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1. Introduction
The notion of a virtual subgroup was introduced in ergodic theory by Mackey (see, for
example, [M]). Here is a brief description of the basic idea behind this highly technical
notion, as described by Zimmer [Zi].

Let G be a locally compact group.

If X is an ergodic G-space, one of two mutually exclusive statements holds:

(i) There is an orbit whose complement is a nullset. In this case, X is called
essentially transitive.

(ii) Every orbit is a nullset. X is then called properly ergodic.

In the first case, the action of G on X is essentially equivalent to the
action defined by translation on G/H , where H is a closed subgroup of G;
furthermore, this action is determined up to equivalence by the conjugacy
class of H in G. In the second case, no such simple description of the action
is available, but it is often useful to think of the action as being defined by
a ‘virtual subgroup’ of G. Many concepts defined for a subgroup H , can be
expressed in terms of the action of G on G/H ; frequently, this leads to a
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natural extension of the concept to the case of an arbitrary virtual subgroup,
i.e., to the case of an ergodic G-action that is not necessarily essentially
transitive. Perhaps the most fundamental notions that can be extended in this
way are those of a homomorphism, and the concomitant ideas of kernel and
range. These and other related matters are discussed in [M].

In some sense the concept of the ‘Ellis group associated to a pointed minimal flow’
(see §2) is an analogue of Mackey’s virtual group in topological dynamics. It became a
keystone object in the abstract theory of topological dynamics, which was developed by
Ellis and collaborators in the 1960s and 1970s (see, for example, [E69, EGS, V]).

If one carries this idea a bit further, and one thinks of A, the Ellis group of a minimal
flow (X, T ), as a virtual subgroup, then the group NG(A)/A, where NG(A) is the
normalizer of A in the ambient group G (a subgroup of the enveloping semigroup of
(X, T )), can be thought of as the ‘virtual automorphism group’ of the flow (X, T ).

In the present work we make this notion precise (§3) and investigate the question of
realization of the virtual automorphism group as an actual group of flow automorphisms.

2. Some notation and basic facts concerning minimal flows
In this work T denotes an arbitrary (discrete) group. A T -flow (X, T ) on a compact
Hausdorff space X is given by a homomorphism ρ : T → Homeo (X) of T into the group
of self-homeomorphisms of X . We usually suppress the homomorphism ρ from our
notation of a flow (even when ρ is not an injection) and we write t x for the image of
the point x ∈ X under the homeomorphism ρ(t) (t ∈ T ).

In the next few paragraphs we will survey some of the basic definitions and facts from
the theory of abstract topological dynamics which will be repeatedly used in this work.
This theory started with the classical monograph by Gottschalk and Hedlund [GH] and
was then greatly developed by Ellis. For more details we refer to the monographs [E69,
Gl76, A88, dV93].

The flow (X, T ) is minimal if every point in X has a dense orbit. A pair of points x ,
x ′ ∈ X is proximal if there exist a net ti ∈ T and a point z ∈ X such that lim ti x = lim ti x ′ =
z. We write P[x] for the proximal cell of x (i.e. the set of points proximal to x). A point
x ∈ X is a distal point if it is proximal only to itself: P[x] = {x}. A minimal flow is point
distal if there is at least one distal point in X , and it is distal if every point is distal. Ellis
has shown that in a metric minimal flow the existence of one distal point implies that the
set X0 ⊆ X of distal points is a dense Gδ set. A continuous map π : (X, T )→ (Y, T )
between two minimal flows is a homomorphism (or an extension) if it intertwines the T -
actions (tπ(x)= π(t x), for all x ∈ X, t ∈ T ). We say that the homomorphism is proximal
if, for every y ∈ Y , every pair of points in π−1(y) is proximal, and that it is distal if, for
every y ∈ Y , we have P[x] ∩ π−1(y)= {x}, for all x ∈ π−1(y).

The enveloping semigroup of the flow (X, T ), denoted by E(X, T ), is the closure of the
set {ρ(t) : t ∈ T } in the compact space X X . This is indeed a compact subsemigroup of the
semigroup (under composition of maps) X X , and thus, for any fixed p ∈ E(X, T ), right
multiplication by p, Rp : q 7→ qp (q ∈ E(X, T )), is continuous on E(X, T ). However,
left multiplication L p : q 7→ pq , q ∈ E(X, T ), is often highly non-continuous (usually not
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even measurable) unless p is a continuous map. As the elements of T are continuous maps
the homomorphism t 7→ L t (t ∈ T ) makes E(X, T ) a T -flow.

It is well known that the semigroup βT , the Stone–Čech compactification of the discrete
T , is the universal point transitive T -flow and therefore also a universal enveloping
semigroup. We will use this universality and often consider elements of βT as maps in
the enveloping semigroup of each and every T -flow under consideration. The semigroup
βT admits many (for infinite T ) minimal left ideals (which coincide with the minimal
subflows). All these ideals are isomorphic to each other both as compact right topological
semigroups and as minimal flows. As usual, we will fix a minimal ideal M of βT . The
universality of βT implies that (M, T ) is a universal minimal flow. Ellis has shown that as
a flow (M, T ) is coalescent; that is, every endomorphism of (M, T ) is an automorphism,
and thus up to an automorphism (M, T ) is the unique universal minimal flow. Each
minimal ideal contains (usually many) idempotents and for convenience we usually fix
one such idempotent u = u2

∈ M . We denote the collection of idempotents in M by the
letter J .

It turns out that the set G = uM ⊂ M is actually a group and, moreover, via the
representation g 7→ Rg, g ∈ G, this group is isomorphic to the group Aut (M, T ) of
automorphisms of the flow (M, T ). M is the disjoint union of the collection of groups
{vM : v ∈ J } and each member p of M has a unique representation p = vg, where v = v2

is an idempotent in M and g is in G. We sometimes write p−1 for vg−1; this is indeed the
inverse element of p in the group vG.

If (X, T ) is minimal then, for every x ∈ X , there is an idempotent v ∈ M such that
vx = x . In other words, X =

⋃
{vX : v ∈ J }. However, whereas M =

⋃
{vM : v ∈ J } is

a disjoint union, usually the sets vX are not necessarily disjoint. For example, a point x
in a minimal flow (X, T ) is distal if and only if vx = x for every v ∈ J . In particular, a
minimal flow (X, T ) is distal if and only if X = u X = vX for all the idempotents v ∈ J .
Thus, in a minimal distal flow E(X, T ) is a group.

A minimal flow with a distinguished point x0 ∈ X is called a pointed flow and we usually
assume that ux0 = x0; that is, x0 ∈ u X . We write

G(X, x0)= {g ∈ G : gx0 = x0}.

This subgroup of G is called the Ellis group of the pointed flow (X, x0, T ). It is easy to
check that, for g ∈ G, we have

G(X, gx0)= gG(X, x0)g−1.

In the sequel we will often use the following fact. A homomorphism π : (X, x0, T )→
(Y, y0, T ) of pointed minimal flows is a proximal homomorphism if and only if
G(X, x0)=G(Y, y0).

Note that when the group T is abelian we have tp = pt for every t ∈ T and
p ∈ E(X, T ).

3. The group of virtual automorphisms of a minimal flow
Given a flow (X, T ), we let Aut (X, T ) denote its group of automorphisms and End (X, T )
its semigroup of endomorphisms. Given a subgroup A < G, we write NG(A)= {h ∈ G :
h−1 Ah = A} and N ′G(A)= {h ∈ G : h−1 Ah ⊆ A}.
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PROPOSITION 3.1. Let (X, x0, T ) be a pointed minimal flow, A =G(X, x0), and let ψ
be an endomorphism of the flow (X, T ). Then there is an element h ∈ N ′G(A) such that
ψ = φh , where, for every p ∈ M,

φh(px0)= phx0.

If ψ is an automorphism then h ∈ NG(A) and ψ−1
= φh−1 .

Proof. Because ψ is an endomorphism it commutes with u, hence uψ(x0)= ψ(ux0)=

ψ(x0) ∈ u X = Gx0, and there exists an element h ∈ G such that ψ(x0)= hx0. Now, for
every p ∈ βT (or p ∈ E(X, T )), we have

ψ(px0)= pψ(x0)= phx0.

If a ∈ A then ψ(x0)= ψ(ax0)= ahx0 = hx0, hence h−1ah ∈ A, so that h ∈ N ′G(A).
If ψ is an automorphism then

ψ−1(hx0)= hψ−1(x0)= ψ
−1(ψ(x0))= x0,

hence ψ−1(x0)= h−1x0, so that, as above, ψ−1
= φh−1 , and also h Ah−1

⊆ A, hence
h−1 Ah = A. �

PROPOSITION 3.2. Let (X, x0, T ) be a pointed minimal flow, A =G(X, x0) its Ellis
group.

(1) Let h ∈ G be such that the map φh where, for every p ∈ M,

φh(px0)= phx0

is well defined. Then h ∈ N ′G(A) and φh is a continuous endomorphism; that is,
φh ∈ End(X, T ).

(2) If h ∈ G is such that both maps φh and φh−1 are well defined, then h ∈ NG(A) and
φh ∈ Aut (X, T ).

Proof. (1) For a ∈ A, we have hx0 = φh(x0)= φh(ax0)= ahx0, whence h−1ah ∈ A;
that is, h ∈ N ′G(A). Let π : M→ X be the evaluation map p 7→ px0 (p ∈ M). Let
Rh : M→ M denote right multiplication by h and let

L = (π × π)(graph(Rh))= (π × π){(p, ph) : p ∈ M} = {(px0, phx0) : p ∈ M}.

By our assumption L is a graph of a map φh : X→ X, px0 7→ phx0 (p ∈ M). Since the
graph of Rh is T -invariant (Rh commutes with the elements of T ), we deduce that also φh

commutes with the T -action. Since L is a closed subset of M × M , it follows that the map
φh is continuous. Thus φh ∈ End (X, T ).

(2) If φh−1 is also well defined then, as above, h Ah−1
⊆ A, hence h ∈ NG(A), and we

have φh−1 = (φh)
−1, so that φh ∈ Aut (X, T ). �

Example 3.3. In [D] Downarowicz constructs a Toeplitz flow (X, T ) which is not
coalescent; that is, it admits an endomorphism which is not an automorphism. Now,
a Toeplitz flow is an almost one-to-one extension of its maximal equicontinuous factor
π : X→ Y (which is an adding machine). This implies the following facts. (i) For
any choice of a base point x0 ∈ u X , G(X, x0)= A is a normal subgroup of G (i.e.
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NG(A)= G). (ii) The extension π is proximal, whence G(X, x0)=G(Y, y0)= A (with
y0 = π(x0)). Now let φ be an endomorphism of (X, T ) which is not one-to-one. As in
Proposition 3.1 we have φ = φh for some h ∈ G and, although here h−1 Ah = A, yet φh

is not an automorphism. This phenomenon, however, cannot occur for distal flows, as we
can see in the following proposition.

PROPOSITION 3.4. Let (X, T ) be a minimal distal flow. If h ∈ NG(A) is such that the map
φh(px0)= phx0 is well defined then it is an automorphism.

Proof. For distal (X, x0, T ) we have Gx0 = X . Suppose gx0 6= g′x0 for some g, g′ ∈ G
but φh(gx0)= φ(g′x0). Then gx0 6= g′x0 implies that b = g−1g′ 6∈ A, and ghx0 = g′hx0,
hence x0 = h−1g−1g′hx0, implies that h−1bh ∈ A. Thus b ∈ h Ah−1

\ A, contradicting
our assumption that h ∈ NG(A). �

We call NG(A)/A the group of virtual automorphisms of the minimal flow (X, T ).

Remark 3.5. In a recent work [Zu19] Zucker shows, following the previous works [CP]
and [GTWZ], that for any countable groups T and H , with T infinite, there is a minimal,
free, Cantor T -flow (X, T ) such that the group H embeds into Aut (X, T ).

4. Semiregular flows
The notion of regular minimal flows was introduced in [A66]. A minimal flow (X, T ) is
regular if, for any pair of points x, y ∈ X , there is an automorphism ψ ∈ Aut (X, T ) such
that the pair (x, ψ(y)) is proximal. Equivalently, we can say that (X, T ) is regular if and
only if, (for x0 ∈ u X and) for every g ∈ G, there is an automorphism ψ ∈ Aut (X, T ) such
that gx0 = ψ(x0).

Definition 4.1. We say that a pointed minimal flow (X, x0, T ) (with G(X, x0)= A), is
semiregular (SR) if, for every h ∈ NG(A) there is an automorphism ψ ∈ Aut (X, T ) such
that ψ(x0)= hx0. More generally, given a subgroup 0 < NG(A), we say that (X, x0, T )
is 0-semiregular if for every h ∈ 0 there is an automorphism ψ ∈ Aut (X, T ) such that
ψ(x0)= hx0. (See also [H].)

Thus a minimal flow is SR if and only if every virtual automorphism of (X, T ) is
realized, so that NG(A)/A ∼= Aut (X, T ).

Remark 4.2. The dependence on the various choices we made in order to formulate the
definition of the SR property (namely the choice of M in βT , the choice of u in J and
finally the choice of x0 in u X ) is either immaterial or has the effect of replacing a subgroup
of G by some conjugate.

Examples 4.3.
(1) Every regular flow is SR (clear).
(2) Every minimal distal flow is SR (see §5).
(3) Every minimal proximal flow is SR (a minimal proximal flow is regular).
(4) If (X, T ) is SR then so is its maximal highly proximal extension (see §7).
(5) The Morse minimal set is SR (see §6).
(6) The Sturmian minimal set is not SR (see §5).
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(7) Toeplitz flows are not SR (see §5).
(8) More generally, a metrizable almost automorphic flow which is not equicontinuous

is never SR (see §5).
(9) A regular point distal minimal flow is distal (see §5).
(10)Every minimal flow admits a proximal extension which is SR (see §7).

Remark 4.4. We note that an element g ∈ G belongs to NG(A) if and only if G(X, gx0)=

G(X, x0)= A. For a commutative T we have G(X, t x0)= A for every t ∈ T . Thus for
commutative T , T u ⊂ NG(A) and the set {x ∈ X :G(X, x)= A} is dense in X .

One can easily relativize the notion of semiregularity.

Definition 4.5. Let π : (X, x0, T )→ (Y, y0, T ) be a homomorphism of pointed minimal
flows. Let G(X, x0)= A <G(Y, y0)= F (where y0 = π(x0)). We say that π is an
SR extension if, for every h ∈ NF (A)= F ∩ NG(A), the map φh : X→ X defined by
φh(px0)= phx0 is a well-defined automorphism of (X, T ).

5. Distal minimal flows are semiregular
THEOREM 5.1. Every minimal distal flow is SR.

Proof. Let (X, x0, T ) be a minimal distal flow with A =G(X, x0). We have X = Gx0

and, for h ∈ NG(A), we let φh : X→ X be defined by

φh(px0)= phx0 (p ∈ M).

To see that this is well defined suppose px0 = qx0 for some p, q ∈ M . We have to show
that phx0 = qhx0. Now in a distal flow the enveloping semigroup E(X, T ) is a group and
the image of M under the canonical map from βT onto E(X, T ) is surjective. Thus we
can consider p, q as elements of the group G = E(X, T ). As px0 = qx0, it follows that
p−1qx0 = x0, hence a = p−1q ∈ A. Thus q = pa and we get

φh(qx0)= qhx0 = pahx0 = ph(h−1ah)x0 = phx0 = φh(px0).

The continuity of φh follows from the continuity of right multiplication Rh on M , and it
follows that φh is an endomorphism of (X, T ). Finally, as the same argument applies for
φh−1 , we conclude that φh ∈ Aut (X, T ). �

Example 5.2. In [PW] the authors construct an example of a minimal metric cascade
(X, T ) which is not coalescent. If φ is an endomorphism of (X, T ) which is not an
automorphism, then φ = φh for some h ∈ G for which h−1 Ah ( A, where A = (X, x0)

for some choice of x0 ∈ X . In fact, as we have seen above (Proposition 3.4), in a minimal
distal flow h−1 Ah = A would imply that φ = φh is an automorphism.

PROPOSITION 5.3. A minimal point distal regular flow is distal.

Proof. Let x0 be a distal point. Given x ∈ X , there is, by regularity, an automorphism
ψ ∈ Aut (X) such that the points ψ(x) and x0 are proximal. But x0 being a distal point,
we have ψ(x)= x0, and it follows that x is also a distal point. Thus X is a distal flow. �
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COROLLARY 5.4. A minimal metric almost automorphic flow which is SR is actually
equicontinuous. Thus Toeplitz flows and Sturmian like flows are not SR.

Proof. By definition an almost automorphic flow is a metric minimal flow (X, T ) such that
the homomorphism π : (X, T )→ (Y, T ) from (X, T ) onto its maximal equicontinuous
factor (Y, T ) is an almost one-to-one extension. Such a flow is point distal and it satisfies
G(X, x0)=G(Y, y0)= A G G. Thus NG(A)= G and semiregularity for (X, T ) is the
same as regularity. Now the previous proposition applies. �

It is natural to ask whether a minimal, point distal, flow which is not distal can be SR.
We will see in §6 below that the Morse minimal cascade (i.e. a Z-flow), which is point
distal, metric and not distal, is in fact SR.

We also have an analogous statement concerning distal extensions.

PROPOSITION 5.5. A distal extension π : (X, x0, T )→ (Y, y0, T ) of pointed minimal
flows is an SR extension.

Proof. Let G(X, x0)= A <G(Y, x0)= F , and let h ∈ NF (A). We have to show that
the map φh is well defined. Suppose, then, that px0 = qx0 for p, q ∈ M . Then a =
up−1q ∈ A, hence h−1ah = a′ ∈ A and we have

phx0 = pha′x0 = ph(h−1ah)x0 = pahx0 = pp−1qhx0 = vqhx0, (5.1)

where v = v2 is the unique idempotent in J such that vp = p. Thus the points phx0 and
qhx0 are proximal. On the other hand, we have π(phx0)= phπ(x0)= phy0 = py0 and
also π(qhx0)= qhπ(x0)= qhy0 = qy0. Since by assumption px0 = qx0 we also have
py0 = qy0, so that phx0 and qhx0 are in the same π fiber. Since π is a distal extension we
conclude that the points phx0 and qhx0 are both proximal and distal, whence equal. Thus
φh is a well-defined element of End (X, T ) and, as the same argument applies to φh−1 , we
see that φh ∈ Aut (X, T ). �

A similar argument yields the following proposition.

PROPOSITION 5.6. Let π : (X, x0, T )→ (Y, y0, T ) be a distal extension, with Y being
SR. If, in addition, we assume that NG(A)⊂ NG(F), then X is also SR. In particular, this
is the case when Y is regular.

Proof. Let h ∈ NG(A). We show that φh(px0) defined by φh(px0)= phx0 (p ∈ M) is
well defined. Assuming px0 = qx0, we have

π(phx0)= phy0 = φ̃h(py0),

π(qhx0)= qhy0 = φ̃h(qy0),

where φ̃h is the element of Aut (Y ) defined by h (recalling that Y is SR and that NG(A)⊂
NG(F)). Since px0 = qx0 it follows that py0 = qy0, whence also φ̃h(py0)= φ̃h(qy0).
Thus the points phx0 and qhx0 lie in the same π -fiber, and therefore are distal. As in the
proof of Proposition 5.5 (equation (5.1)), they are also proximal points and hence equal.

The last assertion follows since by regularity F G G and NG(A)⊂ NG(F)= G. �
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6. The Morse minimal set is semiregular
We have already raised the question whether a minimal point distal, non-distal flow can
be SR. In this section we will show that the classical Morse minimal set provides such
an example. This example will also show that there is a minimal metric point distal SR
Z-flow which is not equicontinuous. This should be contrasted with the fact that a regular
proximal-isometric (PI) Z-flow which is not equicontinuous is necessarily non-metrizable
(see [Gl92]). For a description and detailed analysis of the Morse minimal set we refer to
[GH, Ch. 12].

THEOREM 6.1. The Morse minimal set is semiregular.

Proof. Let (X, S) denote the Morse minimal flow. Here we deviate from our usual notation
and use the letter S to denote the shift homeomorphism that generates the Z-flow on X , a
subshift X ⊂ {0, 1}Z. We know that (X, S) has the structure

X
σ
→ Y

θ
→ Z ,

where (i) π = θ ◦ σ is the homomorphism of (X, T ) onto its maximal equicontinuous
factor (a dyadic adding machine); (ii) θ is an almost one-to-one extension, and σ is a Z2

group extension. More precisely, there is a point z1 ∈ Z such that θ−1(z1)= {y1, ȳ1}

and, for every point z ∈ Z which is not in the orbit of z1, we have that θ−1(z) is a
singleton. Finally, on X there is an involution κ (a self- homeomorphism satisfying
κ2
= id ) which commutes with the shift. (It sends the sequence x ∈ X ⊂ {0, 1}Z into

the ‘flipped’ sequence κ(x)= x ′, where x ′(n)= x(n)′, and 0′ = 1, 1′ = 0.) The map
σ : X→ Y is then the quotient map under the action of Z2 = {id , κ}. We let π−1(z1)=

σ−1
{y1, ȳ1} = {x1, x ′1, x̄1, x̄ ′1}.

Next fix a point x0 ∈ u X which is not on the orbits of the four points {x1, x ′1, x̄1, x̄ ′1}.
We let y0 = σ(x0) and z0 = θ(y0). Also set G(X, x0)= A and G(Y, y0)=G(Z , z0)= F .
We then have F G G and Z ∼= G/F , and A G F and Z2 ∼= F/A. It is also shown in [GH]
that the group Aut (X, S) is the group {Sn

: n ∈ Z} ⊕ {id , κ} ∼= Z⊕ Z2.
Since θ−1(z0)= {y0}, it follows that π−1(z0)= σ

−1(y0)= {x0, x ′0} and both x0 and x ′0
are distal points.

Now let x be an arbitrary point in u X and set W =O(x0, x), the orbit closure of the
point (x0, x) ∈ X × X . Because x ∈ u X , the point (x0, x) is an almost periodic point of the
product flow X × X , so that W is a minimal flow. Also, there exists g ∈ G with x = gx0.
Let y = σ(x) and z = π(x)= θ(y).

We claim that, for every (a, b) ∈W , we have

W [a] := {c ∈ X : (a, c) ∈W } ⊆ {a} × π−1(π(b)).

To see this note that if (x0, c) ∈W then (x0, c)= p(x0, x) for some p ∈ M and

(π × π)(x0, c)= (π × π)(p(x0, x))= (pz0, pπ(x))= (z0, pz).

Since Z is equicontinuous, pz0 = z0 implies that pz = z, so that π(c)= z. Thus

W [x0] = {c ∈ X : (x0, c) ∈W } ⊆ {x0} × π
−1(z),

and therefore W [px0] ⊆ π
−1(π(px)) for every p ∈ M , as claimed.
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We now consider two possible cases.

Case 1: Suppose that (x0, x ′)= (x0, κ(x)) ∈W . (Note that this implies that (id ×
κ)(W ) ∩W 6= ∅, whence (id × κ)(W )=W .) Since (x0, x ′) ∈ uW = G(x0, x), there
exists h ∈ G such that h(x0, x)= (x0, x ′). In particular, hx0 = x0, whence h ∈ A. On
the other hand, x ′ = κ(x)= κ(gx0)= gx ′0 = hx = hgx0, hence x ′0 = g−1hgx0, hence
g−1hg 6∈ A; that is, g 6∈ NG(A).

Case 2: Now assume that (x0, x ′) 6∈W . As in case 1, we deduce that

if (a, b) ∈W then (a, κ(b)) 6∈W . (6.1)

Let P denote the projection map from W onto X (as its first coordinate). We have
P−1(a)=W [a] ⊆ {a} × σ−1(θ−1(z)).

Claim. For every a ∈ X , we have P−1(a)= {(a, φ(a))} for a surjection φ : X→ X .

We recall here that the enveloping semigroup E(X, S) of the Morse flow has exactly two
minimal ideals, say I1, I2, each containing exactly two idempotents, say J1 = {u, v} ⊂ I1

and J2 = {ũ, ṽ} ⊂ I2 (see [HJ] and [S]). Now for the point a we have at least one of the
possibilities ua = a or va = a. We will assume that ua = a and the other case is treated in
the same way, with v replacing our usual u.

Fix some b ∈ X with (a, b) ∈W and ub = b. We write η = σ(b) and ζ = π(b)= θ(η).
To prove our claim we again consider two cases.

Case 2a : The point η is a non-split point; that is, θ−1(ζ )= {η}.
In this case we have P−1(a)⊆ {a} × σ−1(η)= {a} × {b, b′}, and, since by assumption

(a, b′) 6∈W , we indeed have P−1(a)= {(a, b)}, as claimed (putting b = φ(a)).

Case 2b: The point η is a split point; that is, θ−1(ζ )= {η, η̄}, with η 6= η̄.
In this case we have π−1(ζ )= {b, b′, b̄, b̄′}. Suppose (a, b̄) ∈W (the case (a, b̄′) ∈W

is symmetric). By the general theory of enveloping semigroups there is in I2 a unique
idempotent ũ equivalent to u; that is, uũ = ũ and ũu = u (see, for example, [Gl76, I,
Proposition 2.5]). Both u and ũ act as the identity on u X . However, as they are distinct
elements of E(X, S), we must have

u(b, b′, b̄, b̄′)= (b, b′, b, b′),

ũ(b, b′, b̄, b̄′)= (b, b′, b′, b)
(6.2)

(or vice versa). (In fact, if ub̄ = ũb̄ then also uSn b̄ = ũSn b̄ and uSn b̄′ = ũSn b̄′ for every
n ∈ Z, whence u = ũ, which is impossible.) Thus we have ũ(a, b̄)= (a, b′) ∈W (or
u(a, b̄)= (a, b′) ∈W ), contradicting our assumption that (a, b′) 6∈W . We have shown,
in view of (6.1), that indeed P−1(a)= {(a, b)}, and we let φ(a)= b.

Given c ∈ X , there is a point a ∈ X such that (a, c) ∈W , and as also (a, φ(a)) ∈W ,
we have φ(a)= c. This shows that φ is surjective and our claim is proven.

We now have W = {(a, φ(a)) : a ∈ X}, and it follows that φ ∈ End (X, S). Since
g−1(x0, x)= g−1(x0, gx0)= (g−1x0, x0) ∈W we conclude, by symmetry, that φ ∈
Aut (X).

To sum up, we have shown that, for every h ∈ G, either h 6∈ NG(A) or φh ∈ Aut (X, S);
in other words, we have shown that (X, S) is SR. Thus the group of virtual automorphisms
NG(A)/A is realized as Aut (X, S)= {Sn

: n ∈ Z} ⊕ {id , κ} ∼= Z⊕ Z2. �
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Remark 6.2. Using the notation of [GH], we can write {x1, x ′1, x̄1, x̄ ′1} = {µ, µ
′, ν, ν′},

where

µ= Q̆ Q, µ′ = Q̆′Q′,

ν = Q̆′Q, ν′ = Q̆ Q′.

From this description it follows immediately that the pairs {ν, µ} = {x̄1, x1} and {ν, µ′} =
{x̄1, x ′1} are positively asymptotic and negatively asymptotic pairs, respectively, hence
proximal. This directly implies (6.2). In fact, this argument can be used to prove that
indeed E(X, T ) has exactly two minimal ideals, each having exactly two idempotents.

Remark 6.3. We note that the proof of Theorem 6.1 shows also that the Morse flow is
coalescent.

Remark 6.4. After a first version of the present work was posted on the arXiv, a paper
by Kellendonk and Yassawi appeared in the arXiv in which the authors generalize
Theorem 6.1 and show that the dynamical system corresponding to a primitive aperiodic
bijective substitution is SR [KY, Corollary 5.9]. See also the recent work of P. Staynova
[S] from which the same result can be deduced.

7. Every minimal flow admits a proximal extension which is SR
THEOREM 7.1. Let (X, x0, T ) be a minimal flow with G(X, x0)= A, and let 0 ≤
NG(A) be a subgroup. Then there exist a minimal pointed flow Z0 = (Z , z0, T ) and a
homomorphism π : Z→ X such that:
(1) G(Z , z0)= A (so that π is a proximal extension);
(2) 0A/A ≤ Aut (Z);
(3) for every minimal flow (Y, y0, T ) which is a proximal extension η : (Y, y0, T )→

(X, x0, T ) such that 0A/A < Aut (Y ), there is a commutative diagram:

(Y, y0)

η

��

λ // (Z , z0)

π
yy

(X, x0)

Proof. Let C = {hx0 : h ∈ 0} ⊂ X . Let z0 ∈ XC be the point

z0(hx0)= hx0, (h ∈ 0).

Let Z =OT (z0)⊂ XC (alternatively, Z =
∨

h∈0(X, hx0)). Because C ⊆ u X , it follows
that the point z0 is an almost periodic point of the product flow XC , hence Z is a minimal
flow. The projection on the x0 ∈ C coordinate is a homomorphism π : (Z , z0, T )→
(X, x0, T ).

Clearly az0 = z0 for every a ∈ A, so that A ⊆G(Z , z0). Conversely, if bz0 = z0 for
some b ∈ G then

(bz0)(x0)= bz0(x0)= bx0 = z0(x0)= x0,

hence b ∈ A, G(Z , z0)⊆ A, hence G(Z , z0)= A.
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For h ∈ 0, the map

φh : Z→ Z , φh(pz0)= phz0 (p ∈ M)

is well defined. In fact if pz0 = qz0 for p, q ∈ M , then, for all h′ ∈ 0,

(phz0)(h′x0)= ph(z0(h′x0))= phh′x0 = pz0(hh′x0),

(qhz0)(h′x0)= qh(z0(h′x0))= qhh′x0 = qz0(hh′x0).

As 0 is a group, hh′ ∈ 0 and hh′x0 ∈ C . Therefore, by our assumption, phz0(hh′x0)=

qhz0(hh′x0), whence phz0 = qhz0. We conclude, as in §3, that φh ∈ Aut (Z). We thus
get 0A/A ≤ Aut (Z).

Next assume that (Y, y0, T ) is as in (3). By assumption 0A/A ≤ Aut (Y ) and it follows
that, for each h ∈ 0, the function φh(py0)= phy0 is a well-defined element of Aut (Y, T ).
Thus the map η ◦ φh : Y → X satisfies

(η ◦ φh)(y0)= η(hy0)= hx0,

and η ◦ φh : (Y, y0, T )→ (X, hx0, T ) is a homomorphism of pointed flows. It then
follows that there is a homomorphism

λ : (Y, y0, T )→
∨
h∈0

(X, hx0, T )∼= Z0

which satisfies η = π ◦ λ. �

Remark 7.2. Note that when (X, T ) is metrizable and the group 0A/A is countable, the
SR flow Z0 is also metrizable. In particular, this is the case for 0 = 〈γ0〉 = {γ

n
0 : n ∈ Z}

for some γ0 ∈ NG(A).

COROLLARY 7.3. Every minimal flow admits a proximal extension which is SR.

Proof. Take 0 = NG(A). �

Definition 7.4. We write XSR for the flow Z NG (A). With this notation it is easy to check
that (X, T ) is SR if and only if X = XSR.

Example 7.5. Let (Z , Rα) denote the rotation by α ∈ R \Q on the circle Z = R/Z,
Rα(x)= z + α (mod 1). Let (X, S) be the Sturmian flow, with π : X→ Z being its
maximal equicontinuous factor. Then the flow Z is regular and the extension π is almost
one-to-one (so that X is almost automorphic). The regularizer of (X, S), which is the same
as XSR, is the Ellis two-circles flow X̃ , a non-metrizable flow (see, for example, [GMe,
Example 14.10] for more details on this). We have G(Z , z0)=G(X, x0)=G(X̃ , x̃0)= A,
and we observe that the virtual automorphism group NG(A)/A is realized on Z as the
compact group Aut (Z)∼= T= R/Z, on X̃ again as Aut (X̃)∼= R/Z, but with the discrete
topology, and it is mostly non-realizable on X , where Aut (X)= {Sn

: n ∈ Z}.

Given any minimal flow (X, T ), we will next describe another natural construction
that yields an SR flow XSR which is a proximal extension of X . In the collection of all
the minimal flows which are SR and are proximal extensions of X , the flow XSR is the
minimum and the flow XSR is the maximum (with respect to being a factor).
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Let (X, x0, T ) be a minimal flow with G(X, x0)= A. Let XSR
=5(A) denote the

minimal flow which is the maximal proximal extension of X . As described in [Gl76], this
flow can be presented as a quasifactor of M , as follows:

5(A)= {p ◦ A : p ∈ M}.

Moreover, the map π : M→5(A) is such that π−1(p ◦ (u ◦ A))= p ◦ A, for all p ∈ M .
In particular, the elements of 5(A) form a partition of M . (For more details on the
quasifactor 5(A) and the circle operation see [Gl76, Ch. IX].)

LEMMA 7.6. For h ∈ NG(A) and p = lim ti ∈ M,

ph ◦ A = p ◦ h A = (p ◦ A)h.

Proof. We have

ph ◦ A = p ◦ h ◦ A ⊇ p ◦ h A

= {lim ti hai : ai ∈ A} = {lim ti a′i h : a
′

i ∈ A}

= p ◦ Ah = (p ◦ A)h ∈5(A).

However, as the elements of 5(A) form a partition of M , we get ph ◦ A = p ◦ h A =
(p ◦ A)h. �

PROPOSITION 7.7. For every pointed minimal flow (X, x0, T ) with G(X, x0)= A,
the universal minimal proximal extension 5(A) of X (which depends only on A) is
semiregular.

Proof. Given h ∈ NG(A) and p ∈ M , we set φh(p ◦ A)= ph ◦ A. This is well defined
since if p ◦ A = q ◦ A then, by Lemma 7.6,

ph ◦ A = p ◦ h A = p ◦ Ah = (p ◦ A)h

= (q ◦ A)h = q ◦ Ah = q ◦ h A = qh ◦ A. �

Remark 7.8. Since every τ -closed subgroup A of G (see, for example, [Gl76, Ch. IX])
is the Ellis group of a minimal flow, namely A =G(5(A), u ◦ A), we get, in view of
Proposition 7.7, that NG(A)/A ∼= Aut (5(A)), hence we conclude that for every τ -closed
subgroup A < G, the group NG(A)/A is realized as an actual automorphism group of
some minimal flow.

We end this section with the following proposition (for information on the maximal
highly proximal extension of a minimal flow see [AG]).

PROPOSITION 7.9. If (X, T ) is SR then so is its maximal highly proximal extension.

Proof. One way to describe the maximal highly proximal extension X∗ of X is as the
quasifactor of M obtained from a homomorphism π : M→ X , as follows:

X∗ = {p ◦ π−1(x0) : p ∈ M},

where x0 ∈ u X and π(p0)= px0, (p ∈ M). As with the quasifactor5(A), it can be shown
that {p ◦ π−1(x0) : p ∈ M} is a partition of M . As X is SR we have NG(A)/A ∼= Aut (X)
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and it suffices to show that every ψ ∈ Aut (X) lifts to an automorphism ψ∗ of X∗. We
define ψ∗(p ◦ π−1(x0))= p ◦ π−1(ψ(x0)), p ∈ M . If p ◦ π−1(x0)= q ◦ π−1(x0), for
p, q ∈ M , then also px0 = qx0, whence

ψ(px0)= ψ(qx0) ∈ p ◦ π−1(ψx0) ∩ q ◦ π−1(ψx0),

hence p ◦ π−1(ψx0)= q ◦ π−1(ψx0). (It is not hard to check that p ◦ π−1(x) ∈ X∗ for
every p ∈ M and every x ∈ X .)

An alternative proof is as follows. If (X, T ) is a minimal flow then, as a topological
space, the maximal highly proximal extension of X , say X∗, is the Stone space of the
Boolean algebra of regular open sets in X (see, for example, [Zu]). It thus follows that
every self-homeomorphism of X lifts to X∗, and clearly an automorphism of (X, T ) lifts
to an automorphism of (X∗, T ). �

Remark 7.10. With a given minimal dynamical system (X, T ) one can always associate
its unique regularizer as follows. Let u be a minimal idempotent and let x0 ∈ X satisfy
ux0 = x0. Let A =G(X, x0) and set

Reg(X)=
∨
{(X, gx0) : g ∈ G} ⊂ X G .

Then the minimal flow Reg(X) is a regular flow which extends X and such that, for any
other regular flow Y which admits X as a factor, there is a factor map Y → Reg(X).
Denoting

A0 =
⋂
{g Ag−1

: g ∈ G},

we have G(Reg(X), z0)= A0. Here z0 ∈ Reg(X) is the point of X G whose g-coordinate
is gx0, so that Reg(X) is the orbit closure of z0 in X G . (One can easily show that, up to
isomorphism, this construction does not depend on the choices of M and u.)

Note, however, that whereas the extension XSR→ X is always a proximal extension,
the extension Reg(X)→ X will be a proximal one when and only when the group A is
normal in G.

8. A Koopman representation of the virtual automorphism group
When a minimal flow (X, T ) is strictly ergodic (i.e. it admits a T -invariant probability
measure and this measure is unique), the group Aut (X, T ) also preserves this measure.
In fact, if µ is the T -invariant measure on X and ψ ∈ Aut (X, T ), then clearly the
pushforward measure ψ∗(µ) is T -invariant as well, and thus ψ∗(µ)= µ by uniqueness.

The Koopman representation of T associated to the measure- preserving system
(X, X , µ, T ) is the representation on the Hilbert space L2(µ) given by t 7→Ut , where
for t ∈ T the unitary operator Ut is defined by Ut ( f )= f ◦ t−1.

Now in a special case we are able to show that also the virtual automorphism group
NG(A)/A admits such a faithful representation.

THEOREM 8.1. Let (X, T ) be a minimal, metrizable, point distal, uniquely ergodic flow
with T -invariant probability measure µ, and suppose that X is measure-regular, where the
latter property means that the T -invariant Gδ set X0 ⊆ X consisting of distal points has
measure 1. Then each element of the virtual group automorphisms of the flow defines an
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automorphism of the measure space (X, X , µ) and this correspondence defines a unitary
representation of the virtual group of automorphisms as a group of unitary operators on
the separable Hilbert space L2(µ).

Proof. As usual, we pick a point x0 ∈ X0, so necessarily ux0 = x0, then let A =G(X, x0).
Our virtual automorphism group is the group NG(A)/A. Clearly u X = Gx0 ⊇ X0. Next
define, for h ∈ NG(A), φh : u X→ u X by

φh(gx0)= ghx0 (g ∈ G).

Then the map φh is well defined and it is a homeomorphism of the (usually not even
measurable) set u X . In fact, if gx0 = g′x0 then g−1g′x0 = x0, hence a = g−1g′ ∈ A and

g′hx0 = g(g−1g′)hx0 = gahx0 = gh(h−1ah)x0 = ghx0.

The continuity of φh follows from the continuity of right multiplication on G. Moreover,
we have tφh = φh t for all t ∈ T .

Now φh : X0→ φh(X0) is a homeomorphism and it pushes the measure µ on X0 to a
measure (φh)∗(µ) on φh(X0). By uniqueness (φh)∗(µ)= µ.

In particular, µ(X0 ∩ φh(X0))= 1. Similarly, µ(X0 ∩ φ
n
h (X0))= 1 for every n ∈ Z

and we conclude that the T -invariant dense Gδ set X∞ =
⋂

n∈Z φ
n
h (X0) has measure 1.

Since it is also φh-invariant, this shows that φh is an automorphism of the measure space
(X, X , µ).

Now the composition map Uh : f 7→ f ◦ φ−1
h defines a unitary operator on L2(µ) and

the map h 7→Uh from NG(A)/A→ U(L2(µ)) is the desired unitary representation. �

9. Questions
We conclude with the following short list of related questions.

(1) Given a τ -closed subgroup A of G (see, for example, [Gl76, Ch. IX]), when is there
a minimal metric pointed flow (X, x0, T ) with G(X, x0)= A?

(2) Given a minimal metric pointed flow (X, x0, T ) when is there a metric SR proximal
extension of X?

(3) When is there a unitary representation of NG(A)/A on a separable Hilbert space?
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