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We consider and analyse sampling theories in the reproducing kernel Hilbert space (RKHS)

in this paper. The reconstruction of a function in an RKHS from a given set of sampling

points and the reproducing kernel of the RKHS is discussed. Firstly, we analyse and give the

optimal approximation of any function belonging to the RKHS in detail. Then, a necessary

and sufficient condition to perfectly reconstruct the function in the corresponding RKHS

of complex-valued functions is investigated. Based on the derived results, another proof of

the sampling theorem in the linear canonical transform (LCT) domain is given. Finally,

the optimal approximation of any band-limited function in the LCT domain from infinite

sampling points is also analysed and discussed.

Key words: reproducing kernel Hilbert space (RKHS); sampling theorem; linear canonical

transform (LCT)

1 Introduction

Shannon’s sampling theorem [1] given by the formula

f(x) =

∞∑
n=−∞

f(n)
sin π(x − n)

π(x − n)
(1.1)

holds for any π-band-limited function with finite energy. It is so important that there

are many generalisations and extensions of this theorem such as [2–4]. The Shannon

sampling theorem says that if a signal is band-limited signal of finite energy, then it can

be completely characterised by its samples. However, in many engineering applications,

such as MRI imaging, signals and images are not band-limited [5, 6] in the classical

Fourier transform sense, one such example being the shift-invariant spaces. In order to

analyse and process non-band-limited functions, many transforms and analysis methods
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are proposed, for example, the fractional Fourier transform and the linear canonical

transform [6], the wavelet transform [7], and the methods in shift-invariant spaces [4, 5],

spline subspace [8, 9], and reproducing kernel Hilbert space [10, 11].

Among them, Nashed and Walter [10, 11] presented a very important reformulation of

the sampling theorem by using the theorems about RKHS. In their work, they discussed

the relationship between a given set of kernel functions which are determined by a given

set of sampling points and a reproducing kernel, and proposed a perfect reconstruction

of any function in the RKHS. Based on these results, Tanaka et al. in [12] derived a

necessary and sufficient condition to easily check whether a perfect reconstruction of any

function can be got in a general and practical case when the kernel functions and the

set of sampling points are given. They also give anther proof of the Shannon’s sampling

theorem in the sense of the RKHS.

However, in paper [12], the functions in the RKHS are real-valued functions, and we can

not apply their methods in the RKHS of complex-valued functions. In real applications,

we often encounter the analysis of the RKHS of complex-valued functions, for example,

the kernel function of the RKHS which consists of band-limited functions in linear

canonical transform domain or fractional Fourier transform domain is a complex-valued

function [13, 14], therefore the above theorem proposed in [12] can not be applied in an

LCT domain. The purpose of this paper is to analyse the sampling problems in the RKHS

that consists of complex-valued functions in detail, a necessary and sufficient condition

to easily check whether a perfect reconstruction can be got in a general and practical

case is derived. Based on the derived results, another proof of the sampling theorem in

LCT domain by the RKHS is given. We also investigate the optimal approximation of

any band-limited functions in LCT domain from infinite sampling points associated with

results of RKHS.

The outline of this paper is as follows. In Section 2, we give some mathematical defini-

tions about the LCT and RKHS. In Section 3, we will study the optimal approximation

by orthogonal projection. In Section 4, we discuss the necessary and sufficient condition

to perfectly recover the function in the corresponding RKHS. In Section 5, we obtain

another proof of the sampling theorem in an LCT domain and the optimal approximation

of any band-limited functions in an LCT domain from infinite sampling points.

2 Preliminary

2.1 The linear canonical transform (LCT)

The linear canonical transform (LCT) can be considered as a further generalisation of the

classical Fourier transform and the fractional Fourier transform [15], the LCT definition

of a signal f(t) being as follows.

Definition 1 The LCT of a signal f(t) with parameters (a, b, c, d) is defined [15] to be

L(a,b,c,d)[f](u) =

{∫ ∞
−∞ f(t)

√
1

j2πb
e

j
2 ( a

b
t2− 2

b
ut+ d

b
u2)dt,b� 0

√
de

j
2 cdu

2

f(du), b = 0
(2.1)
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where a, b, c, d are real numbers satisfying ad − bc = 1.

From (2.1) we can see that, when b = 0, the LCT of a signal is essentially a chirp

multiplication and it is of no particular interest to us here. Therefore, we set b > 0 in

the following sections of the paper. The LCT has been shown to be a powerful tool and

more flexible than the fractional Fourier transform and the Fourier transform, and it

has been applied in many real situations, such as in filter design, phase retrieval, pattern

recognition, encryption, modulation, and multiplexing in communication [16, 17].

A signal f(t) is said to be σ-band-limited in the LCT domain with parameters (a, b, c, d)

, if

L(a,b,c,d)[f](u) = 0, for |u| > σ,

where σ is the bandwidth of the signal f(t) in the LCT domain. It is proved in [18, 19] that

the non-band-limited signal of the classical Fourier transform domain can be band-limited

in the fractional Fourier transform domain and the linear canonical transform domain.

Based on this fact, the sampling theories about the uniform or nonuniform sampling

associated with the LCT domain have been investigated in detail in recent years [20–24].

The discrete realisation methods and the other important concepts, for example, the

uncertainty principle, the convolution and product theorem and the poisson sum formulae

and the eigenfunctions, associated with the LCT and the fractional Fourier transform are

also studied and investigated in [25–30]. In this paper, we let Hσ
(a,b,c,d) denote the class of

signals which are σ-band-limited in the LCT domain with parameters (a, b, c, d).

2.2 Reproducing kernel Hilbert space (RKHS)

As an efficient processing method, the reproducing kernel Hilbert spaces (RKHS) meth-

ods are widely used in many areas, and their definition can be summarised as follows

[10, 11, 31].

Definition 2 Let H be a class of functions which form a Hilbert space defined on a set X .

If there exists g(x,y) defined on X × X, and satisfying

g(x,y) ∈ H, y ∈ X (2.2)

f(y) = 〈f(·), g(·, y)〉H, f ∈ H (2.3)

then g(x,y) is a reproducing kernel for H, and H is called a reproducing kernel Hilbert

space (RKHS), where the 〈·, ·〉H denotes the inner product of the Hilbert space H.

If a kernel of g(x, y) is the reproducing kernel, then from the well known Aronszajn-

Moore theorem [32], the kernel g(x, y) determines a unique Hilbert space H, and from

the definition of the inner product of Hilbert space, the following property holds for the

kernel g(x, y)

g(x, y) = g(y, x).
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It is shown in [20] that the Hσ
(a,b,c,d) is a RKHS, and the reproducing kernel is

G(a,b,c,d)(t, x) =
σ

πb
e

ia
2b (x2−t2) sin[σ(t − x)/b]

σ(t − x)/b
.

Obviously, the kernel function is a complex-valued function.

2.3 Schatten product

The following Schatten product definition will be used in the following Sections of this

paper.

Definition 3 Let H1 and H2 be Hilbert space. The Schatten product of h2 ∈ H2 and h1 ∈ H1

is defined by

(h2 ⊗ h1)f = h2〈f, h1〉H1
, f ∈ H1. (2.4)

From this definition, it is easy to show that (h2 ⊗ h1) is a linear operator from H1 onto

H2, and the following relations hold.

(h1 ⊗ h2)
∗ = (h2 ⊗ h1), (2.5)

(h1 ⊗ h2)(u ⊗ v) = 〈u, h2〉H2
(h1 ⊗ v), (2.6)

where h1, v ∈ H1, h2, u ∈ H2 and the superscript ∗ denotes the adjoint operator.

2.4 Some symbols

In this paper, we use the following symbols HK,K(x, x̃), S , HC,HG, G,M,A, P .

S = span[{K(·, xi) | i ∈ N}],

HC = {α ∈ C∞ | α
′
Gα < ∞},

HG = {g ∈ C∞ | g
′
Mg < ∞},

A =

( ∞∑
i=1

[ei ⊗ K(·, xi)]
)
,

P = A∗A,

G = (K(xi, xj)) ∈ C∞×∞,

G = GMG,

where ei is the unit vector in R∞ with only the ith component being unity, and the Hilbert

H space that has a reproducing kernel K is called a RKHS, denoted by HK .
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From the above definition, HK consists of complex-valued functions defined on D ⊂ Cn

and K(x, x̃) is a complex-valued function which is the reproducing kernel of HK and

α, g ∈ C∞. It is easy to show

K(x, x̃) = K(x̃, x), G
′
= G,G

′
= G

and S is a closed linear subspace in HK spanned by the basis function {K(·, xi) | i ∈ N},
defined as

S = span[{K(·, xi) | i ∈ N}].
Hence any functionf(·) ∈ S can be represented by

f(·) =

∞∑
i=1

αiK(·, xi)

with coefficients αi ∈ C. For any f(·) ∈ S,

‖ f(·) ‖2
HK

= 〈f(·), f(·)〉HK

=

〈 ∞∑
i=1

αiK(·, xi),

∞∑
j=1

αjK(·, xj)

〉
HK

=

∞∑
i=1

∞∑
j=1

αiαj〈K(·, xi), K(·, xj)〉HK

=

∞∑
i=1

∞∑
j=1

αiαjK(xj, xi)

=

∞∑
i=1

∞∑
j=1

αjK(xj, xi)αi

= α
′
Gα < ∞,

where ‖ · ‖HK
denotes the inducing norm in HK , α= [α1, . . . , αl , . . .]

′ ∈ C∞ and G =

(K(xi, xj)) ∈ C∞×∞ denotes the Gramian matrix of the kernel K with sampling points X.

We intend to use S as a linear subspace to which a reconstructed function belongs.

HC = {α ∈ C∞ | α
′
Gα < ∞},

is also a Hilbert space which is homeomorphic with S , since S is closed.

It is easy to show that G is also a reproducing kernel [12]. Thus, G has the unique

corresponding RKHS denoted by HG. Since HG is complete and closed, there exist a

symmetric and non-negative matrix M that specifies the metric of HG .Thus, HG is

characterised as

HG = {g ∈ C∞ | g
′
Mg < ∞}.

According to (2.2) in Definition 2,

Gei ∈ HG
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holds for any i ∈N, which implies that each column of G belongs to HG; and (2.3) in

Definition 2 yields

gk = 〈g, Gek〉HG

= e
′

kG
′
Mg

= e
′

kGMg

for any g = [g1, . . . , gl , . . .]
′ ∈ HG. The summation premultiplied by ek , with respect to k

produces

g = GMg

for any g ∈ HG. Therefore,since Gei ∈ HG

Gei = GMGei

holds for any i ∈N and the summation postmultiplied by e
′

i, with respect to i yields

G = GMG.

The last equation implies that M is a 1-inverse [33] of G. When G is a Matrixoid,

M = G−1.

3 Optimal approximation by orthogonal projection

In this section we try to prove that P is an orthogonal projector onto the closed linear

subspace S in HK . Firstly, it is easy to show that G
′
= G,G

′
= G, and then the following

Lemmas 1 and 2 can be obtained by a similar proof as proposed in [12].

Lemma 1 G is a closed linear operator from HC onto HG.

Lemma 2 Let A =
(∑∞

i=1[ei ⊗ K(·, xi)]
)
, then A ∈ �(HK,HG), where �(HK,HG) denotes

the set of bounded linear operators from HK onto HG.

According to Lemma 2, it immediately follows that:

A∗ ∈ �(HG,HK ),

A∗A ∈ �(HK,HK ).

Based on these lemmas, we obtain main theorem of this paper as follows.

Theorem 1 P = A∗A is the orthogonal projector onto the closed linear subspace S in HK .
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Proof Let f(y) =
∑∞

i=1 αiK(y, xi) be an arbitrary function in S with respect to y, then

Pf(y) = A∗Af(y) = A∗Gα

=

( ∞∑
i=1

K(y, xi) ⊗ ei

)
Gα

=

∞∑
i=1

α
′
GMeiK(y, xi)

= α
′
GMk

where

k =

∞∑
i=1

eiK(y, xi) = [K(y, x1), . . . , (y, xl), . . .]
′ ∈ C∞.

Since A ∈ �(HK,HG) and K(·, y) ∈ HK for any y ∈ D

AK(·, y) =

( ∞∑
i=1

[ei ⊗ K(·, xi)]
)
K(·, y)

= k ∈ HG

is followed with any fixed y ∈ D. Then

kk = 〈k, Gek〉HG

so

kk = 〈Gek, k〉HG

= e
′

kGMk. (3.1)

The summation of (3.1), premultiplied by ek , with respect to k produces

k = GMk. (3.2)

Thus, from (3.2),

Pf(y) = α
′
GMk

= α′k

=

∞∑
i=1

αiK(y, xi)

= f(y)

is obtained for any y ∈ D.

On the other hand, for any f(y) ∈ S⊥

Pf(y) = 0
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trivially holds for any y ∈ D. Thus, we know that P = A∗A ∈ �(HK,HK ) is the orthogonal

projector onto the closed linear subspace S . This concludes the proof. �

From the definition of P , the closed form of P is written as,

P = A∗A

=

⎛
⎝ ∞∑

j=1

[K(·, xj) ⊗ ej]

⎞
⎠ ( ∞∑

i=1

[ei ⊗ K(·, xi)]
)

=

∞∑
i=1

∞∑
j=1

Mi,j[K(·, xi) ⊗ K(·, xj)] (3.3)

and that of Pf(·) is written as

Pf(·) =

⎛
⎝ ∞∑

i=1

∞∑
j=1

Mi,j[K(·, xi) ⊗ K(·, xj)]

⎞
⎠ f(·)

=

∞∑
i=1

∞∑
j=1

f(xj)Mi,jK(·, xi). (3.4)

From Theorem 1, P is the orthogonal projector onto the closed linear subspace S , then

Pf(·), which is in S , is the optimal approximation of any f(·) ∈ HK . Thus, the above

discussion is an extension of the framework shown in [12] to complex-valued functions.

4 Sampling theories analysis in the RKHS

From the discussions in the previous sections, in orderto perfectly reconstruct any function

f(·) ∈ HK by (11), HK = S must hold. In this section, we obtain a necessary and sufficient

condition for a reproducing kernel and a set of sampling points to perfectly reconstruct

any function in the corresponding RKHS of complex-valued functions. The main result

of this section can be represented as following Theorem 2.

Theorem 2 HK = S if and only if

K(y, y) =

∞∑
i=1

∞∑
j=1

K(y, xj)Mi,jK(y, xi) (4.1)

holds for any y ∈ D.

Proof Since K(·, y) ∈ HK for any y ∈ D, if HK = S holds

K(·, y) − PK(·, y) = 0 (4.2)
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that is

K(·, y) = PK(·, y)

=

∞∑
i=1

∞∑
j=1

K(y, xj)Mi,jK(·, xi)

must hold for any y ∈ D at least. So (4.1) holds.

On the other hand, if we assume that (4.2) holds, then

f(y) = 〈f(·), K(·, y)〉HK

= 〈f(·), PK(·, y)〉HK

= 〈f(·), P ∗K(·, y)〉HK

= 〈Pf(·), K(·, y)〉HK

= Pf(y)

is obtained for any f(·) ∈ HK and any y ∈ D, since P is an orthogonal projection, which

implies HK = S .

It is easy to show that (4.2) identical to

‖ K(·, y) − PK(·, y) ‖2
HK

= 0.

By applying the Pythagorean theorem and a similar method to [12], the above equation

can be written as

‖ K(·, y) − PK(·, y) ‖2
HK

=‖ K(·, y) ‖2
HK

− ‖ PK(·, y) ‖2
HK

= K(y, y) −
∞∑
i=1

∞∑
j=1

K(y, xj)Mi,jK(y, xi)

= 0.

This concludes the proof. �

5 Analysis of sampling theories associated with LCT

In this section, we will apply the derived results in previous section to the sampling

theories associated with an LCT. From the sampling theories of an LCT [20], we know

that the Hσ
(a,b,c,d) is an RKHS, and the reproducing kernel is

G(a,b,c,d)(t, x) =
σ

πb
e

ia
2b (x2−t2) sin[σ(t − x)/b]

σ(t − x)/b
.

Obviously, the kernel function G(a,b,c,d)(t, x) is a complex-valued function, and we cannot

apply the results in [12] to obtain the desired results.
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5.1 The proof of sampling theorem in LCT domain

Now, we give the proof of the sampling theorem in the LCT domain. Let Xb =

{. . . ,−b, 0, b, . . .}(b > 0) be the set of the uniform sampling points with the Nyquist

interval for π-band-limited functions in the Hπ
(a,b,c,d). It is trivial that

G(a,b,c,d)(t, t) =
1

b

for any t ∈ R, in the left hand-side of (4.1).

For the right-hand side of (4.1), we must first get the Mij .

G(a,b,c,d)(ti, tj) =
1

b
e

ia
2b (t2j −t2i )

sin π(ti − tj)/b

π(ti − tj)/b
(5.1)

where ti = ib, i ∈ N.

When ti = tj , (5.1) equals 1/b, when ti � tj , (5.1) equals to 0. Thus, we know that G

is a diagonal matrix and the diagonal element is 1/b, so M is a diagonal matrix and the

diagonal element is b.

Then the right-hand side of (4.1) reduces to

∞∑
i=1

∞∑
j=1

K(y, xj)Mi,jK(y, xi)

= b

∞∑
i=1

G(a,b,c,d)(t, ti)G(a,b,c,d)(t, ti)

=
1

b

∞∑
i=1

e− ia
2b (t2i −t2) sin[π(t − ti)/b]

π(t − ti)/b
e

ia
2b (t2i −t2) sin[π(t − ti)/b]

π(t − ti)/b

=
1

b

∞∑
i=1

[
sin[π(t − ti)/b]

π(t − ti)/b

]2

. (5.2)

When t ∈ Xb, it is easy to show that (5.2) is equal to 1/b. On the other hand, when

t � Xb,

1

b

∞∑
i=1

[
sin[π(t − ti)/b]

π(t − ti)/b

]2

=
1

b

∞∑
i=1

[
sin[π(t/b − i)

π(t/b − i)

]2

=
1

b

∞∑
i=1

[
sin (πt/b) cos πi − cos (πt/b) sin πi

π(t/b − i)

]2

=
1

b
sin2 (πt/b)

∞∑
i=1

[
1

π(t/b − i)

]2

=
1

b
sin2 (πt/b) csc2 (πt/b) =

1

b
.
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Thus, it is concluded that (4.1) holds for any t ∈ R, which gives another proof of the

sampling theorem in the LCT domain.

5.2 The optimal approximation of function in LCT domain

Let Xt = {ti ∈ R | i ∈ N} be a infinite set of sampling points. We will get a subspace V

in Hσ
(a,b,c,d), written as

V = span[{G(a,b,c,d)(t, ti)}].
Thus, according to (3.4), for every f(t) ∈ Hσ

(a,b,c,d), we will get the optimal approximation

of f(t), denoted as
∞∑
i=1

∞∑
j=1

f(tj)MijG(a,b,c,d)(t, ti)

where Mij is the element of M, M = G−1, and G = (G(a,b,c,d)(ti, tj)).

6 Conclusion

In this paper, we investigate and analyse of the sampling theories in the reproducing kernel

Hilbert space, a necessary and sufficient condition for the pair of a reproducing kernel

and a set of sampling points to perfectly reconstruct any function in the complex-valued

reproducing kernel Hilbert space is proposed. We also give the optimal approximation

of any function of RKHS in a subspace which is determined by the corresponding

reproducing kernel and the set of uniform or nonuniform sampling points. Finally, the

derived results are applied to the sampling theories associated with LCT, and another

proof of the well known sampling theorem of an LCT domain is given. Future working

directions will be the analysis of the reproducing kernel method in an abstract setting and

applications of the results in real practical situations.
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