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1. Introduction

Let g be a positive integer. We let

Hg = {Z ∈ Matg(C) | ZT = Z, Im(Z) is positive definite}

be the Siegel upper half-space of degree g on which the symplectic group

Spg(Z) = {γ ∈ GL2g(Z) | γTJγ = J} with J =

[
0 −Ig

Ig 0

]

acts by the rule [
A B

C D

]
(Z) = (AZ + B)(CZ + D)−1,

where A, B, C and D are g × g block matrices. For a positive integer N we furthermore
let

Γ (N) = {γ ∈ Spg(Z) | γ ≡ I2g (mod N)}

be the principal congruence subgroup of level N of the group Spg(Z). In particular, when
g = 1, Hg becomes the upper half-plane H = {τ ∈ C | Im(τ) > 0} and Spg(Z) = SL2(Z)
acts on it by fractional linear transformations.
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Define a subset Hdiag
g of Hg by

Hdiag
g = {diag(τ1, τ2, . . . , τg) | τ1, τ2, . . . , τg ∈ H},

where diag(τ1, τ2, . . . , τg) stands for the g × g diagonal matrix whose diagonal entries are
τ1, τ2, . . . , τg. If g = 1, then Hdiag

g is nothing but H. Let f(Z) be a meromorphic Siegel
modular function of degree g and level N (over C); f(Z) is the quotient of two Siegel
modular forms of degree g and the same weight so that it is invariant under Γ (N). When
g = 1, f becomes a usual meromorphic modular function of level N . We shall mainly
consider the case in which f has neither a zero nor a pole on Hdiag

g .
Let X(N) = Γ̄ (N)\H∗ be the modular curve of level N that is a compact Riemann

surface, where Γ̄ (N) = ±Γ (N)/{±I2} and H∗ = H ∪ Q ∪ {i∞}. We denote its function
field by C(X(N)). As is well known, X(1) is of genus zero and C(X(1)) = C(j), where

j = j(τ) = q−1 +744+196884q+21493760q2 +864299970q3 + · · · (q = e2πiτ , i =
√

−1)

is the elliptic modular function [9, Theorem 2.9]. Furthermore, C(X(N)) is a Galois
extension of C(X(1)) whose Galois group is naturally isomorphic to Γ̄ (1)/Γ̄ (N). Let ON

be the integral closure of C[j] in C(X(N)). We call the invertible elements in ON modular
units of level N (over C), and these are precisely those functions in C(X(N)) having
neither zeros nor poles on H [7, p. 36]. Kubert and Lang [7] developed the theory of
modular units in terms of Siegel functions, which will be defined in § 2. (In addition, they
require that the Fourier coefficients of a modular unit of level N lie in the Nth cyclotomic
field.) In this paper we first describe ON in view of modular units as follows. If N ≡ 0
(mod 4), then the ring ON is generated over C by the following five modular units:

g[ 1/4
0

](4τ)−8g[ 1/2
0

](4τ)8, g[ 1/4
0

](4τ)8g[ 1/2
0

](4τ)−8,

(
g[ 1/4

0

](4τ)−8g[ 1/2
0

](4τ)8 − 16
)−1

,

(
℘[ 0

1/N

](τ) − ℘[ 0
1/2

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)
,

(
℘[ 1/N

0

](τ) − ℘[ 0
1/2

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)
,

where g[ r
s ](τ) is a Siegel function and ℘[ r

s ](τ) is a Weierstrass ℘-function for [ r
s ] ∈ Q2−Z2

(see Theorem 3.3). We then conclude that any weakly holomorphic modular function can
be expressed as a sum of modular units of higher level (see Corollary 3.5). Here, a function
is said to be weakly holomorphic if it is holomorphic on H.

On the other hand, suppose that g and N are two positive integers greater than or
equal to 2 and let f(Z) be a meromorphic Siegel modular function of degree g and level N .
We furthermore prove that f(Z) has neither a zero nor a pole on Hdiag

g if and only if
f(diag(τ1, τ2, . . . , τg)) is a product of g modular units of variables τ1, τ2, . . . , τg ∈ H (see
Theorem 4.2). To this end, we examine some necessary basic properties of modular units
in § 2 and we show that a certain quotient of theta constants of degree g on Hdiag

g is a
product of modular units (see Example 4.3).
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2. Properties of modular units

For a positive integer N we denote the group of all modular units of level N by VN

(that is, VN = O×
N ), which contains C× as a subgroup. In this section we develop some

necessary properties about modular units that will be used in later sections.

Lemma 2.1. If f is a weakly holomorphic modular function of level 1, then it is a
polynomial in j over C. That is, we have f ∈ C[j].

Proof. See [8, Chapter 5, Theorem 2]. �

Remark 2.2. Note that j gives rise to a bijection j : Γ̄ (1)\H → C [8, Chapter 3,
Theorem 4].

Proposition 2.3. Let h ∈ C(X(N)). Then h is weakly holomorphic if and only if h

is integral over C[j].

Proof. Assume that h = h(τ) is weakly holomorphic. We consider the following monic
polynomial in X,

P (X) =
∏

γ∈Γ̄ (1)/Γ̄ (N)

(X − h ◦ γ).

Since Gal(C(X(N))/C(X(1))) 	 Γ̄ (1)/Γ̄ (N), every coefficient of P (X) belongs to
C(X(1)) and is holomorphic on H. So, it is a polynomial in j over C by Lemma 2.1.
This shows that h is integral over C[j].

Conversely, assume that h is integral over C[j]. Then h is a zero of a monic polynomial

Xn + Pn−1(j)Xn−1 + · · · + P1(j)X + P0(j),

where n � 1 and Pn−1(j), . . . , P1(j), P0(j) ∈ C[j]. Suppose on the contrary that h has a
pole at τ0 ∈ H (so, h 
= 0). Since h satisfies

hn + Pn−1(j)hn−1 + · · · + P1(j)h + P0(j) = 0,

we obtain, by dividing both sides by hn and substituting τ = τ0,

1 + Pn−1(j(τ0))(1/h(τ0)) + · · · + P1(j(τ0))(1/h(τ0))n−1 + P0(j(τ0))(1/h(τ0))n = 0.

This yields the contradiction 1 = 0 because j(τ0) ∈ C and 1/h(τ0) = 0. Therefore, h

must be weakly holomorphic. �

Remark 2.4. By definition, h ∈ C(X(N)) is a modular unit if and only if both h

and h−1 are integral over C[j]. Hence, Proposition 2.3 gives an elementary proof of the
well-known fact that h is a modular unit if and only if it has neither a zero nor a pole
on H [7, p. 36].
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Given a vector [ r
s ] ∈ (1/N)Z2 − Z2 for N � 2, the Siegel function g[ r

s ](τ) is defined
on H by the infinite product

g[ r
s ](τ) = −q(1/2)(r2−r+1/6)eπis(r−1)(1−qre2πis)

∞∏
n=1

(1−qn+re2πis)(1−qn−re−2πis), (2.1)

where q = e2πiτ . It is a weakly holomorphic modular function of level 12N2 [7, Chapter 3,
Theorem 5.2].

Lemma 2.5. Suppose that N � 2 and let n be the number of inequivalent cusps
of X(N). Then the rank of the subgroup of VN/C× generated by g[ r

s ](τ)12N for [ r
s ] ∈

(1/N)Z2 − Z2 is n − 1.

Proof. See [7, Chapter 2, Theorem 3.1]. �

Remark 2.6. We have the formula

n = |Γ̄ (1)/Γ̄ (N)|/N =

⎧⎪⎪⎨
⎪⎪⎩

3 if N = 2,

N2

2

∏
p|N

(1 − p−2) if N > 2

(see [9, pp. 22–23]).

Proposition 2.7. With the same assumption and notation as in Lemma 2.5, VN/C×

is a free abelian group of rank n − 1.

Proof. Let ∞1,∞2, . . . ,∞n be the inequivalent cusps of X(N) and let DN be the free
abelian group of rank n generated by these cusps. An element of DN is then uniquely
written as

m1(∞1) + m2(∞2) + · · · + mn(∞n) for some integers m1, m2, . . . , mn.

Now, we consider a (well-defined) injective homomorphism

VN/C× → DN

h �→ div(h).

If h ∈ VN/C× has div(h) =
∑n

k=1 mk(∞k), then we get the relation
∑n

k=1 mk = 0.
Hence, VN/C× is a free abelian group of rank less than or equal to n−1. Thus, it follows
from Lemma 2.5 that the rank of VN/C× is exactly n − 1. �

Remark 2.8. Since every cusp of X(1) is equivalent to i∞ [9, p. 14], if h ∈ V1, then
div(h) = m(i∞) for some integer m. On the other hand, now that the sum of the orders
of zeros and poles of h is zero, we get m = 0. This yields V1 = C×.
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Lemma 2.9. Let N � 2 and let h ∈ VN − C×. There is a finite subset S of C× such
that the map

ϕ : H → C× − S

τ �→ h(τ)

is surjective.

Proof. Consider the following holomorphic map between compact Riemann surfaces

X(N) → P1(C)

τ �→ [h(τ) : 1].

Since h is not a constant, the above map is surjective. Take a subset S of C× as

S = {h(τ) | τ is a cusp of X(N)} − {0,∞, h(τ) | τ ∈ H}.

Since there are only finitely many inequivalent cusps of X(N), it is a finite set, and
therefore the map ϕ becomes surjective. �

Let h be a non-zero modular function. Considering h as a Laurent series with respect
to q = e2πiτ , we denote its smallest exponent by ordqh (in Q).

Proposition 2.10. Let h be a modular unit. Suppose that

ordqh ◦ γ 
= 0 for all γ ∈ SL2(Z). (2.2)

Then h − c is not a modular unit for any c ∈ C×.

Proof. Let us consider the holomorphic map between two compact Riemann surfaces

ϕ : X(N) → P1(C)

τ �→ [h(τ) : 1].

Since h is not a constant by (2.2), ϕ is surjective.
Now, let c ∈ C×. Since ϕ is surjective and the values of ϕ at the cusps of X(N) are

either [0 : 1] or [∞ : 1] = [1 : 0] by (2.2), there exists τ0 ∈ H such that ϕ(τ0) = [c : 1].
This implies that h(τ)−c has a zero at τ = τ0, and hence h−c is not a modular unit. �

Example 2.11. Let N � 2 and [ r
s ] ∈ (1/N)Z2 − Z2. Consider the Siegel function

h(τ) = g[ r
s ](τ)12N ,

which is a modular unit of level N by Lemma 2.5. We then have the following properties.
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(i) h ◦ γ = gγT[ r
s ](τ)12N for any γ ∈ SL2(Z), where γT indicates the transpose of

γ [7, Chapter 2, Proposition 1.3].

(ii) ordqh = 6NB2(〈r〉), where B2(x) = x2 −x+1/6 is the second Bernoulli polynomial
and 〈x〉 is the fractional part of x such that 0 � 〈x〉 < 1 for x ∈ R [7, p. 31].

(iii) B2(x) 
= 0 for all x ∈ Q.

Thus, h satisfies the assumption (2.2) in Proposition 2.10.

Remark 2.12. If h does not satisfy (2.2), then h−c could be a modular unit for some
constant c ∈ C× (see Remark 3.4).

3. Integral closures in modular function fields

In this section, when N ≡ 0 (mod 4) we investigate explicit generators of the integral
closure ON of C[j] in C(X(N)) by using Weierstrass units.

For a lattice L = [ω1, ω2] = Zω1 + Zω2 in C, the Weierstrass ℘-function is defined by

℘(z; L) =
1
z2 +

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
(z ∈ C).

Lemma 3.1. Let z, w ∈ C − L. Then, ℘(z; L) = ℘(w; L) if and only if z ≡ ±w

(mod L).

Proof. See [11, Chaper IV, § 3]. �

Let N � 2. For a vector [ r
s ] ∈ (1/N)Z2 − Z2 we define

℘[ r
s ](τ) = ℘(rτ + s; [τ, 1]) (τ ∈ H),

which is a weakly holomorphic modular form of level N and weight 2 [8, Chapter 6].
More precisely, it satisfies the transformation formula(

℘[ r
s ] ◦ γ

)
(τ) = (cτ + d)2℘γT[ r

s ](τ) for any γ =

[
a b

c d

]
∈ SL2(Z). (3.1)

Hence, the function (
℘[ a1

b1

](τ) − ℘[ c1
d1

](τ)
)
/
(
℘[ a2

b2

](τ) − ℘[ c2
d2

](τ)
)

for [ ak

bk
], [ ck

dk
] ∈ (1/N)Z2 − Z2 with [ ak

bk
] 
≡ ±[ ck

dk
] (mod Z2) (k = 1, 2) is a modular unit

of level N by Lemma 3.1, which is called a Weierstrass unit of level N .
We further define three functions on H,

g2(τ) = 60
∑

ω∈[τ,1]−{0}
ω−4,

g3(τ) = 140
∑

ω∈[τ,1]−{0}
ω−6,

Δ(τ) = g2(τ)3 − 27g3(τ)2,
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which are modular forms of level 1 and weight 4, 6 and 12, respectively [8, Chapter 3,
Theorem 3].

For a positive integer N , let

Γ1(N) =

{
γ ∈ SL2(Z) | γ ≡

[
1 ∗
0 1

]
(mod N)

}
,

and let X1(N) = Γ̄1(N)\H∗ be the corresponding modular curve, where Γ̄1(N) =
±Γ1(N)/{±I2}.

Lemma 3.2.

(i) If N � 2, then C(X1(N)) = C

(
j, (g2g3/Δ)℘[ 0

1/N

]).
(ii) If N � 2, then C(X(N)) = C(X1(N))

(
(g2g3/Δ)℘[ 1/N

0

]).
(iii) C(X1(4)) = C

(
g[ 1/4

0

](4τ)−8g[ 1/2
0

](4τ)8
)
.

Proof. See [2, Proposition 7.5.1] and [6, Table 2]. �

The modular curve X1(4) is of genus 0 and has three inequivalent cusps, namely, 0,
1/2 and i∞ [5, p. 131]. Set

g1,4(τ) = g[ 1/4
0

](4τ)−8g[ 1/2
0

](4τ)8,

which is a primitive generator of C(X1(4)) over C by Lemma 3.2 (iii). It then follows
from [6, Theorem 6.5] that the map

X1(4) = Γ̄1(4)\H∗ → P1(C)

τ �→ [g1,4(τ) : 1]

is an isomorphism between compact Riemann surfaces. Moreover, g1,4(τ) has values 16,
0 and ∞ at the cusps τ = 0, 1/2 and i∞, respectively (see [5, Theorem 3 (ii)] and [6,
Table 3]). Thus, we claim that

g1,4 − c for c ∈ C is a modular unit (for Γ1(4)) ⇐⇒ c = 16 or 0. (3.2)

Theorem 3.3. Let O1,N and ON be the integral closures of C[j] in C(X1(N)) and
C(X(N)), respectively. Assume that N ≡ 0 (mod 4).

(i) O1,4 = C[g1,4, g
−1
1,4, (g1,4 − 16)−1].

(ii) O1,N = O1,4[h1,N ], where

h1,N (τ) =
(
℘[ 0

1/N

](τ) − ℘[ 0
1/2

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)
.
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(iii) ON = O1,N [hN ], where

hN (τ) =
(
℘[ 1/N

0

](τ) − ℘[ 0
1/2

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)
.

Proof. (i) Since g1,4 and g1,4 − 16 are modular units in C(X1(4)) by Lemma 3.2 (iii)
and (3.2), we get the inclusion O1,4 ⊇ C[g1,4, g

−1
1,4, (g1,4 −16)−1]. Conversely, let h ∈ O1,4.

It is then a rational function of g1,4 by Lemma 3.2 (iii), namely, h = P (g1,4)/Q(g1,4) for
some polynomials P (X), Q(X) ∈ C[X] that are relatively prime. If Q(X) has a linear
factor other than g1,4 and g1,4 − 16, then h has a pole on H by (3.2). Hence, we obtain
the reverse inclusion O1,4 ⊆ C[g1,4, g

−1
1,4, (g1,4 − 16)−1]. This proves (i).

(ii) Since h1,N ∈ O1,N by Lemma 3.2 (i) and the paragraph below Lemma 3.1, we have
the inclusion O1,N ⊇ O1,4[h1,N ].

We find that

C(X1(N)) = C

(
j, (g2g3/Δ)℘[ 0

1/N

]) by Lemma 3.2 (i)

= C(X1(4))
(
(g2g3/Δ)℘[ 0

1/N

]) because j ∈ C(X1(4))

= C(X1(4))
(
(g2g3/Δ)

((
℘[ 0

1/2

] − ℘[ 0
1/4

])h1,N + ℘[ 0
1/2

]))
= C(X1(4))(h1,N ),

since
(g2g3/Δ)℘[ 0

1/2

], (g2g3/Δ)℘[ 0
1/4

] ∈ C(X1(4)),

by Lemma 3.2 (i). So, if f ∈ O1,N , then it can be written in the form

f = r0 + r1h + r2h
2 + · · · + rd−1h

d−1, (3.3)

where h = h1,N , d = [C(X1(N)) : C(X1(4))] and r0, r2, . . . , rd−1 ∈ C(X1(4)). Multi-
plying both sides of (3.3) by 1, h, . . . , hd−1, we obtain a linear system (with unknowns
r0, r1, . . . , rd−1) ⎡

⎢⎢⎢⎢⎣
1 h · · · hd−1

h h2 · · · hd

...
...

. . .
...

hd−1 hd · · · h2d−2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r0

r1
...

rd−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f

hf
...

hd−1f

⎤
⎥⎥⎥⎥⎦ .

Taking the trace Tr (equal to TrC(X1(N))/C(X1(4))) on both sides, we achieve
⎡
⎢⎢⎢⎢⎣

Tr(1) Tr(h) · · · Tr(hd−1)
Tr(h) Tr(h2) · · · Tr(hd)

...
...

. . .
...

Tr(hd−1) Tr(hd) · · · Tr(h2d−2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r0

r1
...

rd−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Tr(f)
Tr(hf)

...
Tr(hd−1f)

⎤
⎥⎥⎥⎥⎦ . (3.4)
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Let T be the d × d matrix on the left-hand side of (3.4) and let c1, c2, . . . , cd be the
conjugates of h ∈ C(X1(N)) over C(X1(4)). We then obtain that

det(T ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d∑
k=1

c0
k

d∑
k=1

c1
k · · ·

d∑
k=1

cd−1
k

d∑
k=1

c1
k

d∑
k=1

c2
k · · ·

d∑
k=1

cd
k

...
...

. . .
...

d∑
k=1

cd−1
k

d∑
k=1

cd
k · · ·

d∑
k=1

c2d−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

c0
1 c0

2 · · · c0
d

c1
1 c1

2 · · · c1
d

...
...

. . .
...

cd−1
1 cd−1

2 · · · cd−1
d

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

c0
1 c1

1 · · · cd−1
1

c0
2 c1

2 · · · cd−1
2

...
...

. . .
...

c0
d c1

d · · · cd−1
d

∣∣∣∣∣∣∣∣∣∣
=

∏
1�m<n�d

(cm − cn)2 by the Vandermonde determinant formula.

On the other hand, any conjugate of h ∈ C(X1(N)) over C(X1(4)) is of the form

(
℘[ a/N

b/N

](τ) − ℘[ 0
1/2

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)

for some

[
a

b

]
∈ Z2 − NZ2

owing to the fact that Gal(C(X1(N))/C(X1(4))) 	 Γ̄1(N)/Γ̄1(4), the transformation
formula (3.1) and Lemma 3.1. Moreover, we see that the function(

℘[ a/N
b/N

](τ) − ℘[ c/N
d/N

](τ)
)
/
(
℘[ 0

1/2

](τ) − ℘[ 0
1/4

](τ)
)

for [ a
b ], [ c

d ] ∈ Z2−NZ2 with [ a
b ] 
≡ ±[ c

d ] (mod NZ2) has neither a zero nor a pole on H by
Lemma 3.1. This implies that det(T ) becomes a modular unit in C(X1(4)). In particular,
det(T ) belongs to O×

1,4. It then follows that r0, r1, . . . , rd−1 ∈ O1,4, and hence we deduce
the inclusion O1,N ⊆ O1,4[h1,N ]. This completes the proof of (ii).

(iii) One can readily prove (iii) through the use of Lemma 3.2 (ii) and the fact that
Gal(C(X(N))/C(X1(N))) 	 Γ̄ (N)/Γ̄1(N). �

Remark 3.4. Let

θ2(τ) =
∑
n∈Z

eπi(n+1/2)2τ , θ3(τ) =
∑
n∈Z

eπin2τ and θ4(τ) =
∑
n∈Z

(−1)neπin2τ

be the classical Jacobi theta functions and let

η(τ) = q1/24
∞∏

n=1

(1 − qn) (3.5)
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be the Dedekind eta function. They then satisfy the relations

θ2(τ)4 + θ4(τ)4 = θ3(τ)4 (3.6)

and

θ2(2τ) = 2η(4τ)2/η(2τ) and θ4(2τ) = η(τ)2/η(2τ), (3.7)

due to Jacobi [1, pp. 27–29]. Furthermore, we have

g1,4(τ) = 16θ3(2τ)4/θ2(2τ)4

as a modular unit with ordq(g1,4 ◦ [ 0 −1
1 0 ]) = 0 [6, Table 3 and Theorem 6.2]. Hence, we

derive that

g1,4(τ) − 16 = 16θ3(2τ)4/θ2(2τ)4 − 16

= 16θ4(2τ)4/θ2(2τ)4 by (3.6)

= η(τ)8/η(4τ)8 by (3.7)

= q−1
∞∏

n=1

(1 + qn)−8(1 + q2n)−8 by the definition (3.5).

Therefore, g1,4 − 16 is indeed a modular unit.

Corollary 3.5. Every weakly holomorphic modular function can be expressed as a
sum of modular units (of higher level).

Proof. Let h be a weakly holomorphic modular function of level N . Since it belongs
to O4N/ gcd(4,N) by Proposition 2.3, h can be written as a sum of modular units of level
4N/ gcd(4, N) by Theorem 3.3. This completes the proof. �

Let k and N (greater than or equal to 1) be integers. We denote the vector space of
all weakly holomorphic modular forms of level N and weight k by M!

k(Γ (N)). We then
have a graded algebra

M!(Γ (N)) =
⊕
k∈Z

M!
k(Γ (N))

with respect to weight k.
Now, define a Klein form

k[ 0
1/2

](τ) = (1/2πi)g[ 0
1/2

](τ)/η(τ)2,

which belongs to M!
−1(Γ (8)) [7, Chapter 3, Theorem 4.1]. It has neither a zero nor a

pole on H by the expansion formulae (2.1) and (3.5).

Theorem 3.6. For N ≡ 0 (mod 8), we get

M!(Γ (N)) = ON

[
k[ 0

1/2

], k−1[ 0
1/2

]] = C

[
g1,4, g

−1
1,4, (g1,4 − 16)−1, h1,N , hN , k[ 0

1/2

], k−1[ 0
1/2

]],
where g1,4, h1,N and hN are functions described in Theorem 3.3.

https://doi.org/10.1017/S0013091514000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000352


Some applications of modular units 101

Proof. It is obvious that M!
0(Γ (N)) = ON .

If k 
= 0, then the linear map

ϕ : ON → M!
k(Γ (N))

h �→ k
−k[ 0
1/2

]h

is an isomorphism because

k
−1[ 0
1/2

] ∈ M!
1(Γ (8)) and k[ 0

1/2

] ∈ M!
−1(Γ (8)).

Thus, M!
k(Γ (N)) = k

−k[ 0
1/2

]ON as an ON -module. Therefore, we attain from Theorem 3.3

M!(Γ (N)) =
⊕
k∈Z

k
−k[ 0
1/2

]ON

= ON

[
k[ 0

1/2

], k−1[ 0
1/2

]]

= C

[
g1,4, g

−1
1,4, (g1,4 − 16)−1, h1,N , hN , k[ 0

1/2

], k−1[ 0
1/2

]].
�

4. Meromorphic Siegel modular functions

In this section we show that if f(Z) is a meromorphic Siegel modular function of degree g

(greater than or equal to 2) that has neither a zero nor a pole on Hdiag
g , then f(Z) is a

product of g modular units.

Lemma 4.1. Let g, N � 2 be integers. If f(Z) is a meromorphic Siegel modular
function of degree g and level N , then the function

f(diag(τ1, τ2, . . . , τg)) (diag(τ1, τ2, . . . , τg) ∈ Hdiag
g ),

as a function of τk (k = 1, 2, . . . , g), is a meromorphic modular function of level N .

Proof. Let

γk =

[
ak bk

ck dk

]
∈ SL2(Z) (k = 1, 2, . . . , g)

and set

γ =

[
A B

C D

]
=

[
diag(a1, a2, . . . , ag) diag(b1, b2, . . . , bg)
diag(c1, c2, . . . , cg) diag(d1, d2, . . . , dg)

]
,
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where A, B, C and D are g × g block matrices. We then derive that

γTJγ =

[
A C

B D

][
0 −Ig

Ig 0

][
A B

C D

]
because A, B, C and D are diagonal

=

[
CA − AC CB − AD

DA − BC DB − BD

]

=

[
0 diag(c1b1 − a1d1, . . . , cgbg − agdg)

diag(d1a1 − b1c1, . . . , dgag − bgcg) 0

]

= J due to det(γk) = akdk − bkck = 1 (k = 1, 2, . . . , g),

from which we see that γ belongs to the group Spg(Z).
Also, for Z = diag(τ1, τ2, . . . , τg) ∈ Hdiag

g , we achieve that

γ(Z) = (AZ + B)(CZ + D)−1

= diag(a1τ1 + b1, . . . , agτg + bg)diag(c1τ1 + d1, . . . , cgτg + dg)−1

= diag((a1τ1 + b1)(c1τ1 + d1)−1, . . . , (agτg + bg)(cgτg + dg)−1)

= diag(γ1(τ1), γ2(τ2), . . . , γg(τg)). (4.1)

On the other hand, assume that γk ≡ I2 (mod N) for all k = 1, 2, . . . , g. Then γ ≡ I2g

(mod N) and for Z = diag(τ1, τ2, . . . , τg) ∈ Hdiag
g we have

f(diag(τ1, τ2, . . . , τg)) = f(Z)

= f(γ(Z)) since f is of level N

= f(diag(γ1(τ1), γ2(τ2), . . . , γg(τg))) by (4.1).

In particular, when k is fixed (k = 1, 2, . . . , g) and γn = I2 for all n 
= k, we conclude
that f(Z), as a function of τk, is a meromorphic modular function of level N . �

Theorem 4.2. Let g, N � 2 be integers, and let f(Z) be a meromorphic Siegel
modular function of degree g and level N . Then, f(Z) has neither a zero nor a pole on
Hdiag

g if and only if there exist modular units v1(τ), v2(τ), . . . , vg(τ) ∈ VN such that

f(diag(τ1, τ2, . . . , τg)) =
g∏

k=1

vk(τk).

Proof. The proof of the ‘if’ part is clear.
Conversely, assume that f(Z) has neither a zero nor a pole on Hdiag

g . Let n (greater
than or equal to 2) be the number of inequivalent cusps of X(N). Since VN/C× is a free
abelian group of rank n−1 by Proposition 2.7, there exist g1(τ), g2(τ), . . . , gn−1(τ) ∈ VN

such that VN = 〈C×, g1, g2, . . . , gn−1〉. Thus, f(diag(τ1, τ2, . . . , τg)), as a function of τg,
can be written as

f(diag(τ1, τ2, . . . , τg)) = c(τ1, τ2, . . . , τg−1)
n−1∏
t=1

gt(τg)mt(τ1,τ2,...,τg−1) (4.2)
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by Lemma 4.1 and on the assumption that c : Hg−1 → C× and mt : Hg−1 → Z are
functions of τ1, τ2, . . . , τg−1.

We then deduce that∏
γ∈Γ̄ (1)/Γ̄ (N)

f(diag(τ1, τ2, . . . , τg−1, γ(τg)))

=
∏

γ∈Γ̄ (1)/Γ̄ (N)

(
c(τ1, τ2, . . . , τg−1)

n−1∏
t=1

gt(γ(τg))mt(τ1,τ2,...,τg−1)
)

by (4.2)

= c(τ1, τ2, . . . , τg−1)d
n−1∏
t=1

( ∏
γ∈Γ̄ (1)/Γ̄ (N)

gt(γ(τg))
)mt(τ1,τ2,...,τg−1)

(where d = |Γ̄ (1)/Γ̄ (N)|)

= c(τ1, τ2, . . . , τg−1)d
n−1∏
t=1

NC(X(N))/C(X(1))(gt(τg))mt(τ1,τ2,...,τg−1)

due to the fact Gal(C(X(N))/C(X(1))) 	 Γ̄ (1)/Γ̄ (N)

= c(τ1, τ2, . . . , τg−1)d
n−1∏
t=1

c
mt(τ1,τ2,...,τg−1)
t

for some c1, c2, . . . , cn−1 ∈ C× by Remark 2.8,

which is a modular unit of level N as a function of each τk (k = 1, 2, . . . , g − 1) by
Lemma 4.1. It follows from (4.2) that

f(diag(τ1, τ2, . . . , τg))d
/ ∏

γ∈Γ̄ (1)/Γ̄ (N)

f(diag(τ1, τ2, . . . , τg−1, γ(τg)))

=
(

c(τ1, τ2, . . . , τg−1)
n−1∏
t=1

gt(τg)mt(τ1,τ2,...,τg−1)
)d

/(
c(τ1, τ2, . . . , τg−1)d

n−1∏
t=1

c
mt(τ1,τ2,...,τg−1)
t

)

=
n−1∏
t=1

(c−1
t gt(τg)d)mt(τ1,τ2,...,τg−1).

Now, set this function to be h(τ1, τ2, . . . , τg), which is a modular unit as a function of
each τk (k = 1, 2, . . . , g).

On the other hand, when τg ∈ H is fixed, the image of the holomorphic function

ϕ : Hg−1 → C×

(τ1, τ2, . . . , τg−1) �→ h(τ1, τ2, . . . , τg) =
n−1∏
t=1

(c−1
t gt(τg)d)mt(τ1,τ2,...,τg−1)

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

is a countable set because mt(τ1, τ2, . . . , τg−1) (t = 1, 2, . . . , n − 1) are integer-valued
functions. Let � ∈ {1, 2, . . . , g − 1} and suppose that τ1, τ2, . . . , τg−1 are fixed except

https://doi.org/10.1017/S0013091514000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000352


104 I. S. Eum, J. K. Koo and D. H. Shin

for τ�. Then ϕ can be viewed as a holomorphic map from H to C× with respect to τ�.
Since its image is a countable set as mentioned above, the modular unit h(τ1, τ2, . . . , τg),
as a function of τ�, must be a constant by Lemma 2.9. This observation essen-
tially indicates that the map ϕ defined on Hg−1 in (4.3) is in fact a constant, and
hence the function h(τ1, τ2, . . . , τg) of g variables is a function of τg. Moreover, since
g1(τ), g2(τ), . . . , gn−1(τ) form a basis for the free abelian group VN/C×, the integer-
valued functions mt(τ1, τ2, . . . , τg−1) (t = 1, 2, . . . , n−1) should be fixed integers, say mt.
Thus, if we set vg(τ) =

∏n−1
t=1 gt(τ)mt ∈ VN , then we derive from (4.2) that

f(diag(τ1, τ2, . . . , τg)) = c(τ1, τ2, . . . , τg−1)vg(τg). (4.4)

The only property of f(diag(τ1, τ2, . . . , τg)) necessary to have (4.4) is that it is a
meromorphic modular function of level N as a function of each τk (k = 1, 2, . . . , g).
Now that c(τ1, τ2, . . . , τg−1) retains this property, if we apply the same argument to
c(τ1, τ2, . . . , τg−1) instead of f(diag(τ1, τ2, . . . , τg)) and repeat this process, then we even-
tually reach the conclusion after (g − 1) steps. �

Example 4.3. Let g, N � 1. For

r =

⎡
⎢⎣

r1
...
rg

⎤
⎥⎦ , s =

⎡
⎢⎣

s1
...
sg

⎤
⎥⎦ ∈ (1/N)Zg,

we define a theta constant by

Θ[ r
s ](Z) =

∑
n∈Zg

e((n + r)TZ(n + r)/2 + (n + r)Ts) (Z ∈ Hg),

where e(z) = e2πiz for z ∈ C. We further set

Φ[ r
s ](Z) = Θ[ r

s ](Z)/Θ[ 00 ](Z) (Z ∈ Hg),

which is a Siegel modular function of level 2N2 [10, Proposition 7].
Now, we assume that g � 2, Z ′ ∈ Hg−1 and τ ∈ H. We then derive that

Θ[ r
s ]

([
Z ′ 0
0 τ

])

=
∑

n=[n1···ng]T∈Zg

e

(
1
2

[
n′ + r′

ng + rg

]T [
Z ′ 0
0 z

][
n′ + r′

ng + rg

]
+

[
n′ + r′

ng + rg

]T [
s′

sg

])

⎛
⎜⎝where n′ =

⎡
⎢⎣

n1
...

ng−1

⎤
⎥⎦
⎞
⎟⎠
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=
∑

n′∈Zg−1

∑
ng∈Z

e((n′ + r′)TZ ′(r′ + s′)/2 + (ng + rg)τ(ng + rg)/2

+ (n′ + r′)Ts′ + (ng + rg)sg)

=
( ∑

n′∈Zg−1

e((n′ + r′)TZ ′(r′ + s′)/2 + (n′ + r′)Ts′)
)

×
( ∑

ng∈Z

e((ng + rg)τ(ng + rg)/2 + (ng + rg)sg)
)

= Θ[ r′

s′

](Z ′)Θ[ rg
sg

](τ). (4.5)

Applying this argument inductively, we obtain

Φ[ r
s ](diag(τ1, τ2, . . . , τg)) =

g∏
k=1

Φ[ rk
sk

](τk) (diag(τ1, τ2, . . . , τg) ∈ Hdiag
g ).

On the other hand, it follows from the Jacobi triple product identity [3, (17.3)], the
definition (2.1) in § 2 and [4, Theorem 2] that

Φ[ r
s ](τ) =

⎧⎨
⎩

e((2rs + r − s)/4)g[ 1/2−r
1/2−s

](τ)/g[ 1/2
1/2

](τ) if [ r
s ] ∈ Q2 − (1/2 + Z)2,

0 if [ r
s ] ∈ (1/2 + Z)2.

Therefore, we conclude that Φ[ r
s ](diag(τ1, τ2, . . . , τg)) has neither a zero nor a pole on

Hdiag
g , or is identically zero.
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