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Skellam’s name is traditionally attached to the distribution of the difference of two inde-
pendent Poisson random variables. Many bivariate extensions of this distribution are
possible, e.g., through copulas. In this paper, the authors focus on a probabilistic construc-
tion in which two Skellam random variables are affected by a common shock. Two different
bivariate extensions of the Skellam distribution stem from this construction, depending on
whether the shock follows a Poisson or a Skellam distribution. The models are nested, easy
to interpret, and yield positive quadrant-dependent distributions, which share the con-
volution closure property of the univariate Skellam distribution. The models can also be
adapted readily to account for negative dependence. Closed form expressions for Pearson’s
correlation between the components make it simple to estimate the parameters via the
method of moments. More complex formulas for Kendall’s tau and Spearman’s rho are
also provided.

1. INTRODUCTION

Let Y1, Y2 be two independent Poisson random variables with E(Y1) = λ1 > 0 and E(Y2) =
λ2 > 0. The difference X = Y1 − Y2 is then said to have a Skellam distribution, denoted
S(λ1, λ2). This distribution is due to the ecologist and statistician John Gordon Skellam
(1914–1979), who studied its basic properties [14]. If X ∼ S(λ1, λ2), then, for all x ∈ Z,

Pr(X = x) = λ−x
2 e−(λ1+λ2)

∞∑
k=max(0,x)

(λ1λ2)k

k!(k − x)!
, (1)

which can also be expressed in terms of Bessel functions; see, e.g., Prékopa [12]. The
symmetric case λ1 = λ2 was considered earlier by Irwin [6].
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The Skellam distribution arises naturally in Kendall’s famous taxicab problem [4,9].
It has found applications in various fields such as physics, medicine, and sports statistics;
see, e.g., [5,7,15]. Its properties were reviewed by Karlis and Ntzoufras [8], who note that
(1) remains valid when the random vector (Y1, Y2) follows a bivariate Poisson distribution
and its components share a common additive random contribution that is canceled by the
differencing.

This paper considers various bivariate extensions of the Skellam distribution. One such
extension was recently proposed by Bulla et al. [2]. In their model, a pair (X1,X2) is said
to have a bivariate Skellam distribution, denoted BS0(λ0, λ1, λ2), if there exist mutually
independent Poisson random variables Y0, Y1, Y2 with E(Yj) = λj > 0 for j ∈ {0, 1, 2} such
that

X1 = Y1 − Y0, X2 = Y2 − Y0.

The case of independence is encompassed if, by convention, Y0 ≡ 0 when λ0 = 0. While
this construction induces dependence λ0 = cov(X1,X2) ≥ 0 between the components, their
margins also involve λ0, because

X1 ∼ S(λ1, λ0), X2 ∼ S(λ2, λ0).

In this model, therefore, λ0 is not a margin-free dependence parameter.
In Section 2, alternative bivariate extensions of the Skellam distribution are proposed.

After briefly considering copula-based constructions, we propose and study two different
shock models. In the first model, positive dependence is governed by a real-valued parameter
that does not affect the marginal Skellam distributions of X1 and X2. The second model is a
two-parameter extension of the first which provides a greater range of positive dependence
between the components. Section 3 describes how these two models can be adapted to
account for negative dependence.

The models proposed here are easy to interpret and simulate. Their parameters are
linked in an explicit way to the marginal distributions and Pearson’s correlation between
the variables. As shown in Section 4, however, their connection with Kendall’s tau and
Spearman’s rho is only expressible in series form. Because the formula for Pearson’s corre-
lation is simple, explicit moment-based estimators exist for the dependence parameters, as
shown in Section 5. Multivariate extensions of the model are sketched in Section 6.

2. BIVARIATE SKELLAM DISTRIBUTIONS

Given positive parameters λ11, λ12, λ21 and λ22, suppose that it is desired to construct a
model for a pair (X1,X2) such that

X1 ∼ S(λ11, λ12), X2 ∼ S(λ21, λ22). (2)

Possibly the simplest analytic way of constructing a joint distribution with such marginal
distributions, denoted F1 and F2, is to set, for all x1, x2 ∈ Z,

Pr(X1 ≤ x1,X2 ≤ x2) = C{F1(x1), F2(x2)}, (3)

where C is a copula, i.e., a bivariate cumulative distribution function with uniform margins
on (0, 1); see Nelsen [10] for an introduction to the subject.
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For example, the Farlie–Gumbel–Morgenstern (FGM) copula with parameter θ ∈ [−1, 1]
is defined, for all u1, u2 ∈ [0, 1], by

Cθ(u1, u2) = u1u2 + θu1u2(1 − u1)(1 − u2).

For any fixed θ, a bivariate Skellam distribution Hθ with margins F1 and F2 is thus obtained
by setting, for all x1, x2 ∈ R,

Hθ(x1, x2) = F1(x1)F2(x2) + θF1(x1)F2(x2){1 − F1(x1)}{1 − F2(x2)}. (4)

In addition, the FGM family is ordered by positive quadrant dependence (PQD),
i.e., θ1 ≤ θ2 ⇒ Cθ1(u1, u2) ≤ Cθ2(u1, u2) for all u1, u2 ∈ (0, 1). Consequently, θ1 ≤ θ2 ⇒
Hθ1(x1, x2) ≤ Hθ2(x1, x2) for all x1, x2 ∈ R and thus the map

θ �→ covθ(X1,X2) =
∫∫

x1x2dHθ(x1, x2) − E(X1)E(X2)

is non-decreasing, allowing θ to be interpreted as a genuine, margin-free parameter governing
dependence between X1 and X2.

The FGM is only one of dozens of parametric families of bivariate copulas that are
ordered by PQD; again, see Nelsen [10]. Each such family yields a different extension of the
Skellam distribution. It is relatively easy to simulate samples from any such distribution
using the R package copula and the R implementation of the univariate Skellam distribution
by Jerry W. Lewis.

For example, to generate 1000 pairs X = (X1,X2) from the FGM model (4) with
θ = .5, λ11 = 1, λ12 = 2, λ21 = 3 and λ22 = 4, one would begin by simulating 1000
pairs U = (U1, U2) from the FGM(.5), and one would then set X1 = F−1

1 (U1) and X2 =
F−1

2 (U2), viz.

U <- rCopula(1000,fgmCopula(0.5))
X1 <- qskellam(U[,1],1,2)
X2 <- qskellam(U[,2],3,4)
X <- cbind(X1,X2).

However, copula-based extensions of the Skellam distribution cannot be interpreted
in simple probabilistic terms and do not share with the univariate Skellam distribution its
closure under convolution. In addition, they typically do not lead to practical expressions for
the joint cumulative distribution or probability mass function, let alone moments. Further
note that when X1 and X2 are modeled through relation (3), the copula C is uniquely defined
only on R = Ran(F1) × Ran(F2); in other words, two copulas that agree on R lead to the
same model. This lack of uniqueness raises identifiability issues and other complications;
see Genest and Nešlehová [3] for a review.

In what follows, two probabilistic approaches are proposed for the construction of
bivariate Skellam distributions. The first model is a special case of the second. In both
constructions, the dependence between the margins is induced by a common shock, much
as in the standard bivariate extension of the Poisson distribution. The parameter governing
the amplitude of this shock also regulates the dependence between the variables; it can be
tuned without affecting the marginal distributions. In addition, the models have a simple
interpretation, they are closed under convolution and easy to simulate.
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2.1. First Model

Let λ1 = min(λ11, λ21) > 0 and for fixed θ ∈ [0, λ1], let Y0, Y1, Y2 be mutually independent
random variables such that

Y1 ∼ S(λ11 − θ, λ12), Y2 ∼ S(λ21 − θ, λ22),

and Y0 ∼ P(θ) is a Poisson random variable with mean θ ≥ 0, with the understanding that
Y0 ≡ 0 if θ = 0. Let G1θ and G2θ denote the cumulative distribution functions of Y1 and Y2,
respectively.

Definition 2.1: A pair (X1,X2) is said to have a bivariate Skellam distribution of the first
kind, denoted BS1(θ;λ11, λ12;λ21, λ22), if and only if

X1 = Y1 + Y0, X2 = Y2 + Y0.

It is clear that this construction meets condition (2). In other words, the parameter
θ does not affect the marginal distributions of X1 and X2. To see that θ is a dependence
parameter, it suffices to show that, for all x1, x2 ∈ R,

Hθ(x1, x2) = Pr(X1 ≤ x1,X2 ≤ x2) =
∞∑

k=0

G1θ(x1 − k)G2θ(x2 − k)
e−θθk

k!

is non-decreasing in θ. This is the object of the following result.

Proposition 2.2: For all x1, x2 ∈ R and θ1, θ2 ∈ [0, λ1], one has

θ1 ≤ θ2 ⇒ Hθ1(x1, x2) ≤ Hθ2(x1, x2).

Proof: Fix λ > 0 and for given θ ∈ (0, λ), let Fθ denote the cumulative distribution func-
tion of a Poisson random variable with mean λ − θ. Then for arbitrary k ∈ N, ∂Fθ(k)/∂θ =
Fθ(k) − Fθ(k − 1) = e−(λ−θ)(λ − θ)k/k!. Using this fact, one can see that, for all x ∈ Z and
j ∈ {1, 2},

gjθ(x) =
∂

∂θ
Gjθ(x) = Gjθ(x) − Gjθ(x − 1) ≥ 0.

It follows that, for all x1, x2 ∈ Z,

∂

∂θ
Hθ(x1, x2) =

∞∑
k=0

g1θ(x1 − k)G2θ(x2 − k)
e−θθk

k!

+
∞∑

k=0

G1θ(x1 − k)g2θ(x2 − k)
e−θθk

k!

+
∞∑

k=0

G1θ(x1 − k − 1)G2θ(x2 − k − 1)
e−θθk

k!

−
∞∑

k=0

G1θ(x1 − k)G2θ(x2 − k)
e−θθk

k!
.

Upon simplification, one finds

∂

∂θ
Hθ(x1, x2) =

∞∑
k=0

g1θ(x1 − k)g2θ(x2 − k)
θke−θ

k!
≥ 0.
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Hence for arbitrary x1, x2 ∈ R, the map θ �→ Hθ(x1, x2) is non-decreasing, whence the
result. �

Given that, for all x1, x2 ∈ R,

H0(x1, x2) = F1(x1)F2(x2),

it follows from Proposition 2.2 that if (X1,X2) ∼ BS1(θ;λ11, λ12;λ21, λ22), its components
are PQD. An extension allowing for negative dependence between X1 and X2 is considered
in Section 3.

It is also clear from Definition 2.1 that the Skellam distribution of the first kind is closed
under convolution, i.e., the component-wise sum of mutually independent Skellam random
pairs has a Skellam distribution, as stated below.

Proposition 2.3: Let X1, . . . ,Xn be mutually independent random pairs such that, for
i ∈ {1, . . . , n}, Xi ∼ BS1(θi;λi11, λi12;λi21, λi22). Then

n∑
i=1

Xi ∼ BS1

(
n∑

i=1

θi;
n∑

i=1

λi11,

n∑
i=1

λi12;
n∑

i=1

λi21,

n∑
i=1

λi22

)
.

In addition, all moments of the Skellam distribution of the first kind can be deduced
easily from its probability generating function given below.

Proposition 2.4: Suppose that (X1,X2) ∼ BS1(θ;λ11, λ12;λ21, λ22). Its probability gener-
ating function is then given, for all s1, s2 ∈ (0, 1), by

E(sX1
1 sX2

2 ) = exp{(λ11 − θ)(s1 − 1) + λ12(1/s1 − 1)} × exp{(λ21 − θ)(s2 − 1)

+ λ22(1/s2 − 1)} × exp{θ(s1s2 − 1)}.

Proof: By definition, one has X1 = Y1 + Y0 and X2 = Y2 + Y0, where Y0, Y1, Y2 are
mutually independent with Y0 ∼ P(θ), Y1 ∼ S(λ11 − θ, λ12), and Y2 ∼ S(λ21 − θ, λ22).
Consequently,

E(sX1
1 sX2

2 ) = E(sY1
1 )E(sY2

2 )E{(s1s2)Y0}. (5)

Using the fact for j ∈ {1, 2}, Yj is the difference of two independent Poisson random variables
with parameters λj1 − θ and λj2, one finds

E(sYj

j ) = exp{(λj1 − θ)(sj − 1) + λj2(1/sj − 1)}.

As E{(s1s2)Y0} = exp{θ(s1s2 − 1)}, the argument is complete. �

In particular, E(Xj) = λj1 − λj2 and var(Xj) = λj1 + λj2 for j ∈ {1, 2}. Furthermore,

corr(X1,X2) =
θ√

(λ11 + λ12)(λ21 + λ22)
≤ λ1√

(λ11 + λ12)(λ21 + λ22)
.

The largest possible value of corr(X1,X2) occurs in the special case where X1 and X2

are identically distributed, i.e., λ11 = λ21 = λ1 and λ12 = λ22 = λ2. In this case, one finds
corr(X1,X2) = λ1/(λ1 + λ2) which is strictly less than 1. In particular, corr(X1,X2) = 1/2
when λ1 = λ2.
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To generate 1000 pairs X = (X1,X2) from the bivariate Skellam distribution of the
first kind with parameters θ = .5, λ11 = 1, λ12 = 2, λ21 = 3 and λ22 = 4, one can proceed
as follows:

Y0 <- rpois(1000,0.5)
Y1 <- rskellam(1000,1-0.5,2)
Y2 <- rskellam(1000,3-0.5,4)
X <- cbind(Y0+Y1,Y0+Y2).

While this model is easy to interpret and simulate from, it provides a limited range
of dependence between X1 and X2. This problem can be alleviated in part through the
following generalization.

2.2. Second Model

Introduce λ2 = min(λ12, λ22) > 0. For fixed Θ = (θ1, θ2) ∈ [0, λ1] × [0, λ2], let Y0, Y1, Y2 be
mutually independent random variables with Y0 ∼ S(θ1, θ2),

Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ1, λ22 − θ2).

Denote the cumulative distribution functions of Y1 and Y2 by G1Θ and G2Θ, respectively.

Definition 2.5: A pair (X1,X2) is said to have a bivariate Skellam distribution of the
second kind, denoted BS2(θ1, θ2;λ11, λ12;λ21, λ22), if and only if

X1 = Y1 + Y0, X2 = Y2 + Y0.

In this construction, the vector parameter Θ = (θ1, θ2) does not affect the marginal
distributions of X1 and X2. Furthermore, taking θ2 = 0 reduces Y0 to a Poisson random
variable with mean θ1 while one then has Y1 ∼ S(λ11 − θ, λ12) and Y2 ∼ S(λ21 − θ, λ22).
Accordingly,

BS1(θ1;λ11, λ12;λ21, λ22) ≡ BS2(θ1, 0;λ11, λ12;λ21, λ22).

The cumulative distribution function of the bivariate Skellam distribution of the second
kind is given, for all x1, x2 ∈ R, by

Pr(X1 ≤ x1,X2 ≤ x2) = HΘ(x1, x2) =
∞∑

k=−∞
G1Θ(x1 − k)G2Θ(x2 − k)gΘ(k),

where gΘ denotes the probability mass function of Y0. In what follows, vector algebra is
applied component-wise.

Proposition 2.6: For all x1, x2 ∈ R and Θ1,Θ2 ∈ [0, λ1] × [0, λ2], one has

Θ1 ≤ Θ2 ⇒ HΘ1(x1, x2) ≤ HΘ2(x1, x2).
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Proof: Proceeding as in the proof of Proposition 2.2, one finds, for all x ∈ Z,

∂

∂θ1
gΘ(x) = gΘ(x − 1) − gΘ(x)

and, for j ∈ {1, 2},

gjΘ(x) =
∂

∂θ1
GjΘ(x) = GjΘ(x) − GjΘ(x − 1) ≥ 0.

It follows that for all x1, x2 ∈ Z,

∂

∂θ1
HΘ(x1, x2) =

∞∑
k=−∞

g1Θ(x1 − k)G2Θ(x2 − k)gΘ(k)

+
∞∑

k=−∞
G1Θ(x1 − k)g2Θ(x2 − k)gΘ(k)

+
∞∑

k=−∞
G1Θ(x1 − k)G2Θ(x2 − k)gΘ(k − 1)

−
∞∑

k=−∞
G1Θ(x1 − k)G2Θ(x2 − k)gΘ(k).

Simple manipulations then lead to

∂

∂θ1
HΘ(x1, x2) =

∞∑
k=−∞

g1Θ(x1 − k)g2Θ(x2 − k)gΘ(k) ≥ 0.

Similarly, ∂HΘ(x1, x2)/∂θ2 ≥ 0. It follows that the map Θ �→ HΘ(x1, x2) is non-decreasing
in both of its arguments, which completes the proof. �

Given that Y ∼ S(0, 0) corresponds to the case where Y ≡ 0, one has, for all x1, x2 ∈ R,

H(0,0)(x1, x2) = F1(x1)F2(x2).

Thus Proposition 2.6 implies that HΘ is PQD for all Θ ∈ [0, λ1] × [0, λ2]. For an exten-
sion allowing for negative dependence, see Section 3. The following results generalize
Propositions 2.3 and 2.4, respectively.

Proposition 2.7: Let X1 . . . ,Xn be mutually independent random pairs such that, for i ∈
{1, . . . , n}, Xi ∼ BS2(θi1, θi2;λi11, λi12;λi21, λi22). Then

n∑
i=1

Xi ∼ BS2

(
n∑

i=1

θi1,

n∑
i=1

θi2;
n∑

i=1

λi11,

n∑
i=1

λi12;
n∑

i=1

λi21,

n∑
i=1

λi22

)
.

Proposition 2.8: Suppose that (X1,X2) ∼ BS2(θ1, θ2;λ11, λ12;λ21, λ22). Then its proba-
bility generating function is given, for all s1, s2 ∈ (0, 1), by

E(sX1
1 sX2

2 ) = exp{(λ11 − θ1)(s1 − 1) + (λ12 − θ2)(1/s1 − 1)} × exp{(λ21 − θ1)(s2 − 1)

+ (λ22 − θ2)(1/s2 − 1)} × exp[θ1(s1s2 − 1) + θ2{1/(s1s2) − 1}].
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Proof: By definition, one has X1 = Y1 + Y0 and X2 = Y2 + Y0, where Y0, Y1, Y2 are
mutually independent with Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ1, λ22 − θ2), and Y0 ∼
S(θ1, θ2). Now for j ∈ {1, 2}, Yj is the difference of two independent Poisson random
variables with parameters λj1 − θ1 and λj2 − θ2. Therefore,

E(sYj

j ) = exp{(λj1 − θ1)(sj − 1) + (λj2 − θ2)(1/sj − 1)}.
Furthermore, E{(s1s2)Y0} = exp[θ1(s1s2 − 1) + θ2{1/(s1s2) − 1}]. The conclusion now fol-
lows, upon substitution into Eq. (5). �

In particular, E(Xj) = λj1 − λj2 and var(Xj) = λj1 + λj2 for j ∈ {1, 2}. Furthermore,

corr(X1,X2) =
θ1 + θ2√

(λ11 + λ12)(λ21 + λ22)
≤ λ1 + λ2√

(λ11 + λ12)(λ21 + λ22)
.

The range of values for corr(X1,X2) is thus larger than under the first model. In fact, one
can get corr(X1,X2) = 1 when X1 and X2 are identically distributed, i.e., λ11 = λ21 = λ1

and λ12 = λ22 = λ2. Indeed if θ1 → λ1 and θ2 → λ2, one has Y1 = Y2 ≡ 0 and X1 = X2 = Y0

almost surely. The variables X1 and X2 are then said to be comonotonic.
To generate 1000 pairs X = (X1,X2) from the bivariate Skellam distribution of the

second kind with parameters θ1 = .5, θ2 = 1.5, λ11 = 1, λ12 = 2, λ21 = 3 and λ22 = 4, one
can proceed as follows:

Y0 <- rskellam(1000,0.5,1.5)
Y1 <- rskellam(1000,1-0.5,2-1.5)
Y2 <- rskellam(1000,3-0.5,4-1.5)
X <- cbind(Y0+Y1,Y0+Y2).

3. MODELS WITH NEGATIVE DEPENDENCE

The two shock models described in Section 2 can be adapted easily to account for negative
dependence between X1 and X2. This can be done by setting

X1 = Y1 + Y0, X2 = Y2 − Y0, (6)

where Y0, Y1, Y2 are mutually independent random variables such that

Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ2, λ22 − θ1),

and Y0 ∼ S(θ1, θ2) with θ1 ≤ κ1 = min(λ11, λ22) and θ2 ≤ κ2 = min(λ12, λ21).
Let G1Θ and G2Θ be the cumulative distribution functions of Y1 and Y2, respectively.

Let also gΘ stand for the probability mass function of Y0. The joint distribution of the pair
(X1,X2) is then given, for all x1, x2 ∈ R, by

HΘ(x1, x2) =
∞∑

k=−∞
G1Θ(x1 − k)G2Θ(x2 + k)gΘ(k).

This model clearly induces negative dependence between the variables X1 and X2

because, by construction,

(X1,−X2) ∼ BS2(θ1, θ2;λ11, λ12;λ22, λ21). (7)

Note that in the above, λ21 and λ22 do not appear in the same order as in Definition 2.5
because −Y2 ∼ S(λ22 − θ1, λ21 − θ2). In view of Proposition 2.6, (X1,−X2) is PQD and
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hence (X1,X2) is negative quadrant dependence for all possible values of Θ. In addition,
the class of distributions is ordered as follows.

Proposition 3.1: For all x1, x2 ∈ R and Θ1,Θ2 ∈ [0, κ1] × [0, κ2], one has

Θ1 ≤ Θ2 ⇒ HΘ1(x1, x2) ≥ HΘ2(x1, x2).

This model is sufficiently broad to allow for the random variables X1 and −X2 to be
decreasing functions of one another when they are identically distributed, i.e., λ11 = λ22

and λ12 = λ21. In this situation, the smallest possible dependence is obtained by taking
θ1 = λ11 = λ22 and θ2 = λ12 = λ21. One then has X1 = −X2 = Y0 almost surely, i.e., X1

and X2 are countermonotonic.
Using relation (7), one can show that the probability generating function of any pair

(X1,X2) of the form (6) is given, for all s1, s2 ∈ (0, 1), by

E(sX1
1 sX2

2 ) = E{sY1
1 sY2

2 (s1/s2)Y0}
= exp{(λ11 − θ1)(s1 − 1) + (λ12 − θ2)(1/s1 − 1)}
× exp{(λ21 − θ1)(s2 − 1) + (λ22 − θ2)(1/s2 − 1)}
× exp{θ1(s1/s2 − 1) + θ2(s2/s1 − 1)}.

Here again, E(Xj) = λj1 − λj2, var(Xj) = λj1 + λj2 for j ∈ {1, 2}, and

corr(X1,X2) = − θ1 + θ2√
(λ11 + λ12)(λ21 + λ22)

.

4. NON-PARAMETRIC MEASURES OF DEPENDENCE

As seen in Section 2, a simple formula is available for corr(X1,X2) whenever (X1,X2) ∼
BS2(θ1, θ2;λ11, λ12;λ21, λ22). A fortiori, the same holds true in the special case where
(X1,X2) ∼ BS1(θ;λ11, λ12;λ21, λ22). Alas, closed form expressions for Kendall’s tau and
Spearman’s rho are not available for these models. As shown below, however, these two
non-parametric measures of dependence can be expressed in terms of covariances between
non-decreasing functions of underlying variables distributed as S(θ, θ), where θ = θ1 + θ2.

4.1. Kendall’s Tau

In order to compute the (raw) value of Kendall’s tau, consider independent pairs (X1,X2)
and (X ′

1,X
′
2) from BS2(θ1, θ2;λ11, λ12;λ21, λ22). By definition, one can then write, for j ∈

{1, 2},
Xj = Yj + Y0, X ′

j = Y ′
j + Y ′

0

using mutually independent random variables Y0, Y1, Y2, Y ′
0 , Y ′

1 , Y ′
2 such that

Y0 ∼ S(θ1, θ2), Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ1, λ22 − θ2)

and
Y ′

0 ∼ S(θ1, θ2), Y ′
1 ∼ S(λ11 − θ1, λ12 − θ2), Y ′

2 ∼ S(λ21 − θ1, λ22 − θ2).

For j ∈ {0, 1, 2}, introduce Zj = Yj − Y ′
j and let

T1 = X1 − X ′
1 = Z1 + Z0, T2 = X2 − X ′

2 = Z2 + Z0.
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Further set θ = θ1 + θ2 and Λj = λj1 + λj2 for j ∈ {1, 2}. Then

Z0 ∼ S(θ, θ), Z1 ∼ S(Λ1 − θ,Λ1 − θ), Z2 ∼ S(Λ2 − θ,Λ2 − θ)

and hence (T1, T2) ∼ BS2(θ, θ; Λ1,Λ1; Λ2,Λ2).
Denote by Kθ the joint cumulative distribution function of (T1, T2), and let K1θ and

K2θ be the cumulative distribution functions of Z1 and Z2, respectively. Let also gθ denote
the probability mass function of Z0. The following proposition leads, if desired, to a series
expansion for the (raw) population value of Kendall’s tau in the pair (X1,X2).

Proposition 4.1: If (X1,X2) ∼ BS2(θ1, θ2;λ11, λ12;λ21, λ22), the (unscaled) value of
Kendall’s tau for the pair (X1,X2) is then given by

τ(X1,X2) = cov{K1θ(Z0) + K1θ(Z0 − 1),K2θ(Z0) + K2θ(Z0 − 1)}.

Proof: By definition, τ(X1,X2) = Pr(T1T2 > 0) − Pr(T1T2 < 0) = Δ, say. Given that
(T1, T2) = (Z1 + Z0, Z2 + Z0), the difference

Δ = Kθ(0, 0) + Kθ(−1, 0) + Kθ(0,−1) + Kθ(−1,−1) − 1

can be developed as a series upon conditioning by Z0. One finds

Δ =
∞∑

k=−∞
{K1θ(−k)K2θ(−k) + K1θ(−k − 1)K2θ(−k)}gθ(k)

+
∞∑

k=−∞
{K1θ(−k)K2θ(−k − 1) + K1θ(−k − 1)K2θ(−k − 1)}gθ(k) − 1

=
∞∑

k=−∞
{K1θ(−k) + K1θ(−k − 1)}{K2θ(−k) + K2θ(−k − 1)}gθ(k) − 1.

Now use the fact that for j ∈ {0, 1, 2}, −Zj has the same distribution as Zj to deduce that,
for j ∈ {1, 2} and all k ∈ Z,

Kjθ(−k) = 1 − Kjθ(k − 1), Kjθ(−k − 1) = 1 − Kjθ(k).

Upon substitution, one finds

Δ =
∞∑

k=−∞
{K1θ(k) + K1θ(k − 1) − 2}{K2θ(k) + K2θ(k − 1) − 2}gθ(k) − 1

= E[{K1θ(Z0) + K1θ(Z0 − 1) − 2}{K2θ(Z0) + K2θ(Z0 − 1) − 2}] − 1,

which yields the desired conclusion because E{K1θ(Z0) + Kjθ(Z0 − 1)} = 1 for
j ∈ {1, 2}. �

Given that the mapping t �→ Kjθ(t) + Kjθ(t − 1) is non-decreasing for j ∈ {1, 2}, it
follows from Proposition 4.1 that τ(X1,X2) ≥ 0. The lower bound (i.e., 0) is reached when
min(θ1, θ2) → 0, because in the limit Z0 ≡ 0. As for the upper bound, it is reached when
θj → min(λ1j , λ2j) for j ∈ {1, 2}.

An explicit expression for the upper bound on τ(X1,X2) can be obtained when the
random variables X1 and X2 are identically distributed, i.e., when λ1j = λ2j = λj for j ∈
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{1, 2}. In that case, one has Z1 = Z2 ≡ 0, and hence Kjθ(k) = 1(k ≥ 0) for j ∈ {1, 2} and
all k ∈ Z. In view of Proposition 4.1, the upper bound is then given by

var{1(Z0 ≥ 0) + 1(Z0 − 1 ≥ 0)} = var{1(Z0 > 0) − 1(Z0 < 0)}
= E[{1(Z0 > 0) − 1(Z0 < 0)}2],

because the distribution of Z0 is symmetric with respect to the origin. Upon expanding the
square, the latter expectation is found to be

2E{1(Z0 > 0)} = 2Pr(Y0 > Y ′
0) = 2E{F1(X1 − 1)}.

This is in concordance with Proposition 8 of Nešlehová [11].
As another immediate consequence of Proposition 4.1, note that if a random pair

(X1,X2) is defined as in (6), it follows from (7) that

τ(X1,X2) = −cov{K1θ(Z0) + K1θ(Z0 − 1),K2θ(Z0) + K2θ(Z0 − 1)}.

4.2. Spearman’s Rho

Turning to the computation of the (raw) theoretical value of Spearman’s rho, let (X1,X2),
(X ′

1,X
′
2) and (X ′′

1 ,X ′′
2 ) be mutually independent and identically distributed pairs from

BS2(θ1, θ2;λ11, λ12;λ21, λ22). By definition, one can then write, for j ∈ {1, 2},

Xj = Yj + Y0, X ′
j = Y ′

j + Y ′
0 , X ′′

j = Y ′′
j + Y ′′

0 ,

where for j ∈ {0, 1, 2}, Yj , Y ′
j and Y ′′

j be mutually independent and identically distributed
random variables such that Y0 ∼ S(θ1, θ2) and

Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ1, λ22 − θ2).

Consider the random variables

Z1 = Y1 − Y ′
1 , Z2 = Y2 − Y ′′

2 , Z0 = Y0 − Y ′
0 , Z ′

0 = Y0 − Y ′′
0

and set

T1 = X1 − X ′
1 = Z1 + Z0, T2 = X2 − X ′′

2 = Z2 + Z ′
0.

Clearly, Z0 and Z ′
0 are two dependent observations from distribution S(θ, θ), where θ =

θ1 + θ2. For j ∈ {1, 2}, one also has Zj ∼ S(Λj − θ,Λj − θ), where Λj = λj1 + λj2, as before.
Denote by Kθ the joint cumulative distribution function of (T1, T2), and let K1θ and

K2θ be the cumulative distribution functions of Z1 and Z2, respectively. Let also gθ denote
the probability mass function of (Z0, Z

′
0) ∼ BS2(θ1, θ2; θ, θ; θ, θ). The following result leads,

if desired, to a series expansion for the (raw) population value of Spearman’s rho for the
pair (X1,X2).

Proposition 4.2: If (X1,X2) ∼ BS2(θ1, θ2;λ11, λ12;λ21, λ22), the (unscaled) value of
Spearman’s rho for the pair (X1,X2) is then given by

ρ(X1,X2) = 3 cov {K1θ(Z0) + K1θ(Z0 − 1),K2θ(Z ′
0) + K2θ(Z ′

0 − 1)} .
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Proof: By definition, ρ(X1,X2)/3 = Pr(T1T2 > 0) − Pr(T1T2 < 0) = Δ, say. Given that
(T1, T2) = (Z1 + Z0, Z2 + Z ′

0), the difference

Δ = Kθ(0, 0) + Kθ(−1, 0) + Kθ(0,−1) + Kθ(−1,−1) − 1

can be developed as a series upon conditioning by Z0 and Z ′
0. One finds

Δ =
∞∑

k=−∞

∞∑
k′=−∞

{K1θ(−k)K2θ(−k′) + K1θ(−k − 1)K2θ(−k′)}gθ(k, k′)

+
∞∑

k=−∞

∞∑
k′=−∞

K1θ(−k)K2θ(−k′ − 1)gθ(k, k′)

+
∞∑

k=−∞

∞∑
k′=−∞

K1θ(−k − 1)K2θ(−k′ − 1)gθ(k, k′) − 1.

Upon simplification, one gets

Δ =
∞∑

k=−∞

∞∑
k′=−∞

{K1θ(−k) + K1θ(−k − 1)}

× {K2θ(−k′) + K2θ(−k′ − 1)}gθ(k, k′) − 1.

Now use the fact that for j ∈ {1, 2}, −Zj has the same distribution as Zj , and −Z ′
j has

the same distribution as Z ′
j . Thus, for j ∈ {1, 2} and all k ∈ Z, one has Kjθ(−k − 1) =

1 − Kjθ(k). Consequently,

Δ =
∞∑

k=−∞

∞∑
k′=−∞

{K1θ(k) + K1θ(k − 1) − 2}

× {K2θ(k′) + K2θ(k′ − 1) − 2}gθ(k, k′) − 1.

Furthermore,

E{K1θ(Z0) + K1θ(Z0 − 1)} = 1, E{K2θ(Z ′
0) + K2θ(Z ′

0 − 1)} = 1.

Consequently,

Δ = cov {K1θ(Z0) + K1θ(Z0 − 1),K2θ(Z ′
0) + K2θ(Z ′

0 − 1)} ,

whence the conclusion. �

From Proposition 2.6, it is known that the pair (Z0, Z
′
0) is PQD. Given that the mapping

t �→ Kjθ(t) + Kjθ(t − 1) is non-decreasing for j ∈ {1, 2}, one can then conclude from Propo-
sition 4.2 that ρ(X1,X2) ≥ 0. The lower bound (i.e., 0) is reached when min(θ1, θ2) → 0,
because in the limit Z0 = Z ′

0 ≡ 0. The upper bound occurs when θj → λj = min(λ1j , λ2j)
for j ∈ {1, 2}.

As for Kendall’s tau, an explicit upper bound on Spearman’s rho can be found when
the random variables X1 and X2 are identically distributed, i.e., when λ1j = λ2j = λj for
j ∈ {1, 2}. The largest possible value, ρmax, of ρ then occurs when θj → λj for j ∈ {1, 2}. In
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that case, one has Z1 = Z2 ≡ 0 and hence Kjθ(k) = 1(k ≥ 0) for j ∈ {1, 2} and all k ∈ Z.
Hence

ρmax/3 = cov{1(Z0 > 0) − 1(Z0 < 0),1(Z ′
0 > 0) − 1(Z ′

0 < 0)}
= Pr(Z0 > 0, Z ′

0 > 0) + Pr(Z0 < 0, Z ′
0 < 0)

− Pr(Z0 < 0, Z ′
0 > 0) − Pr(Z0 > 0, Z ′

0 < 0).

Note that if θj → λj for j ∈ {1, 2}, then X1 = X2 = Y0 almost surely because Y1 = Y2 ≡ 0.
Consequently,

Pr(Z0 > 0, Z ′
0 > 0) = Pr(Y ′

0 < Y0, Y
′′
0 < Y0) = E[{F1(X1 − 1)}2].

Similarly, one has

Pr(Z0 > 0, Z ′
0 < 0) = Pr(Z0 < 0, Z ′

0 > 0) = E[F1(X1 − 1){1 − F1(X1)}]
and Pr(Z0 < 0, Z ′

0 < 0) = E[{1 − F1(X1)}2]. Finally, by using the identity

E{F1(X1 − 1)} + E{F1(X1)} = 1,

one gets
ρmax = 3var{F1(X1) + F1(X1 − 1)}.

This is in accordance with the discussion in Section 4.3 of Nešlehová [11].
As another immediate consequence of Proposition 4.2, note that if a random pair

(X1,X2) is defined as in (6), it follows from (7) that

ρ(X1,X2) = −3 cov {K1θ(Z0) + K1θ(Z0 − 1),K2θ(Z ′
0) + K2θ(Z ′

0 − 1)} .

5. PARAMETER ESTIMATION

In addition to being easy to interpret and simulate, the bivariate Skellam distributions
defined here are simple to fit by the method of moments. Maximum-likelihood estimation
is also possible but is not considered, as it is even more involved than for the univariate
Skellam distribution; see, e.g., [1,7].

First observe that whether the random sample (X11,X12), . . . , (Xn1,Xn2) arises from
the bivariate Skellam distribution of the first kind or the second kind, the parameters of
the margins S(λ11, λ12) and S(λ21, λ22) can be estimated in the standard way [13]. Setting

X̄1 =
1
n

n∑
i=1

Xi1, X̄2 =
1
n

n∑
i=1

Xi2,

and

S1 =
1

n − 1

n∑
i=1

(Xi1 − X̄1)2, S2 =
1

n − 1

n∑
i=1

(Xi2 − X̄2)2,

the moment estimators are easily found to be

λ̂11 =
S2

1 + X̄1

2
, λ̂12 =

S2
1 − X̄1

2
, λ̂21 =

S2
2 + X̄2

2
, λ̂22 =

S2
2 − X̄2

2
. (8)

These estimators are explicit and consistent by the Law of Large Numbers. However, note
that in order for all of them to be non-negative, one must have S2

j ≥ |X̄j | for j ∈ {1, 2}.
If this condition fails for some j ∈ {1, 2}, one may proceed as Alzaid and Omair [1] by
setting the negative estimate to zero and the other one to |X̄j |.

https://doi.org/10.1017/S0269964814000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000072


414 C. Genest and M. Mesfioui

5.1. First Model

When the data arise from the BS1(θ;λ11, λ12;λ21, λ22), a moment-based estimator of the
dependence parameter θ is given by

θ̂ = S12 =
1

n − 1

n∑
i=1

(Xi1 − X̄1)(Xi2 − X̄2).

This estimator is consistent by the Law of Large Numbers. When the sample size is small,
however, there is a non-zero probability that S12 ≤ 0, in which case one might set θ̂ = 0.

In practice, a negative value for S12 may also suggest that a model of the form (6) is
more appropriate for the pair (X1,X2). As seen in Section 3, this amounts to assuming that
(X1,−X2) ∼ BS1(θ;λ11, λ12;λ22, λ21). Note that this does not affect the estimates of the
marginal parameters given in (8) but as cov(X1,−X2) = θ, a consistent estimator of θ is
now given by −S12 > 0.

5.2. Second Model

When the data arise from the broader model BS2(θ1, θ2;λ11, λ12;λ21, λ22), two equations are
needed in order to estimate θ1 and θ2 by the method of moments. The identity cov(X1,X2) =
θ1 + θ2 leads to the estimating equation

S12 = θ̂1 + θ̂2,

from which a consistent estimator of θ = θ1 + θ2 can be deduced. As n → ∞, the probability
that S12 < 0 becomes negligible. Thus if S12 < 0, it may be that a model of the form (6) is
more appropriate.

5.2.1 Case S12 > 0.
In order to estimate θ1 and θ2 subject to θ̂1 + θ̂2 = S12, a second equation must be called
upon. The following proposition will be used to this end.

Proposition 5.1: Suppose that (X1,X2) ∼ BS2(θ1, θ2;λ11, λ12;λ21, λ22). Then

cov(X1,X
2
2 ) = (θ1 − θ2) + 2(λ21 − λ22)(θ1 + θ2),

cov(X2
1 ,X2) = (θ1 − θ2) + 2(λ11 − λ12)(θ1 + θ2).

Proof: By definition, one has X1 = Y1 + Y0 and X2 = Y2 + Y0, where Y0, Y1, Y2 are
mutually independent with Y0 ∼ S(θ1, θ2),

Y1 ∼ S(λ11 − θ1, λ12 − θ2), Y2 ∼ S(λ21 − θ1, λ22 − θ2).

Consequently,

cov(X1,X
2
2 ) = cov(Y0, Y

2
0 ) + 2E(Y2)var(Y0)

= E(Y 3
0 ) + {2E(Y2) − E(Y0)}var(Y0) − {E(Y0)}3.

The desired expression for cov(X1,X
2
2 ) results from the fact that

E(Y0) = θ1 − θ2, E(Y2) = λ21 − λ22 − (θ1 − θ2), var(Y0) = θ1 + θ2,

and
E(Y 3

0 ) = (θ1 − θ2) + 3(θ2
1 − θ2

2) + (θ1 − θ2)3.

The formula for cov(X2
1 ,X2) can be obtained in a similar way. �

https://doi.org/10.1017/S0269964814000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000072


BIVARIATE EXTENSIONS OF SKELLAM’S DISTRIBUTION 415

Plug-in estimates of cov(X2
1 ,X2) and cov(X1,X

2
2 ) are given by

T12 =
1

n − 1

n∑
i=1

(Xi2 − X̄2)(X2
i1 − S2

1 − X̄2
1 ) =

1
n − 1

n∑
i=1

(Xi2 − X̄2)X2
i1,

T21 =
1

n − 1

n∑
i=1

(Xi1 − X̄1)(X2
i2 − S2

2 − X̄2
2 ) =

1
n − 1

n∑
i=1

(Xi1 − X̄1)X2
i2,

respectively. Given that λ̂11 − λ̂12 = X̄1 and λ̂21 − λ̂22 = X̄2 from Eq. (8), Proposition 5.1
suggests that moment estimators of θ1 and θ2 can be obtained by solving the equation

1
2

(T12 + T21) = θ̂1 − θ̂2 + (X̄1 + X̄2)(θ̂1 + θ̂2),

subject to S12 = θ̂1 + θ̂2. The solution happens to be explicit, viz.

θ̂1 =
1
2

{
S12(1 − X̄1 − X̄2) +

1
2
(T12 + T21)

}
,

θ̂2 =
1
2

{
S12(1 + X̄1 + X̄2) − 1

2
(T12 + T21)

}
.

Again, these estimators are consistent by the Law of Large Numbers. By assumption,
at most one of them can be negative; when this happens, it can be set equal to zero.

5.2.1. Case S12 < 0.
As mentioned earlier, it may be preferable to assume a model of the form (6)
for (X1,X2) when S12 is negative. This amounts to assuming that (X1,−X2) ∼
B2(θ1, θ2;λ11, λ12;λ22, λ21), in which λ12 and λ22 have been interchanged. In view of this
fact, it is easy to see from Proposition 5.1 that

cov(X1,X
2
2 ) = (θ1 − θ2) − 2(λ21 − λ22)(θ1 + θ2),

cov(X2
1 ,X2) = (θ2 − θ1) − 2(λ11 − λ12)(θ1 + θ2).

Estimators for these parameters are then obtained by solving the equations

S12 = −(θ̂1 + θ̂2),
1
2

(T12 − T21) = θ̂1 − θ̂2 + (X̄1 − X̄2)(θ̂1 + θ̂2).

Consequently,

θ̂1 =
1
2

{
S12(X̄1 − X̄2 − 1) +

1
2
(T12 − T21)

}
,

θ̂2 =
1
2

{
S12(X̄2 − X̄1 − 1) − 1

2
(T12 − T21)

}
.

These estimators are consistent by the Law of Large Numbers. By assumption, at most one
of them is negative; when this happens, it can be set equal to zero.

A study of the sampling properties of the estimators proposed herein will be the object
of subsequent work.
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6. DISCUSSION

The main purpose of this paper was to introduce bivariate Skellam distributions that could
be easily interpreted and simulated. Two such models were proposed, based on a proba-
bilistic construction involving a common shock. The models, which are nested, share the
convolution closure property of the univariate Skellam distribution. Their basic features
were studied, and moment-based estimators of their parameters were derived.

While the discussion was limited to the bivariate case, it is obvious that multivariate
extensions of these models are possible. A general d-variate Skellam distribution could be
defined, e.g., as the distribution of a random vector X = (X1, . . . , Xd) with components

X1 = Y1 + Y0, . . . , Xd = Yd + Y0,

where the random variables Y0, . . . , Yd are mutually independent with Y0 ∼ S(θ1, θ2) and,
for all j ∈ {1, . . . , d}, Yj ∼ S(λ1j − θ1, λ2j − θ2). In this model, Xj ∼ S(λ1j , λ2j) for each
j ∈ {1, . . . , d} and the dependence between them is governed by non-negative parameters

θ1 < min(λ11, . . . , λ1d), θ2 < min(λ21, . . . , λ2d).

Another fruitful way of inducing dependence in multi-class models is through shocks
that can affect either the entire portfolio or subclasses thereof. For example, suppose that
X = (X1, . . . ,X�), where Xj = (Xk1, . . . , Xkd) for each k ∈ {1, . . . , �}. One could assume
that for each k and all j ∈ {1, . . . , d},

Xkj = Ykj + Yj + Y0,

where Y0 ∼ S(θ1, θ2), Yk ∼ S(θ1k − θ1, θ2k − θ2), and

Ykj ∼ S(λ1kj − θ1k − θ1, λ2kj − θ2k − θ2).

Clearly, Xkj ∼ S(λ1kj , λ2kj) for all k ∈ {1, . . . , �} and j ∈ {1, . . . , d}. In this model, the
parameters θ1 and θ2 govern the global dependence, while θ1k and θ2k account for the
dependence in class k ∈ {1, . . . , �}. These models may be the subject of future study.
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