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The flow physics of inertio-elastic turbulent Taylor–Couette flow for a radius ratio of 0.5
in the Reynolds number (Re) range of 500 to 8000 is investigated via direct numerical
simulation. It is shown that as Re is increased the turbulence dynamics can be subdivided
into two distinct regimes: (i) a low Re � 1000 regime where the flow physics is essentially
dominated by nonlinear elastic forces and the main contribution to transport and mixing
of momentum, stress and energy comes from large-scale flow structures in the bulk region
and (ii) a high Re � 5000 regime where inertial forces govern the flow physics and the
flow dynamics is mainly governed by small-scale flow structures in the near-wall region.
Flow–microstructure coupling analysis reveals that the elastic Görtler instability in the
near-wall region is triggered via significant polymer extension and commensurately high
hoop stresses. This instability gives rise to small-scale elastic vortical structures identified
as elastic Görtler vortices which are present at all Re considered. In fact, these vortices
develop herringbone streaks near the inner wall that have a longer average life span than
their Newtonian counterparts due to their elastic origin. Examination of the budgets of
mean streamwise enstrophy, mean kinetic energy, turbulent kinetic energy and Reynolds
shear stress demonstrates that increasing fluid inertia hinders the generation of elastic
stresses, leading to a monotonic reduction of the elastic-related effects on the flow physics.
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1. Introduction

Taylor–Couette (TC) flow, or flow between two concentric, independently rotating
cylinders, is a classic paradigm for studies of nonlinear dynamics and hydrodynamic
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stability for both Newtonian and non-Newtonian fluids. Since the seminal work of Taylor
(Taylor 1923), a tremendous number of studies have been focused on the transitions and
instabilities of Newtonian fluids in the TC geometry with co-rotation or counter-rotation
of the cylinders (Coles 1965; Andereck, Liu & Swinney 1986; Dutcher & Muller 2009b);
in fact, many excellent reviews summarizing the results of these studies have been
written (Swinney & Gollub 1985; Chossat & Iooss 1994; Fardin, Perge & Taberlet 2014;
Grossmann, Lohse & Sun 2016). For a fixed outer cylinder, there are well-established
sequences of transitions as the fluid inertia is enhanced. These transitions occur at a
specific Reynolds number defined as Re = ΩRi(Ro − Ri)/ν, where Ri and Ro denote the
inner and outer cylinder radii, respectively, Ω is the inner cylinder angular velocity and ν

represents the fluid kinematic viscosity. Specifically, as Re is progressively increased, the
flow undergoes a series of transitions from a circular Couette flow, to an axially periodic
Taylor vortex flow, and in turn to a state with waves superimposed on vortices and finally
to chaotic and turbulent Taylor vortex flows (Coles 1965; Fernstermatcher, Swinney &
Gollub 1979; Takeda 1999; Dutcher & Muller 2009b). When the flow becomes turbulent,
small-scale streamwise-oriented, counter-rotating vortices, namely, Görtler vortices (GV)
begin to emerge in the boundary layers over the concave or convex wall as a result of a
Görtler instability (Barcilon et al. 1979; Barcilon & Brindley 1984; Wei et al. 1992; Saric
1994). Barcilon et al. (1979) hypothesized that the ‘herringbone shaped streaks’ observed
in their experiments provided the evidence of GV occurring at the outer cylinder surface
(Barcilon & Brindley 1984). This hypothesis was later critically examined by detailed
experiments conducted by Wei et al. (1992) showing that the GV indeed exist and cause
near-wall streaky structures to form the herringbone-like patterns. In fact, it was shown
that the GV first emerge at the inner cylinder surface and then at the outer one, since
the curvature and the velocity gradient are larger at the inner cylinder wall as compared
with the outer one. These experimental observations were subsequently reproduced by
Dong (2007) via direct numerical simulations (DNS) of turbulent TC flows at various Re.
The simulations have further demonstrated that the GV appear first around the outflow
boundaries between the large-scale Taylor vortices (TV) cells and then spread over the
entire cylinder surface with increasing Re. In addition, the GV can result in stronger
velocity fluctuations and give rise to streaky structures near the wall, which are known
to play a significant role in the complex turbulent dynamics.

It is well known that the addition of a small amount of polymer to Newtonian fluids
dramatically alters the instability and transitions reported for Newtonian fluids in the TC
flow (Groisman & Steinberg 1996, 1997, 1998a,b; Muller 2008), where the elastic effect
of the polymeric solution is commonly quantified by the Weissenberg number Wi, which
is the product of the fluid relaxation time λ and the inverse of the characteristic shear rate
of the flow, γ̇ (Larson & Desai 2015). In the absence of fluid inertia (Re � 1), as Wi is
increased, polymers become highly stretched along the curved streamlines and develop
significant polymeric normal stresses, i.e. hoop stresses, that generate an elastic body
force that squeezes fluid elements radially inward, rendering the flow linearly unstable;
hence, this transition is of purely elastic origin (Larson, Shaqfeh & Muller 1990; Larson
1992; Sureshkumar, Beris & Avgousti 1994; Shaqfeh 1996; Groisman & Steinberg 1998b;
Al-Mubaiyedh, Sureshkumar & Khomami 1999, 2000, 2002; Thomas, Sureshkumar &
Khomami 2003; Ghanbari & Khomami 2014). This purely elastic instability through
higher-order transitions can lead to the elastic turbulence (ET) state, which has completely
different characteristics than the inertial turbulence (Groisman & Steinberg 2000, 2004;
Steinberg 2021). ET displays large velocity fluctuations in a wide range of spatial and
temporal scales with a power-law decay of the kinetic energy spectra in a frequency (f )
domain E( f ) ∼ f (−α), with the exponent α > 3 (between −3.3 and −3.6 depending on
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the flow geometry) (Fouxon & Lebedev 2003; Groisman & Steinberg 2004; Steinberg
2019). Thus, due to the steep decay of the velocity spectrum, ET is essentially a spatially
smooth and temporally random flow, dominated by strong nonlinear interaction of a few
large-scale spatial modes (Steinberg 2021).

When both fluid inertia (Re) and elasticity (Wi) are sufficiently high (typically 1 <

Re � 103), the elasticity number, El = Wi/Re is commonly used to evaluate the relative
importance of elastic and inertial effects (Avgousti & Beris 1993; Baumert & Muller
1995). In the range of very low elasticity (El � 1), researchers have primarily recovered
transitions similar to Newtonian fluids, with the critical thresholds shifted slightly due
to the presence of a small amount of fluid elasticity (Groisman & Steinberg 1998b;
Crumeyrolle & Mutabazi 2002; Dutcher & Muller 2009a, 2011; Mohammadigoushki &
Muller 2017). While in the presence of moderate elasticity (El ∼ 10−2), the transitions
observed for Newtonian fluids are modified by elasticity and replaced by new transition
sequences involving highly localized flow patterns such as rotating standing waves (RSW),
disordered oscillations, oscillatory strips and diwhirls (similar to the ‘flame pattern’
observed by Baumert & Muller 1997, 1999) (Groisman & Steinberg 1996, 1997, 1998a,
b; Crumeyrolle & Mutabazi 2002; Muller 2008). The aforementioned flow patterns and
transition pathways have been faithfully reproduced via high-fidelity DNS with El = 1/3
by using the FENE-P (finitely extensible nonlinear elastic-Peterlin) viscoelastic model
(Bird et al. 1987) that mimics the rheological properties of dilute polymer solutions used
in the experiments (Thomas, Khomami & Sureshkumar 2006b, 2009).

More recently, Dutcher & Muller (2009a, 2013) reported a different series of transitions
for a slightly shear-thinning polyethylene oxide solution at 0.1 < El < 0.2. Specifically,
the following transition sequence was observed: From the azimuthal flow to standing
vortices, followed by disordered RSW and then to a turbulent-like TC flow labelled
elasticity-dominated turbulence (EDT), accompanied by a transition hysteresis. Latrache,
Crumeyrolle & Mutabazi (2012) have also identified two regimes of turbulence in the
viscoelastic TC flows of shear-thinning polyethylene oxide–alcohol–water solution for
0.01 � El � 0.05, namely, spatio-temporal intermittency and inertio-elastic turbulence.
Elastically induced turbulent flows have also been realized numerically by our previous
DNS at 0.2 � El � 5 (Liu & Khomami 2013a). The simulations have shown the
coexistence of highly localized elastically driven inflows (along the axis of the cylinder
similar to the solitary coherent structures such as oscillatory strips and diwhirls) and
centrifugally driven outflows, clearly underscoring the strong competition between fluid
inertia and polymer induced elastic forces in this class of flows.

Although the aforementioned studies of turbulent flows in the inertio-elastic regime
have identified new and unique transition scenarios, the lack of experimental techniques
to precisely measure the elastic stress fields in this class of flows has prevented complete
experimental characterization of the flow structures and the underlying polymer induced
and/or modified turbulent dynamics. Thus, a fundamental question arises, namely, how
do inertial effects modify flow structures and turbulence dynamics as well as the flow
microstructure coupling in the inertio-elastic turbulence of curvilinear flows such as TC
flow where the hoop stresses play a central role in driving flow transition and nonlinear
dynamics? Some preliminary work in this direction has been performed. Specifically,
Lee, Sengupta & Wei (1995) conducted a series of experiments at 1500 � Re � 30 000
to study the effect of polymer additives on the near-wall structures of turbulent TC
flow. They demonstrated that polymer additives have a stabilizing effect on near-wall
centrifugal instabilities, i.e. the GV formation was suppressed. In addition, it was shown
that the measured Görtler instability wavelength decreases with increasing Re and with
decreasing polymer concentration. In addition, Liu & Khomami (2013b) have performed
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extensive DNS of high-Re (Re = 5000) viscoelastic turbulent TC flows and revealed the
occurrence of inertio-elastic Görtler instability near the outer wall and the breakdown
of large-scale Newtonian TV that results in significant drag enhancement. Moreover, the
drag enhancement mechanism in viscoelastic turbulent TC flow shows a strong curvature
dependence, namely, for a small radius ratio η = Ri/Ro the large-scale TV are destabilized
by an elastic/inertio-elastic Görtler instability near the inner/outer wall; while for a large
radius ratio η the well-organized TV occupying the entire gap persist due to the stabilizing
effects of elasticity (Song et al. 2019).

In contrast, the addition of minute amounts of long chain polymers to rectilinear
(unidirectional) wall-bounded turbulence leads to a dramatic decrease in turbulent
friction drag, which saturates at ∼80 % reduction, the so-called maximum drag reduction
asymptote (Toms 1948; Lumley 1969; Virk 1975). The origin of polymer-induced drag
reduction has been ascribed to polymer stretch in the near-wall region that acts to suppress
the self-sustaining process of wall turbulence, as evinced by the weakened near-wall
vortices of larger length scale (Lumley 1977; Metzner 1977; Sureshkumar, Beris &
Avgousti 1997; Li, Sureshkumar & Khomami 2006; Kim et al. 2007; White & Mungal
2008; Li, Sureshkumar & Khomami 2015; Teng et al. 2018; Marchioli & Campolo 2021).
Samanta et al. (2013) have proposed that the maximum drag reduction dynamics is driven
by an elasto-inertial instability that can even eliminate the Newtonian turbulence. Hence,
the maximum drag reduction state can be interpreted as a self-sustained elasto-inertial
turbulence (EIT), where the turbulence is sustained mainly by the fluctuations of
small-scale elastic structures (Dubief, Terrapon & Soria 2013; Sid, Terrapon & Dubief
2018). Recent studies in pipe (Choueiri, Lopez & Hof 2018; Lopez, Choueiri & Hof
2019) and channel (Shekar et al. 2019) flows have provided convincing evidence that a
reverse transition pathway from Newtonian turbulence via a relaminarization of the flow
can eventually lead to the EIT state. An important advancement towards understanding
the EIT dynamics has been achieved recently by Shekar et al. (2019, 2020). Specifically,
they have shown that the trains of weak spanwise-oriented flow structures with inclined
sheets of polymer stretch are related to a new viscoelastic nonlinear Tollmien–Schlichting
attractor, that is nonlinearly sustained by viscoelastic stresses. However, small-scale elastic
structures display streamwise-oriented flow topology in the viscoelastic TC turbulence,
leaving the underlying elasticity-driven physics, in particular the role of hoop stresses in
generation of turbulence and vortical structures, an open question.

It is well known that inertia plays a very important role in flow transitions, pattern
formation, turbulence dynamics and drag modification of viscoelastic TC flow. To this
end, to provide a clear mechanistic understanding of how variation in Re affects flow
transitions in the viscoelastic TC flow, we have examined the flow dynamics over a
broad range of Re while keeping the Wi constant. Although it is much more difficult
to experimentally realize the inertially driven flow transitions obtained by the present
simulations, the desired mechanistic understanding of flow transitions from an elastically
dominated to an inertio-elastic, and finally to an inertially dominated turbulent flow
can only be readily obtained via the strategy employed in this study. The present work
is dedicated to examining the influence of fluid inertia on the flow structure and the
turbulence dynamics of viscoelastic turbulent TC flow in the inertio-elastic regime. To this
end, we have performed DNS for a radius ratio η = 0.5 at five Reynolds numbers, ranging
from 500 to 8000, corresponding to low to moderate El in the range of 0.00375 ∼ 0.06.
Specifically, we depict how the increase in Reynolds number leads to the flow transitions
from EDT to inertia-dominated turbulence (IDT), highlighted by striking changes in the
near-wall herringbone streaks as well as statistical quantities.
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2. Problem formulation and computational details

2.1. Governing equations
In our prior studies we have successfully used a fully spectral, three-dimensional parallel
algorithm to predict high-order nonlinear viscoelastic TC flow transitions (Thomas et al.
2006a,b, 2009) and study viscoelastic TC turbulence (Liu & Khomami 2013a,b; Song
et al. 2019). In this study, we have used a modified version of this code to avoid use
of artificial diffusion (AD) to stabilize numerical integration of the conformation tensor
evolution equation (see below for details). Similar to our prior studies, the FENE-P
constitutive equation is used to model the polymer contribution to the total stress. The
physical connection of the FENE-P model to real elastic liquids, i.e. dilute solutions of
high molecular weight, finitely extensible flexible polymers in a theta solvent, makes
it a model of choice for this class of simulations. This model captures the essential
rheological response of this class of fluids both in shear and extension. The maximum
chain extensibility is defined as L, and remains constant in the simulations. Thus,
flow-induced polymer chain scission is not captured in our simulations. Overall, chain
scission in stochastic flows has not been extensively studied; even if a model existed
that could accurately capture flow-induced chain scission in this class of flows, its
implementation in DNS of viscoelastic flows would require computational power well
beyond today’s most advanced supercomputers. We have chosen d = Ro − Ri, d/ΩRi,
ΩRi, ρ(ΩRi)

2 and ηpΩRi/d as scales for length, time, velocity u, pressure p and polymer
stress τ , respectively. Here, ρ represents the solution density, and the total zero-shear
solution viscosity ηt is the sum of the solvent (ηs) and polymeric (ηp) contributions.
Further, we scale the conformation tensor C, which represents the ensemble average of
the second moment of the end-to-end vector of the polymer chain, with respect to BT/H,
where B, T and H denote the Boltzmann constant, absolute temperature and the Hookean
spring constant of the elastic dumbbell model, respectively. The resulting dimensionless
equations governing the motion of an incompressible FENE-P fluid are as follows:

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇P + β

Re
∇2u + 1 − β

Re
∇ · τ , (2.2)

and
∂C

∂t
+ u · ∇C = C · ∇u + (∇u)T · C − τ , (2.3)

where polymer molecules are modelled as dumbbells composed of two beads and a
nonlinear spring, and the polymer stress τ can be related to the stress conformation tensor
C via the relationship

τ = f (C)C − I

Wi
. (2.4)

The function f (C), known as the Peterlin function, is defined as

f (C) = L2 − 3
L2 − trace(C)

. (2.5)

In the above equations, β = ηs/ηt is the solvent to total viscosity ratio; the Reynolds
number is defined as Re = ρΩRid/ηt, and the Weissenberg number as Wi = λRiΩ/d.
The velocity vector u is composed of three components ur, uθ and uz in the r, θ and
z directions, respectively, in a cylindrical coordinate system, where the z-axis coincides
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with the cylinder axis. The length of the computational domain along the cylinder axis is
set as Lz = πd, so the effects of large-scale TV in the gap and turbulent fluctuations can
be obtained reliably (Ostilla-Mónico, Verzicco & Lohse 2015). The governing equations
are also supplemented by no-slip boundary conditions at the walls, as well as periodic
boundary conditions in the z direction.

2.2. Numerical method
The hyperbolic nature of polymer conformation tensor evolution equation requires special
consideration to ensure numerical convergence especially at high Wi (Alves, Oliveira
& Pinho 2021). Adding a global AD term κ∇2C to this equation is a common and
successful practice for attaining numerical stability in inertially dominated turbulent flows
(Sureshkumar, Beris & Avgousti 1995; Sureshkumar et al. 1997; Li et al. 2006). To ensure
accuracy of the solution in the presence of AD, extensive studies have been performed
where the influence of Schmidt number Sc[= (Reκ)−1] on the overall flow dynamics has
been studied (Gupta & Vincenzi 2019; Zhu & Xi 2020). Specifically, it has been shown that
a small diffusivity [Sc ∼ O(10−1)] will not modify the essential features of the velocity
and polymer conformation tensor fields in inertially dominated turbulent flows. However,
the presence of AD has recently been linked to the inability of simulations to resolve
small-scale elastic structures and this has been identified as the main reason for inability
of many prior studies to observe the elasto-inertial instability in channel flows (Sid et al.
2018).

The use of local or global AD in viscoelastic flow simulation has been a subject of
debate for decades (Talwar, Ganpule & Khomami 1994; Alves et al. 2021). Specifically,
it has been shown that convergent and accurate solutions can be obtained when the
convective term in the conformation tensor evolution equation is discretized using
techniques appropriate for hyperbolic equations (Vaithianathan et al. 2006). To this
end, in this study we have used a proven technique (Zhu & Xi 2020), namely, a
pseudo-spectral/finite-difference hybrid method (HM) to simulate the viscoelastic TC
flow. Specifically, the convective term in the conformation tensor evolution equation (2.3)
is discretized with a second-order conservative total variation diminishing finite-difference
scheme with the MINMOD limiter (Yu & Kawaguchi 2004); a pseudo-spectral method
(SM) discretization is used for all other terms, which maximally preserves accuracy and
efficiency. In addition, a semi-implicit second-order predictor–corrector Adams–Bashforth
scheme is used for time integration of the conformation tensor equations (Housiadas &
Beris 2004), where the linear stress relaxation term is treated implicitly to strictly enforce
the chain finite maximum extension limit (Vaithianathan & Collins 2003; Dubief et al.
2005). As expected, for all the parameters studied here, this algorithm is numerically
stable and preserves the positive definiteness as well as the boundedness of the polymer
conformation tensor (0 < trace(C) < L2).

2.3. Code assessment
In order to demonstrate the accuracy of our HM code, a multi-step hierarchical validation
strategy has been adopted: (i) comparison with analytical solution of laminar flow,
(ii) faithfully capturing a unique flow pattern in viscoelastic TC flow, namely, ribbon
or RSW flow (Groisman & Steinberg 1996, 1998a; Thomas et al. 2009) and (iii) the
inertio-elastic turbulent flow. In the present study, 〈 〉 = 〈〈〈 〉θ 〉z〉t, denotes hereafter
averaging in the θ -direction (〈 〉θ ), the z-direction (〈 〉z) and time (〈 〉t), and the fluctuating
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Figure 1. Profiles of (a) mean conformation component 〈Crθ 〉 and (b) 〈Cθθ 〉 obtained by analytical solution
and HM simulation at Re = 40, Wi = 1, L = 100, β = 0.8.
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Figure 2. (a) Space–time plots of radial velocity ur along the axial line positioned at r = (Ri + Ro)/2 and
θ = π showing flow states calculated by SM and HM methods at Re = 86.6, Wi = 4.33, L = 100, β = 0.8.
(b) Time series of drag forces at the inner cylinder wall. Here, total drag forces Ft is the sum of solvent Fs and
polymer Fp contributions, Fs = 2β

∫ Lz
0 dz

∫ 2π

0 Srθ r dθ/Re/Lz, Fp = (1 − β)
∫ Lz

0 dz
∫ 2π

0 τrθ r dθ/Re/Lz, where
Srθ is the (r, θ) component of the velocity gradient tensor S = (∇u + (∇u)T)/2.

part of variable v is obtained as v′ = v − 〈v〉. In addition, r̃ = (r − Ri)/d is the
dimensionless distance to the inner cylinder wall.

A comparison of the HM numerical results with the analytical solutions of laminar
viscoelastic TC flow is depicted in figure 1. The simulation parameters correspond to
a laminar Couette flow with parameters extracted from linear stability analysis results
(Thomas 2006). Specifically, the simulation is performed at Re = 40, Wi = 1 with L =
100, β = 0.8 with a unit tensor as the initial condition for the conformation tensor;
the mean tangential (〈Crθ 〉) and normal (〈Cθθ 〉) components of the conformation tensor
obtained by HM are in excellent agreement with the analytical solution.

A ribbon flow state simulated by HM and SM without use of AD has also been
examined. The ribbon patterns obtained by the two methods shown in figure 2(a) are
indistinguishable; their checkerboard-like features signifying the expected alternative
regions of radial inflow (blue) and outflow (red) are accurately captured (Groisman
& Steinberg 1996, 1998a; Thomas et al. 2009). The time periods associated with the
fluctuating radial velocity in the ribbons are approximately 14.45λ and 14.62λ for SM and
HM, respectively. Moreover, in figure 2(b), the time series of total drag force (Ft) and its
components of Newtonian viscous shear stress (Fs) and elastic shear stress (Fp) obtained
by these two methods show good agreements with relative error less than 0.06 %.
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Finally, a comparison between the results of the high-Re viscoelastic TC turbulence
simulated by previously developed SM and the new HM is made. Due to the
aforementioned numerical stability problem, a global AD term is added to the SM
for simulation of dilute polymer solution at β = 0.9 and large extensibility L = 100 at
Re = 3000, Wi = 30. Thus, the validation in this part can also be viewed as a critical
examination of the effects of AD on the flow structure and the turbulence statistics in
the elasto-inertial turbulent TC flow. The profiles of mean velocity 〈uθ 〉 and polymer
shear stress 〈τrθ 〉 are shown in figure 3(a,b). Excellent agreements between the computed
velocity and shear stress profiles are observed, particularly at high Sc. Furthermore,
the profiles of fluctuations in velocity and elastic shear stress depicted in figure 3(c,d)
shows minor differences between the two schemes at high Sc. The modifications of flow
structures can be further quantified by the differences in the one-dimensional spanwise
spectra of the turbulent kinetic energy (TKE) and polymer stretch for different Sc (see
figure 4). The energy in the high-wavenumber regime is lower for the SM results of finite
Sc than that obtained by the HM technique. However, in the low-wavenumber regime, the
profiles collapse indicating the large-scale flow structures remain nearly unchanged for the
range of Sc considered. To this end, these comparisons taken together have revealed that
the HM code can faithfully reproduce high-Re viscoelastic TC turbulence flow features and
statistics (Liu & Khomami 2013b; Song et al. 2019). At the same time, the Sc sensitivity
analysis suggests that Sc ∼ O(1) can capture the essential features of the velocity and
polymer stress fields in high-Re viscoelastic TC simulations. However, it should be noted
that the addition of the AD term mainly modifies/reduces the large polymer stress gradients
in the flow field that give rise to small-scale structures as evinced by the small-scale
elastic GV formed near the inner cylinder walls where large stress gradients exist (Song
et al. 2019). To this end, addition of AD mainly affects/dissipates small-scale elastic
flow structures (see figure 4). This is consistent with the previous findings regarding the
influence of AD on simulations of inertia-driven and elasto-inertial viscoelastic turbulence
(Sid et al. 2018; Gupta & Vincenzi 2019; Zhu & Xi 2020). Based on our earlier studies of
the curvature dependence of viscoelastic TC turbulence (Song et al. 2019), decreasing the
gap (larger η) is expected to lead to weakening and elimination of the small-scale elastic
GV, due to the fact that elastic effects are more significant at smaller η. That is, a decrease
in η leads to an increase in curvature and commensurately higher hoop stresses (Larson
et al. 1990; Groisman & Steinberg 1998b). Thus the AD effect is more prominent near
the walls where significant polymer stretch is realized due to the mean-flow shear. This in
turn, leads to larger polymer stress gradients and formation of an elastic boundary layer.
Evidently, the AD effect is more pronounced in small gap systems.

It should be noted that figure 3(c,d) depicts that the most accurate results correspond
to those of the full pseudo-spectral calculation with the highest Sc = 3.33. Evidently,
the predictions of the HM technique fall between the spectral results obtained with two
different global AD values. This underscores the fact that introduction of a low-order
upwind finite-difference approximation for the convection term introduces numerical
diffusion mainly in the radial direction. However, the scheme does produce results that are
very similar to fully spectral techniques with small global AD of Sc ∼ O(1). In addition, it
ensures positive definiteness of the conformation tensor and the hyperbolic-like nature
of the constitutive equation. Hence, if SM with sufficiently high-order approximating
function and Sc ∼ O(1) is coupled with available schemes that ensure positive definiteness
of the conformation tensor (Housiadas, Wang & Beris 2010), reliable results can be
obtained. To this end, the HM technique used in this study can be viewed as an equivalent
technique to traditional SM with a sufficiently high Sc value.
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Figure 3. Profiles of (a) mean azimuthal velocity 〈uθ 〉 and (b) mean polymer shear stress component 〈τrθ 〉,
(c) root-mean-square (r.m.s.) values of three velocity components and (d) polymer stress component τrθ at
Re = 3000, Wi = 30, L = 100 with various Sc.
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Figure 4. One-dimensional spectra of the turbulent kinetic energy (〈u′ · u′〉/2) (a) and polymer stretching
(〈tr(C)〉) (b) sampled at the middle of the gap for viscoelastic flows of Re = 3000, Wi = 30, L = 100 with
various Sc.

2.4. Simulation parameters
The viscoelastic TC flow of a dilute long chain polymer solution with β = 0.9 and L =
100, at Wi = 30 is investigated in the Reynolds number range of 500 to 8000 to scrutinize
the influence of fluid inertia on the inertio-elastic turbulent flow structures and statistics.
This corresponds to El in the range of 0.00375 ∼ 0.06. All the simulations are started
from a fully developed inertio-elastic turbulent flow at Re = 3000, Wi = 30 with radius
ratio η = Ri/Ro = 0.5. Based on this flow field, we decrease the Reynolds number to
1000, 500 to obtain results for the low-Re regime and increase it to 5000, 8000 for the
high-Re regime. Simulation parameters and the grid resolutions are summarized in table 1.
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Re Nr × Nθ × Nz r+ rθ+ z+ δτ Reτ

500 128 × 128 × 256 0.11–0.88 3.51 0.88 0.0140 69.70
1000 128 × 128 × 256 0.17–1.41 5.64 1.41 0.0087 115.12
3000 128 × 128 × 256 0.38–3.07 12.27 3.07 0.0040 250.61
5000 128 × 256 × 512 0.56–4.54 9.09 2.27 0.0027 373.54
8000 128 × 256 × 512 0.79–6.46 12.92 3.23 0.0019 518.83

Table 1. Numerical parameters and grid resolutions. The superscript ‘+’ is used to denote the quantities
non-dimensionalized by the viscous length scale δτ = ηt/ρ/uτ ; the friction velocity is defined as uτ = √

τw/ρ,
where τw is the total wall stress; the friction Reynolds number is defined as Reτ = ρuτ d/ηt.

As Gauss–Lobatto–Chebyshev polynomials are applied in the wall normal (r-) direction
and Fourier series in the periodic (θ - and z-) directions, mesh grids are clustered near
the inner and outer walls in the r-direction, and uniform in the θ - and z-directions. The
time scale is made dimensionless by the convective time unit, T = d/(ΩR1). Sufficiently
long simulations (at least 300T = 10λ) have been performed to ensure that statistically
steady flow states are realized. To evaluate the turbulence statistics, ensemble averaging is
performed for time periods of approximately 120T .

3. Small-scale elastic GV

In this section, the flow structures in turbulent TC flow with particular emphasis on
small-scale GV near the inner cylinder wall are discussed in detail. Similar to our previous
findings in the viscoelastic turbulent TC flow at this radius ratio (Liu & Khomami 2013b;
Song et al. 2019), the well-organized large-scale TV identified in the Newtonian flow are
no longer observed in the time and θ -direction averaged flow fields at all Re considered
(see figure 5a). Instead, a large number of vortices span across the entire gap. Also, the GV
are smaller in size and higher in number near the inner wall. The instantaneous flow fields
depicted in figure 5(b), show that increasing Re leads to a monotonic increase in number of
the vortices. Specifically, at Re � 3000, the gap is occupied by a few larger-scale vortices
in the bulk region along with some GV near the inner wall. As the Reynolds numbers
is increased to Re � 5000, larger-scale vortices observed at smaller Re become severely
distorted and break down into smaller vortices, in turn, the GV become closer to the wall.
This finding is consistent with experimental observation of Baumert and Muller (Baumert
& Muller 1995, 1997, 1999). In a wider gap (smaller radius ratio η) TC cell, in addition to
large counter-rotating vortices spanning across the gap, Baumert and Muller also observed
additional small and irregular vortices formed near the inner cylinder wall (Baumert &
Muller 1999). The more prominent appearance of small-scale vortices near the inner wall
with increasing curvature of the TC cell has also been confirmed by our DNS study
of curvature-dependent viscoelastic turbulent TC flows (Song et al. 2019). Moreover, as
pointed out in our previous study, these small-scale vortices are mainly generated through
an elastic mechanism, as a result they have been dubbed ‘elastic Görtler vortices’.

The existence of near-wall elastic GV and the effect of fluid inertia on their scales can
be quantified via examination of the streamwise vorticity fluctuations ω′

θ rms as depicted
in figure 6. Specifically, all ω′

θ rms profiles exhibit a local maximum and minimum in
the inner-wall region. The near-wall quasi-streamwise vortices (QSV) model proposed
by Kim, Moin & Moser (1987), ascribes the difference between the local minimum and
maximum of ω′

θ rms to the average intensity of the QSV that are generated as a consequence
of a turbulent shear instability (Stone, Waleffe & Graham 2002; Li et al. 2006); the radial
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Figure 5. (a) Time and θ -direction averaged vectors of radial (〈ur〉θ,t) and axial (〈uz〉θ,t) velocities and contour
plots of streamwise vorticity 〈ωθ 〉θ,t in (r, z) plane; (b) instantaneous vectors of radial (ur) and axial (uz)
velocities and contour plots of streamwise vorticity ωθ in (r, z) plane with θ = π/2 for various Re with
Wi = 30.

0.05 0.10 0.15 0.200

1

2

3

4

Re = 500
Re = 1000
Re = 3000
Re = 5000
Re = 8000

(a)

Near the inner wall

ω
′ θ 

rm
s

0.80 0.85 0.90 0.95 1.00
0

0.5

1.0

1.5

2.0(b)

Near the outer wall

r̃ r̃
Figure 6. The r.m.s. values of azimuthal (streamwise) vorticity component for various Re with Wi = 30:

(a) near the inner wall and (b) near the outer wall.

positions of the local minimum and maximum correspond to the average locations of the
edge and centre of the QSV, respectively. Thus their distance is roughly proportional
to the average size of the QSV. Near the inner wall, increasing Re makes the local
maximum and minimum of ω′

θ rms more pronounced (see figure 6a), consequently smaller
size vortices appear as Re is increased (also see figure 7). Evidently, the small-scale GV
become stronger in intensity and smaller in size with increasing Re, which indicates a
gradual enhancement of the intensity of the turbulent shear instability in the inner-wall
region. In contrast, vorticity fluctuations exhibit the opposite trend in polymer-induced
drag reduction channel flows where near-wall QSV obtain an increase in size and a
reduction in number and become highly elongated in the streamwise direction (Li et al.
2006; Kim et al. 2007; Xi & Graham 2012; Li et al. 2015; Teng et al. 2018). However,
as shown in figures 5 and 6(b), small-scale GV are not observed in the outer-wall region
for all Re considered here. This is in contrast to our earlier findings where slightly larger
inertio-elastic GV formed near the outer cylinder wall (Liu & Khomami 2013b; Song et al.
2019). This points to the fact that the elastic effects needed to generate these inertio-elastic
GV are not sufficient near the outer wall due to the smaller Wi and larger solvent to total
viscosity ratio (β = 0.9) used in the present study.

926 A37-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


J. Song, F. Lin, N. Liu, X.-Y. Lu and B. Khomami

(b)(a) (c)

Figure 7. Instantaneous vortical structures visualized by Q-criterion with Q = 0.001 and coloured by the
distance to the inner wall for the three main regimes of viscoelastic TC flow at (a) Re = 500, (b) Re = 3000,
(c) Re = 8000, with Wi = 30. The flow structures in the region θ ∈ [3/2π, 2π] and r̃ ∈ [1/2, 1] are not shown
to clearly display the small-scale vortical structures near the inner wall.

Although the small and irregular elastic GV formed near the inner cylinder wall have
been observed in a series of prior experiments (Lee et al. 1995; Baumert & Muller 1995,
1997, 1999), the generation mechanism of these structures remains poorly understood due
to the lack of polymer stress/body force measurements. To this end, a comparison of the
production terms of the mean streamwise enstrophy budget equations (Dimitropoulos et al.
2001; Kim et al. 2007) near the inner wall is performed to shed light on the generation
mechanism of the elastic GV. A detailed description of the budget equations for mean
enstrophy is given in Appendix A. Here, we take the θ -component of the mean vorticity
(Wθ ) in (A3) and obtain the transport equation for mean streamwise enstrophy (Eωθ =
W2

θ /2). As seen in figure 8(a), the total streamwise enstrophy is balanced near the inner
wall for Re = 500, demonstrating that a statistical steady state has been achieved. At Re =
500, Eωθ is mainly produced by the elastic effect Tω that is almost balanced by viscous
dissipation (εω) since other typical shear production terms, i.e. production by mean (PMω)
and fluctuating (PFω) strain of the mean vorticity as well as fluctuating enstrophy (FEω)
are negligible. In addition, local balance (redistribution to opposite direction with equal
magnitude) is achieved by two diffusive transports of the mean enstrophy, namely, by the
solvent (DSω) and polymer (DTω) viscosity. The distributions of the main production terms
with various Re are depicted in 8(b). Specifically, it is shown that the elastic production Tω

acts as the dominant source term for the Eωθ budgets as opposed to the typical shear term
Sω that is the sole generating mechanism for streamwise vortical structures in Newtonian
TC flow. So, it is rational to label these near-inner-wall small-scale vortices as elastic GV
(Song et al. 2019). However, increasing Re leads to a monotonic decrease of the dominant
radial region of Tω and a commensurate change in its position, i.e. it gets closer to the
inner wall. This confirms that the decrease in size of these elastic GV discussed above
indeed occurs by the redistribution of the streamwise vorticity fluctuations (see figure 6a).
To this end, it is rational to expect that the entire gap will be filled with inertia-dominated
vortical structures when Re gets much higher resulting in a gradual elimination of the
elastic vortical structures.

It has been confirmed that the GV near the cylinder walls will cause near-wall streaky
structures to form herringbone-like patterns in the Newtonian turbulent TC flows (Wei
et al. 1992; Dong 2007). Similarly, as depicted in figure 9, herringbone-like patterns can
also be observed from the spatial-temporal characteristics of the radial velocity near the
inner wall in the inertio-elastic turbulent TC flows, especially at high Re. Evidently, it
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Figure 8. (a) Balance of mean streamwise enstrophy Eωθ of Re = 500, Wi = 30 near the inner cylinder wall.
(b) Production terms of Eωθ for the viscoelastic TC flows for various Re with Wi = 30. Here, Sω denotes the
typical shear production including the mean and fluctuating strain as well as the fluctuating enstrophy, and Tω

represents the elastic production.

is the radial inflows and outflows at the boundaries of the counter-rotating elastic GV
pairs that cause the streaky structures. Specifically, at Re = 500, only a few large and long
herringbone streaks are distributed in disjoint bands around the outflow boundaries of the
elastic GV and streaks from neighbouring bands barely intersect. As Re is increased, a
considerable increase in the population of streaks is observed, and the spacing between
neighbouring streaks is substantially decreased. Finally, at Re = 8000, the herringbone
streaks become significantly finer and more closely packed, and their population is
dramatically increased. However, the streaks become less coherent as evinced by their
broken appearances, shorter lengths and scattered nature. The herringbone steaks in
elastically dominated turbulent TC flows have sufficiently longer time life than their
Newtonian counterparts due to their elastic origin. This is attributed to the fact that
the fluid relaxation time (λ) governs this dynamical process in the elasticity-dominated
regime. Consequently, increasing fluid inertia leads to a monotonic decrease in the lifetime
of the herringbone steaks as a result of a significant reduction of elastic effects.

4. Polymer-induced turbulence dynamics

The flow structures discussed above (shown in figures 5, 7, 9) clearly demonstrate that
the turbulent flow states are achieved for all Re considered. It should be noted that the
Newtonian counterparts of Re = 500 and Re = 1000 are laminar flow states at radius
ratio η = 0.5 (Dong 2007); thus the turbulence at Re = 500 and Re = 1000 is elasticity
induced. As expected, in figure 10(a) the mean azimuthal velocity profiles obtain large
radial gradients near both walls and an almost flat plateau in the bulk. The velocity
gradient becomes larger and the flat region gets wider as the Reynolds number increases,
suggesting an enhanced mean momentum transport in the wall regions and efficient mixing
in the bulk due to the intense vortical circulations. Generally, the angular momentum
ruθ is the preferred variable to quantify the transport dynamics in a TC flow system,
where the current of ruθ is a conserved quantity that is transported from the inner
to the outer cylinder (or vice versa) (Eckhardt, Grossmann & Lohse 2007). Instead
of an essentially constant mean angular momentum of 0.5ΩR2

i observed in the bulk
of Newtonian turbulent TC flow (Dong 2007), the mean angular momentum for the
viscoelastic TC flow depicted in figure 10(b) is less than 0.5ΩR2

i and exhibits obvious
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Figure 9. Space–time plots of radial velocity ur along the axial line positioned at r̃ = 0.01 and θ = π showing
radial inflows (blue) and outflows (red) at (a) Re = 500, (b) Re = 1000, (c) Re = 3000, (d) Re = 5000, (e) Re =
8000, with Wi = 30.

positive gradients at the same Re; this indicates an efficient transport but an inefficient
mixing of the mean angular momentum in the inertio-elastic turbulent TC flows.

For the viscoelastic turbulent TC flow, the same procedure used by Eckhardt et al. (2007)
is applied to derive the angular momentum current Jω as

Jω = r3[〈urω〉 − νs∂r〈ω〉 − νp〈τrθ 〉/r], (4.1)

where νs and νp are dimensionless kinematic viscosities for solvent and polymers
respectively, and νs = β/Re, νp = (1 − β)/Re. The right-hand terms of (4.1) represent
in sequence the convective flux (Jω

c ), the diffusive flux (Jω
d ) and the elastic source/sink

term (Jω
p ) to angular momentum (Song et al. 2019). For a statistically stationary turbulent

TC flow, the angular momentum current should be conserved (Eckhardt et al. 2007; Dong
2008), corresponding to a fact that the total torque exerted on the cylindrical fluid layers
at a given radial position should be a r-independent constant (Van Gils et al. 2011). As
expected, in figure 11, different yet constant values of the total angular momentum current
are realized for all the viscoelastic TC flows. For all Re considered, the diffusive flux (Jω

d )
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Figure 10. Profiles of (a) mean azimuthal velocity 〈uθ 〉 and (b) mean angular momentum 〈ruθ 〉 for various Re
with Wi = 30.
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Figure 11. Balance of angular momentum current across the gap for viscoelastic TC flows of (a) Re = 500,
(b) Re = 1000, (c) Re = 3000 and (d) Re = 8000, with Wi = 30.

has the dominant contribution to Jω in the wall regions, while Jω
p has the most significant

contribution away from the walls (which is positive and thus a source term). However, with
increasing Re, the convective flux (Jω

c ) gradually plays a more significant role in transport
of the angular momentum in the bulk region. It should be noted that the diffusive flux (Jω

d )
makes a larger contribution than the convective flux (Jω

c ) in the entire gap at Re = 500,
clearly demonstrating the negligible effect of convective flux in the flow (see figure 11a).
The overall angular momentum current balance clearly underscores the fact that increasing
the Re leads to a monotonic increase of the inertial contribution but a decrease of the elastic
contribution to the Jω-transport in the inertio-elastic TC flow.
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Figure 12. Mean polymer shear stress component (1 − β)〈τrθ 〉/Re (a) and Reynolds shear stress component
〈u′

ru′
θ 〉 (b) for various Re with Wi = 30. Here, δτrθ represents the thickness of boundary layer of 〈τrθ 〉 for the

inertio-elastic turbulent TC flows, defined as the distance from the inner wall to the radial position where the
minimum of 〈τrθ 〉 occurs.

As a consequence, near the inner wall the corresponding elastic shear stress (figure 12a)
and inertial shear stress (figure 12b) both exhibit a monotonic increase with Re.
Specifically, at all Re the mean elastic shear stress 〈τrθ 〉 increases monotonically between
its minimum in the inner-wall region and the local minimum of markedly higher value
in the outer-wall region (see figure 12a). Elastic GV as expected (see figure 5a) enhance
transverse momentum exchange and turbulent mixing of τrθ via their vortical circulations.
It should be noted that the minimum value of 〈τrθ 〉 occurs close to the inner wall while the
magnitude of this minimum decreases remarkably with increasing Re. Further, for each
Re, a sharp decrease of 〈τrθ 〉 in the inner-wall region indicates that the elastic GV have
developed a 〈τrθ 〉 boundary layer in the turbulent flow. Moreover, the radial position of the
minimum of 〈τrθ 〉 shifts slightly toward the inner wall for higher Re, leading to a further
reduction of the polymer shear stress boundary layer thickness δτrθ . In a turbulent TC flow,
shear stress 〈u′

ru′
θ 〉 is mainly caused by the shear instability induced by the coupling of

radial and azimuthal fluctuating motions that are generated by the vortical circulations
(Bilson & Bremhorst 2007; Dong 2007). Specifically, the large-scale vortices in the bulk
mainly generate the energetic radial fluctuating motions at the inflow/outflow vortex cell
boundaries, while the small-scale vortices in the near-wall region are responsible for the
intense azimuthal fluctuating motions. Hence, the distributions of inertial shear stress as
shown in figure 12(b) clearly demonstrate a change from a regime dominated by large-scale
centre-region vortices at low Re � 1000 to a small-scale near-wall vortices regime at high
Re � 5000 (see figure 7). At the same time, the strong shear instability that results from
these elastic GV causes a local maximum of 〈u′

ru
′
θ 〉 for large Re. Moreover, for higher

Re flows, a much higher inner-wall peak value of 〈u′
ru′

θ 〉 indicates a higher intensity of
turbulent shear instability over the inner wall as compared with that over the outer wall.

The influence of Re on the inertio-elastic TC flows can also be quantitatively measured
by comparing the power spectral density at various Re. The one-dimensional spectra
of the TKE depicted in figure 13 capture approximately eight orders of magnitude of
decay, indicating that the grid resolution is sufficient to cover the relevant spatial scales.
For both the streamwise and the spanwise spectra, the small-scale values monotonically
increase with Re and in the small-wavenumber (k) range the scaling of approximately k−5/3

gradually appears. In EIT of channel flows, scaling law of k−5/3 in the low-wavenumber
range is also observed (Dubief et al. 2013). Generally, the Kolmogorov spectrum law of
−5/3 is the hallmark of classical inertial turbulence. Thus, the progressive disappearance
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Figure 13. One-dimensional streamwise (a) and spanwise (b) spectra of the TKE (〈u′ · u′〉/2) normalized by
streamwise TKE (〈u′

θ u′
θ 〉/2 ) sampled at the middle of the gap for various Re with Wi = 30.

of the −5/3 scaling at large scales as Re is decreased, unequivocally demonstrates the
gradual weakening of inertial effects on the flow. In fact, the scaling of velocity power
spectra over a broad range of wavenumbers can be fitted by the power-law decay with the
exponent of nearly k−14/3, even at large Re. To this end, as Re is progressively decreased,
the wavenumber range of the dissipation range progressively increases; correspondingly
the wavenumber range where the power-law decay with the exponent of approximately
k−14/3 increases (see figure 13). Intriguingly, in the dissipation range the scaling with
the exponent of nearly k−14/3 is consistent with EIT in channel and decaying isotropic
turbulent flows, where energy spectra often displays a scaling law of k−γ in the
high-wavenumber range and γ is between 3.8 and 4.7 (Dubief et al. 2013; Watanabea
& Gotoh 2013, 2014; Sid et al. 2018).

The polymer-induced changes in turbulence fluctuations can be ascertained via
examination of energy exchange across the gap with a particular emphasis on the wall
regions. To this end, the budgets of mean kinetic energy and TKE are analysed as they are
good analytical tools to advance mechanistic understanding of complicated flow dynamics
in wall-bounded turbulence (Dimitropoulos et al. 2001; Dallas & Vassilicos 2010; Thais,
Gatski & Mompean 2012, 2013; Teng et al. 2018). The budget equations to quantify the
energy cascade of viscoelastic turbulent TC flow are given below; the budget equation for
the mean kinetic energy E = U2/2 is given by

∂E
∂t

+ U · ∇E = ∇ · (−PU︸ ︷︷ ︸
Dmp

+2νsU · S︸ ︷︷ ︸
Dms

+νpU · T︸ ︷︷ ︸
Dme

−〈uu〉 · U︸ ︷︷ ︸
Dmt

)

−2νs(∇U) : S︸ ︷︷ ︸
εm

−νp(∇U) : T︸ ︷︷ ︸
Pme

+〈u′u′〉 : (∇U)︸ ︷︷ ︸
Pt

, (4.2)

and for the TKE e = 〈u′ · u′〉/2
∂e
∂t

+ U · ∇e = ∇ · (−〈P′u′〉︸ ︷︷ ︸
Dp

+ 2νs〈u′ · s′〉︸ ︷︷ ︸
Ds

+ νp〈u′ · τ ′〉︸ ︷︷ ︸
De

−〈u′u′ · u′〉/2︸ ︷︷ ︸
Dt

)

−2νs〈(∇u′) : s′〉︸ ︷︷ ︸
ε

−νp〈(∇u′) : τ ′〉︸ ︷︷ ︸
Pe

−〈u′u′〉 : (∇U)︸ ︷︷ ︸
Pt

. (4.3)

The mean strain rate and the fluctuating strain rate tensors are given by S = (∇U +
(∇U)T)/2 and s′ = (∇u′ + (∇u′)T)/2, respectively. Specifically, in (4.2) and (4.3), the

926 A37-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


J. Song, F. Lin, N. Liu, X.-Y. Lu and B. Khomami

left side is merely the total time derivative of E or e following a mean-flow fluid particle,
while the right side represents the various mechanisms that bring about changes in E or e.
The first four divergence terms on right side are energy transport and redistribution caused
by pressure (Dmp, Dp), viscous diffusion (Dms, Ds), polymeric elastic stress (Dme, De)
and turbulent stress (Dmt, Dt), respectively. When integrated over the entire gap, these
terms will not contribute to the total budget. The fifth term represents the direct viscous
dissipation of kinetic energy (εm, ε) via its conversion into heat. It is important to
emphasize that the sixth term represents the energy production associated with polymer
stretch, which has been used to quantify energy exchange between kinetic and elastic
energy, denoted as Pme and Pe, respectively. And the last term is turbulence shear
production term Pt that arises due to interaction of the mean streamwise velocity gradient
and Reynolds shear stress; Pt quantifies the loss of mean kinetic energy in (4.2), but the
gain of TKE in (4.3).

The TKE budgets for Newtonian TC turbulence have been examined in detail by
Bilson & Bremhorst (2007). Specifically, it is clearly shown how velocity fluctuations are
produced, dissipated and transported across the gap. In what follows, the budget terms of
key importance to the energy exchange processes are discussed. Of particular interest is
the energy budget of EDT at Re = 500. Interestingly, the energy budgets terms at higher
Reynolds numbers have a similar radial variation; however, the magnitude of each term
has a large Re dependence.

As shown in figures 14(a) and 15(a), a total balance is obtained for the budget equations
of the mean kinetic energy (E-budget) and TKE (e-budget) when a stationary steady
turbulent state is realized. For the E-budget depicted in figure 14(a), the pressure and
Reynolds stress transport terms, i.e. Dmp and Dmt are relatively small as compared with the
viscous diffusion term Dms and the polymeric diffusion term Dme. Here, Dms acts to bring
high-velocity fluids close to the walls, where Dme plays an important role in moving them
away from the inner-wall vicinity. Dissipation term εm approaches its maximum value
(acting as a loss) as the inner wall is approached, and in the inner-wall region it is balanced
approximately by the viscous diffusion term Dms. Additionally, the turbulent shear (Pt)
and mean elastic potential energy (Pme) production terms are both negative across the
entire gap, indicating the transformation of kinetic energy of mean flow to turbulent
fluctuations and elastic potential energy associated with polymer stretch. Specifically, for
all Re considered (see figure 14b), polymer chains extract energy across the entire gap from
the mean flow via chain stretch. Moreover, Pme obtains a local minimum that corresponds
to the radial position of the elastic GV at each Re; this minimum displays a monotonic
increase with Re. Thus, increasing fluid inertia hinders the energy extraction process by
which the mean elastic potential energy is generated. This also leads to a reduction of the
magnitude of the mean polymer shear stress (see figure 12a).

The e-budget is illustrated in figure 15(a); the pressure term Dp and turbulent transport
term Dt approximately mirror each other. Specifically, they alternate as gain and loss terms
of relatively small magnitudes. The viscous and polymer diffusion terms, i.e. Ds and De
transport the high-fluctuating velocity fluids close to the wall to the bulk region, and in
turn the TKE is dissipated by the viscous dissipation term ε, particularly near the walls,
and in turn it is extracted by the macromolecules via chain stretch term Pe in the bulk
region. For the gain of e, the mean shear production term Pt has a maximum near the
inner wall and a descending value away from the inner wall. However, the additional elastic
production term Pe attains two local positive maximum values near the two walls that are
much larger than the classical turbulent shear production term Pt. Thus, the turbulence
generating mechanism in EDT is dominated by elastic effects.
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Figure 14. (a) Mean kinetic energy E-budget for viscoelastic TC flow of Re = 500, Wi = 30, (b) the elastic
production Pme of E for various Re with Wi = 30.
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Figure 15. (a) TKE e-budget for viscoelastic TC flow of Re = 500, Wi = 30, (b) the elastic production Pe of
e for various Re with Wi = 30.

The value of Pe is commonly used to quantify energy exchange between e and elastic
potential energy ε = νp(L2 − 3)〈ln( f (C))〉/2Wi (Dallas & Vassilicos 2010). Specifically,
negative Pe means that the kinetic energy carried by fluctuating motions is absorbed
and stored as elastic potential energy in stretched polymer chains; positive Pe means
that elastic potential energy is released from the stretched polymer chains back to the
turbulent flow. In fact, three energy exchange regions based on the sign of Pe, namely,
the wall vicinity region with Pe < 0, the near-wall region with Pe > 0, and the core
region with Pe < 0, have been identified in drag reduced or drag enhanced viscoelastic
turbulent flows (Tsukahara et al. 2011; Teng et al. 2018; Zhu et al. 2020). As shown in
figure 15(b), these three typical energy exchange regions are also observed in the present
study. In fact, the second (positive Pe) region becomes smaller as Re is enhanced. The
gradual disappearance of this second region implies that the turbulence derived from
the elastic energy is inhibited by enhanced inertia. As a consequence, at high Reynolds
number, Re � 5000, e is mainly produced by mean-flow shear production Pt (not show
here), indicating an inertia-dominated global turbulence dynamics.

As a salient feature of EIT in pipe and channel flows, the markedly lower Reynolds
shear stress than their Newtonian counterparts has been observed and interpreted as a
qualitative result of the suppression of self-sustaining process of wall turbulence (Samanta
et al. 2013; Choueiri et al. 2018; Lopez et al. 2019). However, the mechanism underlying
the modification of 〈u′

ru
′
θ 〉 by the elastic effect is still not well understood. To this end,
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budgets of the Reynolds shear stress 〈u′
ru′

θ 〉 are examined here with the aim of explaining
how 〈u′

ru′
θ 〉 is produced, dissipated and transported across the gap. The equation describing

the budget for 〈u′
ru′

θ 〉 is given as

∂〈u′
ru′

θ 〉
∂t

= Prθ + Crθ + TDrθ + PDrθ + PSrθ + Drθ + εrθ + EDrθ + Erθ , (4.4)

Prθ = −
(

〈u′
ru′

r〉
∂Uθ

∂r
− Uθ

r
〈u′

θu′
θ 〉

)
, Crθ = −Uθ

r
(〈u′

ru
′
r〉 − 〈u′

θu′
θ 〉),

TDrθ = −1
r

[
∂(r〈u′

ru′
ru

′
θ 〉)

∂r
+ 〈u′

ru′
ru

′
θ 〉 − 〈u′

θu′
θu′

θ 〉
]

,

PDrθ = −
[

1
r

∂(r〈u′
θp′〉)

∂r
− 2

r
〈u′

θp′〉
]

, PSrθ =
〈
p′

[
1
r

(
∂u′

r

∂θ
− u′

θ

)
+ ∂u′

θ

∂r

]〉
,

Drθ = νs

[
1
r

∂(r∂〈u′
ru′

θ 〉/∂r)
∂r

− 4
r2 〈u′

ru′
θ 〉

]
,

εrθ = −2νs

[〈
∂u′

r

∂r
∂u′

θ

∂r

〉
+ 1

r2

〈(
∂u′

r

∂θ
− u′

θ

) (
∂u′

θ

∂θ
+ u′

r

)〉
+

〈
∂u′

r

∂z
∂u′

θ

∂z

〉]
,

EDrθ = νp

[
∂〈τ ′

rru′
θ + τ ′

rθu′
r〉

∂r
+ 1

r
(〈τ ′

rru′
θ 〉 − 2〈τ ′

θθu′
θ 〉 + 3〈τ ′

rθu′
r〉)

]
,

Erθ = −νp

{〈
τ ′

rr
∂u′

θ

∂r

〉
+

〈
τ ′

rθ
∂u′

r

∂r

〉
+ 1

r

[〈
τ ′

rθ

(
∂u′

θ

∂θ
+ u′

r

)〉
+

〈
τ ′
θθ

(
∂u′

r

∂θ
− u′

θ

)〉]

+
〈
τ ′

rz
∂u′

θ

∂z

〉
+

〈
τ ′
θz

∂u′
r

∂z

〉}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)
where the terms on the right-hand side of (4.4) are the shear production (Prθ ), the
convection production (Crθ ), the turbulence stress transport (TDrθ ), the pressure diffusion
(PDrθ ), the pressure strain (PSrθ ), the molecular diffusion (Drθ ) and the dissipation (εrθ ).
The last two terms are the polymer diffusion (EDrθ ) and elastic production (Erθ ) that are
only present in viscoelastic flow. The budget terms in (4.5) are interpreted in the same
manner as previously documented for Newtonian turbulent TC flow (Bilson & Bremhorst
2007).

As depicted in figure 16(a), the budget of the Reynolds stress 〈u′
ru

′
θ 〉 is dominated by

the production term Prθ , bulk gradient production term Crθ and pressure terms (PSrθ ,
PDrθ ) for inertio-elastic TC flow. In the entire gap, 〈u′

ru′
θ 〉 is mainly produced by Prθ and

Crθ . Other terms like the dissipation term εrθ , viscous diffusion term Drθ and turbulent
transport term TDrθ are non-zero, but substantially smaller in magnitude as also seen in
Newtonian TC turbulence (Bilson & Bremhorst 2007). However, the polymer diffusion
term EDrθ plays an important role in moving the high-fluctuating stress to the inner-wall
region, which in turn is absorbed by the elastic stress work (Erθ ). As a consequence, in
viscoelastic TC flows 〈u′

ru′
θ 〉 decreases mainly at the inner-wall region, while in the bulk

region, Erθ makes a positive contribution to the production of 〈u′
ru

′
θ 〉. The Re-effects

on the elastic work (Erθ ) are illustrated in figure 16(b). Intriguingly, in the bulk and
outer-wall vicinity, Erθ has positive values. This indicates that the elastic work facilitates
the production of turbulent shear stress especially at low Reynolds numbers, Re � 1000.
In contrast, near the inner wall and slightly away from the outer wall, Erθ has negative

926 A37-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


Inertio-elastic turbulent Taylor–Couette flows

r~ r~
0 0.2 0.4 0.6 0.8 1.0

–0.006

–0.004

–0.002

0

0.002

0.004

0.006(a)
Prθ
Crθ
PDrθ
PSrθ
Drθ

TDrθ
EDrθ
Erθ

εrθ

Balance

L
o

ss
G

ai
n

0 0.2 0.4 0.6 0.8 1.0
–0.004

–0.003

–0.002

–0.001

0

0.001

Re = 500
Re = 1000
Re = 3000
Re = 5000
Re = 8000

(b)

E rθ

Figure 16. (a) Reynolds shear stress 〈u′
ru′

θ 〉-budget for viscoelastic TC flow of Re = 500, Wi = 30, (b) the
elastic production Erθ of 〈u′

ru′
θ 〉 for various Re with Wi = 30.

values; hence, elastic work acts to suppress the production of turbulent shear stress. Both
the facilitation and suppression scenarios in modification of the Reynolds shear stress
become less significant as Re is enhanced. This is consistent with the variation of 〈u′

ru′
θ 〉

shown in figure 12(b).

5. Flow–microstructure coupling

As discussed above, the most critical flow changes occur as a result of flow-induced
polymer chain stretch in the wall regions. To address the details of polymer-induced
flow–microstructure coupling, this section is devoted to examination of the polymer
stretch/relaxation and the resulting polymeric elastic stress and body force that lead to
flow modifications.

The extent of average polymer stretch can be quantified by the chain fractional extension
(〈tr(C)〉/L2) defined as the ratio of the trace of the conformation tensor to the maximum
polymer chain extensibility. As depicted in figure 17(a), for all Re considered, two local
maxima of 〈tr(C)〉/L2 are observed, one near the inner wall with the polymer chains
almost fully stretched (〈tr(C)〉/L2 � 80 %) and another near the outer wall with relatively
lower fractional extension. As Re is enhanced 〈tr(C)〉/L2 increases almost in the entire
gap, which is merely due to enhanced intensity of shear flow that results from the
vortical circulations. However, the decrease in 〈tr(C)〉/L2 as a function of radial position
indicates that highly stretched polymer chains gradually relax as they are moved away from
the inner-wall region. This observation is consistent with the fact that in drag reduced
channel flows higher chain extension is realized in the near-wall region (Sureshkumar
et al. 1997; Li et al. 2006; Kim et al. 2007; Samanta et al. 2013). As a consequence, the
aforementioned polymer stretch leads to significant hoop stresses 〈τθθ 〉 across the gap,
see figure 17(b). Specifically, a higher 〈τθθ 〉 is realized in the inner-wall region where a
higher extension is realized. It is important to emphasize that an unstable stratification of
the hoop stress is the prerequisite for the occurrence of solitary coherent structures like
oscillatory strips and diwhirls in the elastically driven TC flows (Groisman & Steinberg
1997; Baumert & Muller 1999; Kumar & Graham 2000; Thomas et al. 2006b). As a
consequence, the strong hoop stresses near the inner wall in inertio-elastic turbulent
TC flow facilitate the generation of elastic GV structures (see figures 5, 7). Therefore,
increasing fluid inertia hinders the hoop-stress generation, leading to a suppression for
the elastic GV. Specifically, a sharp increase in 〈τθθ 〉 is also observed in the inner wall
region, indicating the existence of a inner-wall hoop-stress boundary layer δτθθ in the flow
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Figure 17. (a) Ensemble averaged chain fractional extension 〈tr(C)〉/L2 and (b) mean hoop stress (1 −
β)〈τθθ 〉/Re for various Re with Wi = 30. Here, δτθθ represents the thickness of boundary layer of 〈τθθ 〉 for
the inertio-elastic turbulent TC flows, defined as the distance from the inner wall to the radial position where
the maximum of 〈τθθ 〉 occurs.

(see figure 17b). The progressive thinning of the boundary layer δτθθ with Re confirms the
suppressed role of the local elastic instability acting for the flow dynamics.

Generally, the role of hoop stress τθθ in the viscoelastic TC flows can also be quantified
by ascertaining its contribution to the radial polymer body force fpr (Kumar & Graham
2000; Thomas et al. 2009; Liu & Khomami 2013a,b). Specifically, the radial polymer
body force mainly results from the radial body force N1/r and the radial stress gradient
νp〈∂τrr/∂r〉, where N1 = νp〈τrr − τθθ 〉 is the first normal stress difference. As seen in
figure 18(a), N1/r is negative in the entire gap as 〈τθθ 〉 is much greater than 〈τrr〉 and
N1/r obtains a local minimum near the inner wall. Evidently, increasing Re leads to a
monotonic decrease of the magnitude of N1/r across the gap due to the weakening of
hoop stresses (see figure 17b). As seen in figure 18(b), although the radial stress gradient
obtains a positive value near the inner wall, fpr is negative in the entire gap, even at
the highest Re. Consequently, for all Re considered, this observation points to the fact
that hoop stresses 〈τθθ 〉 (via N1/r ) are the major contributor to the radial elastic body
force and the main driving force for the elastic Görtler instability that occurs near the
inner wall. In fact, in the inertio-elastic flow regime, the high fluctuations in polymer
extension are closely associated with the small-scale elastic GV near the inner wall.
Specifically, concentrated regions of high and low 〈tr(C)〉/L2 appear alternately along
the inner and outer walls, and they are located at the centres of the inflow and outflow
boundaries of adjacent counter-rotating vortex pairs (see figure 19a). At the inner wall, the
regions of high 〈tr(C)〉/L2 are concentrated near the stagnation points of the radial outflow
between two adjacent counter-rotating large-scale vortex cells (see figure 19b), where the
outflow accelerates away from the inner wall and attains its maximum radial velocity
(i.e. ∂ur/∂r < 0); hence, the incompressible fluid flow becomes transversely extensional.
As a consequence, the substantially stretched polymer chains develop significant hoop
stresses that trigger the elastic Görtler instability in this region leading to generation of
a pair of elastic GV. It is well known that elastically driven solitary vortical structures
such as oscillatory strips and diwhirls appear due to highly localized polymer extension in
the radial inflow regions near the outer wall (Baumert & Muller 1997, 1999; Groisman &
Steinberg 1997, 1998a; Kumar & Graham 2000; Thomas et al. 2006a, 2009). Conversely,
the localized elastic GV structures in inertio-elastic turbulent TC flow result from the radial
hoop stresses present near the inner cylinder.
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Figure 18. (a) Ensemble averaged radial body force N1/r and (b) polymer radial stress gradient (1 −
β)〈∂τrr/∂r〉/Re for various Re with Wi = 30. Where the first normal stress difference N1 = (1 − β)

〈τrr − τθθ 〉/Re .
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Figure 19. (a) Time and θ -direction averaged chain fractional extension 〈tr(C)〉/L2 in (r, z) plane for various
Re with Wi = 30. (b) Magnified image of (a) for Re = 3000 near the inner wall. The (r, z) plane streamlines in
(b) are plotted using the (ur, uz) velocities. Here, the purple circles are used to mark the localized regions with
high polymer extension (the red regions of 〈tr(C)〉/L2 at the inner wall), the red dashed rectangle to mark the
radial outflow (ur > 0) region and blue dashed rectangle the radial inflow (ur < 0) region.

6. Conclusions

In this work, high-fidelity three-dimensional DNS without use of AD has been performed
to explore the influence of flow inertia on the inertio-elastic turbulent TC flows by
varying the Reynolds number from 500 to 8000, corresponding to elasticity number of
0.00375 ∼ 0.06. It is found that increasing Re leads to a flow transition from an EDT to an
IDT. Detailed statistical analysis demonstrates that the main contribution to transport and
mixing of momentum, stress and energy comes from the large-scale flow structures in the
bulk region for EDT, while the transport and mixing of physical quantities in IDT arise
due to the small-scale flow structures in the near-wall regions. Nevertheless, the existence
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of small-scale elastic vortical structures identified as elastic GV has been observed for
all Re considered and they tend to develop an elastic stress boundary layer near the inner
wall, even for Reynolds numbers up to 8000. Moreover, it has been confirmed that the
elastic GV are also able to develop herringbone streaks near the inner wall but with
sufficiently longer time scale than their Newtonian counterparts due to their elastic origin.
In addition, the polymer-induced flow–microstructure coupling analysis demonstrates that
the elastic Görtler instability in the outflow regions of adjacent large-scale vortices where
high polymer extension exists is triggered by significant hoop stresses. As a consequence,
increasing fluid inertia hinders the hoop-stress generation, leading to a reduction in the
size of the elastic GV.

The universal mechanism of the polymer–turbulence interaction is of great interest. This
interaction can be quantified via the energy exchange between turbulent motions and mean
flow and polymer chains. Specifically, the mean kinetic energy budget demonstrates that
the polymer chains mainly absorb mean kinetic energy and convert it to mean elastic
potential energy via mean-flow-driven chain stretch. The TKE budget demonstrates that
the polymer absorbs TKE from the fluctuating motions near the wall and then releases it
to the near-wall small-scale fluctuations to preserve the global dynamics. Furthermore,
the Reynolds shear stress budget indicates that the elastic stress work has a negative
contribution near the inner wall and slightly away from the outer wall; hence, it acts to
suppress the production of turbulent shear stress. However, in the bulk and outer-wall
vicinity, elastic stress work has a positive contribution that facilitates the production of
turbulent shear stress. Generally, increasing fluid inertia hinders the generation of elastic
stresses, leading to a monotonic depletion of the elastic-related nonlinear effects.

The EDT in TC flow displays differences as compared with EIT in the channel and pipe
flows due to the persistence of large-scale vortical structures and the curvilinear streamline
in TC flow. Evidently, EDT is dominated by the large-scale streamwise vortical structures
while EIT is sustained by trains of spanwise-oriented flow structures with inclined sheets
of stretched polymer chains. Despite these stark differences in the flow coherent structures,
these two types of viscoelastic turbulence exhibit similarities in generation of turbulence
and Reynolds stresses as well as energy spectrum scaling. Finally, in EDT of TC flow, the
steep decay of energy spectra indicates a spatially smooth and temporally random flow
reminiscent of ET. Therefore, the EDT flow state in the present study has provided much
insight into the elastic stress-related statistical properties, turbulent dynamics as well as
energy transfer between polymer chains and flow field of the ET flow state.
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Inertio-elastic turbulent Taylor–Couette flows

Appendix A. Derivations of mean enstrophy transport equations

The vorticity equation of incompressible viscoelastic fluid can be written as

Dω

Dt
= ω · ∇u + νs∇2ω + νp∇ × (∇ · τ ), (A1)

where ω = ∇ × u; νs and νp are the dimensionless kinematic viscosities for solvent
and polymers, respectively, and νs = β/Re, νp = (1 − β)/Re. The polymer stress tensor
yields a supplementary contribution to the vorticity generation. Substituting the Reynolds
decomposition u = U + u′, ω = W + ω′ and τ = T + τ ′ (where the capital letter
denotes averaged variable, U = 〈u〉, W = 〈ω〉, T = 〈τ 〉) into (A1) then averaging term
by term, one obtains the mean vorticity equation

DW
Dt

= W · ∇U + 〈ω′ · ∇u′〉 − 〈u′ · ∇ω′〉 + νs∇2W + νp∇ × (∇ · T ). (A2)

The mean vorticity amplitude is defined as the mean enstrophy Eω = W 2/2. Dot
product of the mean vorticity W and (A2) and commuting yields the following mean
enstrophy transport equation

DEω

Dt
= ∇ · (νs∇W · W︸ ︷︷ ︸

DSω

−〈u′ω′〉 · W︸ ︷︷ ︸
DRω

+νp∇ × T · W︸ ︷︷ ︸
DTω

)+(W · ∇U) · W︸ ︷︷ ︸
PMω

+〈ω′ · ∇u′〉 · W︸ ︷︷ ︸
PFω

+〈u′ω′〉:∇W︸ ︷︷ ︸
FEω

−νs∇W :∇W︸ ︷︷ ︸
εω

−νp∇ × T :∇W︸ ︷︷ ︸
Tω

. (A3)

Specifically, the time rate of change of Eω following the mean flow is brought about by
various mechanisms represented by the right-hand side of (A3). The first three divergence
terms represent redistributed diffusion of mean enstrophy by solvent viscosity (DSω), and
turbulence (DRω) and polymer stress (DTω). The fourth and fifth terms are the production
by mean (PMω) and fluctuating (PFω) strain and stretch of the mean vorticity, respectively;
FEω denotes the production of fluctuating enstrophy. The sum of these three generation
terms are denoted as Sω = PMω + PFω + FEω due to their significance in Newtonian
flows; εω represents the direct solvent viscous dissipation of mean enstrophy. And the last
term can be regarded as the elastic production by polymeric stress work marked as Tω.

REFERENCES

AL-MUBAIYEDH, U.A., SURESHKUMAR, R. & KHOMAMI, B. 1999 Influence of energetics on the stability
of viscoelastic Taylor–Couette flow. Phys. Fluids 11, 3217–3226.

AL-MUBAIYEDH, U.A., SURESHKUMAR, R. & KHOMAMI, B. 2000 Linear stability of Taylor–Couette flow:
influence of fluid rheology and energetics. J. Rheol. 44, 1121–1138.

AL-MUBAIYEDH, U.A., SURESHKUMAR, R. & KHOMAMI, B. 2002 The effect of viscous heating on the
stability of Taylor–Couette flow. J. Fluid Mech. 462, 111–132.

ALVES, M.A., OLIVEIRA, P.J. & PINHO, F.T. 2021 Numerical methods for viscoelastic fluid flows. Annu.
Rev. Fluid Mech. 53, 509–541.

ANDERECK, C.D., LIU, S.S. & SWINNEY, H.L. 1986 Flow regimes in a circular Couette system with
independently rotating cylinders. J. Fluid Mech. 164, 155–183.

AVGOUSTI, M. & BERIS, A.N. 1993 Viscoelastic Taylor–Couette flow: bifurcation analysis in the presence of
symmetries. Proc. R. Soc. Lond. A 443, 17–37.

BARCILON, A. & BRINDLEY, J. 1984 Organized structures in turbulent Taylor–Couette flow. J. Fluid Mech.
143, 429–68.

BARCILON, A., BRINDLEY, J., LESSEN, M. & MOBBS, P.R. 1979 Marginal instability in Taylor–Couette
flows at a very high Taylor number. J. Fluid Mech. 94, 453–68.

926 A37-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


J. Song, F. Lin, N. Liu, X.-Y. Lu and B. Khomami

BAUMERT, B.M. & MULLER, S.J. 1995 Flow visualization of the elastic Taylor–Couette instability in Boger
fluids. Rheol. Acta 34, 147–159.

BAUMERT, B.M. & MULLER, S.J. 1997 Flow regimes in model viscoelastic fluids in a circular Couette system
with independently rotating cylinders. Phys. Fluids 9, 566–586.

BAUMERT, B.M. & MULLER, S.J. 1999 Axisymmetric and non-axisymmetric elastic and inertio-elastic
instabilities in Taylor–Couette flow. J. Non-Newtonian Fluid Mech. 83, 33–69.

BILSON, M. & BREMHORST, K. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid
Mech. 579, 227–270.

BIRD, R.B., CURTISS, C.F., ARMSTRONG, R.C. & HASSAGER, O. 1987 Kinetic theory. In Dynamics of
Polymeric Fluids, pp. 1397–1398. Wiley.

CHOSSAT, P. & IOOSS, G. 1994 Taylor vortices, spirals and ribbons. In The Couette–Taylor Problem,
pp. 35–58. Springer.

CHOUEIRI, G.H., LOPEZ, J.M. & HOF, B. 2018 Exceeding the asymptotic limit of polymer drag reduction.
Phys. Rev. Lett. 120, 124501.

COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
CRUMEYROLLE, O. & MUTABAZI, I. 2002 Experimental study of inertio-elastic Couette–Taylor instability

modes in dilute and semidilute polymer solutions. Phys. Fluids 14, 1681–1688.
DALLAS, V. & VASSILICOS, J.C. 2010 Strong polymer-turbulence interactions in viscoelastic turbulent

channel flow. Phys. Rev. E 82, 066303.
DIMITROPOULOS, C.D., SURESHKUMAR, R., BERIS, A.N. & HANDLER, R.A. 2001 Budgets of Reynolds

stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow. Phys. Fluids 13,
1016–1027.

DONG, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373–393.
DONG, S. 2008 Turbulent flow between counter–rotating concentric cylinders: a direct numerical simulation

study. J. Fluid Mech. 615, 371–399.
DUBIEF, Y., TERRAPON, V.E. & SORIA, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids

25, 110817.
DUBIEF, Y., TERRAPON, V.E., WHITE, C.M., SHAQFEH, E.S.G., MOIN, P. & LELE, S.K. 2005 New

answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74,
311–329.

DUTCHER, C.S. & MULLER, S.J. 2009a The effects of drag reducing polymers on flow stability: insights
from the Taylor–Couette problem. Korea-Aust. Rheol. J. 21, 223–233.

DUTCHER, C.S. & MULLER, S.J. 2009b Spatio-temporal mode dynamics and higher order transitions in high
aspect ratio Newtonian Taylor–Couette flows. J. Fluid Mech. 641, 85–113.

DUTCHER, C.S. & MULLER, S.J. 2011 Effects of weak elasticity on the stability of high Reynolds number
co- and counter-rotating Taylor–Couette flows. J. Rheol. 55, 1271–1295.

DUTCHER, C.S. & MULLER, S.J. 2013 Effects of moderate elasticity on the stability of co- and
counter-rotating Taylor–Couette flows. J. Rheol. 57, 791–812.

ECKHARDT, B., GROSSMANN, S. & LOHSE, D. 2007 Torque scaling in turbulent Taylor–Couette flow
between independently rotating cylinders. J. Fluid Mech. 581, 221–250.

FARDIN, M.A., PERGE, C. & TABERLET, N. 2014 ‘The hydrogen atom of fluid dynamics’ – introduction to
the Taylor–Couette flow for soft matter scientists. Soft Matt. 10, 3523–3535.

FERNSTERMATCHER, P.R., SWINNEY, H.L. & GOLLUB, J.P. 1979 Dynamical instabilities and the transition
to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103–128.

FOUXON, A. & LEBEDEV, V. 2003 Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15,
2060–2072.

GHANBARI, R. & KHOMAMI, B. 2014 The onset of purely elastic and thermo-elastic instabilities in
Taylor–Couette flow: influence of gap ratio and fluid thermal sensitivity. J. Non-Newtonian Fluid Mech.
208–209, 108–117.

GROISMAN, A. & STEINBERG, V. 1996 Couette–Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77,
1480–1483.

GROISMAN, A. & STEINBERG, V. 1997 Solitary vortex pairs in viscoelastic Couette flow. Phys. Rev. Lett. 78,
1460–1463.

GROISMAN, A. & STEINBERG, V. 1998a Elastic vs inertial instability in a polymer solution flow. Europhys.
Lett. 43, 165–170.

GROISMAN, A. & STEINBERG, V. 1998b Mechanism of elastic instability in Couette flow of polymer
solutions: experiment. Phys. Fluids 10, 2451–2463.

GROISMAN, A. & STEINBERG, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 53–55.

926 A37-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


Inertio-elastic turbulent Taylor–Couette flows

GROISMAN, A. & STEINBERG, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New J.
Phys. 6, 29.

GROSSMANN, S., LOHSE, D. & SUN, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev.
Fluid Mech. 48, 53–80.

GUPTA, A. & VINCENZI, D. 2019 Effect of polymer-stress diffusion in the numerical simulation of elastic
turbulence. J. Fluid Mech. 870, 405–418.

HOUSIADAS, K.D. & BERIS, A.N. 2004 An efficient fully implicit spectral scheme for DNS of turbulent
viscoelastic channel flow. J. Non-Newtonian Fluid Mech. 122, 243–262.

HOUSIADAS, K.D., WANG, L. & BERIS, A.N. 2010 A new method preserving the positive definiteness of a
second order tensor variable in flow simulations with application to viscoelastic turbulence. Comput. Fluids
39, 225–241.

KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds
number. J. Fluid Mech. 177, 133–166.

KIM, K., LI, C.F., SURESHKUMAR, R., BALACHANDAR, S. & ADRIAN, R.J. 2007 Effects of polymer
stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299.

KUMAR, K.A. & GRAHAM, M.D. 2000 Solitary coherent structures in viscoelastic shear flow: computation
and mechanism. Phys. Rev. Lett. 85, 4056–4059.

LARSON, R.G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31, 213–263.
LARSON, R.G. & DESAI, P.S. 2015 Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid

Mech. 47, 47–65.
LARSON, R.G., SHAQFEH, E.S.G. & MULLER, S.J. 1990 A purely elastic transition in Taylor–Couette flow.

J. Fluid Mech. 218, 573–600.
LATRACHE, N., CRUMEYROLLE, O. & MUTABAZI, I. 2012 Transition to turbulence in a flow of a

shear-thinning viscoelastic solution in a Taylor–Couette cell. Phys. Rev. E 86, 056305.
LEE, S.H.K., SENGUPTA, S. & WEI, T. 1995 Effect of polymer additives on Görtler vortices in

Taylor–Couette flow. J. Fluid Mech. 282, 115–129.
LI, C.F., SURESHKUMAR, R. & KHOMAMI, B. 2006 Influence of rheological parameters on polymer induced

turbulent drag reduction. J. Non-Newtonian Fluid Mech. 140, 23–40.
LI, C.F., SURESHKUMAR, R. & KHOMAMI, B. 2015 Simple framework for understanding the universality of

the maximum drag reduction asymptote in turbulent flow of polymer solutions. Phys. Rev. E 92, 043014.
LIU, N.S. & KHOMAMI, B. 2013a Elastically induced turbulence in Taylor–Couette flow: direct numerical

simulation and mechanistic insight. J. Fluid Mech. 737, R4.
LIU, N.S. & KHOMAMI, B. 2013b Polymer-induced drag enhancement in turbulent Taylor–Couette flows:

direct numerical simulations and mechanistic insight. Phys. Rev. Lett. 111, 114501.
LOPEZ, J.M., CHOUEIRI, G.H. & HOF, B. 2019 Dynamics of viscoelastic pipe flow at low Reynolds numbers

in the maximum drag reduction limit. J. Fluid Mech. 874, 699–719.
LUMLEY, J.L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367–384.
LUMLEY, J.L. 1977 Drag reduction in two phase and polymer flows. Phys. Fluids 20, S64.
MARCHIOLI, C. & CAMPOLO, M. 2021 Drag reduction in turbulent flows by polymer and fiber additives.

KONA Powder Part J. 38, 64–81.
METZNER, A.B. 1977 Polymer solution and fiber suspension rheology and their relationship to turbulent drag

reduction. Phys. Fluids 20, S145.
MOHAMMADIGOUSHKI, H. & MULLER, S.J. 2017 Inertio-elastic instability in Taylor–Couette flow of a

model wormlike micellar system. J. Rheol. 61, 683–696.
MULLER, S.J. 2008 Elastically-influenced instabilities in Taylor–Couette and other flows with curved

streamlines: a review. Korea-Aust. Rheol. J. 20, 117–125.
OSTILLA-MÓNICO, R., VERZICCO, R. & LOHSE, D. 2015 Effects of the computational domain size on

direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27,
025110.

SAMANTA, D., DUBIEF, Y., HOLZNER, M., SCHAFER, C., MOROZOV, A.N., WAGNER, C. & HOF, B. 2013
Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110, 12498.

SARIC, W.S. 1994 Görtler vortices. Annu. Rev. Fluid Mech. 26, 379–409.
SHAQFEH, E.S.G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28, 129–185.
SHEKAR, A., MCMULLEN, R.M., MCKEON, B.J. & GRAHAM, M.D. 2020 Self-sustained elastoinertial

Tollmien–Schlichting waves. J. Fluid Mech. 897, A3.
SHEKAR, A., MCMULLEN, R.M., WANG, S., MCKEON, B.J. & GRAHAM, M.D. 2019 Critical-layer

structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122, 124503.
SID, S., TERRAPON, V.E. & DUBIEF, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and

its role in polymer drag reduction. Phys. Rev. Fluids 3 (1), 011301.

926 A37-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


J. Song, F. Lin, N. Liu, X.-Y. Lu and B. Khomami

SONG, J., TENG, H., LIU, N., DING, H., LU, X.-Y. & KHOMAMI, B. 2019 The correspondence between
drag enhancement and vortical structures in turbulent Taylor–Couette flows with polymer additives: a study
of curvature dependence. J. Fluid Mech. 881, 602–616.

STEINBERG, V. 2019 Scaling relations in elastic turbulence. Phys. Rev. Lett. 123, 234501–234505.
STEINBERG, V. 2021 Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. Fluid

Mech. 53, 27–58.
STONE, P.A., WALEFFE, F. & GRAHAM, M.D. 2002 Toward a structural understanding of turbulent drag

reduction: nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett. 89, 208301.
SURESHKUMAR, R., BERIS, A.N. & AVGOUSTI, M. 1994 Non-axisymmetric subcritical bifurcations in

viscoelastic Taylor–Couette flow. Proc. R. Soc. Lond. A 447, 135–153.
SURESHKUMAR, R., BERIS, A.N. & AVGOUSTI, M. 1995 Effect of artificial stress diffusivity on the stability

of numerical calculations and the dynamics of time-dependent viscoelastic flows. J. Non-Newtonian Fluid
Mech. 60, 53–80.

SURESHKUMAR, R., BERIS, A.N. & AVGOUSTI, M. 1997 Direct numerical simulation of the turbulent
channel flow of a polymer solution. Phys. Fluids 9, 743–755.

SWINNEY, H.L. & GOLLUB, J.P. 1985 Instabilities and transition in flow between concentric rotating
cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence, pp. 139–180. Springer.

TAKEDA, Y. 1999 Quasi-periodic state and transition to turbulence in a rotating Couette system. J. Fluid Mech.
389, 81–99.

TALWAR, K.K., GANPULE, H.K. & KHOMAMI, B. 1994 A note on selection of spaces in computation of
viscoelastic flows using the hp-finite element method. J. Non-Newtonian Fluid Mech. 52, 293–307.

TAYLOR, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc.
Lond. A 223, 289.

TENG, H., LIU, N.S., LU, X.Y. & KHOMAMI, B. 2018 Turbulent drag reduction in plane Couette flow with
polymer additives: a direct numerical simulation study. J. Fluid Mech. 846, 482–507.

THAIS, L., GATSKI, T.B. & MOMPEAN, G. 2012 Some dynamical features of the turbulent flow of a
viscoelastic fluid for reduced drag. J. Turbul. 13, N19.

THAIS, L., GATSKI, T.B. & MOMPEAN, G. 2013 Analysis of polymer drag reduction mechanisms from
energy budgets. Intl J. Heat Fluid Flow 43, 52–61.

THOMAS, D.G. 2006 Flow instabilities and pattern formation in complex fluids: effect of elasticity and thermal
gradients. PhD thesis, Washington University.

THOMAS, D.G., AL-MUBAIYEDH, U.A., SURESHKUMAR, R. & KHOMAMI, B. 2006a Time dependent
simulations of non-axisymmetric patterns in Taylor–Couette flow of dilute polymer solutions. J.
Non-Newtonian Fluid Mech. 138, 111–133.

THOMAS, D.G., KHOMAMI, B. & SURESHKUMAR, R. 2006b Pattern formation in Taylor–Couette flow of
dilute polymer solutions: dynamical simulations and mechanism. Phys. Rev. Lett. 97, 054501.

THOMAS, D.G., KHOMAMI, B. & SURESHKUMAR, R. 2009 Nonlinear dynamics of viscoelastic
Taylor–Couette flow: effect of elasticity on pattern selection, molecular conformation and drag. J. Fluid
Mech. 620, 353–382.

THOMAS, D.G., SURESHKUMAR, R. & KHOMAMI, B. 2003 Influence of fluid thermal sensitivity on the
thermo-mechanical stability of the Taylor–Couette flow. Phys. Fluids 15, 3308–3317.

TOMS, B.A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large
Reynolds numbers. In Proceedings of the First International Congress on Rheology (ed. J.M. Burgers),
pp. 135–141. North Holland.

TSUKAHARA, T., ISHIGAMIA, T., YUB, B. & KAWAGUCHIA, Y. 2011 DNS study on viscoelastic effect in
drag-reduced turbulent channel flow. J. Turbul. 12, 1–25.

VAITHIANATHAN, T. & COLLINS, L.R. 2003 Numerical approach to simulating turbulent flow of a
viscoelastic polymer solution. J. Comput. Phys. 187, 1–21.

VAITHIANATHAN, T., ROBERT, A., BRASSEUR, J.G. & COLLINS, L.R. 2006 An improved algorithm for
simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140, 3–22.

VAN GILS, D.P.M., HUISMAN, S.G., BRUGGERT, G.W., SUN, C. & LOHSE, D. 2011 Torque scaling in
turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. Lett. 106, 024502.

VIRK, P.S. 1975 Drag reduction fundamentals. AIChE J. 21, 625–656.
WATANABEA, T. & GOTOH, T. 2013 Hybrid Eulerian–Lagrangian simulations for polymer-turbulence

interactions. J. Fluid Mech. 717, 535–575.
WATANABEA, T. & GOTOH, T. 2014 Power-law spectra formed by stretching polymers in decaying isotropic

turbulence. Phys. Fluids 26, 035110.
WEI, T., KLINE, E.M., LEE, S.H.-K. & WOODRUFF, S. 1992 Görtler vortex formation at the inner cylinder

in Taylor–Couette flow. J. Fluid Mech. 245, 47–68.

926 A37-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757


Inertio-elastic turbulent Taylor–Couette flows

WHITE, C.M. & MUNGAL, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer
additives. Annu. Rev. Fluid Mech. 40, 235–256.

XI, L. & GRAHAM, M.D. 2012 Dynamics on the laminar-turbulent boundary and the origin of the maximum
drag reduction asymptote. Phys. Rev. Lett. 108, 028301.

YU, B. & KAWAGUCHI, Y. 2004 Direct numerical simulation of viscoelastic drag-reducing flow: a faithful
finite difference method. J. Non-Newtonian Fluid Mech. 116, 431–466.

ZHU, L. & XI, L. 2020 Inertia-driven and elastoinertial viscoelastic turbulent channel flow simulated with a
hybrid pseudo-spectral/finite-difference numerical scheme. J. Non-Newtonian Fluid Mech. 286, 104410.

ZHU, Y., SONG, J., LIU, N., LU, X. & KHOMAMI, B. 2020 Polymer-induced flow relaminarization and drag
enhancement in spanwise-rotating plane Couette flow. J. Fluid Mech. 905, A19.

926 A37-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.757

	1 Introduction
	2 Problem formulation and computational details
	2.1 Governing equations
	2.2 Numerical method
	2.3 Code assessment
	2.4 Simulation parameters

	3 Small-scale elastic GV
	4 Polymer-induced turbulence dynamics
	5 Flow--microstructure coupling
	6 Conclusions
	A Appendix A. Derivations of mean enstrophy transport equations
	References

