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Abstract

Neural network (NN)-based constitutive models have been used increasingly to capture soil constitutive response.
When combined with the self-learning simulation (SelfSim) inverse analysis framework, NN models can be used to
extract soil behavior when given field measurements of boundary deformations and loads. However, the data sets used
to train and repeatedly retrain the NN models are large, and training times, especially when used in SelfSim, are long.
A diverse set of stress—strain data is extracted from a simulated braced excavation problem to train a NN-based
constitutive model. Several methods for reducing the data set size are proposed and evaluated. Each of these methods
selectively removes training data so that the smallest amount of data is used to train the NN. The Gaussian point
method removes data based on its position in each finite element in the model. The lattice method removes data so that
all remaining points are evenly spaced in stress space. Finally, the loading path method compares the stress—strain
history of each Gaussian point and removes points with similar loading histories. Each of these methods shows that a
large amount of the training data (up to 94%) can be removed without adversely affecting the performance of the NN
model, with the loading path method showing the best and most consistent performance. Model training times are
reduced by a factor of 20. The performance of the loading path method is also demonstrated using stress—strain data
extracted from a simulated laboratory triaxial compression test with frictional ends.
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1. INTRODUCTION to characterize material constitutive behavior. Given enough

data, a trained ANN effectively becomes a virtual soil. A

The complexity of soil behavior has led to the development
of alarge number of intricate soil constitutive models. Until
recently, these models were based on classical elastoplastic
theories and used constructs like yield surfaces, bounding
surfaces, and critical state cones to describe observed soil
behavior (Roscoe & Burland, 1968; Dafalias, 1980; Whittle
& Kavvadas, 1994; Prevost & Popescu, 1996). However,
new methods of formulating soil constitutive models are
emerging.

The pioneering work of Ghaboussi and colleagues
(Ghaboussi et al., 1991; Ghaboussi and Sidarta, 1997) dem-
onstrates that artificial neural networks (ANNs) can be used
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large amount of stress—strain data is needed to capture the
behavior of a soil within an ANN-based material model
under general loading conditions.

ANN material models are being used within self-learning
simulation (SelfSim) to extract soil behavior (Sidarta &
Ghaboussi, 1998; Shin & Pande, 2000, 2002; Hashash et al.,
2003a, 2004) from boundary measurements of load and
displacements for excavation problems and laboratory tests.
Shin and Pande (2002) describe methods to generalize data
sets for NN training. In this paper we discuss methods to
reduce the size of training sets while maintaining the same
learned behavior within the NN model.

The SelfSim inverse analysis approach provides a rich
set of stress—strain soil behavior that can be used to train a
more general ANN material constitutive model. Within the
SelfSim procedure a large amount of data is generated and
used in the training of the ANN model. This training is very
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time consuming; it takes the ANN model a significant amount
of time to fully learn the soil behavior. The length of ANN
training makes it cumbersome to apply this method to large-
scale engineering problems. However, in any ANN training
data set, there is a large amount of redundant data, or data
whose stress—strain paths are very similar. By removing
stress—strain paths that are similar from the ANN training
data set, the ANN training time can be greatly reduced with-
out compromising the accuracy of the ANN model.

2. ANN MATERIAL MODEL ARCHITECTURE
AND TRAINING PROCEDURE

Figure 1 shows the ANN architecture used in this paper that
uses the nested ANN (NANN) concept introduced by
Ghaboussi and Sidarta (1998). The architecture consists of
input and output layers separated by two “hidden” layers.
The input layer consists of the current strain state, the pre-
vious strain state, and the previous stress state; the output
layer is the current stress state. The selected ANN architec-
ture is composed of base and history modules, whereby
each module is a multilayer, feedforward NN. Higher level
history modules, which represent prior states of stress and
strain, have only one-way connections to lower modules.
This one-way connection is a unique characteristic of the
NANN, and is imposed to eliminate the influence of more
recent states of stress and strain on prior states.
ANN-based models are distinctly different from con-
ventional material constitutive models in that the model
does not include an explicit definition of material stiffness,
yield surface, hardening rules, and so forth. ANN material
models provide users with unprecedented flexibility for
learning complex material behavior. This paper uses the
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backpropagation algorithm (Reed & Marks, 1999) in the
training of the ANN. During ANN training, the connections
between the layers are adjusted until global error reaches a
minimum. A large set of stress—strain material data is required
to properly train an ANN material model.

3. SOIL BEHAVIOR USED FOR
MODEL TRAINING

Conventional laboratory tests do not generally provide suf-
ficient data sets for training of ANN material models.
Hashash et al. (2003a) introduce the use of the autoprogres-
sive algorithm for extracting material constitutive behavior
using boundary measurements of deformations around deep
excavations. SelfSim is a novel inverse analysis framework
that uses the autoprogressive algorithm in conjunction with
NN material models to extract soil behavior from field obser-
vations. This framework allows the numerical model to con-
tinuously learn from field observations. The framework, as
applied to deep excavations, is summarized here and pre-
sented in more detail in Hashash et al. (2006), Marulanda
(2005), and Hashash et al. (2003a).

In a typical braced excavation problem, Figure 2 wall
deformations and surface settlements are measured at
selected excavation stages (Hashash et al., 20035). In a
given excavation stage, the soil has been excavated to a
known depth and a number of struts have been placed to
support the excavation wall. In step 2a of SelfSim learning
the soil is removed and bracing is installed to correspond to
a given excavation stage, that is, force boundary conditions
are applied. The algorithm stipulates that stresses, com-
puted based on equilibrium considerations, are representa-
tive of actual stress fields. In step 2b the measured field
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Fig. 1. A nested adaptive NN soil model. Arrows represent layer connections.
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Fig. 2. The SelfSim inverse analysis framework. [A color version of this figure can be viewed online at www.journals.cambridge.org]

deformations are imposed on the model. The algorithm stip-
ulates that strains, computed using compatibility consider-
ations, are representative of actual strain fields. Both analyses
use the same NANN-based soil model. The computed stress—
strain pairs are used to retrain the NANN material model.

Several SelfSim learning cycles are performed for each
construction stage. SelfSim learning cycles are performed
sequentially for all available construction stages. This results
in a single SelfSim learning pass. Several learning passes
are usually needed to develop an ANN constitutive model
that will adequately capture measured deformations in a
finite element (FE) analysis. The resulting ANN constitu-
tive model can be used in the analysis of later excavation
stages or other types of excavations in similar ground con-
ditions as shown in step 3 of Figure 2.

The SelfSim algorithm is computationally demanding
because the ANN model is repeatedly retrained to fully
learn the soil behavior using large stress—strain data sets.
An ANN model has to be retrained up to several hundred
times during SelfSim learning. By reducing the training
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data sets and subsequently the training time of ANN mod-
els, the SelfSim algorithm can be run more efficiently, and
is made more practical for use in large-scale engineering
problems.

A hypothetical deep excavation is simulated using the FE
method and used to provide a diverse stress—strain data set
for training an ANN material model and exploring methods
to reduce the size of the data set while maintaining the
performance of the trained material model. The idealized
deep excavation in Figure 3 is constructed after Hashash
and Whittle (2002), who use the MIT-E3 model to simulate
normally consolidated Boston blue clay. The plane—strain
analysis is performed assuming undrained conditions and
shows that the soil within the excavation and behind the
support wall undergoes complex loading paths. The soil
undergoes maximum strains of about 1%, yet most of the
soil experiences strains less than 0.4%. Stress—strain data is
extracted at the Gaussian integration points in the FE mesh
and used to train an ANN model, and includes 3960 data
sets per step and 34,885 data sets for all 10 excavation
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Fig. 3. The geometry used in ANN model training.

stages (some data sets are removed with each excavation
stage).

4. EVALUATION OF LEARNED
SOIL BEHAVIOR

After ANN model training is complete, the model must be
exercised to determine how well it has learned its target soil
behavior. The ANN model is used in the same FE analysis
from which the training data set is extracted. The perfor-
mance of the trained ANN is evaluated by comparing bound-
ary deformations with the target response, comparing stress—
strain response throughout the model, and data visualization.
These methods for evaluating the performance of the learned
soil behavior are first demonstrated using an ANN model
trained using the full stress—strain data set. The methods are
then used in evaluating ANN models trained with reduced
data sets.

4.1. Evaluation of boundary deformations

FE model boundary deformations give a good overall rep-
resentation of the performance of the ANN model. To
evaluate the ANN model, wall movements and surface set-
tlements in the ANN model and target soil FE analyses are
compared. The agreement between these analyses is quan-
tified using M, , values (Marulanda, 2005). The differences
between the learned and base soil model responses are cal-
culated for each point (down the wall or along the surface)
in each excavation stage. Then, the mean and standard devi-
ation are computed for these differences to estimate the
limits of agreement defined by Bland and Altman (1986).
The limits of agreement are defined by the mean of the
differences (d) 2 standard deviations (2s):
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L) =d+2s,
L, =d—2s, (1)

Here, L}, and L are the upper and lower limits of the abso-
lute value of the differences between target and computed
response. A total of 95% of differences lie between these
limits (Bland & Altman, 1986). The magnitude of the inter-
val from L/ to L, is referred to here as the M, ,:

M,,=L;—L. (2)

A small value for the M, is desired, because it represents
better agreement between the learned and target soil
responses. Figure 4a and b show wall movements and sur-
face settlements for the learned and target soil behavior,
respectively. For the trained ANN model, the M, value for
surface settlements is 0.11 mm, and for wall movements
the value is 0.08 mm. For comparison, the target soil max-
imum values for surface settlement and wall movement are
53 and 105 mm, respectively. Therefore, the surface settle-
ments and wall movements of the trained ANN model cor-
respond very well to those of the target soil behavior.

4.2. Three-dimensional (3-D) data visualization

Evaluation of boundary deformations indicates that the ANN
model likely learned the target soil behavior. However, this
method of comparison does not actually compare the stress—
strain behavior of each Gaussian point in the FE mesh. A
quick, qualitative method for comparing Gaussian point
behavior is to plot the stress—strain state of each Gaussian
point in a 3-D space.

The visualizations in this paper are generated with the
VizCoRe workbench. VizCoRe (visualization of constitu-
tive relations, www.uiuc.edu/~vizcore) is an integrated envi-
ronment to characterize, develop, and learn material
constitutive relations. VizCoRe is further described in
Hashash et al. (2002, 2003c). Although the actual plotted
data is three dimensional, it is presented here as 2-D slices
to facilitate presentation on a 2-D sheet.

Figure 5 plots the target soil response (here characterized
by the MIT-E3 soil model) and the learned soil response in
stress space. Because stress is the output of the ANN model,
it is more appropriate to evaluate the accuracy of the model
by visualizing its data in stress space. The data is normal-
ized by the corresponding initial effective vertical stresses.

Overall, the target soil response and the learned soil
response are very similar, and occupy roughly the same
area in stress space. However, there are some notable dif-
ferences when comparing the two responses. For example,
in the learned soil response, significantly many more points
experience larger decrease in stress. These same points also
experience decrease in shear stresses that are not present in
the target soil behavior. All of these data points come from
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Fig. 4. Responses of the ANN model trained with a full data set: (a) wall movements, (b) surface settlements, (c) normal stress
visualization, and (d) shear stress visualization. [A color version of this figure can be viewed online at www.journals.cambridge.org]

areas far behind the excavation wall. These areas experi-
ence very small strain magnitudes the ANN did not learn
well. Nevertheless, the overall response of the excavation
is well represented.

4.3. Evaluation of soil behavior

Data visualization qualitatively compares target and learned
soil responses. The concordance correlation coefficient
(CCC) proposed by Lin (1989) is used to quantify the amount
of correlation between the target soil response and the learned
soil response. The CCC is a widely used measure to evalu-
ate the agreement between two data sets by measuring the
data distribution along the 45° line through the origin. That
is, if one data set is plotted on the x axis, and another on the
y axis, the 45° line through the origin would be a line of
perfect agreement between the data sets. Unlike other mea-
sures of correlation, like the correlation coefficient (R?),
the CCC measures both precision and accuracy. Precision
evaluates how far the stresses or strains deviate from the
best-fit linear function. Accuracy evaluates how far the best-
fit line deviates from the 45° line (Lin, 1992). The CCC is
scaled between —1 and 1, where 1 reflects perfect agree-
ment, — 1 reflects perfect reverse agreement, and zero reflects
no agreement. The CCC is estimated using the mean (Y;),
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variance (S7), and covariance (Sf) of the stresses and
strains as follows:

281>
CCC=5——F———=3. 3)
SE+8;+ (Y —1)?
where
_ 12
nzzgn,
2 1 : v
SP=-2 ¥, -Y)% j=12,
n =1
and

12 _ _
Sé=;2mr#Mm—n)
i=1

For evaluation of global stress—strain behavior, ¥; and S,
correspond to the mean and the variance of learned soil
stresses or strains, Y, and S, correspond to the mean and the
variance of target soil stresses or strains, and S;, is the
covariance between learned soil responses and target soil
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Fig. 5. A comparison of the target soil stress response (represented by the
MIT-E3 soil model) and the trained ANN model stress response. A full
data set was used in training the ANN model. [A color version of this
figure can be viewed online at www.journals.cambridge.org]

responses (Marulanda, 2005). In calculating CCC values,
stress—strain response from the geostatic stage of the FE
analysis is ignored, as it does not pertain to actual consti-
tutive behavior and would only bias the calculated CCC
values.

Table 1 gives the CCC values for the learned soil behav-
ior for the seven nonzero components of stress and strain.
All CCC values are very high, and indeed, CCC values
mostly show very little variation. However, the variation
that does occur is significant, and corresponds to very large
differences in FE analysis results.

Table 1. CCC values of
stress—strain components
for ANN model trained
with MIT-E3 data

Component CCC Value
e 0.994
€22 0.991
303 0.992
oy 0.943
0 0.955
o33 0.865
ol 0.991
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Figure 4 shows complete response of the ANN model
trained with braced excavation data. Both the wall move-
ments and surface settlements match their targets very
closely, as implied by the above M;, values.

Although the behavior of the trained soil model is very
good, the training time with the full data set on a 1.7-GHz
desktop computer can take up to 44.1 h. Such a long train-
ing time makes the ANN training procedure cumbersome to
use, especially when coupled with the SelfSim procedure.

4.4. Methods for improving soil model
training performance

The amount of data used in the training procedure must be
reduced to minimize the training time for an ANN model.
However, this must be done without adversely affecting
trained model performance. A large amount of the training
data can be removed by taking advantage of self-similarity
within the training data set.

This concept is best understood through data-set visual-
izations like Figure 5a. This figure shows the stress states
from the braced excavation. The paths are very tightly
spaced, and many paths contain similar information about
soil behavior. By removing stress—strain data paths that are
similar, the number of repetitive data can be reduced. Left
behind is a data set that contains the minimum amount of
information necessary for learning the relevant soil behav-
ior. Because there is less data in the training data set, ANN
model training takes less time. Because the training data
still contains stress—strain paths that represent the relevant
soil behavior, ANN model performance is not compro-
mised. The concept of reducing large data sets while main-
taining the essential information content of the data sets is
used in a range of applications including electronic data
and image compression, graphical data display (Hill &
Lewicki, 2006), and data mining (Chen et al., 2004). Sim-
ilar concepts are needed for reducing training stress—strain
data sets for the ANN material model. Three methods for
reducing an ANN training data set are introduced in the
following paragraphs: the Gaussian point method, the lat-
tice method, and the loading path method.

4.5. Gaussian point method

The simplest method for reducing a data set uses the geom-
etry of the FE mesh to choose the points to retain. The deep
excavation model of Hashash and Whittle (2002) uses stan-
dard eight-node isoparametric elements; each element con-
tains nine Gaussian integration points, where values of stress
and strain are calculated. In the Gaussian point method, the
training data set is reduced by retaining data from only
certain Gaussian integration points in each FE. Figure 6
shows the order in which the Gaussian integration points
are removed from the elements; the scheme attempts to
maintain symmetry of the retained points during data
removal.
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Fig. 6. The order in which Gaussian integration points are removed in the
Gaussian point data reduction method.

4.6. Lattice method

Although the Gaussian point method is very simple, it is
also linked to the geometry of the FE model. With the lat-
tice method, focus is shifted away from model geometry
and toward the distribution of data in stress—strain space.

In the lattice method, an imaginary point lattice is super-
imposed on the Gaussian point stress data and used to ensure
an even data spacing. The steps in this method are the
following:

1. Normalize stress data from last stage of the FE analy-
sis by the initial vertical effective stress. The last stage
of the FE analysis generally corresponds to the widest
distribution of data in stress—strain space.

2. Choose a lattice spacing corresponding to the mini-
mum desired distance between stress points.

3. Choose a stress point and calculate the distance between
it and all other stress points. Distance is calculated as

d= \/(Ull,A - 0'11,3)2 + (0'22,A - 0'22,13)2 R (0'31,A - 0'31,3)2,
4)

where 0; 4 is the ijth component of stress for the cho-
sen Gaussian point, and o;; g is the ijth component of
stress for the Gaussian point being compared.

4. Remove all points closer than the chosen lattice
spacing.
5. Repeat steps 3 and 4 for all remaining stress points.

4.7. Loading path method

The lattice method only considers the spatial distribution of
the final stage of the FE analysis; it does not account for the
stress—strain history of each point. In the loading path
method, stress—strain paths that are similar, that is, they
experienced similar loading histories, are removed to reduce
the size of the data set. To determine how alike these stress—
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strain paths are, the concordance correlation coefficient is
again employed. In this instance, ¥, and S, from Eq. (3)
correspond to the mean and the variance of one stress—
strain path, ¥, and S, correspond to the mean and the vari-
ance of the stress—strain path being compared, and S, is the
covariance between the two stress—strain paths. The steps
in this method are the following:

1. Choose a threshold CCC value; that is, a maximum
level of similarity between loading paths over all load-
ing stages.

2. Extract the stress—strain loading paths at a given Gauss-
ian (material/integration) point from all elements in
an FE analysis.

3. Compare these stress—strain paths to the paths extracted
from every other Gaussian point in the FE mesh and
compute CCC values for each stress—strain compo-
nent at all loading stage using Eq. (3).

4. Compute the average CCC value for all stress—strain
components for a given point. The average CCC value
indicates how similar each point’s loading history is
to the Gaussian point selected in step 2.

5. Remove all stress—strain loading paths corresponding
to Gaussian points with CCC values above the chosen
threshold from the NN training data set.

Choose a new Gaussian point, not excluded based on step 5,
and repeat steps 3 through 5 until all possible points are
checked.

4.8. Results

For each data reduction method, the ANN training data set
is reduced to several different sizes. For each size of data
removed, a new ANN model is trained with the reduced
data. As with the original trained ANN model, each ANN
model trained with reduced data (termed a reduced ANN
model) is used in the original FE analysis of Hashash and
Whittle (2002). The accuracy of the resulting ANN is eval-
uated qualitatively and visually by plotting the computed
ANN response and quantitatively by applying M, , and CCC
measures described in earlier sections. CCC and M, , values
are calculated for each case, and plotted against the percent-
age of data removed. For CCC results, only the values of
nonzero strain components and their corresponding stress
components are plotted.

4.9. Reduction using the Gaussian point method

Figure 7 plots CCC and M;, values for the reduced ANN
models. The CCC values decrease slightly as more data is
removed, indicating that the Gaussian point method removes
data evenly from the training data set. The M, , values also
generally increase as data is removed.

Even with eight of the nine Gaussian points removed
(89% data removal), the ANN response is still very good,
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Fig. 7. The Gaussian point method CCC and M, values versus the percentage of data removed.

indicating that a large portion of the ANN training data set
is not necessary for training an accurate ANN model.

4.10. Reduction using the lattice method

Figure 8 plots CCC and M, values for the reduced ANN
models. CCC values start out relatively high, but drop to a
local minimum around 40% data removal. The values then
begin increasing and peak around 75% data removal. A
similar trend is seen in M, , values, where they increase and
peak in the 20—45% data removal range.

The lattice method gives good results over a large range
of data removal. However, there is a zone from 20 to 45%
data removal where the CCC values drop dramatically and
computed wall movements and surface settlements become
very poor. This indicates that information necessary for learn-
ing the soil behavior is being removed. The authors are
uncertain if this is a general characteristic of the lattice
method or specific to the deep excavation simulation con-
sidered in this paper.

4.11. Reduction using the loading path method

Figure 9 plots CCC and M,, values for the reduced ANN
models. CCC values start outrelatively high, and values slowly

and evenly decrease as more data is removed. This shows
that both small- and large-strain points are being removed at
the same rate, leading to a balanced data set. The M, , values
remain relatively low throughout the data removal process,
increasing slightly as data is removed. Overall, the CCC and
M, , responses for the loading path method are excellent.
Figure 10 shows several different responses for the 94%
dataremoval case. Figure 10a shows wall movements, which
match very closely with base wall movements. Figure 10b
shows surface settlements, which are also very good. Fig-
ures 10c and 10d visualize the stress response. The response
is very similar to the ANN model trained with the full data
set; more points experience increases in vertical and hori-
zontal stress than the target soil behavior. Still, the visual-
ized responses are very similar to the target soil behavior.

4.12. Improvements in model training time

Figure 11 shows the variation in ANN model training time
with amount of data removed. Data from all three data reduc-
tion methods is presented. In all cases, the time necessary
to reduce the data set is negligible when compared to ANN
model training time. The data in Figure 11 follow a linear
trend; the slope of the best-fit line is proportional to percent
of data removed. By the time 90+ percent of the data has
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Fig. 8. The lattice method CCC and M, values versus the percentage of data removed.
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Fig. 9. The path method CCC and M, values versus the percentage of data removed.

been removed, training time has been reduced by a factor of
20. More importantly, as shown earlier, this drastic reduc-
tion in training time does not appreciably affect the response
of the ANN material model in FE analysis.

5. APPLICATION TO TRIAXIAL TEST
BEHAVIOR

The loading path method of data reduction is applied to a
simulated isotropically consolidated undrained triaxial com-
pression test (CIUTxC). A cylindrical FE model is con-

structed with a height and width of 8 and 4 cm, respectively.
To ensure multiple stress—strain paths, both the loading base
and loading cap are simulated as fully frictional. Figure 12
shows the simulated 3-D specimen and FE mesh. The soil
specimen is simulated using the modified cam-clay consti-
tutive model (Roscoe & Burland, 1968) with normally con-
solidated Boston blue clay properties. Figure 13 visualizes
the response of the test in o{,—05, space (colored by o/, ),
with each component normalized by the initial vertical effec-
tive stress. The data consists of 2816 data sets per step and
a total of 42,240 points (15 steps).
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Fig. 10. Responses of the path method case of 94% data removal: (a) wall movements, (b) surface settlements, (c) normal stress
visualization, and (d) shear stress visualization. [A color version of this figure can be viewed online at www.journals.cambridge.org]
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5.1. Soil behavior without data reduction

Stress—strain paths are extracted from the CIUTxC FE mesh
and used to train an ANN model. ANN model training time
was 2.6 h on a 1.7-GHz desktop computer; the model was
considered fully trained after 5000 iterations. Figure 14a
and b compare the boundary deformations for the target soil
behavior and learned soil behavior. Each figure plots lateral
displacements versus specimen height in the cross-sections
identified in Figure 12b. In each plot, the learned behavior
matches the target behavior very closely. As shown in Fig-
ure l4c, the M;, values for Section X-X and Section Y-Y
are 0.10 and 0.046 mm, respectively.

Figure 14d presents a visualization of the learned stress
response. Compared to Figure 13, the two responses are
virtually identical. This similarity is reflected in the CCC
values presented in Figure 14c. The average strain CCC
value is 0.988, while the average stress CCC value is 0.978.
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Fig. 12. The CIUTxC test (a) set-up with loading conditions and (b) top
view of the test FE mesh and cross section.

https://doi.org/10.1017/5089006040707014X Published online by Cambridge University Press

J.N. Butkovich and Y.M.A. Hashash

V":.Tr.,_

Y

o

'
L

0.0][02 o, 0.2

0.0 "18

a

Fig. 13. Visualization of Gaussian point stress values from the CIUTxC
test in a{,—073, space. [A color version of this figure can be viewed online
at www.journals.cambridge.org]

5.2. Data reduction with the loading path method

The data set used to train the CIUTXC ANN model is reduced
using the loading path method to 6% of its original size.
This reduced data set is then used to train an ANN model;
training takes 0.2 h on a 1.7-GHz desktop computer; the
model was considered fully trained after 5000 iterations.
Figure 15a and b again plots boundary deformations for the
target and learned soil behavior, and again, the values match
very closely. As specified in Figure 15c, the M, values for
Section X—X and Section Y-Y are 0.12 and 0.067 mm,
respectively.

Figure 15d visualizes the learned stress response. Com-
pared to Figure 13, the two responses are virtually identi-
cal. This similarity is reflected in the CCC values presented
in Figure 15¢. The average strain CCC value is 0.979, while
the average stress CCC value is 0.976.

6. DISCUSSION AND CONCLUSIONS

This paper presents methods for optimizing the process in
which ANN soil models learn soil behavior. These methods
selectively reduce the size of the ANN model training data
set. Reducing the data set size drastically reduces ANN
model training time without adversely affecting the learned
soil behavior.

The Gaussian point method for data reduction is very
simple to implement, yet it is linked to the geometry of the
FE model used to generate the training data set. The lattice
method is more complicated to implement and does not
evenly remove the training data. Because this method focuses
only on the last stage of the FE model, it causes some bias-
ing of the data. The loading path method is less compli-
cated to implement than the lattice method, but more
complicated than the Gaussian point method. However,
unlike the Gaussian point method, it does not rely on the FE
geometry. Also, it considers all stages of the FE analysis,
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Fig. 14. Responses of the ANN model trained with full triaxial test data: (a) displacements in section X-X (Fig. 12b), (b) displace-
ments in section Y=Y (Fig. 12b), (c) a table of CCC and My, values, and (d) visualization of stress behavior. [A color version of this
figure can be viewed online at www.journals.cambridge.org]
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unlike the lattice method. All three data reduction methods
give good results, but the loading path method is the most
robust of the three, and is therefore recommended for use in
reducing ANN model training data sets.

The loading path method is not limited to FE models of a
braced excavation. It is applied to a model of an isotropi-
cally consolidated undrained triaxial compression test, with
very good results. This indicates that the loading path method
is applicable to a wide range of ANN model training data
sets.

By using the data reduction methods presented in this
paper, ANN soil models can learn soil behavior more quickly
and more efficiently, allowing them to be more easily used
in engineering research, and eventually in engineering
practice.
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