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SUMMARY

A general new methodology using evolutionary algorithms
viz., Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II) and Multi-objective Differential Evolution
(MODE), for obtaining optimal trajectory planning of an
industrial robot manipulator (PUMA 560 robot) in the pres-
ence of fixed and moving obstacles with payload constraint
is presented. The problem has a multi-criterion character
in which six objective functions, 32 constraints and 288
variables are considered. A cubic NURBS curve is used to
define the trajectory. The average fuzzy membership function
method is used to select the best optimal solution from Pareto
optimal fronts. Two multi-objective performance measures
namely solution spread measure and ratio of non-dominated
individuals are used to evaluate the strength of Pareto optimal
fronts. Two more multi-objective performance measures
namely optimiser overhead and algorithm effort are used
to find computational effort of the NSGA-II and MODE
algorithms. The Pareto optimal fronts and results obtained
from various techniques are compared and analysed. Both
NSGA-II and MODE are best for this problem.

KEYWORDS: Optimal trajectory planning; NURBS;
Payload constraints; Evolutionary algorithms—Elitist non-
dominated sorting genetic algorithm (NSGA-II), Multi-
objective differential evolution (MODE).

1. Introduction

In the field of robotics, the development of robots that
accept high-level descriptions of tasks and execute these
tasks without intervention from their environment is very
much desired. The task of an autonomous robot is to carry
payload, as it moves on its way from one placement to another
specified placement. The capability of robots to complete
tasks or entire missions autonomously relies heavily on their
ability to plan. The problem of finding a path for the above
is referred to as motion-planning problem. Most of today’s
operational robots are not fully autonomous and they need to
deal with certain instances of the motion-planning problem
during their operation. Optimal motion planning for robot
manipulators is difficult because of the highly non-linear
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and coupled nature of manipulator dynamics, together with
the complex system constraints, which include limitation on
actuator forces/torques and the payload constraints.

In order to maximize the speed of operation, which
affects the productivity in industrial situations, it is necessary
to minimize the total travelling time of robot. Many
research works have been carried out to get minimum
time trajectories.1−5 Planning the robot trajectory by using
energetic criteria provides several advantages: (1) It yields
smooth trajectories easy to track and reduce the stresses
to the actuators and to the manipulator structure and (2) It
saves energy, which is desirable in several applications, such
as those with a limited capacity of energy source (e.g.,
robots for spatial or submarine exploration). Examples of
energy optimal trajectory planning are provided in some
literatures. Both optimal travelling time and the minimum
mechanical energy of the actuators are considered together
as objective functions in some literatures.1−6 Saramago et al.5

used a method based on the sequential optimization technique
(SOP) to do path planning for the PUMA 560 robot in
consideration of payload constraints. They used B-spline
curve to represent the trajectory. Fields of research such as
computer graphics, geometric design, and robotics (motion
planning) prefer smooth trajectories that are achieved by
minimization of the joint jerks7,8 and accelerations.9 The
positive effects induced by minimization of the joint jerks
and accelerations are (1) Errors during trajectory tracking
are reduced, (2) Stresses to the actuators and structure of
the manipulator are reduced, (3) Excitation of resonance
frequencies of the robot is limited, and (4) A co-ordinated and
natural robot motion is yielded. A measure of manipulability
is very useful in manipulator designing, task planning,
and enables manipulators recover faster from the escapable
singular points. To obtain a practical trajectory (robot
does not loose any degree of freedom at any stage), the
manipulability measure can be used as decision criteria
for robot trajectory planning.10,11 The industrial robots,
especially material handling robots have to carry variety of
products with different weights (payloads). The trajectory
followed by a robot manipulator for doing any action is much
dependent on payload.5 So it is mandatory to consider the
payload constraints in the trajectory planning for industrial
robots. In any industrial situation, the robot will have several
obstacles in its working space. So we must consider the
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obstacle avoidance criteria while doing an optimal trajectory
planning.

In order to get the above benefits, we need to consider
all the objective functions in a combined manner while
doing optimal trajectory planning. None of literatures by
far available had considered all these objective functions in
a combined manner.

Tatematsu et al.12 presented an approach to track the
moving target with mobile robot. The task is difficult because
the mobile robot has nonholonomic constraint. Considering
the motion constraint of mobile robot, planning of the
trajectory that the robot can follow is indispensable for
wheeled type mobile robot control. NURBS curve is used
for trajectory planning. The continuity to second derivative
and convex hull, which are the characteristics of the NURBS
curve that is best for trajectory planning of the mobile
robot. By this method, higher efficient tracking is realized.
Simulations confirm the validity of the method.

In this paper, cubic NURBS functions are used for
constructing joint trajectories since they have the following
advantages:

(a) They represent free form shape remarkably with a little
data and can be well defined in the mathematic form.

(b) They allow local controllability, which implies the
local changes in shape are confined to the NURBS
parameters local to that change.

(c) They give ability to control smoothness and curvature
continuity.

(d) They possess the characteristic of shape invariance
under affine transformation, which means, the affine
transformed curve is still a NURBS curve whose
control points and weights are related to the original
curve control points and weights through this
transformation.

The choice of NURBS as a shape descriptor, not only offers
a common mathematical form for representing free-form
shapes but also geometric shapes. The difference between
NURBS and B-spline is that NURBS includes a non-uniform
control point vector and an additional parameter, which is
weight. Inclusion of weight as an additional parameter adds
an extra degree of freedom to NURBS and facilitates the
representation of a wide variety of shapes. Furthermore, the
use of non-uniform control point vectors allows better shape
control and the modelling of a much larger class of shapes
than the uniform knot vector used in B-spline. With these
additional parameters, NURBS allows a higher compact
representation, which effectively reduces the original number
of the boundary points required to represent the robot
trajectory. Therefore, it is strongly believed that NURBS
is a better and accurate trajectory shape descriptor.

The methods that are used in the literatures such as sequen-
tial unconstrained minimization technique (SUMT),1−5 in-
terval analysis,7 sequential quadratic programming (SQP)6,8

and numerical iterative procedure9 to tackle the complex
instances (obstacles environment) have some notable
drawbacks viz., (1) they may fail to find optimal path (or
spend a lot of time and memory storage to find one), (2) they
have limited capabilities when handling cases where the
limits of maximum acceleration and maximum deceleration

along the solution curve are no longer met and (3) singular
points or critical points of robot configuration may exist. To
overcome the above drawbacks, the evolutionary algorithms
can be used.11,13 The advantages of evolutionary techniques
are (1). They are population-based search, so global optimal
solution is possible. (2) They do not need any auxiliary
information like gradients, derivatives, etc. (3) They
can solve complex and multimodal problems for global
optimality. (4) They are problem independent, i.e., suitable
for solving all types of problems.

The major limitations of the previous works1−10 are

• They have only used conventional optimisation techniques
such as SUMT,1−5 SQP6,8 and interval analysis.7

• None of literatures considered all the necessary criteria
(All important objective functions e.g., Minimization of
travelling time, energy, joint jerks, joint accelerations,
and maximization of manipulability measure, payload
constraint, obstacle avoidance constraint, the actuator
limit constraints, and NURBS curve to define the robot
joint trajectory) in a combined manner.

To overcome above drawbacks, in this paper two evo-
lutionary optimisation techniques NSGA-II and MODE are
proposed to do optimal trajectory planning for PUMA 560
robot manipulator by considering all objective functions
(Minimization of travelling time, energy, joint jerks, joint
accelerations and maximization of manipulability measure),
payload constraint, obstacle avoidance constraint and the
actuator limit constraints. Also cubic NURBS curves are
used to define the robot joint trajectories. The average fuzzy
membership function method is used to select the best
optimal solution from Pareto optimal fronts (optimal solution
trade-offs). Two multiobjective performance measures
namely solution spread measure and ratio of non-dominated
individuals are used to evaluate the strength of Pareto optimal
fronts. Two more multiobjective performance measures
namely optimiser overhead and algorithm effort are used
to find the computational effort of the NSGA-II and MODE
algorithms.

The proposed optimisation methods have following
advantages: (1) global optimal solution is possible, (2) they
consider all the important decision criteria for trajectory
planning of industrial robot manipulators, (3) they are easy
to program and implement, (4) they ensure that the resulting
optimised trajectory is a smoother, faster, safer, non-singular,
and need minimum actuators effort and power, (5) they can
also be extended to get optimised trajectory of other types of
robots, (6) they consider both kinematic and dynamic aspects
of the robot, (7) they consider both payload and obstacle
avoidance constraints, (8) they are computationally superior
and faster, (9) they offer Pareto optimal fronts that will offer
more number of optimal solutions for user’s choice, (10)
they use fuzzy average membership function method to find
best optimal solution from the Pareto optimal fronts and (11)
They use NURBS curve to define the trajectory.

This paper is organized as follows. The problem formu-
lation is presented in Section 2. In Section 3, the proposed
NSGA-II and MODE techniques are presented to obtain
the optimal solutions. Section 4 deals a method and four
multi-objective performance metrics used for evaluating the
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Fig. 1. A PUMA 560 robot manipulator and a prescribed path given
by initial and final points.

proposed algorithms. In Section 5, a numerical example of the
industrial robot with 6 degrees of freedom (PUMA 560 robot)
is presented to illustrate the use of the proposed NSGA-
II and MODE techniques to find out the optimal solutions.
In Section 6, the results obtained in various methods are
presented and compared. The conclusions are presented in
Section 7.

2. Problem Formulation

The industrial Robot manipulator with 6 degrees of freedom
(dof) i.e., PUMA 560 robot (Fig. 1) is considered. The
target is to move the robot that carries a payload from
an initial configuration to a final configuration in its
workspace while optimising several objective functions of
the robot considering the robot physical constraints, payload
constraints and actuator limits. The problem has six objective
functions, 32 constraints and 288 variables.

Minimization of travelling time, total energy involved
in the motion, joint jerks, joint accelerations, penalty for
obstacle avoidance and maximization of singularity avoid-
ance are considered as objective functions. The singularity
avoidance is chosen in the form of the manipulability meas-
ure. Maximizing the manipulability measure will force the
manipulator away from the singularity. If the penalty function
to guarantee free collision-motion is zero, it indicates that
there is no collision between the robot and the obstacles.

The multicriterion optimisation problem is defined as
follows:

Minimize
Total travelling time between initial and final confi-

gurations = z1 = T
Total energy involved in the motion = z2 = ∫ T

0

∑n
i=1

(ui(t)
.
q)2 . dt

Penalty for obstacle avoidance = z3 = fdis

Integral of squared link jerks = z4 = ∫ T

0

∑n
i=1 (

...
qi

2
) dt

Integral of squared link accelerations = z5 = ∫ T

0

∑n
i=1

(
..
qi) dt

Maximize
Manipulability measure = z6 = |det(J )| (1a–f)
Subject to,

1. Displacement constraint.

|qji(t)| ≤ qmax
ji (2)

2. Velocity constraint.

|q̇ji(t)| ≤ q̇max
ji (3)

3. Acceleration constraint.

|q̈ji(t)| ≤ q̈max
ji (4)

4. Jerk constraint.

| ...
qji(t)| ≤ q...

ji
max (5)

5. Force/torque constraint.

|uji(t)| ≤ umax
ji for j = 1, 2, . . . . , n and

i = 1, 2, . . . . . . , m − 1 (6)

6. Payload constraint.

Fgmin ≤ Fk ≤ Fgmax (7)

where, uji is the generalized forces (torques), J is Jacobian
matrix of the robot, n represents the robot joints and ‘m’
represents the knots used to construct the trajectories, Fk is
the grasping forces of the fingers (F1 or F2), Fgmin and Fgmax

are minimum and maximum grasping forces of the fingers.
qij is robot joint displacement, q̇ij is robot joint velocity, q̈ij

is robot joint acceleration, q...
ij is robot joint jerk, qmax

ij is
the maximum value of the robot joint displacement, q̇max

ij
is the maximum value of the robot joint velocity, q̈max

ij is
the maximum value of the robot joint acceleration, q...

ij
max is

the maximum value of the robot joint jerk and umax
ij is the

maximum value of the robot joint torque.

2.1. Kinematic and dynamic models
According to Saramago et al.5 the generalized forces are
calculated as:

ui =
n∑

j=1

Dij
..
qk+

n∑
i=1

i∑
k=1

Cijk
.
qk

.
qm+Gi (8)

Dij =
j∑

k=1

Tr[UjkJi(Uji)
T ] (9)

Cijk =
j∑

m=1

Tr[UjkmJi(Uji)
T ] (10)

Gi =
n∑

j=1

−mjg
T (Ujirj ) (11)

where, Dij is the inertial system matrix, Cijk is the coriolis
and centripetal forces matrix, and Gi is the gravity-loading
vector. Ji is the moments of Inertia, rj is centre of mass,
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and g is acceleration due to gravity with respect to the base
coordinate system.

The following equation gives energy dissipation, which
considers both friction (coulomb) and linear viscous
damping.

Fdiss = fc sign (q̇) + fdq̇ (12)

where, fc is the Coulomb force coefficient and fd is the
viscous damping coefficient.

2.2. Trajectory representation
Only the initial and final points to construct the joint
trajectories are given. A cubic NURBS curve is used to define
the trajectory.

NURBS curves have various useful properties such as
allowing smoothness and possibility of local modifications,
which facilitate the representation of robot trajectories. These
properties of NURBS curves are ideal for the design of
complicated geometry, making them a standard tool in
computer-aided design and manufacturing (CAD/CAM) and
graphics fields.

NURBS are represented parametrically by the following
equation:17

P (u) =
∑n

i=0 Ni,k(u)WiVi∑n
i=0 Ni,k(u)Wi

=
n∑

i=0

ViRi,k(u) (13)

and

Ri,k(u) = Ni,k(u)Wi∑n
i=0 Ni,k(u)Wi

(14)

where, V i is the control point, Wi is its weighting factor,
n + 1 is the number of control points, and k is the order of
the NURBS. Ni,k(u) and Ri,k(u)are called the kth order basis
function and rational basis function. Recursive formulae for
the blending function Ni,k(u) can be found as

Ni,1(u) =
{

1 f or ui ≤ u < ui+1

0 otherwise
(15)

Ni,k(u) = u − ui

ui+k−1 − ui

Ni,k−1(u) + ui+k − u

ui+k − ui+1
Ni+1,k−1(u)

(16)

where, U = [ui, . . . , ui+k] represents the knot vector. Since
the mth derivative of P (u) is given by

P (m)(u) =
n∑

i=0

ViR
(m)
i,k (u) (17)

To find velocity, acceleration and jerk of the robot joint, we
need first, second, and third derivatives of the single rational

B-spline Ri,k(u)as follows:

R
(1)
i,k (u) = WiN

(1)
i,k (u)

n∑
i=0

WiNi,k(u)
−

WiNi,k(u)
n∑

i=0
WiN

(1)
i,k (u)

[
n∑

i=0
WiNi,k(u)

]2 (18)

R
(2)
i,k (u) = WiN

(2)
i,k (u)

n∑
i=0

WiNi,k(u)

−

[
2WiN

(1)
i,k (u)

n∑
i=0

WiN
(1)
(i,k)(u) + WiNi,k(u)

n∑
i=0

WiN
(2)
(i,k)(u)

]
[

n∑
i=0

WiNi,k(u)

]2

+
2WiNi,k(u)

[
n∑

i=0
WiNi,k(1)(u)

]2

[
n∑

i=0
WiNi,k(u)

]3 (19)

Similarly jerk of the robot joint can be found from third
derivatives of the single rational B-spline Ri,k(u), where,
N

(m)
i,k (u) is the mth derivative of the basis function. The

general formula for computing N
(m)
i,k (u) is given by

N
(m)
i,k (u) = (k − 1)

[
N

(m−1)
i,k−1 (u)

ui+k−1 − ui

− N
(m−1)
i+1,k−1(u)

ui+k − ui+1

]
(20)

where, P (u) is the vector to the point defined at some value of
u, Vi is the control points (in the 3D case, Vi = {Xi ,Yi ,Zi}T ),
Wi is the weight factor, and nis the number of control points.

The trajectory has to pass through three intermediate
points. So there are four segments in between initial and final
robot configurations. Each segment is defined by a third-order
NURBS curve with four control points as shown in Fig. 2.
The weight vector for control points in each segment is Wi =
{1, 2, 2, 1}. Increasing (resp., decreasing) the value of weight
Wi pulls (resp., pushes) the curve toward (resp., away from)
control point Vi . When the value of Wi becomes infinity, the

Fig. 2. Trajectory of the end effector.
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curve passes through control point Vi and when Wi is zero,
control point Vi has no impact on the curve. There will be
significant effect of number of control points on the results.
If we increase number of control points, we may get more
accurate and best optimal solution. But it will increase the
computational time and effort. So in this paper, number of
control points is limited to four in each segment. In future
work of this research paper, Effect of number of control
points on the results will be analysed.

In the optimisation of the trajectories the decision variables
are the NURBS control points Vi .

2.3. Obstacle avoidance
The distance between potentially colliding parts is expressed
as obstacle avoidance. Further the motion is represented by
using translation and rotational matrices. When obstacles
are found in the workspace it is necessary to add a
penalty function in the multicriterion optimisation problem to
guarantee free-collision motion. The idea is to circumscribe
each obstacle into a specific sphere. Let (X0, Y0, Z0) be the
centre of an obstacle and r0 be the radius of the sphere that
circumscribe this obstacle. The trajectory points (X, Y, Z),
which are located outside the sphere, are accepted according
to the equation.

rt =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 > r0 (21)

where, rt is the distance between the centre of the obstacle
and a trajectory points as represented in Fig. 3. If Eq. (21)
is verified, the trajectory is out of the sphere and the penalty
function (fdis) is zero. If the trajectory is tangent or crossing
the sphere the multicriterion cost function will be penalized:

rt > r0 ⇒ fdis = 0

If

rt ≤ r0 ⇒ fdis =
nobs∑
i=1

1

(min re)2
(22)

where, nobs is the total number of obstacles in the workspace.
There are situations according to the topology of the

obstacle. Where it is more likely to circumscribe the obstacle
by an ellipsoid as shown in Fig. 4.

Fig. 3. Obstacle circumscribed by a sphere.

Fig. 4. Obstacle circumscribed by an ellipsoid.

Let a, b, c be the semi-axes of the circumscribing ellipsoids.
Applying the same principle used for the circumscribing
spheres. The trajectory points, which are located outside the
ellipsoid, are accepted according to the equation:

re = (x − x0)2

a2
+ (y − y0)2

b2
+ (z − z0)2

c2
(23)

where re is the eccentricity.
Penalization is used in this case as below:

rt > 1 ⇒ fdis = 0

If

rt ≤ 1 ⇒ fdis =
nobs∑
i=1

1

(min re)2
(24)

This way the optimal control problem is to optimise the
multicriterion functions defined by Eq. (1a–f) using the
penalty function given by Eq. (22) or Eq. (24) taking into
account the kinematic, dynamic, and obstacle avoidance
constraints.

Obstacle avoidance is obtained by adding penalty func-
tions to the multicriterion optimisation problem. Besides,
constraints that describe minimal acceptable distance
between potentially colliding parts are also included to the
general non-linear optimisation problem. The obstacles are
protected by spherical or hiper-spherical security zones,
which are never penetrated by the end-effector.

2.4. Formulation of the grasping forces in the gripper
Usually, industrial robots use two-finger grippers for
grasping purpose. So a two-finger gripper is considered here
to grasp the object (Fig. 5). Grasping can be defined as
the capability of a mechanical end-effector to establish a
contact between its fingers and object. Grasp configurations
are achieved so that a static equilibrium exists between the
grasping forces by the fingers on the object. The grasping
forces can be determined based on the characteristics of
the object, such as its weight and shape. However, in
most manipulator tasks inertia forces are also considered
depending on the specifications of the motion trajectories.5
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Fig. 5. Configuration and forces for a planar grasp with two fingers.

This paper uses an approach for computing the grasping
forces as a function of the inertia forces too.

Let F1 and F2 be the grasping forces, which are exerted
by the fingers. Usually they are not equal, since the contact
points A and B are not generally located in same relative
position on the two fingers. Similarly, friction can be
evaluated at the points A and B through the coefficients μ1

and μ2. In Fig. 5 the grasping configuration of an object
with respect to the fingers gives the angles ψ1 and ψ2, which
strongly depend on the orientation of the fingers, position of
the contact points, and shape of the object and fingers. These
angles can differ from each other similarly to F1 and F2. rA
and rB represents the distances of A and B, respectively from
the squeezing line. W = mobject g is the weight vector of the
object and it is oriented with an angle ψw with respect to the
perpendicular axis to the plane yz and Gxyz is a suitable frame
fixed on the grasped object as shown in Fig. 5. N is external
torque acting on the object and it includes the inertial actions
due to the manipulator movement.

The static equilibrium of a grasped object can be expressed
along the directions of the contact and squeezing lines, as
outlined by Saramago et al.5 in term of forces as

F1 cos ψ1 − F2 cos ψ2 + μ1F1 sin ψ1 − μ2F2 sin ψ2

+ mobject (g cos ψw sin �w + ay) = 0

−F1 sin ψ1 − F2 sin ψ2 + μ1F1 cos ψ1 + μ2F2 cos ψ2

+ mobject (g cos ψw cos �w + az) = 0 (25)

and in term of torque as

rAF1(sin ψ1 − μ1 cos ψ1) − rBF2(1sin ψ2 − μ2 cos ψ2)

−N − rGmobject (g + ay) sin �w = 0 (26)

where the acceleration components ay and az of the centre

point on the manipulator extremity can be computed as

⎡
⎢⎢⎢⎣

ax

ay

az

1

⎤
⎥⎥⎥⎦=

⎛
⎝ i∑

j=1

(
∂T i

0

∂qj

..
qj

)
+

i∑
j=1

(
∂2T i

0

∂qj∂qk

.
qj

.
qk

)⎞
⎠

⎡
⎢⎢⎢⎣

rGx

rGy

rGz

1

⎤
⎥⎥⎥⎦
(27)

The distance of the gravity centre of the grasped object
is indicated though vector rG with components rGx , rGy ,
rGz and Ti

0 is the homogeneous transformation matrix. The
corresponding velocity components of the gravity centre
point can be calculated as

⎡
⎢⎢⎢⎣

vx

vy

vz

1

⎤
⎥⎥⎥⎦ =

⎛
⎝ i∑

j=1

(
∂T i

0

∂qj

.
qj

)⎞
⎠

⎡
⎢⎢⎢⎣

rGx

rGy

rGz

1

⎤
⎥⎥⎥⎦ (28)

The payload constraints are expressed in terms of feasible
range of grasping forces F1 and F2.

3. Proposed Methods

To show the superior nature of evolutionary algorithms, this
paper proposes two evolutionary optimisation techniques
such as Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II) and Multi Objective Differential Evolution
(MODE).

3.1. Elitist non-dominated sorting genetic algorithm
(NSGA-II)
Deb et al.14 proposed the NSGA-II algorithm. Essentially,
NSGA-II differs from non-dominated sorting Genetic
Algorithm (NSGA) implementation in a number of ways.
Firstly, NSGA-II uses an elite-preserving mechanism,
thereby assuring preservation of previously found good
solutions. Secondly, NSGA-II uses a fast non-dominated
sorting procedure. Thirdly, NSGA-II does not require
any tuneable parameter, thereby making the algorithm
independent of the user.

Initially, a random parent population Po created. The
population is sorted based on the non-domination. A special
book-keeping procedure is used in order to reduce the
computational complexity down to O(N2). Each solution is
assigned a fitness equal to its non-domination level (1 is
the best level). Thus, minimization of fitness is assumed.
Binary tournament selection, recombination, and mutation
operators are used to create a child population Qo of size
N. Thereafter, we use the following algorithm in every
generation. First, a combined population Ri = PiUQi is
formed. This allows parent solutions to be compared with the
child population, thereby ensuring elitism. The population Ri

is of size 2N. Then, the population Ri is sorted according to
non-domination. The new parent population Pi+1 is formed
by adding solutions from the first front and continuing to
other fronts successively till the size exceeds N. Thereafter,
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Fig. 6. An iteration of the NSGA-II procedure.

the solutions of the last accepted front are sorted according
to a crowded comparison criterion and the first N points are
picked. Since the diversity among the solutions is important,
we use a partial order relation ≥n as follows:

i ≥n j if(irank < jrank) or ((irank = jrank) and (ifitness > jfitness)

That is, between two solutions with differing nondomi-
nation ranks we prefer the point with the lower rank.
Otherwise, if both the points belong to the same front then
we prefer the point, which is located in a region with lesser
number of points (or with larger crowded distance). This way
solutions from less dense regions in the search space are given
importance in deciding which solutions to choose from Ri.
This constructs the population Pi+1. This population of size
N is now used for selection, crossover and mutation to create
a new population Qi+1 of size N. We use a binary tournament
selection operator but the selection criterion is now based on
the crowded comparison operator ≥n. The above procedure
is continued for a specified number of generations.

It is clear from the above description that NSGA-II uses
(i) a faster non-dominated sorting approach, (ii) an elitist
strategy, and (ii) no niching parameter. Diversity is preserved
by the use of crowded comparison criterion in the tournament
selection and in the phase of population reduction. NSGA-II
has been shown to outperform other current elitist multi-
objective Evolutionary Algorithms on a number of difficult
test problems. Fig. 6 shows an iteration of the proposed
NSGA-II procedure.

The values of the parameter that have been used in the
NSGA-II technique are:

Variable type = Real variable, Population size = 100,
Crossover probability = 0.6, Real-parameter mutation proba-
bility = 1, Real-parameter SBX parameter = 10, Real-
parameter Mutation parameter = 100, Total number of
generations = 100.

3.2. Multi-objective differential evolution (MODE)
Multi-Objective Differential Evolution (MODE)15 can
be categorized into a class of floating-point encoded
evolutionary algorithms. The theoretical framework of
MODE is very simple and MODE is computationally
inexpensive in terms of memory requirements and CPU
times. Thus, nowadays MODE has gained much attention and
wide application in a variety of fields. Among the MODE’s
advantages are its simple structure, ease of use, speed, and
robustness.

In a multi-objective domain, the goal is to identify the
Pareto optimal solution set. In this proposed multi-objective
differential evolution (MODE), a Pareto-based approach is
introduced to implement the selection of the best individuals.
Firstly, a population of size, NP, is generated randomly and
the fitness functions are evaluated. At a given generation of
the evolutionary search, the population is sorted into several
ranks based on dominance concept. Secondly, Differential
Evolution (DE) operations are carried out over the individuals
of the population. The fitness functions of the trial vectors,
thus formed, are evaluated. One of the major differences
between DE16 and MODE is that the trial vectors are not
compared with the corresponding parent vectors. Instead,
both the parent vectors and the trial vectors are combined to
form a global population of size, 2*NP. Then, the ranking of
the global population is carried out followed by the crowding
distance calculation. The best NP individuals are selected
based on its ranking and crowding distance. These act as
the parent vectors for the next generation. The procedure
is carried out until the entire selected best NP individuals
have a rank of one. The Pseudo code for MODE algorithm
is presented in Appendix. The values of the parameter that
have been used in the proposed MODE technique are

Strategy = MODE/rand/1/bin, crossover constant CR =
0.9, population size NP = 500, F = 0.5 and total number of
generations = 100.

4. Performance Measures and Methods for

Multi-Objective Optimisation

In this section, one method and four performance metrics
are recommended and applied to examine the strength and
weaknesses of the proposed multi-objective evolutionary
algorithms. The average fuzzy membership function method
is used to select best optimal solution from Pareto
optimal fronts. Two multiobjective performance measures
namely solution spread measure and ratio of non-dominated
individuals are used to evaluate the strength of Pareto optimal
fronts. Two more multiobjective performance measures
namely optimiser overhead and algorithm effort are used
to find computational effort of the NSGA-II and MODE
algorithms. These methods and metrics are chosen since
they have been widely used for performance comparisons
in multi-objective optimisation.

4.1. Fuzzy average membership function (μavg) method
The deterministic models proposed in the literature suffer
from the limitation in a real world optimal trajectory planning
due to the fact that a decision maker does not have sufficient
information related to the different criteria. These data are
typically fuzzy in nature. All the above-referred deterministic
methods lack the capability to handle the linguistic vagueness
of fuzzy type. The optimal results obtained from these
deterministic formulations may not serve the real purpose
of modelling the problem. A consideration to incorporate
information vagueness (Fuzziness) in the real world optimal
trajectory planning has not been found in the existing
literature. So a new multi-objective performance metric
(average fuzzy membership function) is proposed and used
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Fig. 7. Representation of fuzzy membership function for minimi-
zation of an objective function.

here to select a best optimal solution from the Pareto optimal
fronts.

The membership function given in Fig. 7 is a graphical
representation of the magnitude of each input. It associates
a weighting value with each of the inputs that are processed,
and determines an output response. These must be processed
and combined in a manner to produce a single, crisp
(defuzzified) output. The μ value is 1 at Zmin and 0 at Zmax

for minimization of an objective function and it is vice versa
for maximizing an objective function.

The proposed membership function of the fuzzy decision
is as follows:

μi = (Zi max–Zi)/(Zi max − Zi min) for minimization of objec-
tive function

μi = (Zi–Zi min)/(Zi max − Zi min) for maximization of objec-
tive function

Zi–Objective function (i= Objective function number,
1. . . 6 for this problem)

Zmax–Maximum objective function value
Zmin–Minimum objective function value

The solution that has the highest average membership
function value (μavg) is the best optimal solution, which gives
a nondominated solution.

For our problem, the average membership function is
defined as follows:

Maximize average membership function

(μavg) = (μ1 + μ2 + μ3 + μ4 + μ5 + μ6)/6.0 (29)

where, μ1 = (z1max-z1)/(z1max-z1min), μ2 = (z2max-z2)/
(z2max-z2min),

μ3 = (z3max-z3)/(z3max-z3min), μ4 = (z4max-z4)/
(z4maxz4min),

μ5 = (z5max-z5)/(z5max-z5min), μ6 = (z6-z6min)/reak
(z6max-z6min).

4.2. Solution spread measure
While it is desirable to find more Pareto-optimal solutions, it
is also desirable to find the ones scattered uniformly over the
Pareto frontier in order to provide a variety of compromise

solutions to the decision maker. Solution Spread Measure
(SSM) represents the distribution of the solutions along the
Pareto front.

SSM = df + dl + ∑N−1
i=1 |di − d̄|

df + dl + (N − 1)d̄
(30)

where N is the number of solutions along the Pareto front so
there are (N-1) consecutive distances, di is the distance (in
objective space) between each solution, d̄ is the arithmetic
mean of all diand df and dl are the Euclidean distances
between the extreme solutions and the boundary solutions
of the obtained non-dominated set. Thus, a low performance
measure characterizes an algorithm with good distribution
capacity.

4.3. Ratio of non-dominated individuals
This performance metric is defined as the ratio of non-
dominated individuals (RNI) for a given population X,

RNI(X) = nondom indiv/P (31)

where nondom indiv is the number of non-dominated
individuals in population X and P is the size of population X.
therefore the value RNI = 1 means all the individuals in the
population are non-dominated, and RNI = 0 represents the
situation where none of the individuals in the population are
non-dominated. Since a population size of more than zero
is often desired, there is always at least one non-dominated
individual in the population within the range of 0 < RNI < 1.

4.4. Optimiser overhead
Total number of evaluations and total CPU time may be
used for testing the algorithm. This would be useful in
indicating how long an optimisation or simulated evolution
process would take in real world and to indicate the
amount of program overhead as a result of the optimisation
manipulations such as those by Evolutionary Algorithm
operators. More quantitatively, the Optimiser Overhead (OO)
may be calculated by

Optimiser Overhead = (TTotal − TPFP)/TPFP (32)

Where TTotal is the total time taken and TPFP is the time
taken for pure function evaluations. Thus, a value of zero
indicates that an algorithm is efficient and does not have any
overhead. However, this is an ideal case and is not practically
reachable.

4.5. Algorithm effort
The performance in multi-objective optimisation is often
evaluated not only in terms of how the final pareto-front is, but
also in terms of the computational effort required in obtaining
the optimal solutions. For this purpose, the algorithm effort is
defined as the ratio of the total number of functions evolutions
Neval over a fixed period of simulation time Trun,

Algorithm effort = Trun/Neval, (Trun>T1stgen)∩ (Teval ∝ Neval)

(33)
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Table I. Denavit–Hartenberg parameters for a PUMA 560 robot5.

Joint No. 1 2 3 4 5 6

θi (˚) q1 q2 q3 q4 q5 q6

αi (˚) –90 0 –90 90 –90 0
ai (m) 0 0.4318 0.0203 0 0 0
di (m) 0 0 0.1254 0.4318 0 0

As shown in the above equation, for a fixed period of
Trun, more number of function evolutions being performed
indirectly indicates that less computational effort is required
by the optimisation algorithm and hence resulting in a smaller
algorithm effort. The condition of Trun > T1stgen,where T1stgen

is the computation time for the 1st generation, should be
hold that Trunand Neval are > 0. This results algorithm effort
is bounded in the range of (0, ∞).

5. Numerical Example

In this paper the proposed Multi-objective Differential
evolution (MODE) and Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II) are used for optimal trajectory
planning of the PUMA 560 robot manipulator in material
handling operation (Fig. 1). The Tables I and II represent
the geometric and inertial parameters of PUMA 560 robot.5

It is considered that q̇1 = q̇m = q̈1 = q̈m = 0 for all joints.
Table III represents the constraints for joints displacement,
velocity, acceleration, jerk, and force/torque.5

Five-knot points and four control points in each segment
have been considered here. So there are 288 variables in
this problem. In this application the aim is to obtain optimal
trajectory (ψ1) of the end-effectors as in Fig. 8 considering
the following obstacles: A wall (ψ2), a translating body (ψ3),
and a rotating and translating body (ψ4).

Obstacle dimensions are: prism 1 (X1 = 0.5 and
X2 = 1.0; Y1 = 1.0 and Y2 = 1.4; Z1 = 0.0, Z2 = 1.0), prism

Fig. 8. End-effector tridimensional optimal trajectory.

2 (X1 =−0.8 and X2 = 0.0; Y1 =−2.0 and Y2 = 1.0;
Z1 = 0.0, Z2 = 0.5) and prism 3 (wall) (X1 = −1.0 and
X2 =−0.9; Y1 =−2.0 and Y2 = 2.0; Z1 = 0.0, Z2 = 1.0).
The initial and final trajectory points of the end-effectors
are: q1 = [0.1745rd, 0.1745rd, 0.80 m, 0.0873rd, 0.1745rd,
0.1047rd] and qm = [−1.745rd, 1.396rd, 1.20 m, −0.853rd,
1.078rd, −1.3894rd].

The wall is circumscribed by an ellipsoid and spheres
circumscribe the moving bodies. Fig. 8 shows the end-
effectors tridimensional trajectory.

The grasped object mass (payload) is 1 kg. The payload
constraints are expressed in terms of feasible range for the
grasping forces given by Fgmin = 0 and Fgmax = 60N.

The coefficients associated with dissipation force
[Eq. (12)] are adopted as

fc (Nm)=[0.058,0.058,0.058,0.056,0.056,0.056] and
fd (Nm/s)=[0.0005,0.0005,0.000472,0.000382,0.000382,

0.000382].

Table II. Geometric and inertial parameters of PUMA560 robot5.

Joint No. 1 2 3 4 5 6

M (kg) – 18.5 4.8 0.94 0.54 0.10
rx (m) – 0.068 0 0 0 0
ry (m) – 0.006 −0.070 0 0 0
rz (m) – −0.016 0.014 −0.019 0 0.032
Ixx (kg m2) 0 0.13 0.066 1.8e-3 0.3e-3 0.15e-3
Iyy (kg m2) 0 0.524 0.0125 1.8e-3 0.3e-3 0.15e-3
Izz (kg m2) 0.35 0.539 0.086 1.3e-3 0.4e-3 0.04e-3
Im (kg m2) 1.140 4.710 0.830 0.200 0.179 0.193

Table III. Limiting parameters used for Puma 560 robot.5.

Joint No. 1 2 3 4 5 6

qmax (degree) 320 250 270 280 200 532
q̇max (degree/s) 82 74 122 228 241 228
q̈max (degree/s2) 286 286 572 572 572 572
q...max (degree/s3) 60 60 60 60 60 60
τmax (Nm) 77 133 66 13 12 13
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Fig. 9(a–d). Optimal motion obtained using MODE.

6. Results and Discussion

Figs 9 and 10 show the optimal displacement (D − rad),
velocity (V − rad/s), acceleration (W − rad/s2), and jerk
(J − rad/s3) of all the robot joints obtained from MODE and
NSGA-II respectively. From Figs. 9 and 10, it is noted that the
robot joints displacement, velocity, acceleration, and jerk are
within their limiting values. The optimal solution trade-offs
(Pareto optimal fronts) obtained from NSGA-II and MODE
are given in Figs. 11 and 12 respectively. From Figs. 11 and
12, it is noted that NSGA-II gives more number of optimal
solution trade-offs than MODE. So NSGA-II is best for this
problem, if the user wants more number of solutions for
his choice. T1he best solution tradeoffs selected by average
fuzzy membership function method from the optimal solution
trade-offs obtained from the NSGA-II and MODE are shown
in Fig. 13. From Fig. 13, it is noted that the MODE gives

best results for five objective functions (Minimum values for
z1, z2, z3, z4 and z5). Also the computational time to find
optimumsolutions in MODEis 1/3rd of that of the NSGA-II.
MODE is faster than the NSGA-II. So the MODE is best
to the NSGA-II for this problem. But NSGA-II gives best
result for z6. To maintain a similar condition for both NSGA-
II and MODE while finding their computational effort, the
simulation time is assumed as 2 sec for both algorithms.

The results of average fuzzy membership function value
(μavg), solution spread measure (SSM), ratio of non-
dominated individuals (RNI), optimiser overhead (OO), and
algorithm effort obtained from NSGA-II and MODE are
listed in Tables IV–VI.

The algorithm that gives maximum average membership
function value (μavg), minimum solution spread measure
(SSM), maximum ratio of non-dominated individuals (RNI),

https://doi.org/10.1017/S0263574708004359 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004359


Multiobjective trajectory planner for industrial robots with payload constraints 763

Fig. 10(a–d). Optimal motion obtained using NSGA-II.

minimum optimiser overhead (OO), and minimum algorithm
effort is the best optimisation algorithm.

From Tables IV–VI, it is observed that the NSGA-II
technique gives maximum average fuzzy membership
function (μavg), minimum solution spread measure (SSM),

Fig. 11. Optimal solution tradeoffs obtained from NSGA-II.

and maximum ratio of non-dominated individuals (RNI) than
those of MODE. But the MODE gives minimum optimiser
overhead (OO) and minimum algorithm effort than those of
the NSGA-II. So both NSGA-II and MODE are best for this
problem.

Fig. 12. Optimal solution tradeoffs obtained from MODE.
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Table IV. Results obtained from NSGA-II and MODE algorithms.

z1 z2 z3 z4 z5 z6 μavg

Zmax 5.33 16754.5 0.0 578.614 564.328 0.725415
Zmin 2.7 5798.847 0.0 325.47 451.114 0.300452
NSGA-II 4.67 16062.375 0.0 565.410 558.135 0.703259 0.228142
MODE 2.7 5798.847 0.0 327.640 452.767 0.300452 0.662805

Fig. 13. Best solution tradeoffs obtained from the NSGA-II and
MODE.

Table V. Algorithm effort obtained from NSGA-II and MODE
algorithms.

Proposed Simulation No. of function Algorithm
Algorithm time Trun (sec) evolution (Neval) effort

NSGA-II 2 91 0.022
MODE 2 122 0.017

Table VI. Results of multiobjective performance metrics.

Solution Ratio of Optimiser
Proposed spread non-dominated overhead
Algorithm measure (SSM) individuals (RNI) (OO)

NSGA-II 0.00105 0.35 0.1616
MODE 0.00132 0.27 0.0987

7. Conclusions

A general new methodology using NSGA-II and MODE
for the off-line tridimensional optimal trajectory planning
of the industrial robot manipulator (PUMA 560 robot) in
the presence of fixed and moving obstacles with payload
constraint is presented. Obstacle avoidance is obtained by
adding penalty functions to the multicriterion problem.
When dealing with fixed and moving obstacles all the
objective functions and the constraint functions have to be
updated simultaneously at each time instant. A cubic NURBS
curve is used to define the trajectory. The average fuzzy
membership function method is used to select best optimal
solution from Pareto optimal fronts. Two multi-objective
performance measures viz., solution spread measure and
ratio of non-dominated individuals are used to evaluate
strength of the Pareto optimal fronts. Two more multi-
objective performance measures namely optimiser overhead
and algorithm effort are used to find computational effort
of NSGA-II and MODE algorithms. The Pareto optimal
fronts (optimal solution trade-offs) and results obtained from
various techniques are compared and analysed. The results
indicate that MODE technique gives minimum optimiser
overhead (OO) and minimum algorithm effort than those

of NSGA-II i.e., it is faster than NSGA-II technique. Also
the computational time to find optimumsolutions in MODEis
1/3rd of that of the NSGA-II. MODE is faster than the NSGA-
II. So MODE is best to the NSGA-II for this problem, if
the user wants a best optimal solution quickly. But NSGA-
II technique gives maximum average fuzzy membership
function (μavg), minimum solution spread measure (SSM),
maximum ratio of non-dominated individuals (RNI) than
those of MODE. Also NSGA-II gives the best Pareto optimal
front with more number of non-dominated solutions for
user’s choice than MODE. So NSGA-II technique is best for
this multicriterion optimisation problem. This work opens
the door for further investigations on how the evolutionary
optimisation techniques can be used to solve complex
problems.
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Appendix

The Pseudo code for MODE algorithm is presented below:
The following assumes that we are minimizing all the

objective functions, fq

(1) Generate box, P, of Np parent vectors using a random-
number code to generate the several real variables.
These vectors are given a sequence (position) number
as generated

(2) Classify these vectors into fronts based on nondomi-
nation as follows:
(a) Create new (empty) box, P’, of size, Np

(b) Transfer ith vector from P to P’, starting with I = 1
(c) Compare vector I with each member, say each

member, say j, already present in P’, one at a time
(d) If i dominates over j (i.e., i is superior to or better

than j in terms of all objective functions), remove
the jth vector from P’ and put it back in its original
location in P

(e) If i dominated over by j, remove i from P’ and put
it back in its position in P

(f) If i and j are non-dominating (i.e. there is at least
one objective function associated with i that is
superior to/better than that of j), keep both i and
j in P’ (in sequence). Test for all j present in P’

(g) Repeat for next vector (in the sequence, without
going back) in P till all Np are tested. P’
now contains a sub-box (of size < = Np) of
nondominated vectors (a subset of P), referred to as
the first front or sub-box. Assign it a rank number,
Irank , of I

(h) Create subsequent fronts in (lower) sub-boxes of
P’, using Step 2b above (with the vectors remaining
in P). Compare these members only with the
members present in the current sub-box, and not
with those in earlier (better) sub-boxes. Assign
these Irank = 2,3. . . Finally, we have all Np vectors
in P’, boxed into one or more fronts.

(3) Spreading out: Evaluate the crowding distance, Ii,dist ,
for the ith vector in any front, j, of P’ using the following
procedure:

(a) Rearrange all vectors in front j in ascending order
of the values of any one (say, the qth) of their
several objective functions (fitness functions). This
provides a sequence, and, thus, defines the nearest
neighbors of any vector in front j.

(b) Find the largest cuboid (rectangle for two fitness
functions) enclosing vector i that just touches its
nearest neighbors in the f-space.

(c) Ii,dist = 1/2*(sum of all sides of this cuboid)
(d) Assign large values of Ii, dist to solutions at the

boundaries (the convergence characteristics would
be influenced by this choice).

(4) Perform DE operation over the NP target vectors in P’
to generate NP trial vectors and store it in P”.
(a) (Create new (empty) box, P”, of size, Np

(b) Select a target vector, i in P’, starting with I = 1
(c) Choose two vectors, r1 and r2 at random from the

NP vectors in P’ and find the weighted difference.
This is carried out by the following steps: (1)
Generate two random numbers, (2) decide which
two population members are to be selected, (3)
Find the vector difference between the two vectors.
Multiply this difference with F to obtain the
weighted difference.

(d) Find the noisy random vector. This is done by
(1) Generate a random number, (2) choose a third
random vector, r3, from the NP vectors in P’, (3)
Add this vector to the weighted difference to obtain
the noisy random vector.

(e) Perform Crossover between the target vector and
noisy random vector to find the trial vector and
put it in box P”. This is carried out by (1)
Generate random numbers equal to the dimension
of the problem, (2) For each of the dimensions:
if random no. > CR; copy the value from the
target vector, else copy the value from the noisy
random vector into the trial vector and put it in
box P”.

(5) Elitism: Copy all the Np parent vectors (P’) and all
the Np trial vectors (P”) into box PT. Box PT has 2Np

vectors
(a) Reclassify these 2Np vectors into fronts (box PT’)

using only non-domination (as described in Step 2
above).

(b.) Take the best Np from box PT’ and put into box
P”’. The following procedure is adopted to identify
the better of the two chromosomes. Chromosome i
is better than chromosome j if
Ii,rank 	= Ij,rank : Ii,rank < Ij,rank

Ii,rank = Ij,rank : Ii,dist > Ij,dist

This completes one generation. Stop if ap-
propriate criteria are met, e.g. the generation
number > maximum number of generations (user
specified). Else, Copy P”’ into starting box P. Go
to Step 2 above.
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