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In this paper we show that the well-known Poincaré–Lyapunov non-degenerate
analytic centre problem in the plane and its higher-dimensional version, expressed as
the three-dimensional centre problem at the zero-Hopf singularity, have a lot of
common properties. In both cases the existence of a neighbourhood of the singularity
in the phase space completely foliated by periodic orbits (including equilibria) is
characterized by the fact that the system is analytically completely integrable. Hence
its Poincaré–Dulac normal form is analytically orbitally linearizable. There also exists
an analytic Poincaré return map and, when the system is polynomial and
parametrized by its coefficients, the set of systems with centres corresponds to an
affine variety in the parameter space of coefficients. Some quadratic polynomial
families are considered.
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1. Introduction and statement of the main results

In this work, we consider an analytic three-dimensional system

ẋ = −y + F1(x, y, z),
ẏ = x + F2(x, y, z),
ż = F3(x, y, z),

⎫⎪⎬
⎪⎭ (1.1)

where F = (F1, F2, F3) : U → R
3 is a real analytic vector field on the neighbourhood

of the origin U ⊂ R
3 with F(0) = 0 and whose Jacobian matrix DF(0) = 0. The

origin is a zero-Hopf (also called a fold-Hopf ) singularity of system (1.1) because
its associated eigenvalues are {±i, 0} with i2 = −1.

Since the linear part of system (1.1) generates a rotation, it makes sense to
extend the classical Poincaré–Lyapunov centre problem for planar analytic vector
fields to the zero-Hopf singularity. The origin of system (1.1) will be called a three-
dimensional centre if there is a neighbourhood of it completely foliated by periodic
orbits of (1.1), including continua of equilibria as trivial periodic orbits. On the other
hand, we say that system (1.1) is completely analytically integrable if it admits two
independent locally analytic first integrals.
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Remark 1.1. It is well known that there are vector fields without singular points
only on odd-dimensional spheres. A consequence of this topological result is that
isolated singularities of vector fields in R

n having a punctured open neighbourhood
filled by non-trivial periodic orbits may only exist for even phase space dimension n.
Therefore, since n = 3 for system (1.1), any three-dimensional centre at the origin
of (1.1) is a non-isolated singularity and, consequently, there is an invariant curve Γ
filled by equilibria passing through it tangent to the z-axis. For any analytic vector
field in R

3 with an isolated singularity, it was proved in [3] that there is always a
solution tending to the singularity (in the future or in the past) with a well-defined
tangent.

In fact, applying formal normal-form theory to (1.1) yields the existence of a
formally invariant one-dimensional manifold given by the z-axis (see § 4). The reader
is also referred to [2], where the existence of the rotation axis in the C∞ case is
proved. Indeed, we will see that the formal invariant one-dimensional manifold really
does exist in the analytic category too.

Proposition 1.2. System (1.1) possesses a one-dimensional local analytic invari-
ant manifold Γ tangent to the z-axis at the origin. In particular, there are local
analytic coordinates tangent to the identity (x, y, z) �→ φ(x, y, z) = (x + · · · , y +
· · · , z + · · · ) stretching the manifold Γ towards the z-axis and transforming (1.1)
into

ẋ = −y + F̃1(x, y, z), ẏ = x + F̃2(x, y, z), ż = F̃3(x, y, z), (1.2)

with F̃j(0, 0, z) = 0 for j = 1, 2.

Proof. In any case, be the origin a three-dimensional centre of (1.1) or not, there
is always a one-dimensional local analytic invariant manifold Γ of (1.1) tangent to
the z-axis at the origin. This fact is a consequence of the spectrum structure of the
linear part of the analytic system (1.1): one eigenvalue is real and the others are
not (see [6]). From here, the existence of the local analytic change of coordinates
φ stretching Γ follows. Clearly, since the linear part of φ is the identity, the linear
parts of (1.1) and (1.2) are equal. The fact that F̃j(0, 0, z) = 0 for j = 1, 2 comes
from the invariance of the z-axis in the new coordinates.

Taking cylindrical coordinates (x, y, z) �→ (ϕ, ρ, z) with x = ρ cos ϕ, y = ρ sin ϕ,
system (1.2) becomes

ρ̇ = R̂(ϕ, ρ, z) = cos ϕF̂1(ϕ, ρ, z) + sinϕF̂2(ϕ, ρ, z),

ϕ̇ = 1 + Θ̂(ϕ, ρ, z) = 1 +
1
ρ
[cos ϕF̂2(ϕ, ρ, z) − sin ϕF̂1(ϕ, ρ, z)],

ż = F̂3(ϕ, ρ, z),

where F̂i(ϕ, ρ, z) = F̃i(ρ cos ϕ, ρ sin ϕ, z) for i = 1, 2, 3. This system is analytic at
ρ = 0 since F̃j(0, 0, z) = 0 for j = 1, 2. Indeed, the set {ρ = 0} is invariant because
R̂(ϕ, 0, z) = 0. We remark that ϕ̇ > 0 for ρ and |z| sufficiently small. Summarizing,
after transforming to cylindrical coordinates, system (1.1) can be written in the
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neighbourhood U of the origin as the analytic system

dρ

dϕ
= R̂(ϕ, ρ, z),

dz

dϕ
= Ẑ(ϕ, ρ, z) (1.3)

with invariant set {ρ = 0} and defined on the cylinder {(ϕ, ρ, z) ∈ S
1 × R

2} with
ρ and |z| sufficiently small taking S

1 = R/2πZ. Using the solutions of system (1.3)
near (ρ, z) = (0, 0) for ϕ ∈ S

1, it is easy to construct a Poincaré return map of
(1.2), and hence a displacement map ∆(ρ0, z0).

Remark 1.3. Notice that cylindrical coordinates are well adapted to analyse peri-
odic orbits of system (1.2) near the origin but not for the pullback system (1.1).
The reason is that, in general, (1.1) written in cylindrical coordinates gives a sys-
tem that is non-analytic at r = 0. Additionally, another problem arises since, in
general, system (1.2) is analytic but not polynomial even when (1.1) is a polynomial
system. Although the main difficulty, of course, is that we do not know the analytic
diffeomorphism φ stretching Γ .

We will solve the problems identified in remark 1.3 by changing cylindrical
coordinates to the polar blow-up (1.4), although other difficulties will appear (see
remark 1.5). The next theorem is an adaptation of a result stated in [5]. It is based
on the polar blow-up (x, y, z) �→ (θ, r, w) defined by

x = r cos θ, y = r sin θ, z = rw. (1.4)

Observe that (1.4) explodes the origin (x, y, z) = (0, 0, 0) into {r = 0} but there
is no image of the z-axis except for the origin. In other words, (1.4) is defined in
Ω = U \ {(0, 0, z) ∈ R

3 : z �= 0} and is a diffeomorphism in Ω \ {(0, 0, 0)}.

Theorem 1.4. We consider system (1.1) defined on a neighbourhood U ⊂ R
3 of

the origin. Let δ > 0 be sufficiently large but fixed and define Cδ = {(x, y, z) ∈
U : z2 > δ(x2 + y2)}, a thin solid cone with vertex at the origin surrounding the
z-axis. Performing the polar blow-up (x, y, z) �→ (θ, r, w) defined by (1.4), system
(1.1) can be written in U \ Cδ, for |r| sufficiently small, as the analytic system

dr

dθ
= R(θ, r, w),

dw

dθ
= W (θ, r, w) (1.5)

with invariant set {r = 0} and defined on the cylinder {(θ, r, w) ∈ S
1 × R × K},

where S
1 = R/2πZ and K = {w ∈ R : |w| � δ}.

Let us define the Poincaré translation map Π(r0, w0) associated with (1.5) as
Π(r0, w0) = Ψ(2π; r0, w0), where Ψ(θ; r0, w0) = (r(θ; r0, w0), w(θ; r0, w0)) is the
solution of (1.5) having initial condition Ψ(0; r0, w0) = (r0, w0) ∈ R × K with |r0|
sufficiently small. We also define the displacement map d(r0, w0) = Π(r0, w0) −
Id(r0, w0), where Id denotes the identity map. We emphasize that d is an analytic
function at (r0, w0) ∈ R × K with |r0| � 1 due to the analyticity of (1.5).

Remark 1.5. The need to restrict the values of w to the arbitrary but fixed com-
pact set K containing the origin is clarified in the proof of theorem 1.4. Now, we
recall the geometry associated with the polar blow-up (1.4). First, we notice the
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key point that (x, y, z) ∈ U \ Cδ when w ∈ K. Indeed, (1.4) is a diffeomorphism
in U \ Cδ. Once we set the value of δ, the cone Cδ is fixed and, consequently, in
principle we cannot control (via the zeros of the displacement map d) the peri-
odicity of those orbits of (1.1) in U that intersect Cδ. Despite this, although the
polar blow-up (1.4) does not cover the neighbourhood U of the origin, the gap Cδ

can be made very thin provided that we take δ large enough. In this direction, we
emphasize that any periodic orbit of (1.1) in U not intersecting the z-axis is con-
tained in U \ Cδ for δ sufficiently large. Thus, in the three-dimensional centre case,
most of the continuum of periodic orbits of (1.1) in U are completely contained in
U \ Cδ. Each one of these orbits corresponds to a 2π-periodic solution of system
(1.5) with |r| sufficiently small and w(θ; r0, w0) ∈ K for all θ. Consequently, the
zeros of the displacement map d(r0, w0), with w0 ∈ K and |r0| � 1, pick up all
these periodic orbits. Thus, if the origin is a three-dimensional centre of (1.1), then
d(r0, w0) should have non-isolated zeros filling subsets of full Lebesgue measure of
a neighbourhood of (r0, w0) = (0, 0). At this point, we recall that a real analytic
function of several variables that vanishes on a set of positive measure must be
identically zero. Taking into account the analyticity of d near the origin, it follows
that a necessary and sufficient condition in order that the origin of (1.1) becomes
a three-dimensional centre is that d(r0, w0) ≡ 0 for all (r0, w0) close to (0, 0). This
last assertion has been checked with several polynomial families of the form (1.2)
(as, for example, with the forthcoming examples (5.2) and (5.4)), where we can
use both cylindrical coordinates to compute a displacement map ∆(ρ0, z0) in U
and the polar blow-up (1.4) to construct the displacement map d(r0, w0) in U \ Cδ.
All the computations made show that ∆(ρ0, z0) ≡ 0 near the origin if and only if
d(r0, w0) ≡ 0 near the origin.

In summary, the above discussion leads to the following result.

Theorem 1.6. The origin of system (1.1) is a three-dimensional centre if and only
if d(r0, w0) ≡ 0 in a neighbourhood of the origin.

From now on, we shall assume that (1.1) is a family of polynomial differential sys-
tems parametrized by its coefficients, which we collect in the real vector parameter
λ ∈ Λ ⊆ R

p. Hence, its associated displacement map d(r0, w0; λ) can be expanded in
a Taylor series at (r0, w0) = (0, 0) of the form d(r0, w0; λ) =

∑
i+j�1 di,j(λ)ri

0w
j
0. In

analogy with the theory of the classical two-dimensional centres (see, for exam-
ple, [9]) we call the two-dimensional vector functions di,j(λ) = (d[r]

i,j(λ), d[w]
i,j (λ))

Poincaré–Lyapunov constants. Clearly, di,j(λ∗) = 0 for all admissible (i, j) is a
necessary condition for family (1.1) with λ = λ∗ to have a three-dimensional centre
at the origin.

Corollary 1.7. Let (1.1) be a polynomial family having as parameters its coef-
ficients λ. Then the components of the Poincaré–Lyapunov constants di,j(λ) are
polynomials in R[λ].

Therefore, for polynomial families (1.1), the characterization of its three-dimen-
sional centres leads to a collection of polynomials in the coefficients λ of (1.1) whose
simultaneous vanishing picks out those systems for which the singularity is a three-
dimensional centre. This implies that each member of family (1.1) having a centre at
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the origin corresponds with a point λ = λ∗ of an affine variety VC in the parameter
space of coefficients called the centre variety.

Let B = 〈d[r]
i,j(λ), d[w]

i,j (λ) : (i, j) ∈ N
2〉 be the ideal in the polynomial ring R[λ]

generated by all the components of the Poincaré–Lyapunov constants. Again by
analogy with the two-dimensional centre theory, B will be termed the Bautin ideal
at the origin of (1.1). Of course the variety V (B) associated with the ideal B is
just VC . The ideal B is Noetherian and so it is generated by a finite number of
polynomials by the Hilbert basis theorem but, unfortunately, we do not know this
basis a priori.

The second aim of this work is to characterize three-dimensional centres of (1.1)
via integrability and normal-form theory.

Theorem 1.8. The origin of system (1.1) is a three-dimensional centre if and only
if (1.1) is completely analytically integrable.

A consequence of the proof of theorem 1.8 is the following.

Corollary 1.9. The origin of system (1.1) is a three-dimensional centre if and
only if (1.1) is analytically orbitally linearizable.

The structure of the paper is as follows. In §§ 2 and 3 we give the proof of
theorem 1.4 and corollary 1.7, respectively. We devote § 4 to proving theorem 1.8,
and the final section focuses on examples.

2. Proof of theorem 1.4

We perform the polar blow-up (x, y, z) �→ (θ, r, w) defined by (1.4) that converts
system (1.1) into a system of the form

ṙ = R(θ, r, w),

θ̇ = 1 + Θ(θ, r, w),
ẇ = W(θ, r, w),

⎫⎪⎬
⎪⎭ (2.1)

where

R(θ, r, w) = cos θF̂1(θ, r, w) + sin θF̂2(θ, r, w),

Θ(θ, r, w) =
1
r
[cos θF̂2(θ, r, w) − sin θF̂1(θ, r, w)],

W(θ, r, w) =
1
r
[F̂3(θ, r, w) − wR(θ, r, w)].

Here, we have defined F̂i(θ, r, w) = Fi(r cos θ, r sin θ, rw) for i = 1, 2, 3. We remark
that system (2.1) is analytic around r = 0 since F̂i(θ, r, w) = O(r2) and that {r = 0}
is an invariant set of (2.1) because R(θ, 0, w) = 0. Also, we observe that θ̇ > 0 for
|r| sufficiently small and w in an arbitrary fixed compact set K since Θ(θ, 0, w) = 0.
Therefore, under these conditions we can write system (2.1) as system (1.5).
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3. Proof of corollary 1.7

We assume that (1.1) is a family of polynomial differential systems with parameters
λ, that is,

ẋ = −y + F1(x, y, z; λ), ẏ = x + F2(x, y, z; λ), ż = F3(x, y, z; λ), (3.1)

where all the Fi depend in a polynomial way on λ. The associated Poincaré–
Lyapunov quantities di,j(λ) can be determined in a recursive way, although many
computations are involved.

Following the proof of theorem 1.4, we can check that after the polar blow-up
(1.4), family (3.1) is transformed into the family

ṙ = R(θ, r, w; λ), θ̇ = 1 + Θ(θ, r, w; λ), ẇ = W(θ, r, w; λ), (3.2)

where R, Θ and W are polynomials in the parameters λ of the family. Therefore,
the corresponding system (1.5) now becomes the family

dr

dθ
= R(θ, r, w; λ),

dw

dθ
= W (θ, r, w; λ), (3.3)

where

R(θ, r, w; λ) =
R(θ, r, w; λ)

1 + Θ(θ, r, w; λ)
, W (θ, r, w; λ) =

W(θ, r, w; λ)
1 + Θ(θ, r, w; λ)

and Θ(θ, 0, w; λ) = 0. Hence we can write the Taylor series

R(θ, r, w; λ) = r2
∑

i+j�0

Rij(θ; λ)riwj , W (θ, r, w; λ) = r
∑

i+j�1

Wij(θ; λ)riwj ,

where Rij(θ; λ) and Wij(θ; λ) are 2π-periodic functions in the variable θ and are
polynomials in λ.

Let Ψ(θ; r0, w0; λ) = (r(θ; r0, w0; λ), w(θ; r0, w0; λ)) be the solution of (3.3) with
initial condition Ψ(0; r0, w0; λ) = (r0, w0). We can expand it as

Ψ(θ; r0, w0; λ) =
(

r0

∑
i+j�0

Ψr
ij(θ; λ)ri

0w
j
0,

∑
i+j�1

Ψw
ij (θ; λ)ri

0w
j
0

)

with associated initial conditions

Ψr
00(0; λ) = Ψw

01(0; λ) = 1 and Ψr
ij(0; λ) = Ψw

pq(0; λ) = 0

for all (i, j) �= (0, 0) and (p, q) �= (0, 1). Notice that with this notation we have that
the Poincaré–Lyapunov constants are

d1,0(λ) =

(
Ψr

0,0(2π; λ) − 1
Ψw

1,0(2π; λ)

)
, d0,1(λ) =

(
0

Ψw
0,1(2π; λ) − 1

)
,

di,j(λ) =

(
Ψr

i−1,j(2π; λ)
Ψw

i,j(2π; λ)

)
for all i + j � 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)
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Differentiating the former series Ψ with respect to θ and inserting into (3.3) yields

r0

∑
i+j�0

dΨr
ij

dθ
(θ; λ)ri

0w
j
0 =

∑
i+j�0

Rij(θ; λ)
(

r0

∑
p+q�0

Ψr
pq(θ; λ)rp

0wq
0

)i+2

×
( ∑

p+q�1

Ψw
pq(θ; λ)rp

0wq
0

)j

,

∑
i+j�1

dΨw
ij

dθ
(θ; λ)ri

0w
j
0 =

∑
i+j�1

Wij(θ; λ)
(

r0

∑
p+q�0

Ψr
pq(θ; λ)rp

0wq
0

)i+1

×
( ∑

p+q�1

Ψw
pq(θ; λ)rp

0wq
0

)j

,

so that equating coefficients of like powers of r0 and w0 we obtain

dΨr
0,0

dθ
(θ; λ) =

dΨr
0,1

dθ
(θ; λ) =

dΨw
1,0

dθ
(θ; λ) = 0,

dΨr
1,0

dθ
(θ; λ) = [Ψr

0,0(θ; λ)]2[R0,0(θ; λ) + R0,1(θ; λ)Ψw
0,0(θ; λ)],

dΨw
1,0

dθ
(θ; λ) = W0,1(θ; λ)Ψr

0,0(θ; λ)Ψw
0,0(θ; λ),

...

and in general for all admissible (i, j) we get that

dΨr
i,j

dθ
(θ; λ) = P r

i,j(Rp,q(θ; λ), Ψr
k,�, Ψ

w
k,�),

dΨw
i,j

dθ
(θ; λ) = Qr

i,j(Wp,q(θ; λ), Ψr
k,�, Ψ

w
k,�),

where p + q � i + j, k + � � i + j and P r
i,j and Qr

i,j are polynomial functions of
their arguments. This fact together with (3.4) proves the corollary.

4. Proof of theorem 1.8

Poincaré–Dulac normal forms of system (1.1) have been studied in several works.
The underlying idea is to write the vector field as a sum of homogeneous polyno-
mials and search for near-identity changes of variables that iteratively simplify the
homogeneous parts of the vector field; see, for example, [1, 4].

It is known (see, for example, [8]) that a formal normal form of system (1.1) is

ẋ = −y[1 + h(z, r2)] + xg(z, r2),

ẏ = x[1 + h(z, r2)] + yg(z, r2),

ż = f(z, r2),

⎫⎪⎬
⎪⎭ (4.1)
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where r2 = x2 + y2 and f, g, h ∈ R[[z, r2]] are formal power series in the variables
z and r2. More precisely,

f(z, r2) =
∑
i,j

aijz
ir2j = a20z

2 + a01r
2 + · · · ,

g(z, r2) =
∑
i,j

bijz
ir2j = b10z + · · · ,

h(z, r2) =
∑
i,j

cijz
ir2j = c10z + · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

for some real coefficients aij , bij and cij .
First we shall assume the origin of system (1.1) to be a three-dimensional centre.

Hence, the formal displacement map d̂(r0, w0) associated with its formal normal
form (4.1) must be identically zero. To compute d̂(r0, w0) we will use the formal
version of theorem 1.4. Actually, following the ideas of [5] we will first carry out
the rescaling (x, y, z) �→ (x/ε, y/ε, z/ε), introducing a small parameter ε. Next we
perform the polar blow-up (x, y, z) �→ (θ, r, w) defined in (1.4), and the formal
system (4.1) becomes a formal (autonomous) system

dr

dθ
= εR(r, w; ε) =

rg(εrw, ε2r2)
1 + h(εrw, ε2r2)

,

dw

dθ
= εW (r, w; ε) =

f(εrw, ε2r2) − εrwg(εrw, ε2r2)
rε(1 + h(εrw, ε2r2))

,

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

with R, W ∈ R[[r, w, ε]]. The formal Poincaré translation map Π̂(r0, w0; ε) associ-
ated with (4.3) will be Π̂(r0, w0; ε) = Ψ̂(2π; r0, w0; ε), where Ψ̂(θ; r0, w0; ε) is the
formal solution of (4.3) with Ψ̂(0; r0, w0; ε) = (r0, w0). Actually we can formally
write

Ψ̂(θ; r0, w0; ε) = (r0, w0) +
∑
i�1

Ψi(θ; r0, w0)εi.

Then the formal displacement map is constructed as

d̂(r0, w0; ε) = Π̂(r0, w0; ε) − (r0, w0) ∈ R[[r0, w0, ε]].

Clearly, the origin of (1.1) is a three-dimensional centre if and only if d̂(r0, w0; ε) ≡ 0.
An equivalent condition characterizing three-dimensional centres is the vanishing of
all the coefficients dj(r0, w0) (formal Melnikov functions) with j � 1 of the formal
power series

d̂(r0, w0; ε) =
∑
j�1

dj(r0, w0)εj . (4.4)

Expanding in formal power series in ε as

R(r, w; ε) =
∑
i�0

Ri(r, w)εi, W (r, w; ε) =
∑
i�0

Wi(r, w)εi,
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we can recursively compute the formal Melnikov functions, thereby obtaining

d1(r0, w0) = 2π(R0(r0, w0), W0(r0, w0)),
d2(r0, w0) = 2π(R1(r0, w0), W1(r0, w0)) + D2(R0(r0, w0), W0(r0, w0)),

...
dj(r0, w0) = 2π(Rj−1(r0, w0), Wj−1(r0, w0)) + Dj(R̄j(r0, w0), W̄j(r0, w0)),

where R̄j(r0, w0) = (R0(r0, w0), R1(r0, w0), . . . , Rj(r0, w0)) and also W̄j(r0, w0) =
(W0(r0, w0), W1(r0, w0), . . . , Wj(r0, w0)) and the functions Dj vanish at the ori-
gin. In summary, the origin of (1.1) is a three-dimensional centre if and only if
dj(r0, w0) ≡ 0 for all j � 1, which is true if and only if (Ri(r0, w0), Wi(r0, w0)) ≡
(0, 0) for any i � 0. Therefore, one has R(r, w; ε) = W (r, w; ε) ≡ 0 or equivalently
f(εrw, ε2r2) = g(εrw, ε2r2) ≡ 0. Clearly, this implies that f(z, r2) = g(z, r2) ≡ 0,
as we wanted to prove.

Thus, in the three-dimensional centre case the formal normal form of system (1.1)
is

ẋ = −y[1 + h(z, r2)], ẏ = x[1 + h(z, r2)], ż = 0, (4.5)

admitting therefore two independent polynomial first integrals z and x2 + y2.
Clearly, this means that system (1.1) has two formal independent first integrals
z + · · · and x2 + y2 + · · · . Using results of Zhang [10, 11] (see also [7, theorem 9]),
we know that in fact (1.1) has two independent analytic first integrals z + · · · and
x2 + y2 + · · · , and moreover there is a convergent normalizing transformation. This
proves one part of the theorem.

The converse is easy to prove. Assume now that (1.1) is completely analytically
integrable. This implies that (1.1) has two independent analytical first integrals
H1(x, y, z) and H2(x, y, z). Since the linearization ẋ = −y, ẏ = x, ż = 0 of (1.1)
has the first integrals z and x2 +y2, it is clear that H1 and H2 can be chosen in the
form H1(x, y, z) = x2 +y2 + · · · and H2(x, y, z) = z + · · · . Therefore (1.1) possesses
a three-dimensional centre at the origin. This can be checked just by intersecting
the level sets (topological cylinders and planes) of H1 and H2 in a neighbourhood
of the origin.

Remark 4.1. Since the z-axis is a formal invariant rotation axis of the normal form
(4.1), we can use cylindrical coordinates (x, y, z) �→ (ϕ, ρ, z) so that (4.1) can be
reduced to

dρ

dϕ
= R̂(ρ, z) =

ρg(z, ρ2)
1 + h(z, ρ2)

,
dz

dϕ
= Ẑ(ρ, z) =

f(z, ρ2)
1 + h(z, ρ2)

, (4.6)

with R̂, Ẑ ∈ R[[ρ, z]]. Continuing in this direction, the proof of theorem 1.8 can
be made simpler (there is no need even to introduce the small parameter ε) when
we show that the normal form (4.3) of a three-dimensional centre must satisfy
f = g ≡ 0. Anyway, we retain that proof since it introduces Melnikov functions
(see (4.4)) and this is an appropriate way to calculate necessary three-dimensional
centre parameter conditions. We will check the above in the forthcoming examples.
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5. Examples

The computation of the necessary three-dimensional centre conditions are per-
formed using the technique of the proof of theorem 1.8 developed in [5]. Hence
we first do the rescaling (x, y, z) �→ (x/ε, y/ε, z/ε) with a small parameter ε and
next we perform the polar blow-up (x, y, z) �→ (θ, r, w) defined in (1.4) in order
to compute the Melnikov functions of family (1.1). Then, for |ε| sufficiently small,
(1.1) can be written as the analytic system

dr

dθ
= εR(θ, r, w; ε),

dw

dθ
= εW (θ, r, w; ε), (5.1)

near the invariant set {r = 0}. Clearly, (5.1) is defined on the cylinder because
θ ∈ R/2πZ. Then we can define the displacement map d(r0, w0; ε) = Π(r0, w0; ε) −
Id(r0, w0), where Id is the identity map and Π(r0, w0; ε) is the Poincaré translation
map given by the flow of (5.1) at the angle 2π. The origin of (1.1) is a three-
dimensional centre if and only if d(r0, w0; ε) ≡ 0 or equivalently when dj(r0, w0) ≡ 0
with j � 1, where d(r0, w0; ε) =

∑
j�1 dj(r0, w0)εj is the Taylor series of d near

ε = 0. We call the analytic function dj : R
2 → R

2 the jth Melnikov function.

5.1. Example 1

We study the three-dimensional centre problem for the quadratic family

ẋ = −y, ẏ = x, ż = a1x
2 + a2y

2 + a3xy. (5.2)

Proposition 5.1. The origin is a three-dimensional centre of family (5.2) if and
only if a1 + a2 = 0.

Proof. Performing the described algorithm on family (5.2) and after some compu-
tations we get the first Melnikov function

d1(r0, w0) = (0, (a1 + a2)πr0).

Then d1(r0, w0) ≡ 0 if and only if a1 + a2 = 0. Finally, taking a2 = −a1 it is easy
to check that family (5.2) has two polynomial first integrals

H1(x, y) = x2 + y2, H2(x, y, z) = z +
a3

2
x2 − a1xy,

thereby finishing the proof.

Remark 5.2. Of course, instead of computing the Melnikov function, we could use
reduction to normal form. If we perform the first step of such a computation on
family (5.2), we get

ẋ = −y, ẏ = x, ż = (a1 + a2)(x2 + y2) + · · · , (5.3)

and hence the condition a1 + a2 = 0 is obtained from corollary 1.9.
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5.2. Example 2

We consider a quadratic linear-like system

ẋ = −y + f(z)x, ẏ = x + g(z)y, ż = F (x, y, z), (5.4)

with f and g linear and F any homogeneous quadratic polynomial. Introducing
parameters, one has f(z) = az, g(z) = bz and F (x, y, z) = c1x

2 + c2y
2 + c3z

2 +
c4xy + c5xz + c6yz.

Proposition 5.3. The following parameter restrictions are necessary conditions
for the origin to be a three-dimensional centre of family (5.4):

(i) a = b = c3 = 0, c2 = −c1 and c1c
2
5 + c4c5c6 − c1c

2
6 = 0;

(ii) c3 = c4 = 0, b = −a, c2 = −c1 and c2
5 = c2

6.

Proof. Performing computations, we get the first Melnikov function

d1(r0, w0) = πr0((a + b)r0w0, c1 + c2 − (a + b − 2c3)w2
0).

Then d1(r0, w0) ≡ 0 if and only if b = −a, c2 = −c1 and c3 = 0. Next, the second
Melnikov function is given by

d2(r0, w0) =
πr2

0

4
ac4(−r0, 5w0).

For d2(r0, w0) to vanish, we have ac4 = 0, giving two different cases.
In case (i) we assume that a = 0 and obtain that dj(r0, w0) ≡ 0 for j = 3, 4, 5, 6

if and only if c1c
2
5 + c4c5c6 − c1c

2
6 = 0.

In case (ii) we take c4 = 0 and a �= 0. The computations show that now
dj(r0, w0) ≡ 0 for j = 3, 4, 5, 6 if and only if c2

5 = c2
6.

Remark 5.4. We conjecture that conditions (i) and (ii) are also sufficient for having
a three-dimensional centre at the origin in family (5.4). It is interesting to notice
that in case (i) if we first impose the parameter constrains a = b = c3 = 0 and
c2 = −c1 and next perform the polar blow-up (x, y, z) �→ (θ, r, w) defined in (1.4),
family (5.4) is transformed into a system (1.5) of the form

dr

dθ
= 0,

dw

dθ
= A(θ, r)w + B(θ, r), (5.5)

with A(θ, r) = r(c5 cos θ+c6 sin θ) and B(θ, r) = r[c1(cos2 θ−sin2 θ)+c4 cos θ sin θ].
Therefore, r(θ; r0, w0) = r0 and w(θ; r0, w0) is the solution of the 2π-periodic linear
differential equation dw/dθ = A(θ, r0)w + B(θ, r0). Clearly, the origin is a three-
dimensional centre of family (5.4) if and only if all the solutions w(θ; r0, w0) of the
former equation are 2π-periodic. Using the classical theory for such equations, we
have from the variation of constants formula

w(2π; r0, w0) = Φ(2π, r0)w0 + Φ(2π, r0)
∫ 2π

0
Φ−1(θ, r0)B(θ, r0)dθ,
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where Φ(θ, r0) = exp(
∫ θ

0 A(σ, r0)dσ). We then deduce that the periodicity condition
w(2π; r0, w0) = w0 holds if and only if the initial condition w0 is a solution of the
algebraic linear system

(1 − Φ(2π, r0))w0 = Φ(2π, r0)
∫ 2π

0
Φ−1(θ, r0)B(θ, r0)dθ. (5.6)

Since Φ(2π, r0) = 1 we deduce that all the solutions w(θ; r0, w0) are 2π-periodic
if and only if α(r0) :=

∫ 2π

0 Φ−1(θ, r0)B(θ, r0)dθ ≡ 0. Since α(r0) is analytic near
r0 = 0, the above centre condition is equivalent to the vanishing of all its derivatives
dnα/drn

0 (0) for any n ∈ N. Using induction it is straightforward to check that

∂n

∂rn
0

[Φ−1(θ, r0)B(θ, r0)] = Φ−1(θ, r0)
B(θ, r0)

r0
[c6(cos θ − 1) − c5 sin θ]n−1

× [n + c6r0(cos θ − 1) − c5r0 sin θ]

so that

dnα

drn
0

(0) = n

∫ 2π

0
[c1(cos2 θ − sin2 θ) + c4 cos θ sin θ][c6(cos θ − 1) − c5 sin θ]n−1dθ.

Observe that, for any n ∈ N, (dnα/drn
0 )(0) ∈ R[c] with c = (c1, c4, c5, c6) ∈ R

4.
Now if we consider the polynomial ideal J = 〈(dnα/drn

0 )(0) : n ∈ N〉 in the ring
R[c], our conjecture is that its associated affine variety is given by V(J ) = {c ∈
R

4 : c1c
2
5 + c4c5c6 − c1c

2
6 = 0}.

5.3. Example 3

We consider the following quadratic six-parameter family

ẋ = −y + az2 + bxz, ẏ = x + cxy + dz2, ż = ex2 + fzy. (5.7)

Notice that (5.7) is not of the form (1.2) since the z-axis is not invariant provided
that a2 + d2 �= 0.

Proposition 5.5. The origin is a three-dimensional centre of family (5.7) if and
only if b = e = af = cd = 0.

Proof. The first Melnikov function becomes

d1(r0, w0) = πr0(br0w0, e − bw2
0).

From d1(r0, w0) ≡ 0 we obtain b = e = 0. Given this, the second Melnikov function
is given by

d2(r0, w0) = πr2
0w

2
0(−(cd + 2af)r0, (cd + 4af)w0).

Hence, d2(r0, w0) ≡ 0 if and only if af = cd = 0. We remark that with these
parameter constraints one has dj(r0, w0) ≡ 0 for j = 3, 4, 5, 6, making it probable
that the origin becomes a three-dimensional centre of family (5.7). We are going to
prove that, actually, this is the case.
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Case 1. If a = d = 0, then family (5.7) becomes

ẋ = −y, ẏ = x(1 + cy), ż = fzy.

The planar subsystem ẋ = −y, ẏ = x(1 + cy) possesses a centre at (x, y) = (0, 0)
because it is time reversible with respect to the involution (x, y, t) �→ (−x, y,−t),
and hence it has an analytic first integral H1(x, y) = x2 + y2 + · · · defined in a
neighbourhood of the origin that is also a first integral of the full family in R

3.
Additionally, that family has the first integral

H2(x, y, z) = z exp(fx) = z + · · · , (5.8)

which is analytic in a neighbourhood of the origin. Hence the origin is a three-
dimensional centre.

Case 2. If a = c = 0, then family (5.7) becomes

ẋ = −y, ẏ = x + dz2, ż = fzy.

This family also has the first integral H2 already given in (5.8). Moreover, the
system restricted to the level sets {H2(x, y, z) = h} ⊂ R

3, with |h| sufficiently
small, becomes the planar analytic Hamiltonian system

ẋ = −y, ẏ = x + dh2 exp(−2fx).

This planar system has the first integral H(x, y) = f(x2 + y2) − dh2 exp(−2fx).
We emphasize that, when |h| � 1, the level sets of H near (x, y) = (0, 0) are ovals.
This proves that the zero-Hopf singularity at the origin of the full family in R

3 is a
three-dimensional centre.

Case 3. If f = d = 0, then family (5.7) becomes

ẋ = −y + az2, ẏ = x + cxy, ż = 0.

In this case we have the trivial first integral z. We claim that the restricted planar
system to each horizontal invariant plane {z = h} with |h| sufficiently small has
an elementary time-reversible centre at the singularity (0, ah2) so that the origin
of the full family is a three-dimensional centre. The claim follows by translating
the singularity at the origin, computing the associated purely imaginary eigenval-
ues ±

√
−1 − ach2 and checking the time reversibility with respect to (x, y, t) �→

(−x, y,−t).

Case 4. If f = d = 0, then family (5.7) becomes

ẋ = −y + az2, ẏ = x + dz2, ż = 0.

The analysis of this case is totally analogous to that of case 3.
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10 X. Zhang. Analytic normalization of analytic integrable systems and the embedding flows.

J. Diff. Eqns 244 (2008), 1080–1092.
11 X. Zhang. Analytic integrable systems: analytic normalization and embedding flows. J.

Diff. Eqns 254 (2013), 3000–3022.

https://doi.org/10.1017/S0308210517000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000026

