,
if x< z in C then x< y< z for some y ∈ C. A poset is order-scattered when it does not contain an
order-dense chain of at least two points.

Lemma 8.5. If a C∗-algebra A is not scattered, then C(A) is not order-scattered.
Proof. If A is not scattered it has a commutative C∗-subalgebra with spectrum [0, 1] by
Theorem 2.25, so without loss of generality we may assume A= C([0, 1]). Consider

{C[x,1] | x ∈ [0, 1)} ⊆ C(A).
Because C[x,1] ⊆ C[y,1] if and only if x≤ y, this set is order-isomorphic to the order-dense chain
[0, 1) via the map C[x,1] �→ x.

Lemma 8.6. Let X be an infinite scattered compact Hausdorff space, and let A= C(X). Then C(A)
is not order-scattered.

Proof. First observe that X must contain an infinite number of isolated points, for if X had
only finitely many isolated points x1, . . . , xn, then X \ {x1, . . . , xn} would be closed and hence
contain an isolated point xn+1, which is also isolated in X because X \ {x1, . . . , xn} would be
open. Choose a countably infinite set Y of isolated points of X. Note that Y is open, but cannot
be closed because X is compact. Let Z= Y \ Y be the boundary of Y . Since Y is open, Z is closed.
Moreover, if S⊆ Y , then Z ∪ S= (Y \ Y)∪ S= S \ (Y \ S) is closed because Y \ S consists only of
isolated points and hence is open. As Y is countably infinite, we can label its elements by rational
numbers Y = {xq}q∈Q. For each q ∈Q, set

Kq = Z ∪ {xr | r≤ q},
and notice that Kq is closed and infinite. Now q �→Kq is an order embedding of Q into the set
F(X) of all closed subsets of X with at least two points, partially ordered by inclusion. In turn,
K �→ CK is an order embedding of F(X)op into C(A). Composing gives an order embedding
Qop → C(A), and therefore an order-dense chain in C(A).

https://doi.org/10.1017/S0960129518000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000464


Mathematical Structures in Computer Science 993

Theorem 8.7. A C∗-algebra A is finite-dimensional if and only if C(A) is order-scattered.

Proof. If A is finite-dimensional, then so is each C ∈ C(A). Hence all chains in C(A) have finite
length, and therefore cannot be order-dense. That is, C(A) is order-scattered.

For the converse, assume that A is infinite-dimensional. We distinguish two cases. If A is not
scattered, then Lemma 8.5 shows that C(A) is not order-scattered. If A is scattered, then it has a
maximal commutative C∗-subalgebra with scattered spectrum X. Because C(X) must be infinite-
dimensional (Kadison and Ringrose 1991, Exercise 4.6.12), X is infinite. Now Lemma 8.6 shows
that C(C(X)), and hence C(A), is not order-scattered.

9. Projections and Posets of Boolean Subalgebras
We recall that an element p of a C∗-algebra A is called a projection when p2 = p= p∗. The set
Proj(A) of all projections in A can be ordered where p≤ q if and only if p= pq. In general, if p is
a projection then so is 1− p, and in fact the projections form an orthomodular poset, which we
define below.

In this section we aim to reconstruct the orthomodular poset Proj(A) of projections in a
C∗-algebra A from C(A) for the reason that in many cases Proj(A) encodes much of the struc-
ture of A, especially if A belongs to a class of C∗-algebras that have an ample supply of projections
such as AF-algebras or von Neumann algebras (cf. Definition 10.2 below). Given an orthomodular
poset P, one can consider the poset B(P) of Boolean subalgebras of P, which we will also define
below, and which already had been proven to determine P up to isomorphism (Harding et al.
2017). We aim to exploit this fact, hence we will introduce the following subposet of C(A) that
turns out to be isomorphic to B(Proj(A)):

Definition 9.1. Let A be a C∗-algebra. Then we denote the subposet of C(A) consisting of the
commutative C∗-subalgebras of A that are AF-algebras by CAF(A).

Lemma 9.2. Let A be a C∗-algebra. Then CAF(A) is a dcpo.
Proof. Let D⊆ CAF(A) be directed, and consider its supremum S=⋃D in C(A). We will show
that S ∈ CAF(A). Let a1, . . . , an ∈∨D and let ε > 0. Then there are d1, . . . , dn ∈⋃D such that
‖ai − di‖< ε/2. Let Di ∈D such that di ∈Di. Since D is directed, there is a D in D containing
D1, . . . ,Dn, hence containing d1, . . . , dn. Since D ∈ CAF(A), Proposition 2.18 assures that there is
a finite-dimensional C∗-subalgebra B⊆D and b1, . . . , bn ∈ B such that ‖di − bi‖< ε/2. Hence

‖ai − bi‖< ‖ai − di‖ + ‖di − bi‖< ε,
hence Proposition 2.18 assures that S is an AF-algebra.

It follows from the next lemma that CAF is a functor CStar→DCPO:

Lemma 9.3. Let f : A→ B be a ∗-homomorphism between C∗-algebras A and B. Then C( f ) :
C(A)→ C(B) restricts to a Scott-continuous map CAF(A) and CAF(B).
Proof. First consider the case B= 0. Then B is the terminal object of the category of unital
C∗-algebras, so f is the unique ∗-homomorphism A→ B. Now C( f ) is a monotone map to the
one-element poset C(B) and must therefore be Scott-continuous. Hence we may assume B �= 0.
Since f is a ∗-homomorphism, it is bounded, and it is nonzero since f (1)= 1, so ‖ f ‖ �= 0. Let
C ∈ CAF(A). Then C( f )(C)= f [C], hence let x1, . . . , xn ∈ f [C], i.e., there are c1, . . . , cn ∈ C such
that xi = f (ci) for each i ∈ {1, . . . , n}. Let ε > 0. Since C is approximately finite-dimensional and
commutative, it follows from Proposition 2.18 that there is a finite-dimensional C∗-algebraD⊆ C
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containing d1, . . . , dn such that ‖ci − di‖< ε/‖ f ‖ for each i ∈ {1, . . . , n}. Note that since f is
linear, f [D] must be a finite-dimensional C∗-subalgebra of f [C]. Hence

‖ f (ci)− f (di)‖ ≤ ‖ f ‖‖ci − di‖< ε,
which, in combination with Proposition 2.18, shows that f [C] is an AF-algebra. Hence C( f )
restricts to a map between CAF(A) and CAF(B), and since C( f ) is Scott-continuous (cf. Proposition
2.14), so is its restriction.

Next we define orthomodular posets. For a more detailed overview of orthomodular structures
we refer to Dvurečenskij and Pulmannová (2000).

Definition 9.4. A partially ordered set P is an orthoposet when it has a greatest element 1 and a
least element 0, and it comes equipped with an operation⊥: P→ P, called the orthocomplementa-
tion, satisfying for each p, q ∈ P:

— p⊥⊥ = p;
— if p≤ q, then q⊥ ≤ p⊥;
— p and p⊥ have a least upper bound and greatest upper bound, and p∧ p⊥ = 0 and p∨ p⊥ = 1.

If p≤ q⊥ (or equivalently q≤ p⊥), then we say that p and q are orthogonal and write p⊥ q. If P is
an orthoposet for which

— p⊥ q implies the existence of p∨ q;
— p≤ q implies q= p∨ (q∧ p⊥),

then we call P an orthomodular poset. If, in addition, P is a lattice, we call it an orthomodular
lattice. If p and q are elements in an orthomodular poset P for which there are pairwise orthogonal
elements e1, e2, e3 ∈ P such that

p= e1 ∨ e3, q= e2 ∨ e3,

then we say that p and q commute.

IfA is a C∗-algebra, then Proj(A) becomes an orthomodular poset if we define its orthocomple-
mentation by p⊥ = 1− p. Note that there are C∗-algebras A for which Proj(A) is not a lattice, see
for instance Lazar (1982, Lemma 2.1). It is easy to see two projections p and q in a C∗-algebraA are
orthogonal in the orthomodular poset Proj(A) if and only if they are orthogonal in the operator-
algebraic sense pq= 0. Similarly, p and q commute in the orthomodular poset Proj(A) if and only
if they commute in an algebraic sense: pq= qp.

Next we define the appropriate morphisms for orthomodular posets:

Definition 9.5. Amap f : P→Q between orthomodular posets P and Q is called an orthomodular
morphism if

— f (1)= 1;
— f (x⊥)= f (x)⊥ for each x ∈ P;
— x⊥ y implies f (x∨ y)= f (x)∨ f ( y) for each x, y ∈ P.

We denote the category of orthomodular posets with orthomodular morphisms by OMP.

Let f : A→ B be a ∗-homomorphism between C∗-algebrasA and B. Since it preserves all algebraic
operations, it follows that f ( p) is a projection in B if p is a projection in A, hence f restricts to a
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map Proj(A)→ Proj(B). If we define Proj( f ) to be the restriction of f to Proj(A), it is routine to
check that Projbecomes a functor CStar→OMP.

If P is a Boolean algebra, then any pair x, y of elements in P commute, since we can write
x= e1 ∨ e3 and y= e2 ∨ e3 with e1 = x∧ y⊥, e2 = x⊥ ∧ y and e3 = x∧ y. Conversely, if P is an
orthomodular poset for which all elements mutually commute, then P is a Boolean algebra, which
follows from the Foulis–Holland theorem (Beltrametti and Cassinelli 1981, Theorem 12.3.1).
Hence we can regard Boolean algebras as ‘commutative’ orthomodular posets, which gives more
reason to consider the poset B(P) of Boolean subalgebras of an orthomodular poset, which we
define now in more detail.

Definition 9.6. Let P be an orthomodular poset. A subset B that is closed under the operation
x �→ x⊥ and for which the join of any two mutually orthogonal elements is contained in B is called
a sub-orthomodular poset, which becomes an orthomodular poset if we equip it with the order and
the orthocomplementation inherited from P. If, in addition, B is a Boolean algebra, i.e., it is an
orthocomplemented lattice in which the distributive law holds: for each x, y, z ∈ B, we have

x∧ ( y∨ z)= (x∧ y)∨ (x∧ z),

then we call B a Boolean subalgebra of P. We denote the set of all Boolean subalgebras of P by B(P),
which we partially order by inclusion.

Proposition 9.7. For each orthomodular poset P, the poset B(P) is an algebraic semilattice, where∨D=⋃D for each directed set D⊆ B(P), and ∧ S =⋂ S for any nonempty subset S ⊆ B(P).
Moreover, the compact elements of B(P) are precisely the finite Boolean subalgebras.

Proof. Let S be a nonempty collection of Boolean subalgebras of P, and let B be its intersection.
Let x, y ∈ B (we do not need the assumption that x and y are orthogonal). Then x⊥, x∨ y ∈D
for each D ∈ S , so x⊥, x∨ y ∈ B, which shows that B is a sub-orthomodular poset of P. Since the
distributivity law holds in eachD ∈ S , it follows that it holds in B, hence B is a Boolean subalgebra
of P. Clearly B is the infimum of S .

Now letD be a directed set inB(P) and let B be its union. Let x, y ∈ B. Then there areDx,Dy ∈D
such that x ∈Dx and y ∈Dy, and since D is directed there is some D ∈D such that Dx,Dy ⊆D.
Hence x, y ∈D, which is a Boolean subalgebra, hence x∨ y and x⊥ exist and are contained in D,
whence they are elements of B. In a similar way, if x, y, z ∈ B, we can find a D ∈D containing x, y
and z, and since D is Boolean, x, y, z satisfy the distributivity law. We conclude that B is a Boolean
subalgebra of P. Clearly B is the supremum of D.

Let B be a finite Boolean subalgebra, and write B= {b1, . . . , bn}. Let D⊆ B(P) directed such
that B⊆∨D. Since

∨D=⋃D, it follows that for each i ∈ {1, . . . , n} there is a Di ∈D such that
bi ∈Di. Since D is directed, there is some D ∈D such that D1, . . . ,Dn ⊆D. Hence B⊆D, which
shows that B is compact.

For the converse, we first assume that B is an arbitrary Boolean subalgebra of P, and letD be the
set of all finite Boolean subalgebras of B. Then D is directed: if D1,D2 ∈D, let S=D1 ∪D2. Since
S is finite, so is S∪ S⊥, where S= {s⊥ : s ∈ S}. Then consider R= {∧ F : F⊆ S∪ S⊥}, which is
also finite since S∪ S⊥ is finite. Finally, letD= {∨ X : X⊆ R}which is finite for R is finite. It now
follows from the De Morgan Laws that D is a subset of B that is closed under meets, joins and
the orthocomplementation, whence D is a Boolean subalgebra. For each b ∈ B, the set {0, b, b⊥, 1}
forms a finite Boolean subalgebra, hence it follows that B=⋃D, i.e., B=∨D. This shows that
all Boolean subalgebras of P are the directed supremum of finite Boolean subalgebras. Moreover,
if B is compact, then it follows that B⊆D for some finite Boolean subalgebra D of P, whence B
is finite, too, which concludes the proof that the finite Boolean subalgebras of P are exactly the
compact elements of B(P). Thus each B ∈ B(P) is the directed supremum of compact elements,
whence B(P) is algebraic.
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The previous proposition generalises the statement that the lattice of subalgebras a Boolean
algebra is algebraic (Grätzer et al. 1972) from Boolean algebras to arbitrary orthomodular posets.
See also Heunen (2014b) for a different generalisation.

To show that the assignment P �→ B(P) extends to a functor OMP→DCPO, we first need a
lemma.

Lemma 9.8. Let f : P→Q be an orthomodular morphism between orthomodular posets P and Q,
then f preserves binary joins of commuting elements.

Proof. Since x and y commute, we have x= e1 ∨ e3, y= e2 ∨ e3 and x∨ y= e1 ∨ e2 ∨ e3 where
e1, e2, e3 are mutually orthogonal, whence

f (x∨ y)= f (e1 ∨ e2 ∨ e3)= f (e1 ∨ e2)∨ f (e3)= f (e1)∨ f (e2)∨ f (e3)
= f (e1)∨ f (e3)∨ f (e2)∨ f (e3)= f (e1 ∨ e3)∨ f (e2 ∨ e3)= f (x)∨ f ( y).

Thus f preserves binary joins of commuting elements.

Proposition 9.9. Let P and Q be orthomodular posets and let f : P→Q be an orthomodular
morphism. Then B �→ f [B] is a well-defined map B( f ) : B(P)→ B(Q) that is Scott-continuous.
Moreover, if f is injective, then B( f ) is an order embedding.

Proof. Let B ∈ B(P), and let x, y ∈ B. Since B is Boolean, x and y commute. Lemma 9.8 assures
that ϕ preserves their join: f (x∨ y)= f (x)∨ f ( y). Thus the join of f (x) and f ( y) exists and is
contained in f [B]. By definition of an orthomodular morphism, f preserves orthocomplemen-
tation, so f (x)⊥ ∈ f [B]. Since the joins of all elements in B exist, and De Morgan’s laws hold in
orthomodular posets:

f (x∧ y)= f
((

x⊥ ∨ y⊥
)⊥)= f

(
x⊥ ∨ y⊥

)⊥ =
(
f (x)⊥ ∨ f

(
y
)⊥)⊥ = f (x)∧ f ( y).

Therefore, the meet of f (x) and f ( y) exists and is contained in f [B], and f preserves all binary
meets. Since B is Boolean, it satisfies the distributive law, and since f preserves all binary meets,
binary joins and the orthocomplementation, it follows that f [B] also satisfies the distributive law.
We conclude that f [B] is a Boolean subalgebra of Q, which shows that B( f ) is well defined.
Clearly, it preserves inclusions, and since the direct image preserves unions, and the supremum
of a directed family in B(P) is given by the union of its members (cf. Proposition 9.7), it follows
that B( f ) is Scott-continuous.

Finally, assume that f is injective, and let B1, B2 ∈ B(P) such that B( f )(B1)⊆ B( f )(B2). This
implies that f [B1]⊆ f [B2]. Let x ∈ B1. Then f (x) ∈ f [B2], hence there is some y ∈ B2 such that
f (x)= f ( y). By injectivity of f it follows that x= y, whence x ∈ B2.

Theorem 9.10. CAF and B ◦ Projare functors CStar→DCPO that are naturally isomorphic. In
particular, if A is a C∗-algebra, then CAF(A)� B( Proj(A)) via C �→ Proj(C).

Proof. Let A be a C∗-algebra. Write ϕA : CAF(A)→ B( Proj(A)) for the map C �→ Proj(C). Define
ψA : B( Proj(A))→ CAF(A) by ψA(B)= C∗(B); the proof of Proposition 6.4 shows that this is well
defined. Both ϕA and ψA are clearly monotone. Moreover, if C ∈ CAF(A), then C∗( Proj(C))= C,
so that ψA(ϕA(C))= C. Now let B ∈ B( Proj(A)). Say that B is isomorphic to the Boolean algebra
B(X) of clopen subsets of the Stone space X. There is an isomorphism B(X)� Proj(C(X)). Hence
we may assume that B= Proj(C(X)) for some Stone space X. Now C∗(B)= C∗( Proj(C(X)))=
C(X), whence Proj(C∗(B))= B, so that ϕA(ψA(B))= B. Therefore, ϕA and ψA are inverses, hence
order isomorphisms. In order to show that the functors are naturally isomorphic, we show that
ϕA forms the A-component of a natural isomorphism CAF → B ◦ Proj. So let f : A→A′ be a
∗-homomorphism between C∗-algebrasA andA′.We show that the following diagram commutes:
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CAF(A)

CAF( f )

��

ϕA �� B( Proj(A))

B( Proj( f ))

��
CAF(A′)

ϕA′
�� B( Proj(A′))

Let C ∈ CAF(A). Then it follows from Proposition 2.18 that C= C∗( Proj(C)), hence
ϕA′ ◦ CAF( f )(C)= ϕA′( f [C])= ϕA′( f [C∗( Proj(C))])= ϕA′(C∗( f [ Proj(C)]))

= ϕA′ ◦ψA′( f [ Proj(C)])= f [ Proj(C)]= Proj( f )[ Proj(C)]
= B( Proj( f ))( Proj(C))= B( Proj( f )) ◦ ϕA(C),

where the first equality follows by definition of CAF( f ) as a restriction of C( f ), the third equality
follows from Lemma 2.10, the fourth equality by definition of ψA′ , which is the inverse of ϕA′ ,
which gives the fifth equality, and the penultimate equality follows by definition action of Projon
∗-homomorphisms.

It follows that CAF(A) is an algebraic complete semilattice, whose compact elements are pre-
cisely the finite-dimensional commutative C∗-subalgebras (Lindenhovius 2016, Corollary 6.2.5).
See also Heunen (2014b).

Combining the previous theorem with Harding et al. (2017) gives the following.

Corollary 9.11. We can construct an orthomodular poset P, orthomodular isomorphic to Proj(A)
completely in terms of CAF(A).

The next lemma characterises CAF(A) as a subposet of C(A).
Lemma 9.12. Let A be a C∗-algebra. Then CAF(A) is the subposet of C(A) consisting of all elements
that are the supremum of some subset of atoms of C(A).
Proof. This follows directly from combining Propositions 2.18 and 6.4.

Combining Corollary 9.11 and Lemma 9.12 now gives the main result of this section.

Theorem 9.13. Let A be a C∗-algebra. Then we can construct an orthomodular poset P isomorphic
to Proj(A) completely in terms of C(A).

10. AW∗-algebras
The previous section observed that the projections of a commutative C∗-algebra form a Boolean
algebra. In particular, the projections of C(X) are precisely the indicator functions of clopen sub-
sets of X. Thus, if a C∗-algebra has many projections, it is intuitively rather disconnected. As an
example, we have seen in Proposition 2.18 that every commutative AF-algebra has a Gelfand spec-
trum that is totally disconnected, or a Stone space, since every Gelfand spectrum is also compact
Hausdorff. Hence we can regard AF-algebras as operator-algebraic versions of Stone spaces. A
stronger notion is that a disconnected space is that of an extremally disconnected space, in which
the closure of an open set is open. Extremally disconnected compact Hausdorff spaces are also
called Stonean spaces. The operator algebraic version is as follows Kaplansky (1951).

Definition 10.1. An AW∗-algebra is a C∗-algebra A such that Proj(A) is a complete lattice, and
every maximal element in C(A) is generated by its projections.
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Equivalently, but more in line with our purposes, an AW∗-algebra is a C∗-algebra whose max-
imal C∗-subalgebras have a Stonean Gelfand spectrum (Saito and Wright 2015, Theorem 8.2.5).
The most prominent examples of AW∗-algebras are the von Neumann algebras, which we define
now.

Definition 10.2. Let H be a Hilbert space, and let S⊆ B(H). Then the commutant S′ of S is the set
{b ∈ B(H) : ab= ba for each a ∈ S}. If M⊆ B(H) is a C∗-algebra that it equal to its bicommutant
M′′, then we call M a von Neumann algebra on B(H). A C∗-algebra ∗-isomorphic to some von
Neumann algebra is called aW∗-algebra.

Example 10.3 (Takesaki 2000, Theorem III.1.18). Let X be a set. Then �∞(X), the space of all
complex-valued functions f on a set X, such that supx∈X |f (x)| is a finite number (which we define
to be the norm of f ), is a commutative W∗-algebra.

In this section we consider variations on C(A) that cooperate well with projections. We start
with approximating an AW∗-algebra by its commutative AW∗-subalgebras.

Definition 10.4. An AW∗-subalgebra of an AW∗-algebra A is a C∗-subalgebra C⊆A that is an
AW∗-algebra in its own right, with the same suprema of projections as in A. Write A(A) for the
partially ordered set of commutative AW∗-subalgebras of A under inclusion.

There is a similar notion V(A) of W∗-subalgebras of a W∗-algebra A that is studied in Döring
and Barbosa (2012). Here aW∗-subalgebra of theW∗-algebra A is just an AW∗-subalgebra, hence
V(A)=A(A). Thus working in the setting of AW∗-algebras is more general. We note that ifM⊆
B(H) is a von Neumann algebra, then a C∗-subalgebra N ofM is a W∗-subalgebra if and only if it
is a von Neumann algebra on B(H) (cf. Berberian (1972, Exercise 4.24)). Hence V(M)= {C⊆M |
C is a commutative von Neumann algebra on B(H)}.
Proposition 10.5. For an AW∗-algebra A there is a Galois correspondence

A(A) C(A),⊥
where the upper adjoint maps a C∗-subalgebra C ∈ C(A) to the smallest AW∗-subalgebra of A
containing it. HenceA(A) is a dcpo.

Proof. Write C′ =⋂{W ∈A(A) | C⊆W} for the smallest AW∗-subalgebra of A containing C ∈
C(A), which exists by Berberian (1972, Proposition 4.8.(ii)). If C⊆D, then clearly C′ ⊆D′. By
construction we have C′ ⊆W if and only if C⊆W, for C ∈ C(A) and W ∈A(A). Finally, notice
thatW′ =W forW ∈A(A).

Next we characterise the AW∗-algebras A whose dcpos C(A) and A(A) are continuous,
extending Döring and Barbosa (2012, Theorem 6.1 ). This needs the following lemma.

Lemma 10.6. Compact Hausdorff spaces that are scattered and Stonean must be finite.

Proof. Consider the open and discrete set:

U = {x ∈ X | {x} is closed and open}.
Assume that X \U �= ∅. By scatteredness, {x} is open in X \U for some x ∈ X \U. Therefore,
X \ (U ∪ {x})= (X \U) \ {x} is closed in X \U and hence closed in X. Thus both {x} and X \
(U ∪ {x}) are closed subsets. Since X is compact Hausdorff, there are disjoint open subsets V1
and V2 containing x and X \ (U ∪ {x}), respectively. We may assume V1 is closed because X is
Stonean. Observe that V1 is infinite; otherwise V1 \ {x} would be closed and {x} =V1 \ (V1 \ {x})
open, contradicting x /∈U. HenceV1 \ {x} is infinite, too. Pick two disjoint infinite subsetsW1,W2
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covering V1 \ {x}. SinceWi is contained U, it must be open. IfWi were closed, then it is compact,
contradicting that it is both discrete (as subset of U) and infinite. So Wi �Wi ⊆V1. Moreover,
Wi ∩Wj =∅ for i �= j, and W1 ∪W2 =V1 \ {x}, so Wi =Wi ∪ {x} whence W1 ∩W2 = {x}. Since
X is Stonean, Wi is open, whence {x} is open, contradicting x /∈U. Hence X=U, and since U is
discrete and compact, it must be finite.

Theorem 10.7. The following are equivalent for an AW∗-algebra A:

(1) A is finite-dimensional;
(2) C(A) is algebraic;
(3) C(A) is continuous;
(4) A(A) is algebraic;
(5) A(A) is continuous.

Proof. Clearly, if A is finite-dimensional, it is scattered, which we know to be equivalent with
C(A) being algebraic (cf. Theorem 3.4) or continuous (cf. Theorem 4.4). Conversely, assume that
A is scattered. Theorem 2.25 then implies that all maximal commutative C∗-subalgebras of A are
scattered. But maximal C∗-subalgebras are automatically AW∗-algebras by Proposition 10.5, and
scattered commutative AW∗-algebras are finite-dimensional by Lemma 10.6. Since all maximal
commutative C∗-subalgebras of A are finite-dimensional, so is A itself (Kadison and Ringrose
1983, Exercise 4.6.12). It follows that (1), (2) and (3) are equivalent. Moreover, since the class
of finite-dimensional C∗-algebras coincides with the class of finite-dimensional AW∗-algebras, it
follows that A(A)= C(A) if A is finite-dimensional. Hence if A is finite-dimensional, then A(A)
is algebraic, hence also continuous since all algebraic dcpos are continuous (Gierz et al. 2003,
Proposition I-4.3). So (1) implies (4), which implies (5).

Finally, we show that (5) implies (1) by contraposition. Suppose A is infinite-dimensional. Pick
a maximal commutative C∗-subalgebra C⊆A; its Stonean spectrum X will have infinitely many
points, and by compactness a nonisolated point x. Any other point y1 ∈ X is separated from x by a
clopenU1, and induction gives a sequence of disjoint clopensU1,U2, . . . Their indicator functions
form an infinite set P of pairwise orthogonal projections in A.

Let I ⊆ P be an infinite subset with infinite complement. Its supremum p=∨ I is nonzero.
Choosing some nonzero q ∈ P \ I gives rq= 0 for each r ∈ I, and hence pq= 0 (Berberian
1972, Proposition 3.6), so that p �= 1. By Lemma 6.2, C∗( p) is an atom in C(A). Consider
the directed family {C∗( F) | F⊆ P finite} of elements of A(A), whose supremum contains p.
We will show that no element C= C∗( p1, . . . , pn) of the family can contain p. Observe that
pn+1 = 1−∑n

i=1 pi ∈ C is orthogonal to each p1, . . . , pn, and hence
∑n+1

i=1 pi = 1. Therefore,
C= C∗( p1, . . . , pn+1)= Span{ p1, . . . , pn+1} = Span{ p1, . . . , pn, 1}. If p were in C, we could thus
write it as p=∑n

i=1 λipi + λ1 for some coefficients λ, λi. Pick a nonzero element q ∈ I distinct
from p1, . . . , pn. Because q≤ p we find q= qp=∑n

i=1 λiqpi + λq= λq, whence λ= 1. Now pick
a nonzero element q ∈ P \ I distinct from p1, . . . , pn. Then qp= 0 and hence qpi = 0 for each
i= 1, . . . , n. Thus q=∑n

i=1 λiqpi + q= qp= 0, and p cannot be contained inC. Therefore,C∗( p)
is not compact, but since it is an atom of A(A), it is way above the bottom element only. Hence∨ �

C∗( p) �= C∗( p), andA(A) is not continuous.

We conclude that, at least from a domain-theoretic perspective on C(A), C∗-algebras are more
interesting than W∗-algebras or AW∗-algebras, since C∗-algebras contain a subclass of infinite-
dimensional algebras A for C(A) is a domain, whereas the only subclass of AW∗-algebras or of
W∗-algebras for which C(A) is a domain is the class of finite-dimensional algebras. Nevertheless,
themost satisfactory results for reconstructing the structure ofA from C(A) are obtained for AW∗-
algebras and W∗-algebras, as discussed in the Introduction. Any C∗-algebra A can be extended
to a W∗-algebra by taking its double dual A∗∗, also called the enveloping W∗-algebra (Takesaki
2000, Section III.2). This in fact gives an adjunction of categories showing that W∗-algebras form
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a nonfull reflective subcategory of C∗-algebras (Dauns 1972, 3.2). There are many examples of
C∗-algebras A for which C(A) is continuous but C(A∗∗) is not: any infinite-dimensional scat-
tered C∗-algebra will do, such as C(X) for the infinite compact Hausdorff scattered spaces X of
Example 2.22.

11. Directed Colimits
Because an AF-algebra is a directed colimit of finite-dimensional C∗-algebras, one might wonder
whether the functors C or CAF preserve directed colimits of C∗-algebras. In general the answer for
both functors is negative. It turns out to be useful to treat the case of CAF first, for which we need
to calculate the directed colimit of algebraic dcpos. The answer for C can then be derived. Since
CAF � B ◦ Proj, it is useful to split the case of CAF in two other cases, namely the behaviour Proj
with respect of directed colimits of C∗-algebras, and the behaviour of B with respect to directed
colimits of orthomodular posets. It turns out that B does preserve directed colimits, but Projdoes
not, from which it follows that CAF does not preserve directed colimits either.

Let A=⋃i∈I Ai, where {Ai}i∈I is a directed collection of C∗-subalgebras. When i≤ j, the inclu-
sion Ai ⊆Aj makes Proj(Ai)⊆ Proj(Aj) into a sub-orthomodular poset. More generally, consider
a collection {Pi}i∈I , where I is directed, and Pi is a sub-orthomodular poset of Pj if i≤ j. The col-
imit P of the Pi in the category of orthomodular posets and orthomodular morphisms is (Navara
and Rogalewicz 1991, Theorem 4.10)

P=
⋃
i∈I

Pi,

where P is ordered by p≤ q if and only if there is some i ∈ I such that p≤ q in Pi. The orthocom-
plementation of P is given by p⊥ = q if and only if there is some i ∈ I such that p⊥ = q in Pi.

Proposition 9.9 shows the inclusions Pi ⊆ Pj induce Scott-continuous inclusionsB(Pi)⊆ B(Pj),
and Proposition 9.7 shows that the compact elements of B(Pi) and B(Pj) are their finite Boolean
subalgebras, so K(B(Pi))⊆K(B(Pj)). To compute colimi∈I B(Pi), we need a description of the
directed colimit of algebraic dcpos {Xi}i∈I such thatK(Xi)⊆K(Xj) if i≤ j. This description seems
to be folklore; for the sake of completeness we include a proof. We first recall a definition and two
lemmas about free directed completions.

Definition 11.1. Let X be a poset. Then we denote the set of all ideals of X, i.e., all directed subsets
I ⊆ X such that I =↓ I, by Idl(X).

Lemma 11.2 (Gierz et al. 2003, Proposition I-4.10). Let X be a poset. Then Idl(X) is an algebraic
dcpo ordered by inclusion, where unions provide directed suprema. Moreover, x �→ ↓ x is an order
embedding X �→ Idl(X), x �→ ↓ x with image K(Idl(X)), the set of all compact elements of Idl(X). If
X itself is an algebraic dcpo, then X� Idl(K(X)).

Lemma 11.3 (Stoltenberg-Hansen et al. 2008, Corollary 3.1.6). Let X and Y be dcpos with X
algebraic. Any monotone map ϕ : K(X)→ Y has a unique Scott-continuous extension X→ Y given
by

x �→
∨

{ϕ(c) : c ∈K(X)∩ ↓ x}.
Proposition 11.4. If {Xi}i∈I be a directed family of algebraic dcpos such that Xi ⊆ Xj and K(Xi)⊆
K(Xj) when i≤ j, then

colimi∈I Xi = Idl

(⋃
i∈I

K(Xi)

)
.

The colimiting cone ϕi : Xi → colimi∈I Xi is given by x �→⋃{↓ c | c ∈K(Xi)∩ ↓ x}.
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Proof. Write X for the proposed colimit. Lemma 11.2 makes it an algebraic dcpo whose com-
pact elements are precisely the elements ↓ c, where c is compact in Xi for some i ∈ I. We have to
show that the ϕi are well-defined Scott-continuous functions such that the upper triangle of the
following diagram commutes:

Xi
� � ��

ϕi ���
��

��
��

ψi

��

Xj

ϕj����
��
��
�

ψj

��

X

ψ

���
�
�

Y
Let θi : K(Xi)→ X be the map c �→ ↓ c. Then θi is monotone, since it is the restriction of the
canonical embedding in Lemma 11.2. Hence it has a unique Scott-continuous extension by
Lemma 11.3, which is clearly equal to ϕi. Therefore ϕi is a well-defined Scott-continuous map.
To see that {ϕi} forms a cocone, we have to show that ϕi(x)= ϕj(x) for each x ∈ Xi if i≤ j. Since
K(Xi)⊆K(Xj) by assumption, it follows that θj is an extension of θi. Thus the restriction of ϕj to
K(Xi) equals θi, and Lemma 11.3 guarantees that ϕi equals the restriction of ϕj to Xi.

Now let Y be another dcpo and ψi : Xi → Y Scott-continuous maps such that ψi(x)=ψj(x)
for each x ∈ Xi and i≤ j. We prove that there is a unique Scott-continuous map ψ : X→ Y mak-
ing the diagram above commute. Let η : ⋃i∈I K(Xi)→ Y be the map c �→ψi(c) if c ∈ Xi. Since
K(Xi)⊆K(Xj) and ψj|Xi =ψi if i≤ j, this map is a well-defined monotone map. By Lemma 11.2,
the map κ : ⋃i∈I K(Xi)→K(X) given by c �→ ↓ c is an order isomorphism, so η ◦ κ−1 : K(X)→
Y is monotone, and so Lemma 11.3 guarantees a unique Scott-continuous extension ψ : X→ Y .
Let c ∈K(Xi). Then c ∈⋃i∈I K(Xi), so κ(c)=↓ c, whence

ψ ◦ ϕi(c)=ψ ◦ θi(c)=ψ(↓ c)= η ◦ κ−1(↓ c)= η(c)=ψi(c).

So the restriction of ψ ◦ ϕi to K(Xi) equals the restriction of ψi to K(Xi). Lemma 11.3 now gives
ψ ◦ ϕi =ψi. Now assume that ψ ′ : X→ Y is another Scott-continuous map making the diagram
commute, and let J ∈K(X). By definition, J = κ(c) for some i ∈ I and c ∈K(Xi). Since c ∈K(Xi),

ϕi(c)=
⋃

{↓ c′ | c′ ∈K(Xi)∩ ↓ c} = ↓ c= κ(c),
whence

ψ ′( J)=ψ ′ ◦ κ(c)=ψ ′ ◦ ϕi(c)=ψi(c)= η(c)= η ◦ κ−1( J)=ψ( J),
so ψ ′ coincides with ψ on K(X). Now ψ ′ =ψ by Lemma 11.3.

Corollary 11.5. The functor C does not preserve directed colimits.

Proof. Let X be the Cantor space and A= C(X). This is a commutative AF-algebra that is not
scattered. So A is the directed colimit of a set {Ai}i∈I of finite-dimensional C∗-subalgebras,
i.e., A=⋃i∈I Ai. If i≤ j, there is an inclusion f : Ai →Aj. Now C(Ai)⊆ C(Aj) because C( f )
is an order embedding (by the remark below Proposition 2.13). By Proposition 3.3 then
K(C(Ai))= C(Ai)⊆ C(Aj)=K(C(Aj)), and the previous proposition shows that the colimit of the
C(Ai) exists and is algebraic. However, since A is not scattered, C(A) is not algebraic, and so
C(A) �� colimi∈I C(Ai).

Next we show that the functorsA and V do not preserve directed colimits either. Asmorphisms
of AW∗-algebras we choose ∗-homomorphisms that are normal, i.e., that preserve suprema of
projections. W∗-algebras form a full subcategory, so finite-dimensional C∗-algebras are certainly
AW∗-algebras. We first have to show the existence of the directed colimit of some diagram of
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finite-dimensional C∗-algebras in the category of AW∗-algebras. To do so, let An =Cn+1, and
define for each n ∈ω the function fn,n+1 : An →An+1 by (x0, x1, . . . , xn) �→ (x0, x1, . . . , xn, xn),
and form< n, define fm,n : Am →An by

fm,n = fn−1,n ◦ fn−2,n−1 ◦ · · · ◦ fm+1,m+2 ◦ fm,m+1.

It is easy to see that fm,n is a ∗-homomorphism. Note that the choice of An =Cn+1 instead of
An =Cn assures that also f0,1 is unital, as required in our definition of a ∗-homomorphism. Since
the domain Cm+1 of fm,n is finite-dimensional, and commutative, it only has a finite number of
projections, namely the elements (a0, a1, . . . , an) with ai ∈ {0, 1}, and so fm,n must be normal. It
follows that the fm,n form a directed diagram in both the category of AW∗-algebras and in its full
subcategory of W∗-algebras. Recall the definition of �∞(X) from Example 10.3. The next lemma
shows that �∞(ω+ 1) is the colimit of the directed diagram defined above. Since ω and ω+ 1
have the same cardinality, we could have considered �∞(ω) instead, but �∞(ω+ 1) is handier for
notational reasons. For each n ∈ω, define gn : An → �∞(ω+ 1) by

gn(x0, x1, . . . , xn)(i)=
{
xi i≤ n;
xn i≥ n,

which is a normal ∗-homomorphism for the same reasons as fm,n. Clearly gn+1 ◦ fn,n+1 = gn, so
that gn ◦ fm,n = gm for each n≥m in ω, and the gn form a cocone.

Lemma 11.6. The cocone (�∞(ω+ 1), gn) is a colimit of diagram { fm,n : Am →An}m,n∈ω, both
in the category of AW∗-algebras with normal ∗-homomorphisms and in its full subcategory of
W∗-algebras.
Proof. Let A be an AW∗-algebra, and for each n ∈ω, let hn : An →A be a normal
∗-homomorphism satisfying hn ◦ fm,n = hm for each m< n in ω. We have to establish a unique
normal ∗-homomorphism k : �∞(ω+ 1)→A such that k ◦ gm = hm for allm.

Am
fm,n ��

gm ���
��

��
��

��

hm

		

An

gn

��
��
��
��
�

hn

��

�∞(ω+ 1)

k
���
�
�

A

For each 0≤ i≤ω, let ei : ω+ 1→C be given by ei(j)= δij. Note that any projection in �∞(ω+ 1)
is the characteristic function χS of some subset S of ω+ 1, so S �→ χS is a Boolean isomorphism of
the power set of ω+ 1 to Proj(�∞(ω+ 1)). Since power sets are atomistic Boolean algebras, where
the singletons are the atoms, it follows that ei = χ{i} is an atomic projection, and χS =∨i∈S ei.

Similarly, let eni ∈An be the projection given by (eni )j = δij. Notice gn+1(en+1
n )= en for each

n ∈ω. Next, for each n ∈ω set pn = hn+1(en+1
n ). Now pn is a projection in A because hn+1 is a

∗-homomorphism. Ifm �= n, saym< n, then

pnpm = hn+1
(
en+1
n

)
hm+1

(
em+1
m

)= hn+1
(
en+1
n

) · hn+1( fm+1,n+1
(
em+1
m

))
= hn+1

(
en+1
n

)
hn+1

(
en+1
m

)= hn+1
(
en+1
n en+1

m
)= 0,

since en+1
n and en+1

m are orthogonal. Let pω =
(∨

n∈ω pn
)⊥. Clearly pω is orthogonal to any other

pn, and moreover,
∨

n∈ω+1 pn = 1.
Now, define k as follows. Let e ∈ �∞(ω+ 1) be a projection, so e= χS for some S⊆ω+ 1.

Then we define k(e)=∨i∈S pi. Since
∨

i∈ω+1 pi = 1, it follows that k(1)= 1, which is the reason to
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considerω+ 1 instead ofω. Let e1 and e2 be projections in �∞(ω+ 1), say e1 = χS and e2 = χT for
some S, T ⊆ω+ 1. Then e1e2 = χSχT = χS∩T , so Proj(�∞(ω+ 1)) is closed under multiplication.
Moreover, since the pi are mutually orthogonal,

g(e1)g(e2)=
∨
i∈S

pi
∨
j∈T

pj =
∨
i∈S

∨
j∈T

pipj =
∨

i∈S∩T
pi = g(χS∩T)= g(e1e2).

Next extend k linearly to the span of Proj(�∞(ω+ 1)). The extended function then is linear and
still multiplicative. Moreover, since projections are self-adjoint, k preserves the involution. Since
�∞(ω+ 1) is a commutative AW∗-algebra, it is generated by its projections. In a commutative
C∗-algebra the product of two projections is again a projection, so the span of the projections in
�∞(ω+ 1) is dense. Thus k extends uniquely to a ∗-homomorphism �∞(ω+ 1)→A, which is
furthermore normal because its restriction to projections by definition preserves suprema. Now,
for each n ∈ω and 1≤ i< n,

k ◦ gn(eni )= k(ei)= pi = hi+1
(
ei+1
i
)= hn ◦ fi+1,n

(
ei+1
i
)= hn(eni ).

Since also k ◦ gn(1)= 1= hn(1), and An is spanned by en0, e
n
1, . . . , e

n
n−1, 1, it follows that k ◦ gn =

hn, establishing existence of k.
If k′ : �∞(ω+ 1)→A is another normal ∗-homomorphism satisfying k′ ◦ gn = hn, then

pn = hn+1
(
en+1
n

)= k′ ◦ gn
(
en+1
n

)= hn(en).
Moreover, since k′ is normal, for any projection e= χS in l∞(ω+ 1),

k′(e)= k′(χS)= k′
(∨

i∈S
ei

)
=
∨
i∈S

k′(ei)=
∨
i∈S

pi = k(e),

making k′ coincides with k on Proj(�∞(ω+ 1)). As we uniquely extended k to a linear map on
the span of Proj(�∞(ω+ 1)), it follows that k and k′ coincide on the span of the projections of
�∞(ω+ 1). Since k and k′ are both continuous, they also coincide on �∞(ω+ 1).

Proposition 11.7. The functorsA and V do not preserve directed colimits.

Proof. By Lemma 11.6, we can consider a directed set {Ai}i∈I of finite-dimensional C∗-algebras
for which the colimit exists both in the category of AW∗-algebras with normal ∗-homomorphisms
and in the full subcategory ofW∗-algebras, and such that the colimit is infinite-dimensional. Since
A(Ai)= V(Ai) is algebraic by Theorem 10.7, it follows fromProposition 11.4 that colimi∈I A(Ai) is
algebraic, too. However, sinceA is infinite-dimensional, it follows fromTheorem 10.7 thatA(A)=
V(A) cannot be algebraic. HenceA and V cannot preserve colimits.

In contrast to C,A and V , the functor B does preserve directed colimits.

Proposition 11.8. The functor B : OMP→DCPO preserves directed colimits.

Proof. Let ({Pi}i∈I , {ϕij : Pi → Pj}i,j∈I) be a directed system inOMPwith colimit P. Write ϕi : Pi →
P for the colimiting cone. Replacing Pi by ϕj[Pi] if necessary, we may assume that the ϕij are
inclusions and P=⋃i∈I Pi. For each orthomodular poset Q, the compact elements of B(Q) are
precisely the finite Boolean subalgebras of Q by Proposition 9.7. Hence K(B(Pi))⊆K(B(Pj))
if i≤ j, and Proposition 11.4 shows colimi B(Pi)= Idl(

⋃
i K(B(Pi)). Since Pi embeds into P, it

follows that every finite Boolean subalgebra of Pi is a finite Boolean subalgebra of P, whence⋃
i K(B(Pi))⊆K(P). Conversely, if B= {b1, . . . , bn} ⊆ P is a finite Boolean subalgebra, there is

ik ∈ I such that bk ∈ Pik for k ∈ {1, . . . , n}. Directedness now produces i≥ i1, . . . , in, and B⊆ Pi.
Next we show that B is a Boolean subalgebra of Pi by showing that it is a sub-orthomodular

poset. Let b ∈ B, and let b⊥ be its orthocomplement in B. Since B is a Boolean subalgebra, b⊥ is
also the orthocomplement of b in P. Since Pi is a sub-orthomodular poset, b⊥ is also the ortho-
complement of b in Pi and B is closed under the orthocomplementation of Pi. Let a, b ∈ B be
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orthogonal in B. Then a≤ b⊥ in B and therefore in P. The join a∨P b of a and b in P lies in
B, hence must equal the join a∨B b of a and b in B. Since a≤ b⊥ in P and a, b ∈ Pi, a≤ b⊥ in
Pi. It follows that a∨P b ∈ Pi, whence the join a∨Pi b of a and b in Pi exists and equals a∨Pi b.
Consequently a∨Pi b= a∨B b, and B is a sub-orthomodular poset of Pi. Since it is a finite Boolean
algebra, B ∈K(B(Pi)).

We conclude thatK(B(P))⊆⋃i∈I K(B(Pi)), henceK(B(P))=⋃i∈I B(Pi). It now follows from
Lemma 11.2 that

B(P)� Idl(K(B(P)))� Idl

(⋃
i∈I

K(B(Pi))
)
= colimi∈I B(Pi),

which is exactly what we wanted to prove.

We return to the case where Pi = Proj(Ai) for some directed set {Ai}i∈I of C∗-subalgebras of a
C∗-algebra A that contains

⋃
i∈I Ai as a subset, so that A= colimi∈I Ai. Say that A has the lattice

property if Proj(A) is a lattice, and that it has the directed set property if its collection of finite-
dimensional C∗-algebras is directed. In case A is approximately finite-dimensional, the lattice
property and the directed set property can be related to each other.

Lemma 11.9. Let A=⋃i∈I Ai be an AF-algebra, where {Ai}i∈I is some directed collection of finite-
dimensional C∗-subalgebras of A.

(a) If Proj(A)�⋃i∈I Proj(Ai), then Proj(A) is a lattice.
(b) If A has the directed set property and {Ai}i∈I is the collection of all finite-dimensional

C∗-algebras, then Proj(A)�⋃i∈I Proj(Ai).

Proof. Let p, q ∈⋃i∈I Proj(Ai). Then p ∈Ai and q ∈Aj for some i, j ∈ I. Directedness gives k≥ i, j.
Since Ak is finite-dimensional, r= p∨ q exists in Ak. Let s ∈

⋃
i∈I Proj(Ai) be an upper bound of

p and q, say s ∈Am. Again directedness gives n≥ k,m. Now, Ak ⊆An are both finite-dimensional
and so W∗-algebras, and Ak is a W∗-subalgebra of An. Therefore the join of p and q in An equals
their join in Ak. It follows that r is also the join of p and q in An, and r≤ s. Thus r= p∨ q in A.
Similarly, p∧ q exists in

⋃
i∈I Proj(Ai) and hence in

⋃
i∈I Proj(Ai), and Proj(A) is a lattice.

For (b), we have Ai ⊆A hence Proj(Ai)⊆ Proj(A) for each i ∈ I, so
⋃

i∈I Proj(Ai)⊆ Proj(A).
Let p ∈ Proj(A). Then p ∈ C∗( p), which is finite-dimensional by Lemma 6.2, hence p ∈Aj for some
j ∈ I. It follows that p ∈ Proj(Aj), whence p ∈⋃i∈I Proj(Ai).

Combining both statements in the previous lemma shows that an AF-algebra with the directed
set property has the lattice property. This has been shown by Lazar (1982, Theorem 3.4), who also
showed the converse for separable AF-algebras. It is remarkable that the fact that there is some
directed set of finite-dimensional C∗-subalgebras whose union is dense in A does not imply that
all finite-dimensional C∗-subalgebras of A are directed. This follows from Lazar’s construction of
a separable AF-algebra A without the lattice property (Lazar 1983).

Corollary 11.10. The functors Proj: CStar→OMP and CAF : CStar→DCPO do not preserve
directed colimits.

Proof. Let A be Lazar’s AF-algebra, and let {Ai}i∈I be the directed set of finite-dimensional C∗-
subalgebras of A such that A=⋃i∈I Ai. Since A does not have the lattice property, it follows
from Lemma 11.9 that Proj(A) �� colimi∈I Proj(Ai), where we used that the directed colimit of
orthomodular posets is given by their union. We conclude that Projdoes not preserve directed
colimits. Then we also have

colimi∈I B ◦ Proj(Ai)� B (colimi∈I Proj(Ai)
) �� B ◦ Proj(colimi∈I Ai) ,
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where the equivalence follows from Proposition 11.8, and the inequivalence follows from the
statement that Projdoes not preserve directed colimits combined with the fact that the functor
B determines orthomodular posets up to isomorphism as proven in Harding et al. (2017). We
conclude that B ◦ Projcannot preserve directed colimits. Since CAF � B ◦ Projby Theorem 9.10,
it follows that neither CAF can preserve directed colimits.
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Notes
1 This statement and the next one were originally proved under the condition that the algebras do not have without type I2
summands. This condition can be removed (Lindenhovius 2016, Corollary 9.2.9).
2 Instead of demanding ϕ be nonzero, we can require ϕ(1)= 1. In fact, one can prove that ϕ is actually a unital
∗-homomorphism A→C.
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