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Abstract

Weed interference during crop establishment is a serious concern for Florida strawberry
[Fragaria× ananassa (Weston) Duchesne ex Rozier (pro sp.) [chiloensis× virginiana]]
producers. In situ remote detection for precision herbicide application reduces both the
risk of crop injury and herbicide inputs. Carolina geranium (Geranium carolinianum L.) is a
widespread broadleaf weed within Florida strawberry production with sensitivity to
clopyralid, the only available POST broadleaf herbicide. Geranium carolinianum leaf
structure is distinct from that of the strawberry plant, which makes it an ideal candidate for
pattern recognition in digital images via convolutional neural networks (CNNs). The study
objective was to assess the precision of three CNNs in detecting G. carolinianum. Images of
G. carolinianum growing in competition with strawberry were gathered at four sites in
Hillsborough County, FL. Three CNNs were compared, including object detection–based
DetectNet, image classification–based VGGNet, and GoogLeNet. Two DetectNet networks
were trained to detect either leaves or canopies of G. carolinianum. Image classification using
GoogLeNet and VGGNet was largely unsuccessful during validation with whole images
(Fscore< 0.02). CNN training using cropped images increased G. carolinianum detection
during validation for VGGNet (Fscore= 0.77) and GoogLeNet (Fscore= 0.62). The
G. carolinianum leaf–trained DetectNet achieved the highest Fscore (0.94) for plant detection
during validation. Leaf-based detection led to more consistent detection of G. carolinianum
within the strawberry canopy and reduced recall-related errors encountered in canopy-
based training. The smaller target of leaf-based DetectNet did increase false positives, but
such errors can be overcome with additional training images for network desensitization
training. DetectNet was the most viable CNN tested for image-based remote sensing of
G. carolinianum in competition with strawberry. Future research will identify the optimal
approach for in situ detection and integrate the detection technology with a precision
sprayer.

Introduction

Carolina geranium (Geranium carolinianum L.) is a problematic broadleaf weed in Florida
strawberry [Fragaria× ananassa (Weston) Duchesne ex Rozier (pro sp.) [chiloensis×
virginiana]] plasticulture production (Webster 2014). Geranium carolinianum emerges from
the planting hole in the plastic mulch during crop establishment and escapes current control
practices. While the exact cause for escape is unknown, it is likely a consequence of poor
residual PRE herbicide control during the long growing season. Clopyralid is a registered
POST herbicide that can be safely applied over the top of the strawberry crop (Boyd and
Dittmar 2015; Figueroa and Doohan 2006; McMurray et al. 1996; Sharpe et al. 2018a). Safety
concerns exist for application under higher temperatures that applicators may experience
earlier in the production cycle (Sharpe et al. 2018b). These concerns can be alleviated by
reducing input volumes with custom precision application technology. Specifically in the case of
strawberry production, this would involve targeted application of clopyralid to G. carolinianum
using machine vision–based applicators. Weed establishment often occupies low percentages
of the field and demonstrates a patchy distribution. Site-specific precision application
of POST herbicides may reduce inputs by 90% compared with broadcast applications
(Zijlstra et al. 2011).

The concept of targeted precision sprayers, particularly autonomous ones, has been well
studied, and the general framework has been reviewed elsewhere (Slaughter et al. 2008a).
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Those authors note the necessity of several subsystems that are
important for development in strawberry production: machine
vision, weed control, and displacement-sensing subsystems. The
machine vision component is the most complex subsystem, with a
variety of sensor options for species discrimination. These include
cameras to capture multispectral reflectance (Slaughter et al.
2008b), hyperspectral reflectance (Sharpe 2008; Vrindts et al.
2002), and color images (Tian et al. 1997; Tillett et al. 2008). Use
of hyperspectral technology has led to highly accurate (96%)
discrimination of weeds in tomatoes (Lycopersicon esculentum
Mill.) (Zhang et al. 2012a, 2012b). Unfortunately, the cost of
hyperspectral cameras is high compared with digital color cam-
eras, which limits implementation (Fennimore et al. 2016).

One of the most promising prospects for species discrimina-
tion is digital color image–based deep convolutional neural net-
works (CNNs) (Schmidhuber 2015). In 2011, a graphics
processing unit (GPU)-implemented neural network using a
combination of convolutional and max-pooling layers (GPU-
MPCNNs) achieved recognition rates greater than 98.73% on
classifying traffic signs (Cireşan et al. 2011). Forward-fed GPU-
MPCNNs became one of the most competition-winning deep-
learning techniques employed thereafter (Schmidhuber 2015).
The success of neural networks is due to their architecture,
derived from the visual perception of animals (Gu et al. 2017).
Increased computational speed through GPU implementation
and altering connectivity and operation of layers has allowed
for successful development of deep, multilayered CNNs capable
of classifying images through pattern and color recognition
(Schmidhuber 2015).

For GPU-enhanced CNNs, successful classification and
detection is aided by filter-based pattern recognition at the con-
volutional layers (Gu et al. 2017). Convolutional layers use small,
pixel-based filters to both increase the network depth and reduce
the dimension of the input images (Szegedy et al. 2014). Pooling
layers are an essential element for CNNs, as they reduce the
number of connections between convolutional layers and, in turn,
reduce computational load (Gu et al. 2017). Finally, the output of
a layer may contain an activation function, which creates non-
linearity in the network (Teimouri et al. 2018). The most com-
mon type is the rectified linear unit, which equates negative
outputs to zero, reducing overall computation, and increases
identification of sparse targets (Gu et al. 2017).

The recent developments for deep CNNs make them a feasible
option for using digital color cameras as a cost-effective sensor for
machine vision subsystems of precision applicators. A shallow
image–classification CNN (10 layers) was able to discriminate
soybean [Glycine max (L.) Merr.] plants from three Chinese
weeds (Convolvulus sp., Digitaria sp., and Cirsium sp.) with 93%
accuracy (Tang et al. 2017). Several weed species (18 in total) were
identified with class accuracy between 46% and 78%, with a 70%
accuracy of estimating leaf number with the Inception-V3
architecture (Szegedy et al. 2016; Teimouri et al. 2018). Mono-
cot and dicot weeds were separated from the cereal fields with an
average precision of 0.76 using the object-detecting CNN SSD512
(Dyrmann et al. 2018; Liu et al. 2016). Uncategorized weeds could
be detected in winter wheat (Triticum aestivum L.) during
occluded conditions using the object detector CNN DetectNet
with moderate success (precision= 87%), but many weeds were
missed (recall= 46%) (Dyrmann et al. 2017; Tao et al. 2016).
Which CNNs may be best adapted for use within in situ smart
sprayers in Florida strawberry production is currently unknown.
Therefore, the objective of the study was to determine the feasibility

of use and accuracy of three CNNs in detecting G. carolinianum
growing in competition with strawberry.

Materials and Methods

Images of G. carolinianum in competition with strawberry plants
were taken using a digital camera (DSC-HX1, Sony® Cyber-shot
Digital Still Camera, Sony, Minato, Tokyo, Japan) at a resolution
of 1,920 × 1,080 pixels. Training images were taken at two loca-
tions: the Gulf Coast Research and Education Center in Balm, FL
(27.76°N, 82.22°W), and the Florida Strawberry Growers Asso-
ciation field site in Dover, FL (28.02°N, 82.23°W). Validation
images were taken at two commercial strawberry farms (27.93°N,
82.10°W and 27.98°N, 82.10°W) on February 23, 2018. Straw-
berry plants were transplanted on October 10, 2017, in Balm,
October 16, 2017, in Dover, and October 6, 2017, and October 10,
2017, for the validation sites. Images were taken at Balm at 63, 70,
and 120 d after transplanting (DATr). Images were taken in
Dover at 58, 120, and 130 DATr. Validation images were taken at
two commercial strawberry farms at 134 and 136 DATr, respec-
tively. Strawberry plants were at early- to mid-anthesis between
58 and 63 DATr, early fruiting by 70 DATr, and full fruiting by
120 DATr. Geranium carolinianum was growing vegetatively
between 63 and 120 DATr and had developed reproductive
structures after 120 DATr, primarily at validation sites.

The training data set contained a total of 705 images with
G. carolinianum (positive) and 570 images without G. car-
olinianum (negative). The validation data set contained 88 posi-
tive and 109 negative images. Negative images were not restricted
to only strawberry plants and contained images of other species
growing in competition with strawberry within the bed. These
species included black medic (Medicago lupulina L.), goosegrass
[Eleusine indica (L.) Gaertn.], crabgrass species (Digitaria spp.),
livid amaranth (Amaranthus blitum L.), crowfootgrass [Dacty-
loctenium aegyptium (L.) Willd.], and common ragweed
(Ambrosia artemisiifolia L.). Images were taken centered on a
strawberry bed and contained approximately four planting holes.
Camera height was 130 cm from the soil surface. Bed height was
30.5 cm. Natural sunlight was taken as the light source, with
approximately 10% to 20% cloud cover, and images were taken
within 2 h of solar noon.

Images were resized to 1,280 × 720 pixels (720p) using Irfan-
view (v. 4.50, Irfan Skijan, Jajce, Bosnia). The 720p image reso-
lution was chosen to develop networks for future in situ video
input on developed smart sprayers. This resulted in a ground-
sampling distance of 0.2 cm pixel−1 at bed height and 0.3 cm
pixel−1 at ground height. Image classification images were divided
into four equal subimages through cropping, then resorted
according to their classification. The resulting data set contained
3,542 negative images and 1,447 positive images.

Data were imported into the NVIDIA Deep Learning GPU
Training System (DIGITS) (v. 6.0.0, NVIDIA, Santa Clara, CA)
for data set compilation. Three CNNs within the DIGITS library
were used for species discrimination. The DIGITS interface was of
interest due to its advanced user-friendly interface, graphical
layout, and ease of implementation compared with other deep-
learning systems. The CNNs can be classified as either image-
classification or object-detection based. Image classification uses
predetermined groups of images (classes) to train the CNN to
select a single classification for each unknown image. Object
detection uses input images and label files containing the location
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of the target (G. carolinianum) in each image. These files were
generated by drawing bounding boxes onto positive images using
custom software compiled with Lazarus (https://www.lazarus-ide.
org). Two DetectNet networks for object detection were trained
by either labeling whole G. carolinianum canopies (Figure 1) or
labeling individual G. carolinianum leaves (Figure 2).

The CNN training was conducted in DIGITS using the
Convolutional Architecture for Fast Feature Embedding (Caffe)
(v. 0.15.14, UC Berkeley EECS, Berkeley, CA) framework to train
the image-classification and object-detection neural networks
(Tao et al. 2016). The three CNNs used for comparison were the
visual geometry groups: 16-layer CNN (VGGNet) (Simonyan and
Zisserman 2015), the 22-layer CNN deep network GoogLeNet
(Szegedy et al. 2014), and the DIGITS network DetectNet (Tao
et al. 2016). DetectNet contains five parts: (1) data ingest and
augmentation layers, (2) a fully convolutional neural network
(GoogLeNet), (3) loss functions to measure training error, (4) a

clustering function during validation for bounding box predic-
tion, and (5) an average precision (mAP) metric to determine
network performance against the validation set (Jia et al. 2014;
Szegedy et al. 2014; Tao et al. 2016). All three CNNs were
available through the DIGITS model store and were pretrained
with the ImageNet data set (Jia et al. 2009); DetectNet was also
pretrained with the KITTI data set (Geiger et al. 2013). Network
pretraining facilitates transfer learning for deep CNNs to increase
performance (Ge et al. 2015). These CNNs were selected due to
their availability and ease of training through the DIGITS inter-
face. Data augmentation was achieved using the augmentation
layer in DetectNet and the mirroring option for VGGNet and
GoogLeNet. The DetectNet augmentation layer included para-
meters for random cropping, flipping, rotating, hue adjustments,
and desaturation of input images.

The ADADELTA solver type was selected for backpropagation
of all CNNs (Zeiler 2012). This was to overcome the fundamental

Figure 1. Canopy-trained DetectNet-generated bounding boxes generated on validation images for Geranium carolinianum growing in competition with the strawberry crop in
a plasticulture setting at Plant City, FL, in 2018.

Figure 2. Leaf-trained DetectNet-generated bounding boxes generated on validation images for Geranium carolinianum growing in competition with the strawberry crop in a
plasticulture setting at Plant City, FL, in 2018.
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problem with deep learning, wherein the activation function
signal error during cumulative backpropagation grows or shrinks
rapidly (Hochreiter et al. 2001; Schmidhuber 2015). During
object-detection training, an intersection over union (IoU)
method was used to evaluate whether the object detected was a
true positive (tp), with a threshold of 0.7 (Tao et al. 2016). IoU is
the ratio of overlap between the actual and predicted bounding
boxes. Training continued, with the training rate progressively
reduced, until the loss function output no longer decreased or the
desired parameters (maP, precision, and recall) ceased to increase
over 100 epochs.

Object-detection and image-classification results for G. car-
olinianum were arranged in a binary-classification confusion
matrix under four conditions, a true positive classification (tp), a
false negative (fn), a false positive (fp), or a true negative (tn)
(Table 1). For object-detection networks, validation images were
considered on the networks effectiveness at detecting both indi-
vidual leaves and whole plants. Two scales of effectiveness are
considered: leaves and whole plants. This technology is under
development for precision-sprayer implementation to target
herbicide application across the strawberry plant to ensure proper
coverage of G. carolinianum, so precision on a plant-level scale
was considered.

Three measures of neural network effectiveness were used:
precision, recall, and Fscore (Sokolova and Lapalme 2009). Pre-
cision is a measure of how accurate the neural network was at
positive identification and was calculated by:

Precision=
tp

tp + fp
[1]

(Hoiem et al. 2012; Sokolova and Lapalme 2009; Tao et al. 2016).
Recall is a measure of how effectively the neural network identi-
fied the target and was calculated by:

Recall=
tp

tp + fn
[2]

(Hoiem et al. 2012; Sokolova and Lapalme 2009; Tao et al. 2016).
The Fscore is the harmonic mean of the recall and precision, gives
an overall impression of the network’s positive labels, and was
calculated by:

Fscore=
2 �Precision �Recall
Precision +Recall

[3]

(Sokolova and Lapalme 2009). For validation, if an image would
not converge to produce bounding boxes on visible
G. carolinianum, all plants present were marked as a miss (0%
precision and recall).

Results and Discussion

Image Classification

GoogLeNet performed better than VGGNet for whole-image
training (Table 2). GoogLeNet did not increase either precision or
recall with cropped-image training. This contrasted with VGGNet,
which demonstrated substantial gains in fit for cropped-image
training. Validation for both GoogLeNet and VGGNet developed
on whole images were not successful, and produced low values for
recall and Fscores, making them unsuitable for field applications
(Table 3). These networks were unable to identify most to all of
the G. carolinianum present in the images, again making them
unsuitable for field applications. Cropped-image training increased
the validation results for both GoogLeNet and VGGNet (Table 3).
VGGNet made substantial gains in detecting G. carolinianum,
particularly in rejecting false positives, though the network did still
struggle with missing the target (false negatives).

Recall was primarily the limiting factor for image classification
of G. carolinianum while in competition with strawberry. This
was likely due to the frame of the input image and the amount of
negative space within (Figure 1). The camera field of view con-
tained between three to four planting holes along the bed, and
G. carolinianum occupied one to two planting holes. The number
of G. carolinianum leaves that grew through the strawberry
canopy and were visible from above were variable, ranging from
4 to more than 30.

Cropping images into four subimages substantially increased
the validation Fscore of the networks for classifying images con-
taining G. carolinianum. Improvements in the Fscore were likely
due to three factors: (1) the cropped images increased the number
of available training images to parameterize the CNN; (2) the
overall image contained fewer pixels to analyze; and (3) due to
cropping, the overall “negative” area outside the target (G. car-
olinianum) was reduced. The latter two points are likely impor-
tant, as they increase the percentage of the image that has a
positive pattern recognition potential to be amplified by the
convolutional filters. The additional layers to facilitate object
detection further benefited this by reducing the negative space in
which classification occurs.

Object Detection

Both the leaf-trained and canopy-trained DetectNet CNNs out-
performed GoogLeNet and VGGNet CNNs in both training
(Table 2) and validation (Table 3). Both the canopy-trained and leaf-
trained DetectNet networks fit the data very well. Canopy-based

Table 1. Confusion matrix demonstrating the designation terminology for
network output in detecting Geranium carolinianum in competition with
strawberry in Hillsborough County, FL, in 2018.

Images actually contain
G. carolinianum

Images predicted to contain G. carolinianum

Predicted: Yes Predicted: No

Actual: Yes True positive False negative

Actual: No False positive True negative

Table 2. Detection-training results using various convolutional neural net-
works (CNNs) for Geranium carolinianum growing in competition with straw-
berry in Balm, FL, in 2018.

Network
Training
specifications

Network
typeb Precision Recall Fscorea

DetectNet Canopy OD 0.98 1.00 0.99

DetectNet Leaf OD 0.99 0.99 0.99

GoogLeNet Whole image IC 0.96 0.21 0.35

GoogLeNet Cropped IC 0.68 0.22 0.34

VGGNet Whole image IC 0.94 0.09 0.16

VGGNet Cropped IC 0.73 0.61 0.66

aFscore= the harmonic mean of the precision and recall.
bIC, image classification–based CNN; OD, object detection–based CNN.
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training produced a network that was precise at detecting plants
at the cost of recall. As expected, canopy-based training missed
more plants and many more leaves than the leaf-based training,
but given the overall larger training target, made fewer false
identifications. The canopy-trained CNN did produce larger
bounding boxes that encompassed the strawberry leaves. Due to
how precision was considered, this did not have a negative effect
on the calculated accuracy, but depending on the application, this
output may be undesirable.

The leaf-trained DetectNet was the best evaluated network for
potential precision-sprayer implementation. The network identi-
fied all target plants, 142 in total. The smaller target had led to
increased identification error (false positives), 63% of which
occurred on weed species not prominent in the training data set,
and particularly M. lupulina leaf clusters (Figure 3). Other false
positives included strawberry flowers, immature fruit, and leaf
edges. False-positive network desensitization is possible by adding
false positive–rich training images for further training. To
demonstrate this, an additional 309 images containing M. lupu-
lina were taken during the same time periods as the training set
and used to supplement the training data. The network was

retrained and successfully desensitized to M. lupulina such that
false positives no longer occurred.

The strawberry field used to collect validation images contained
a G. carolinianum morphological variant that differed from plants
in the training fields. Plants of this variant contained a more open
palmate leaf compared with the more closed palmate leaf pre-
dominant in the training fields. Observed morphological variation
was unexpected, but the CNN detection performance remained
high, making results promising for across-site applications. Missed
leaves were primarily at the edges of larger plants that were
oriented toward the row middle. A combination of unusual leaf
orientation and background noise of the row middle likely led to
missed identification; this may be remedied with selective further
training. Even so, these larger plants are not necessarily the optimal
target for clopyralid application, and sprays should occur on
smaller plants, so this limitation may have minimal consequence
for implementation. Using a CNN trained to detect individual
leaves within the strawberry canopy would increase detection of
smaller plants protruding through the canopy.

The leaf-trained DetectNet outperformed the canopy-trained
DetectNet in detecting leaves during validation (Table 3). Leaf

Table 3. Detection validation using various convolutional neural networks (CNNs) for Geranium carolinianum growing in
competition with strawberry in Balm, FL, in 2018.

Network Specifications
Detection
level

Network
typea Precision Recall Fscoreb

DetectNet Canopy as target Plants OD 0.99 0.78 0.87

DetectNet Canopy as target Leaves OD 1.00 0.53 0.69

DetectNet Leaf as target Plants OD 0.88 1.00 0.94

DetectNet Leaf as target Leaves OD 0.99 0.95 0.97

GoogLeNet Whole Image IC N/Cc 0 N/Cc

GoogLeNet Cropped Quarter-image IC 0.81 0.50 0.62

VGGNet Whole Image IC 1.00 0.03 0.05

VGGNet Cropped Quarter-image IC 0.90 0.67 0.77

aIC, image classification–based CNN; OD, object detection–based CNN.
bFscore = the harmonic mean of the precision and recall.
cN/C, noncalculable value, no positive or false positives were generated by the neural network.

Figure 3. Leaf-trained DetectNet-generated bounding boxes generated on validation images for Geranium carolinianum growing in competition with the strawberry crop at
Plant City, FL in 2018. This figure demonstrates false-positive identifications.

Weed Science 243

https://doi.org/10.1017/wsc.2018.66 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2018.66


detection produced the greatest Fscore for any CNN with nearly
perfect precision. Similar results, namely limited recall, were
observed for DetectNet trained to detect weeds in a wheat field
(Dyrmann et al. 2017). The authors had not differentiated any
particular weed species or growth stage, which increased target
variability and reduced network recall, along with target occlusion
by the crop. A similar study using SSD512 resulted in a similarly
trained network with limited recall (Dyrmann et al. 2018), a
consequence of target selection and the necessity of a larger
training data set to compensate. For weed science applications,
especially scenarios where the available image quantity may be
low, target selection is an important consideration. It is advisable
to select a target with widespread application and reduced
variability, such as a leaf.

Other object-detection networks such as SSD (Liu et al. 2016)
and You Only Look Once (Redmon et al. 2016) are designed to
identify multiple classes per image. The ability to identify several
classes is an important network quality for weed management
strategies including scouting or concurrently spraying multiple
herbicides. Similar target-dependent recall shortcomings have
been identified for SSD (Dyrmann et al. 2018). Success may
further be limited due to the use of an IoU and rectangular
bounding boxes for object-detection CNNs. Geranium car-
olinianum was an excellent test species, because leaves were fairly
symmetrical and round. The variability in the target was minimal
across varying angles and orientations, which led to a minimum
of background noise within the bounding box. Application to
Cyperaceae or Poaceae species may be difficult to implement
using bounding-box techniques, due to leaf shape and potential
orientations. Alternatively, image-segmentation CNNs may be a
better approach for such circumstances (Milioto et al. 2017).

In conclusion, results demonstrate a promising avenue for
detection of a broadleaf species in a broadleaf crop. A leaf-trained
DetectNet CNN achieved a high Fscore (0.94) in detecting
G. carolinianum plants within the strawberry crop. Use of
DetectNet as the decision system for a digital camera–based
machine vision subsystem appears a viable option for precision
control of G. carolinianum in Florida strawberry production.
Future research is required to test DetectNet and other object-
detection networks in situ coordinated with the proper G. car-
olinianum growth stage for ideal control with clopyralid.
This would reduce chemical inputs and exposure, thus alleviating
concerns regarding temperature-induced damage for earlier
applications (Sharpe et al. 2018a, 2018b).
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