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The dynamics of bubbles inertially collapsing in water near solid objects have
been the subject of numerous studies in the context of cavitation erosion. While
non-spherical bubble collapse, re-entrant jet dynamics and emitted shock waves have
received significant interest, less is known about the temperatures thereby produced
and their possible connection to damage. In this article, we use highly resolved
numerical simulations of a single bubble inertially collapsing near a rigid surface to
measure the temperatures produced in the fluid and estimate those in the solid, as
well as to identify the responsible mechanisms. In particular, we find that elevated
temperatures along the wall can be produced by one of two mechanisms, depending
on the initial stand-off distance of the bubble from the wall and the driving pressure:
for bubbles initially far from the wall, the shock generated by the bubble collapse
is the source of the high temperature, while bubbles starting initially closer migrate
towards the wall and eventually come into contact with it. A scaling is introduced to
describe the maximum fluid temperature along the wall as a function of the initial
stand-off distance and driving pressure. To predict the temperature of the solid, we
develop a semianalytical heat transfer model, which supports recent experimental
observations that elevated temperatures achieved during collapse could play a role in
cavitation damage to soft heat-sensitive materials.

Key words: bubble dynamics, compressible flows, multiphase flows

1. Introduction

Cavitation and the damage it causes are important outcomes in applications ranging
from naval hydrodynamics to medicine and energy sciences. Cavitation bubbles can
grow from submicron sizes to millimetres, and subsequently collapse in an inertial
fashion, thereby generating strong shock waves (Rayleigh 1917; Flannigan et al.
2006; Lauterborn & Kurz 2010). A spherical implosion concentrates energy into a
small volume, sometimes emitting light in sonoluminescence (Barber & Putterman
1991), where temperatures between 7000 and 40 000 K are reported depending on
the experimental set-up and operating conditions (Ohl, Lindau & Lauterborn 1998;
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Didenko, McNamara & Suslick 2000; Brenner, Hilgenfeldt & Lohse 2002; Suslick
& Flannigan 2008; Flannigan & Suslick 2010; Ramsey & Pitz 2013; Duplat &
Villermaux 2015; Supponen et al. 2017a). In particular, Flannigan & Suslick (2010)
measured gas temperatures from 7000 to 16 000 K when increasing the driving
pressure from 2.7 to 3.8 bar. Supponen et al. (2017b) reported peak pressures of
12 GPa for collapse driven by atmospheric pressure. However, bubble collapse in the
vicinity of a solid object or free surface is asymmetric, as evidenced by a re-entrant
liquid jet penetrating the bubble (Naudé & Ellis 1961; Benjamin & Ellis 1966; Plesset
& Chapman 1971), which can reach up to hundreds of metres per second (Philipp &
Lauterborn 1998; Brujan et al. 2002). The jet directionality depends on the type of
boundary: a rigid wall induces a jet directed towards the wall, while the jet points
in the direction opposite to a free surface (Blake & Gibson 1987; Supponen et al.
2016). Regardless of the direction, this asymmetry hinders energy concentration,
such that lower pressures and temperatures are achieved compared with the spherical
case (Vogel, Lauterborn & Timm 1989; Brujan et al. 2005; Supponen et al. 2017b).
Nevertheless, the impact of the re-entrant jet upon the distal side of the bubble or
directly onto a neighbouring solid generates a water-hammer shock, and thus high
pressures (Tomita & Shima 1986). The proximity of the bubble to the solid is a key
parameter when quantifying the pressure loads on the object: the closer the bubble
is to the wall, the higher the pressures are along the surface (Johnsen & Colonius
2009). Studies of inertially collapsing bubbles in the context of cavitation erosion
have primarily focused on impact loads produced by the re-entrant jet or shock waves
emitted at collapse on hard metallic solids. Repeated impact loads pit the material.
Over time, the accumulation of pitting may lead to failure and eventually mass loss
(Kim et al. 2014). Heating, which has been shown to be important in ultrasonics due
to stable bubble oscillations (Legay et al. 2011), is expected to be a second-order
effect in inertial bubble collapse near hard materials.

To mitigate against cavitation erosion, researchers have explored the use of
polymeric coatings, e.g. materials such as ultra-high-molecular-weight polyethylene
(UHMWPE, Böhm, Betz & Ball 1990). Due to their high ductility, such materials
show excellent wear and impact resistance (Böhm et al. 1990; Deplancke et al. 2015).
In investigations of their performance in cavitating flows, recent findings (Deplancke
et al. 2015) suggest that materials like UHMWPE may fail in a manner different from
that observed with hard metallic objects. In particular, local damage characteristic
of heating and melting is observed for UHMWPE subjected to a cavitating flow
for 98 h exposures. Furthermore, samples with larger molecular weight show better
thermal resistance. At this time, measurement of instantaneous temperatures produced
in such complex flows is challenging due to the limited spatio-temporal resolution
and dynamic range of temperature-measuring devices such as thermocouples. Unless
the temperature of a bubble collapsing near a solid object can be determined, the
connection between cavitation and heat-induced damage is difficult to quantify.

A comprehensive study of cavitation erosion requires a full representation of bubble
clouds and material response to such loadings. We first seek to understand the basic
mechanics and heat transfer at the single-bubble level. Our objectives are to predict
the temperatures produced by the collapse of a single bubble near a rigid surface
using numerical simulations, and to identify the responsible mechanisms. This basic
understanding will guide subsequent studies on bubble clouds and solid–fluid coupling
occurring in real flows interacting with soft materials, which lie beyond the present
scope. For our purpose, we use a high-order-accurate discontinuity-capturing approach
to conduct high-resolution three-dimensional simulations of the Rayleigh collapse of
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a gas bubble near a rigid boundary to determine the fluid temperature along the solid.
Using the simulation results as boundary conditions in a semianalytical heat transfer
model, we determine the solid temperature. The article is organised as follows. First,
the computational approach is introduced in § 2. Next, the temperatures produced by
Rayleigh collapse of a gas bubble near a rigid wall are investigated in § 3, before
presenting a semianalytical heat transfer model and discussing the solid temperature
in § 4. Finally, concluding remarks are provided in § 5.

2. Methodology
2.1. Governing equations and numerical method

The inertia-dominated interfacial dynamics of bubbles collapsing near rigid surfaces
are represented by the five-equation multiphase model (Murrone & Guillard 2005), in
which care is taken to preserve pressure and temperature interfacial conditions (Beig
& Johnsen 2015a). We solve the compressible Navier–Stokes equations for a binary
gas–liquid system,

∂

∂t

 ρ
ρui
E

+ ∂

∂xj

 ρuj
ρuiuj + pδij
uj(E+ p)

= ∂

∂xj

 0
τij

uiτij −Qj

 , (2.1)

where ρ is the density, ui is the velocity, p is the pressure, E = ρe+ ρuiui/2 is the
total energy, e is the internal energy, δij is the identity tensor, τij is the viscous stress
tensor and Qj is the heat flux. Each additional phase is introduced by including a
mass balance equation for the volume fraction α solved in both conservative and non-
conservative forms to prevent spurious errors at interfaces (Beig & Johnsen 2015a),

∂

∂t
(ρ(k)α(k))+

∂

∂xj
(ρ(k)α(k)uj)= 0, (2.2a)

∂α(k)

∂t
+

∂

∂xj
(α(k)uj)= Γ

∂uj

∂xj
, (2.2b)

where Γ = α(k)ρ(k′)a(k′)
2
/(α(k

′)ρ(k)a(k)2 + α(k)ρ(k
′)a(k

′)2), a is the sound speed, k and k′
represent each phase, and α(k) = 1 − α(k′) is the liquid volume fraction. The source
term in (2.2b) may lead to numerical difficulties early in the simulations, such that
the simulations are started by solving an advection equation for α(k) (without the
source term) for the first 1000 time steps. Both phases behave as Newtonian fluids
with constant viscosity; heat conduction is described by Fourier’s law. Given the short
time scales and dominance of inertial effects, mass transport and surface tension are
neglected (Johnsen & Colonius 2009; Tiwari, Pantano & Freund 2015).

Both gas and liquid obey the Noble–Abel stiffened gas (NASG) equation of state
(Le Métayer & Saurel 2016),

ρ(e− q) =
p

n− 1
(1− ρb)+

nB
n− 1

(1− ρb) (pressure wise), (2.3a)

= ρcT + B(1− ρb) (temperature wise), (2.3b)

where n, B, b, q and cv are material-dependent constants (see Table 1 for relevant
values). The NASG equation of state has been validated against experimental
data for both water vapour and liquid water for a wide range of operating
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O

FIGURE 1. (Colour online) The problem set-up for the Rayleigh collapse of a single
bubble near a rigid wall.

Coefficient Water vapour Water

n 1.47 1.19
B (MPa) 0 702.8
b (kg m−3) 0 6.61× 10−4

cv (J kg−1 K−1) 955 3610
q (J kg−1) 2.1× 106

−1.2× 106

TABLE 1. Constants in the Nobel–Abel stiffened gas equation of state for water vapour
and water (Le Métayer & Saurel 2016).

temperatures (Le Métayer & Saurel 2016). In this study, water vapour is modelled as
a non-condensible gas with no phase change.

The numerical method used to solve these equations is explained in detail in
Beig & Johnsen (2015a). Third-order-accurate explicit strong-stability-preserving
Runge–Kutta is used for time marching (Gottlieb & Shu 1996), with an adaptive
time step to satisfy advection and diffusion constraints. The spatial discretisation is
solution-adaptive: a discontinuity sensor (Henry de Frahan, Varadan & Johnsen 2015)
discriminates between smooth regions, where non-dissipative fourth-order central
differences are used, and discontinuous regions, in which the fifth-order weighted
essentially non-oscillatory scheme of Johnsen & Colonius (2006) is applied.

2.2. Problem description
Figure 1 shows our problem set-up. Water at pressure p∞ and temperature To= 300 K
surrounds a single bubble of initial radius Ro= 100 µm, with water vapour properties
at To (ρo = 0.027 kg m−3 and po = 3.55 kPa). Water vapour is modelled as a
non-condensible ideal gas. In rapid inertial collapse, Storey & Szeri (2000) argue
that water vapour is trapped inside the bubble due to the large time scales related
to diffusion and non-equilibrium condensation at the bubble wall compared with the
hydrodynamics, such that evaporation and condensation are negligible. The bubble is
located at an initial distance Ho from a rigid wall. The two parameters of interest in
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FIGURE 2. (Colour online) Convergence of Rmin/Ro for different numbers of cells per
initial bubble radius. The blue dashed line is the minimum radius predicted by the Keller
& Miksis (1980) equation.

this study are the pressure ratio driving the collapse, p∞/po, and the initial stand-off
distance, δo = Ho/Ro. The former can be related to the local pressure experienced
by the bubble in a real cavitating flow and dictates the collapse intensity. The latter
corresponds to the distance between the bubble and the wall when the collapse starts.
We consider driving pressures of p∞ = 2, 5 and 10 MPa, relevant to a variety of
hydraulic applications (Franc et al. 2011), and initial stand-off distances ranging
from 0.5 to 5.0, with δo < 1 representing a bubble initially attached to the wall. We
recognise that the initial temperature To = 300 K may appear to be artificial and
arbitrary. This value is chosen as a baseline in this work. All results are presented
relative to To, such that absolute temperatures scale with To. Although large and rapid
bubble growth may lead to low temperatures at maximum volume, we do not expect
the results to exhibit significant deviations from this scaling with To for such rapid
inertially driven collapse in which thermal effects are unlikely to be the dominant
damping.

Exploiting the problem symmetry, we simulate a quarter of the bubble by applying
symmetry boundary conditions along the relevant planes. Non-reflecting conditions are
applied along the remaining boundaries, except for the no-slip adiabatic wall. The grid
resolution is 1536 × 768 × 768, corresponding to 192 cells per initial bubble radius.
To assess the grid dependence of the results, we consider the spherical Rayleigh
collapse of an isolated bubble in a free field. Figure 2 shows the convergence of the
normalised minimum radius Rmin/Ro for different numbers of cells per initial bubble
radius compared with the numerical solution to the Keller–Miksis equation (Keller
& Miksis 1980) with full thermal effects inside and outside the bubble (Barajas &
Johnsen 2017). Although full convergence is not achieved, the resolution used for our
simulations of non-spherical collapse, which does not achieve as small a volume, is
expected to be sufficient for quantitative estimates.

Figure 3 shows the time evolution of the normalised average bubble radius,
R/Ro = (V/Vo)

1/3, where V is the bubble volume, and of the temperature at the
bubble centre; time is scaled by the Rayleigh collapse time, tc = 0.915Ro

√
ρl/1p,

where ρl is the liquid density and 1p= (p∞− po), with p∞= 5 MPa. The agreement
between the simulations and the Keller–Miksis solution is good. The bubble collapses
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FIGURE 3. (Colour online) Spherical collapse of an isolated bubble in water (p∞ =
5 MPa). The black solid line is the Keller–Miksis solution and the red diamonds are the
numerical simulation.

due to the higher pressure in the surroundings, reaches a small volume just before
collapse, and subsequently rebounds. The initial potential energy is converted into
kinetic energy of the liquid, rushing in to fill the void created by the collapsing
bubble. Simultaneously, the internal energy of the bubble is increasing as the bubble
volume decreases. At the instant of collapse, the internal energy of the bubble is
maximum, and this high bubble pressure is released in the form of a shock wave,
as well as liquid motion radially outward. Due to the high initial liquid pressure,
the velocities are sufficiently high that compressibility effects are important, thus
leading to a slightly faster collapse than the theoretical Rayleigh collapse time, tc
(Lauer et al. 2012). The temperature in the simulations is slightly larger than that
from the Keller–Miksis solution because of the convergence of the initially released
shock wave inside the bubble due to the initial conditions (Johnsen & Colonius
2009). For this spherical collapse, temperatures of the order of 40 000 K would be
achieved. Duplat & Villermaux (2015) estimated temperatures of this order in their
experiments, which are far larger than those reported by Flannigan & Suslick (2010).
Effects that may reduce the temperatures measured in intense bubble collapse include
driving pressure, non-equilibrium effects, dissociation of water vapour, the onset of
ionisation, short-wavelength interfacial perturbations and chemical reactions (Moss
et al. 1994; Storey & Szeri 2000; Brenner et al. 2002). For non-spherical bubble
collapse, significantly lower temperatures are achieved, as explained in § 3, such that
these effects are not expected to be relevant.

3. Fluid temperatures produced by a collapsing bubble
3.1. Baseline case

We start by examining the dynamics of a bubble collapsing near a rigid surface
with δo = 1.25 and p∞ = 5 MPa to qualitatively understand the bubble dynamics
and temperature fields. Figure 4 displays volumetric renderings and slices along the
centreplane just before and after collapse, and well after collapse. Figure 4(a) shows
that, by breaking the problem symmetry, the presence of the solid surface gives
rise to the formation of a liquid re-entrant jet directed towards the wall (Plesset &
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1 8.3 1 2.7 1 1.7

0 0.85 0 2.1 0 0.42

(a) (b) (c)

FIGURE 4. (Colour online) Rayleigh collapse near a rigid wall at (a) t= 1.4 µs, (b) t=
1.5 µs, (c) t = 1.7 µs (δo = 1.25, p∞ = 5 MPa). Top: 3D contours of the bubble shape
coloured by temperature. Bottom: 2D slices of normalised temperature (T/To; upper) and
pressure (p/ρlal(1p/ρl)

1/2; lower). The white dashed line is the initial bubble interface.

Chapman 1971). As illustrated by figure 5, the bubble centroid migrates towards
the wall (Vogel et al. 1989) and the spatially averaged bubble temperature increases
during the collapse, eventually reaching approximately 2 000 K. Locally, inside the
bubble, the temperature can be even larger because of the temperature gradients due
to the shock waves trapped inside the bubble (Johnsen & Colonius 2009). Compared
with the spherical case, non-spherical collapse is less intense (Vogel et al. 1989),
characterised by lower temperatures (see figure 3) despite the same initial potential
energy Eo = 1pVo. Instead of concentrating the initial potential energy into internal
energy of the bubble, the wall gives rise to non-converging motions, highlighted by the
re-entrant jet formation. As a result, the energy focusing is reduced while the kinetic
energy of the non-converging flow becomes important. After reaching a velocity of up
to 800 m s−1, the re-entrant jet hits the distal side of the bubble, thereby generating
an outward-propagating water-hammer shock wave that subsequently reflects off the
wall, as illustrated in figure 4(b). Based on the thermodynamics, the pressure peak
produced by the shock reflection off the wall is expected to be accompanied by
a temperature rise. This reflected shock impinges upon the bubble, which by that
time has taken the form of a vortex ring (Vogel et al. 1989; Philipp & Lauterborn
1998). The bubble convects towards the wall and eventually comes into contact with
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FIGURE 5. (Colour online) Time evolution of the average bubble temperature (solid red)
and centroid distance from the wall (dashed blue) for δo = 1.25 and p∞ = 5 MPa.

it in figure 4(c). Although the bubble temperature has decreased by this time due
to rebound, the temperature difference between the bubble and the wall is expected
to lead to heat transfer between the hot bubble and the wall. After the collapse, the
bubble temperature decreases drastically, eventually reaching an equilibrium value
of less than 320 K, as a result of a high cooling rate (∼1010 K s−1; Brenner et al.
2002).

3.2. Effects of initial stand-off distance, δo, on fluid temperature
As discussed above, the presence of the solid surface breaks the collapse symmetry
and reduces the intensity of the collapse. Greater proximity to the wall gives rise
to more non-spherical collapse and weaker energy focusing, exhibited by a larger
minimum volume (Lindau & Lauterborn 2003; Johnsen & Colonius 2009). As a result,
lower bubble temperatures are achieved than in the spherical case. This behaviour is
illustrated by figure 6, showing the maximum spatially averaged temperature of the
bubble achieved over the simulation for different initial stand-off distances. Based
on the time it takes for waves to propagate from the bubble to the wall and back
during the collapse, the critical stand-off distance beyond which the bubble does not
know about the wall and thus collapses spherically is δcr ≈ 10.5 for p∞ = 5 MPa.
Assuming that the maximum bubble temperature goes as the corresponding adiabatic
temperature at minimum volume, Tbubble = To(Vo/Vmin)

γ−1. From Supponen et al.
(2016), the volume ratio scales as δ4

o if the bubble is initially far from the wall. Thus,
we conclude that Tbubble ∝ δ

4(γ−1)
o (solid black line in figure 6). For bubbles initially

attached to the wall, the temperature increases with decreasing δo because the collapse
is more intense, as explained below.

To quantitatively identify the physics, we examine the fluid temperature along
the wall. Based on the bubble dynamics, we expect two mechanisms to give rise
to increased fluid temperatures along the wall: the shock produced at collapse, and
contact between the bubble and the wall. To better understand this interplay, the
maximum temperature Tmfw of the fluid in the computational cells in contact with
the wall is recorded from the simulations and plotted in figure 7 as a function of
the initial stand-off distance for p∞ = 5 MPa. As a comparison, the temperature Tmsw
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0.5

FIGURE 6. (Colour online) Maximum average bubble temperature versus initial stand-off
distance (p∞ = 5 MPa). The solid black line is the power-law fit for δ4(γ−1)

o .
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1.0 2.0 4.0 6.0 8.00.5

(I) (II) (III)

FIGURE 7. (Colour online) Maximum fluid temperature rise along the wall versus initial
stand-off distance (p∞ = 5 MPa) for bubbles initially (I) attached (high temperature due
to wall contact), (II) detached (high temperature due to wall contact) and (III) detached
(high temperature due to collapse shock). The red diamonds are simulation results and the
blue triangles represent the temperature inferred from the equation of state corresponding
to the reflected shock pressure.

corresponding to the pressure of the shock produced by the collapse at the instant
of reflection upon the wall and calculated from the equation of state is included. In
addition, figure 8 shows the difference between the time of minimum volume and that
when maximum fluid temperature along the wall is measured (1t = tcollapse − tTmfw),
normalised by tcollapse. Overall, the fluid temperature along the wall increases as
the initial stand-off distance is reduced: bubbles closer to the wall produce higher
temperatures, as expected. Furthermore, the data fall into three distinct regions. For
bubbles starting far enough away from the wall (δo & 1.25, region III), the peak fluid
temperature at the wall agrees with that corresponding to the shock pressure via the
equation of state, demonstrating that for these large initial stand-off distances, the
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FIGURE 8. (Colour online) Normalised time difference between minimum volume and
maximum fluid temperature rise along the wall versus initial stand-off distance (p∞ =
5 MPa) for bubbles initially (I) attached (high temperature due to wall contact), (II)
detached (high temperature due to wall contact) and (III) detached (high temperature due
to collapse shock). The black solid lines show the linear behaviour of the time difference
with respect to δo.

temperature rise is due to the impingement of the shock produced at collapse upon
the wall. For p∞ = 5 MPa, this temperature rise reaches up to 30 K. It should be
noted that the maximum liquid temperature predicted by the NASG equation of state
is not high enough to lead to vaporisation. Although the bubble may eventually come
into contact with the wall, its temperature by that time, after expansion, is lower
than that due to the shock. The time difference is the time it takes for the shock to
propagate between the collapse location and the wall. Since the location at collapse,
δc, increases linearly with δo in that regime, as explained below, and since the shock
propagation speed is close to constant, 1t decreases linearly with decreasing δo.

For those bubbles initially closer to the wall (δo . 1.25), the peak temperature is
far greater than that corresponding to the shock pressure. These high temperatures are
caused by the bubble coming into contact with the wall. Two regimes are observed.
For δo 6 1 (region I), the bubble is initially in contact with the wall. In this case,
jet impact upon the wall generates a shock wave which drives a second jet within
the toroidal bubble. The attached bubble is hottest when the shock produced by
the first jet compresses it a second time. For these cases, the minimum volume is
produced after the impact of the second jet onto the distal side, thus giving rise
to negative values of 1t. For the smallest values of δo, these events occur almost
simultaneously. For 1 < δo . 1.25 (region II), the bubble is initially detached from
the wall, migrates towards the wall during collapse, and, during its rebound, comes
into contact with the wall. At this time, the bubble volume is sufficiently small that
the bubble temperature is greater than that produced by the shock wave. As δo is
decreased from 1.25 to 1, the volume at the time of contact is smaller. Consequently,
higher temperatures are observed. Furthermore, the bubble expands at a speed slower
than the speed of propagation of the shock emitted at collapse, such that 1t in region
II is larger than in region III. Contact of the hot bubble with the wall is illustrated in
figure 9, showing the temperature and volume fraction for δo = 1.05. The maximum
fluid temperature is recorded at a distance approximately y/Ro = 0.25 above the
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FIGURE 9. (Colour online) Temperature contours (a) and line (b) along the wall, and
liquid volume fraction contours (c) and line (d) along the wall at the time of maximum
fluid temperature along the wall (p∞ = 5 MPa, δo = 1.05).

centreline, where the liquid volume fraction is close to zero (<0.02). It is thus clear
that the high temperature in this case is due to the hot gas. Beig & Johnsen (2015b)
discussed the two mechanisms that cause high temperatures along the wall in the
case of shock-induced collapse of a single gas bubble. Even though the flow was
different from this study, they observed a significant temperature rise along the wall
surface for the bubbles located initially close to the wall (δo < 1.25).

To better understand the three different regions and the two mechanisms raising
the fluid temperature along the wall, figure 10 shows the time history of maximum
pressure and temperature along the wall for three different cases with p∞ = 5 MPa.
For a bubble collapsing far from the wall (region III), both the wall pressure and the
temperature share the same pattern, with maximum values recorded at the same time
and location. The origins of the maximum pressure and temperature along the wall are
the same, namely the shock wave from the collapse. For a bubble initially detached
but close to the wall (region II), the maximum pressure and temperature are recorded
neither at the same time nor at the same location. The first pressure peak is due to
the water hammer, followed by a secondary peak (maximum pressure) caused by the
impingement of the shock from collapse upon the wall surface. The first temperature
peak occurs at the same time and location as the maximum pressure, thus illustrating
the role of the shock from collapse in raising the temperature along the wall. However,
the maximum temperature occurs 200 ns later and at y/Ro= 0.15 above the centreline
when the bubble reaches the wall and contacts its surface. In the case of an attached
bubble (region I), the maximum fluid temperature along the wall occurs at t= 1.5 µs
and at a distance y/Ro = 0.35 above the centreline. However, the maximum pressure
is measured 50 ns later at the centreline, y/Ro = 0. As discussed above, the impact
of the re-entrant jet directly upon the wall raises the pressure and creates a shock
wave that further collapses the bubble, which is in contact with the wall. As a result,
the bubble reaches its minimum volume and releases a secondary shock, causing the
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FIGURE 10. (Colour online) Time history of normalised maximum pressure (a,c,e) and
temperature (b,d, f ) along the wall for p∞= 5 MPa and three different values of δo ((a,b)
region (III) with δo = 2.0, (c,d) region (II) with δo = 1.2, (e, f ) region (I) with δo = 0.8).
The pressure and temperature axes are adjusted to emphasise the temporal distribution.

maximum pressure along the wall. Our numerical simulations show that the collapse
of the vortex ring, despite its higher proximity to the wall, is less intense, such that
the temperature rise along the wall is noticeably lower than the potential first contact
(Beig & Johnsen 2018).
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FIGURE 11. (Colour online) Scaling of the collapse location versus δo for different driving
pressures, for bubbles initially (I) attached (high temperature due to wall contact), (II)
detached (high temperature due to wall contact) and (III) detached (high temperature due
to collapse shock). The black solid lines are the power-law fits scaling as δo.

Given the importance of the location of the bubble at collapse in producing elevated
fluid temperatures along the wall, we consider the extent of bubble migration towards
the wall during collapse. Figure 11 shows the collapse location versus the initial stand-
off distance, both scaled by the initial radius, for p∞ = 2, 5 and 10 MPa. The data
for these different driving pressures naturally collapse onto a single curve between two
limits (large and small δo), in which linear dependence is observed. Assuming that the
bubble displacement until the collapse is 1x/Ro, then

δc = δo −1x/Ro. (3.1)

For δo� 1, the displacement scales as δ−4/3
o (Supponen et al. 2016), such that δc≈ δo.

This result is consistent with the fact that, for δo→∞ (or >10.5 for p∞ = 5 MPa),
the bubble does not know that the wall is there, thus collapsing spherically with no
migration. For initially attached bubbles, the collapse occurs so close to the wall that
the mean bubble centroid cannot truly migrate. Thus, δc is negligible compared with
the bubble displacement. This implies that δo ∼1x/Ro, such that δc ∝ δo. In between,
we observe that the presence of the wall ‘attracts’ initially detached bubbles, while
attached bubbles are confined by the wall.

An understanding of how to describe bubble migration enables us to develop a
theory for the maximum fluid temperature, Tmfw, produced by bubble collapse along
a rigid wall. We expect that Tmfw will not only be a function of the driving pressure,
but will also depend on the bubble location at the collapse, which itself depends on
the initial stand-off distance, i.e. Tmfw = f (1p, δc, δo). Introduction of a characteristic
temperature corresponding to the water-hammer pressure pwh produced at collapse, T̃∝
pwh/ρlcv, connects the dynamics to the re-entrant jet and driving pressure since pwh∝

ρlalujet, where al is the liquid sound speed and ujet∝
√
1p/ρl (Field 1991), even in the

spherical case. From these observations, T̃ ∝ (al
√
1p/ρl)/cv, where cv is the specific

heat at constant volume. The scaling of the characteristic temperature, T̃ , is inspired
by that of the maximum wall pressure (Johnsen & Colonius 2009), which also scales
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FIGURE 12. (Colour online) Scaling of the maximum fluid temperature rise along the
wall versus δo for different driving pressures, for bubbles initially (I) attached (high
temperature due to wall contact), (II) detached (high temperature due to wall contact)
and (III) detached (high temperature due to collapse shock). The black solid lines are
the power-law fits scaling as δ−2

o in region (I) and δ−1
o in region (III).

with pwh regardless of the driving pressure. This characteristic temperature T̃ illustrates
the conversion of the kinetic energy of the re-entrant jet into internal energy of the
liquid (cvT̃ ∝ pwh/ρl). By non-dimensionalising the temperature rise along the wall,
1T = Tmfw − To, by the characteristic temperature, T̃ , and incorporating the effects
of bubble migration towards the wall, the non-dimensional temperature rise along the
wall, 1τ = (1T/T̃)(δo/δc), can be constructed. Figure 12 shows the dependence of this
quantity on the initial stand-off distance. In all three regions, the data sets collapse. In
region (I), 1τ ∼ δ−2

o . These bubbles significantly raise the fluid temperature along the
wall, leading to non-negligible heat transfer into the neighbouring wall and potentially
thermal damage. In region (III), the shock is responsible for the elevated temperature,
and 1τ ∼ δ−1

o , the same scaling as that of the shock pressure (Johnsen & Colonius
2009).

However, in region (I), the data collapse is not perfect; furthermore, the highest
values of 1τ are achieved by the lowest driving pressure, which is counterintuitive.
One might expect that the maximum fluid temperature along the wall would be
proportional to the maximum (spatially averaged) bubble temperature since bubbles
in region (I) are initially attached to the wall. The maximum bubble temperature
itself is thus expected to be proportional to the collapse energy (Brennen 1995),
rather than

√
1p as for T̃ . Incompressible Rayleigh–Plesset analysis, shown in

figure 13 for the corresponding Rayleigh collapse problem, confirms this linear
dependence of the maximum bubble temperature on the driving pressure increase. In
this case, Vo/Vmin ∼1p1/(γ−1). Thus, using adiabatic relations, Tbubble ∼1p (Brennen
1995). However, our spherical simulations suggest a different dependence of the
maximum bubble temperature on the driving pressure increase. This behaviour follows
that observed with a Keller–Miksis analysis of the same problem. Accounting for
compressibility effects through the Keller–Miksis equation, Vo/Vmin ∼ 1p1/(γ+1) if
1p& 0.5 MPa. This result further yields Tbubble∼1p(γ−1)/(γ+1). This behaviour, shown
in figure 13 for three gases with different specific heat ratios, indicates that acoustic
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FIGURE 13. (Colour online) Maximum average bubble temperature as a function of 1p
for different gases. The black solid (1p) and dashed (1p(γ−1)/(γ+1)) lines are the power-law
fits.
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FIGURE 14. (Colour online) Scaling of the maximum fluid temperature rise along the
wall versus δo for different driving pressures, for bubbles initially (I) attached (high
temperature due to wall contact), (II) detached (high temperature due to wall contact)
and (III) detached (high temperature due to collapse shock). The black solid lines are
the power-law fits scaling as δ−2

o in region (I) and δ−1
o in region (III).

radiation losses due to liquid compressibility change the temperature dependence
on the driving pressure beyond a certain amplitude. Our numerical results lie in
this regime, in which compressibility dominates. These findings suggest a different
scaling for the characteristic temperature, T̃ ′ ∝ (a1+2/(γ+1)

l (1p/ρl)
(γ−1)/(γ+1))/cv, such

that the non-dimensional temperature is 1τ ′ = (1T/T̃ ′)(δo/δc). Figure 14 shows
this new quantity, 1τ ′, as a function of the initial stand-off distance for different
driving pressures. With this new scaling, we obtain similar dependence of the new
non-dimensional pressure increase on δo: 1τ ′ ∼ δ−2

o in region (I) and 1τ ′ ∼ δ−1
o in

region (III). The collapse of the data is now better in region (I), while regions (II)
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x
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FIGURE 15. (Colour online) Schematic of the thermal boundary layer between the hot
fluid and the wall.

and (III) do not show as good an agreement, as expected since the mechanisms
producing the high temperature are different. The collapse of the data indicates
that the collapse energy, Eo = 1pVo, and initial stand-off distance solely dictate
the dynamics and energy balance, including the fluid temperature along the wall,
regardless of the mechanism responsible for the high temperature (shock versus
wall contact). Prediction of the resulting solid temperature requires one more step,
explained in the next section.

4. Temperature in the solid

To predict the solid temperature, the heat transfer problem between the fluid and the
solid must be solved. The full solution to this problem would require coupling with
the solid, as well as prohibitively fine grid resolutions to resolve the thermal boundary
layers. To estimate the solid temperature, we develop an analytical heat transfer model
based on our simulation data. In particular, we determine the temperature in the
thermal boundary layers at the end of each simulation time step using the simulation
data as the fluid boundary condition. The coupling is one-way, with no feedback into
the numerical simulations. We consider the following one-dimensional heat diffusion
equation normal to the wall in a composite and semi-infinite medium, illustrated in
figure 15:

∂Tj

∂t
= λj

∂2Tj

∂x2
, (4.1)

where λ is the thermal diffusivity and j≡ {f , s} defines fluid and solid. We solve this
equation over the course of a time step corresponding to the numerical simulation,
with far-field boundary conditions, i.e. outside the thermal boundary layer, given
by the temperature from the fluid simulation in the cell adjacent to the wall,
Tf (−l, t) = TH(t), and Ts(x→∞, t) = To in the solid. At the fluid–solid interface,
both the temperatures and the heat fluxes are equal, i.e. Tf (0, t) = Ts(0, t) and
kf ∂xTf = ks∂xTs. Since TH is obtained from our numerical simulations, it varies with
time. Thus, the appropriate initial conditions (at the beginning of every computational
time step ti) are Tf (x< 0, ti)= TH(ti) in the fluid and Ts(x > 0, ti)= Ts(x > 0, ti −1t)
in the solid. At the very first time step, the initial conditions are Tf (x< 0, 0)= TH(0)
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and Ts(x > 0, ti)= To so we can solve the diffusion equations initially,

Tf (x, t) = TH +
TH − To

1+ σ

{
∞∑

n=0

βn

[
erfc

(
2(n+ 1)l+ x

2
√
αf t

)
− erfc

(
2nl− x
2
√
αf t

)]}
, (4.2)

Ts(x, t) = To +
(TH − To)σ

1+ σ

[
erfc

(
ζx

2
√
αf t

)
+ (β + 1)

∞∑
n=1

βn−1erfc
(

2nl+ ζx
2
√
αf t

)]
,

(4.3)

where ζ =
√
λf /λs, σ = (kf /ks)

√
λf /λs and β= (1−σ)/(1+σ). These two expressions

provide the temperature distribution within both the fluid and the solid at the end
of the first time step. Thereafter, we approximate the solution within the solid by
Ts(x, ti) = To + ae−bx, which is used as the initial condition for the following time
step, where a and b are functions of time found by fitting the exponential function to
the temperature in the solid at the end of the first time step. This algorithm continues
to provide the appropriate initial conditions for the following time steps and solve the
equations in time. Therefore, the resulting solutions can be written in closed form,

Tf (x, t) = TH −
TH − To

1+ σ

{
∞∑

n=0

βn

[
erfc

(
2nl− x
2
√
λf t

)
− erfc

(
2(n+ 1)l+ x

2
√
λf t

)]}

+
a

1+ σ

{
∞∑

n=0

βneh(2nl−x)+h2λf t

[
erfc

(
2nl− x
2
√
λf t
+ h
√
λf t

)

−e2h(x+l)erfc

(
2(n+ 1)l+ x

2
√
λf t

+ h
√
λf t

)]}
, (4.4)

Ts(x, t) = To +
(TH − To)σ

1+ σ

[
erfc

(
ζx

2
√
λf t

)
+ (β + 1)

∞∑
n=1

βn−1erfc

(
2nl+ ζx
2
√
λf t

)]

−
aσ

1+ σ

[
ehζx+h2λf terfc

(
ζx

2
√
λf t
+ h
√
λf t

)

+ (β + 1)
∞∑

n=1

βn−1eh(2nl+ζx)+h2λf t erfc

(
2nl+ ζx
2
√
λf t
+ h
√
λf t

)]

+
1
2

ae−bx+ηt

[
e2bx erfc

(
ζx

2
√
λf t
+
√
ηt

)
+ erfc

(
−ζx

2
√
λf t
+
√
ηt

)]
, (4.5)

where η = λsb2 and h = b/ζ . This solution applies to any computational cells along
the wall, thus providing an approximate solution for the temperature in the direction
normal to the wall inside the thermal boundary layers in the fluid and the solid.

The resulting expressions for the temperature distribution in the solid and the fluid
indicate a strong dependence on the thermal properties of the solid (e.g. thermal
conductivity, thermal diffusivity). In figure 16(a), we display the dependence of
the temperature rise of the wall surface on the initial stand-off distance for polyurea,
UHMWPE and steel, commonly used materials in naval hydrodynamics, as a means to
assess the temperature effects on cavitation erosion. As expected, only those stand-off
distances for which the bubble comes into contact with the wall during collapse
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FIGURE 16. (Colour online) (a) Temperature rise of the solid surface for different
materials versus initial stand-off distance, with p∞ = 5 MPa. The green dashed and red
dashed-dotted lines represent the melting points for polyurea and UHMWPE respectively.
(b) Scaled temperature rise of the wall surface using the thermal effusivity of water, εwater,
and the corresponding material, εi. The black solid line is the power-law fit scaling as δ−1

o .

generate significant temperature increases. Because of the low thermal diffusivity of
polyurea and UHMWPE, the surface temperature can reach values above the melting
point of these materials (480–620 K for polyurea, ∼400 K for UHMWPE), assuming
that To= 300 K. On the other hand, the high thermal diffusivity of steel yields only a
30 K rise. As explained above, for bubbles initially far from the wall (region III), the
maximum temperature rise along the wall is caused by the shock wave from collapse
with no bubble contact, meaning that there is always liquid water covering the wall
surface. Using the analytical solution for the temperature at the contact surface
between two semi-infinite media, and including the thermal effusivity (ε = k/

√
λ)

of water (εw) and the wall material (εi, where the subscript stands for the different
materials) in region (III), we construct a new variable Θwall = (1+ εi/εw)1Twall/To to
scale the maximum temperature of the wall. We observe that Θwall scales as δ−1

o , as
expected. On the other hand, in regions (I) and (II), bubble contact is observed, which
implies that the liquid volume fraction along the wall changes in time during the
collapse. Thus, collapse of the data is not possible unless the precise time-dependent
boundary conditions are included. The boundary layer thickness in the solid at the
end of the simulation changes accordingly (0.5 µm in polyurea versus 2 µm in
steel). The high temperatures occur over approximately 100 ns in a region of radius
∼30 µm for a 100 µm initial bubble radius. Although the heat transferred to the solid
via a single such collapse is small, it is plausible that the repeated collapse of many
bubbles in a flow with high cavitation aggressiveness (Kim et al. 2014) may give
rise to sufficient heat transfer for melting to occur, especially in soft heat-sensitive
materials.

5. Conclusions
In summary, we carried out high-resolution simulations of the collapse of a single

gas bubble in water near a rigid solid surface to investigate the temperatures generated
during this process in the fluid and the solid for different initial stand-off distances
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and driving pressures. We demonstrated that the maximum temperature thereby
produced along the wall occurs via one of two mechanisms, depending on the
initial stand-off distance: the shock produced upon bubble collapse and reflecting
off the wall (large stand-off distances), and contact of the hot bubble with the wall
due to migration during collapse (small stand-off distances). We described bubble
migration during collapse, and, using this result, discovered a scaling describing
the maximum fluid temperature along the wall as a function of the initial stand-off
distance and driving pressure. To determine the temperature of the neighbouring solid,
we developed an analytical heat transfer model employing the simulation results.
We found that instantaneous temperatures greater than the melting points of certain
soft temperature-sensitive materials are produced on the solid surface during bubble
collapse, though over a short time (.1 µs). Although the heat transferred to the solid
via a single such collapse is small, it is plausible that the repeated collapse of many
bubbles may give rise to sufficient heat transfer for melting to occur, especially in
soft materials.
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